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1 Introduction

It has recently become clear that there exists a large class of field theories which have a

scaling symmetry under which both the energy density and the charge density have a non-

trivial anomalous dimension. This observation has been made in studies of field theories

whose dynamics can completely be solved in terms of a holographic dual based on Einstein-

Maxwell-Dilaton gravity [1–3] or on probe brane constructions [4, 5]. The anomalous

dimension of the energy density, as encoded in the hyperscaling violating exponent θ,

has long been recognized to be a quite common phenomenon. It occurs, for example,

in statistical physics for theories above their critical dimension. A separate anomalous

dimension Φ of the charge density was however unanticipated. There exist even several

papers that argue that non-zero Φ is impossible, for example [6, 7]. While many of the

holographic examples involved bottom-up toy models, some of the theories which produce

non-zero Φ are fairly standard gauge theories in the limit of a large number of colors.

For example, the general Dp/Dq system, that is maximally supersymmetric Yang-Mills

theories in any spacetime dimension other than 3+1 coupled to matter multiplets in the

fundamental representation, preserving half the supersymmetry and potentially localized to

lower dimensional planar defects, have been demonstrated to generate non-zero anomalous

dimension Φ for the conserved baryon number current [4].

Non-zero Φ also has potentially interesting applications for the theory of high temper-

ature superconductors. In our earlier work [8] we demonstrated that transport phenomena

in the strange metal phase of the cuprate family can be fitted extremely well, given just

a few simple dynamical assumptions, by a critical theory based on dynamical critical ex-

ponent z = 4/3 and Φ = −2/3 together with vanishing hyper-scaling violating exponent
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θ. The main experiment driving the necessity of non-zero Φ is the measurement of the

temperature dependence of the Hall-Lorenz ratio in [9]. The Lorenz ratio, as well as its

Hall version, directly measure the charge of the basic carriers. The fact that this quantity

scales in a non-trivial fashion with temperature implies that the charge of the carriers does

not act as a constant but has a non-trivial temperature dependence. This is the essence of

non-zero exponent Φ. More recent experimental data on the same quantity [10] showed a

less clear linear dependence of the Hall-Lorenz ratio as a function of temperature and, in

any case, seems to be inconsistent with the findings of [9]. Clearly pinning down this quan-

tity experimentally should be of utmost interest. If one were to interpret the data of [10] as

implying a constant Hall-Lorenz ratio, the remaining transport data of the cuprates could

be fit with a much more conventional scaling theory [11].

Irrespective of the experimental situation in the cuprates, the question of when non-

zero Φ is consistent or required is clearly of theoretical importance as a basic question in

quantum field theory. In our earlier work [8] we already pointed out potential loopholes

in the arguments that seemingly forbid anomalous dimensions for conserved currents. But

the strongest evidence for the consistency of non-zero Φ so far still comes from holography.

Note that it is important that the theory is only scale and not conformally invariant, in

which case the conformal algebra alone would pin down the dimension of any conserved

current to its free value. In the non-relativistic context most scale invariant theories are

not conformal.

The fact that up to date the only known examples of non-zero Φ are based on hologra-

phy is somewhat disturbing. In this work we are remedying this situation by constructing

explicit field theory examples with non-vanishing Φ. The theories we construct will all be

“large N”, where N is to be thought of as the number of flavors. N can for example count

the different bands of a solid. As we will see, scale invariance only emerges as a symmetry

in the theories we consider in the large N limit. However, already at moderately large N

the properties of the system are very well approximate by the large N scaling answer. The

examples are somewhat trivial in the sense that the anomalous dimension for the current

appears as a classical phenomenon. It does not arise from divergences in quantum loops,

but from summing up an infinite number of contributions from the N flavors in the N →∞
limit. This way our theories automatically avoid arguments based on Ward identities that

have been put forward to rule out an anomalous dimension for a conserved current.

The organization of this note is as follows. In the next section we present a simple

toy model that exhibits how anomalous dimensions arise from large N limits. We give a

very simple example of how to obtain a non-vanishing hyperscaling violating exponent out

of what is essentially many free systems. In section 3 we give the general construction for

non-vanishing θ based on systems with many flavors (which could be strongly interacting

as long as interflavor interactions are suppressed) coupled to general background fields. We

give two simple physical examples in section 4. In section 5 we generalize the construction

in order to produce a non-vanishing Φ, with a simple physical example for this case in

section 6. We discuss finite N corrections in section 7 and conclude with a few comments

in section 8.
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2 Hyperscaling violation from a non-relativistic multi-band theory

Let us first demonstrate the basic idea of how to get non-trivial scaling exponents from

a large number of flavors limit of a multi-band (or multi-flavor) theory in a simple exam-

ple. For a non-relativistic Fermi gas with dispersion relation E(p) = p2/(2m) the grand

canonical free energy density at zero temperature as a function of chemical potential µ is

given by

ω0(µ) = −aµ
d+2
2 (2.1)

for positive µ, and it is zero otherwise. The constant a can easily be determined by filling up

the energy levels up to the Fermi energy EF = µ, but the µ dependence itself is completely

governed by scaling. The system has an underlying scale symmetry with z = 2 (under

which p has dimension 1, E has dimension 2, the mass doesn’t scale and the spatial volume

has dimension −d). Since the free energy density has dimension d + z, it has to scale as

µ(d+2)/2 as indicated.

A simple generalization of the above model is to include a finite off-set in the dispersion

relation,

E(p) =
p2

2m
+M (2.2)

Clearly all M does is shift the overall energy of all states and the free energy density is

given by1

ω0(µ) =

−a(µ−M)
d+2
2 for µ > M

0 otherwise
. (2.3)

Note that while M has dimensions of energy and so formally our system is no longer

scale invariant, the form of the dispersion relation is still constrained by scaling as long

as we account for the fact that M has dimension of energy, dimension z = 2 that is. The

dispersion relation has to take the form

E(M,p) = p2f(M/p2) (2.4)

with f(x) = (1− x)/(2m) for the special case of a simple off-set.

Of course for a single band, since M is just some overall shift of all energy levels, we can

always set it to zero by a choice of origin. M however becomes meaningful in a multi-band

1For M = 0 the form of ω in (2.1) implies for energy density ε and particle number density n

n =
d+ 2

2
cµ

d
2 , ε =

d

2
cµ

d+2
2 .

With finite off-set M the particle number density only sees the difference between chemical potential and

off-set, so

n =
d+ 2

2
c(µ−M)

d
2

and similar for the kinetic energy. However, the energy density also receives a direct contribution from the

off-set, so that the full energy density is given by

ε =
d

2
c(µ−M)

d+2
2 + nM.

Using ω = ε− µn, the expression (2.3) for the free energy density follow.
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setting, where different bands start at different values of M . As an oversimplified example

of a multi-band theory let us postulate that we have N flavors of free non-relativistic

electrons where the n-th flavor has dispersion relation

En(p) =
p2

2m
+Mn (2.5)

that is, we take all the flavors to have the same effective mass but different off-sets. We

order the flavors by their off-sets, that is Mn+1 ≥ Mn. The total free energy density for

chemical potential µ is given by

ω = −a
nmax∑
n=1

(µ−M)
d+2
2 (2.6)

where Mnmax is the largest off-set less than µ.

In the limit of an infinite number of flavors, we can replace the sum over n with

an integral:

ω = a

∫ µ

0
dMg(M)(µ−Mn)

d+2
2 (2.7)

where g(M) is the density of flavors, that is g(M)dM counts how many flavors have off-set

between M and M + dM . This approximation is valid as long as µ is large compared to

the spacing between off-sets.

A very special choice for g(M) is when g(M) is a power law. The simplest case is a

constant, that is the off-sets are equally spaced:

g(M) =
1

m0
. (2.8)

Note that m0 has dimensions of energy; it is exactly the spacing between neighboring

off-sets. In this case we can do the integral and obtain

ω =
a

m0

∫ µ

0
(µ−M)

d+2
2 =

2a

(4 + d)m0
µ

d+4
z . (2.9)

That is, we have a free energy density which still has a scale invariance, but this time

apparently with hyperscaling violating exponent θ = −2. We will confirm below that this

is indeed the correct interpretation. It is important to note that for this special case for

g(m) the functional form of the free energy density ω is still constrained by scale invariance

as long as we account for the scale dependence of the single dimensionful parameter m0

which scales like an energy (that is it has dimension z = 2). Scaling alone guarantees that

ω(µ,m0) = µ
d+2
2 f(µ/m0). (2.10)

Now the very fact that we wrote the energy density as an integral over dM with m−10

only appearing as an overall prefactor immediately tells us that f(x) ∼ x and so we can

correctly deduce ω ∼ µ(d+4)/2 without even doing the integral. For general power-law

density of levels we have (since g(M)dM is dimensionless)

g(M) =
My−1

my
0

(2.11)
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where m0 is once again a parameter with dimension of energy that characterizes the dis-

tribution of levels. Scaling alone still guarantees that the free energy density takes the

form (2.10). Once again, m−y0 appears as an overall prefactor, so we know f(x) ∼ xy and

so ω ∼ µ(d+2+2y)/2, that is we appear to have hyperscaling violating exponent

θ = −2y. (2.12)

This general idea that one can obtain a scale invariant theory by integrating over the mass

parameter has also recently been exploited in [12, 13] where it was used to construct an

“unparticle” description of non-Fermi liquids.

3 General construction including finite temperature and background

fields

The specific example above demonstrated that in theories with a large number of flavors we

can violate naive scaling dimensions and in particular get a free energy density that appears

to have a non-zero hyperscaling violating exponent θ. It is very easy to generalize this idea

to a generic quantum system or field theory with a large number of flavors, coupled to

arbitrary background fields. In particular, we want to turn on a finite chemical potential

µ, a finite temperature T and a background vector potential Ai coupled to a conserved

particle number current. We assume that each flavor has unit charge under this global

particle number symmetry, so that the total current is simply the sum of all the individual

flavor currents with equal weight. Each flavor can constitute a strongly coupled system

itself, but we assume that the flavors are decoupled from each other so that we can simply

get the physical properties of the full system by summing over flavors as above. We assume

each flavor is characterized by a parameter Mn with the dimension of energy and the free

energy density ω of each flavor is given by

ω(µ, T,Ai,Mn) = T
d+z
z f(µ/T,Ai/T

1/z,Mn/T ) (3.1)

That is, each flavor is scale invariant with the same dynamical critical exponent z as long

as one accounts for the non-trivial scaling of the mass parameter Mn. The non-relativistic

many-band model of the previous subsection, where Mn was the off-set of the n-th band

gives a simple example with z = 2. A theory with a large number of relativistic fermions

would be an example with z = 1. Mn in that case is the mass of the n-the flavor. In both

cases, the functions f are standard textbook expressions for the free Fermi gas. None of the

details of f will be important, other than the fact that f goes to zero faster than 1/M at

large M/µ. This is expected to be the case as long as the energy of the n-th flavor is bigger

equal than M , so that it’s contribution to f is suppressed by a large Boltzmann factor at

large M . This certainly is true in the case of a free non-relativistic or relativistic gas.

As in our simple warm-up example, in the large number of flavor limit we can get the

free energy of the full system by converting the sum over flavors to an integral

ωtot(µ, T,Ai, . . .) = T
d+z
z

∫ ∞
0

dMg(M)f(µ/T,Ai/T
1/z,M/T ). (3.2)
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where the dots stand for all the parameters characterizing the level density g(M). Re-

turning to the special case that g(M) is a power law as in (2.11) characterized by a single

quantity m0 carrying dimension of energy we can determine the functional form of ωtot as

above. We know that

1. ωtot respects scaling, ωtot(µ, T,Ai,m0) = T
d+z
z F (µ/T,Ai/T

1/z,m0/T ).

2. The constant m−y0 appears in ωtot only as an overall prefactor.

This tells us that

ωtot = m−y0 T
d+z
z

+y Ω(µ/T,Ai/T
1/z). (3.3)

This is exactly the statement that the full system has a scale invariance characterized by

the same dynamical critical exponent z as the single flavor system but with a hyperscaling

violating critical exponent

θ = −yz (3.4)

as in (2.12). Note that in this expression the background fields µ and Ai still scale according

to their canonical dimensions, that is their anomalous dimension Φ = 0.

4 A simple physical example

A theory with an infinite number of flavors may sound fairly exotic, but we can give very

simple physical examples of such a many band theory both for the z = 2 case and the z = 1

case. The structure of the dispersion relations we require is exactly what one gets from

a dimensional reduction. A standard Kaluza-Klein compactification of a free relativistic

fermion in d+ 1 spatial dimensions on a circle of radius R gives an infinite tower of flavors

in d spatial dimensions of the form we postulated with Mn = n/R. Since the masses are

all equally spaced this exactly corresponds to the case of a constant density of levels, y = 1

and so according to (3.4) we have θ = −1 in this case. This is just the statement that

when the chemical potential is large compared to the separation of levels, µ � 1/R, the

system behaves d+ 1 dimensional. From the point of view of the d dimensional theory this

appears as a hyperscaling violating exponent θ = −1!

In the non-relativistic z = 2 system we can accomplish the same effect by confining

a d + 1 dimensional system into a d dimensional quantum well. If we take the confining

potential to be an infinite square well of width L, we get exactly the many-band theory of

our toy example with off-set Mn ∼ n2/L2. Since the distance between levels now grows

linearly with n ∼
√
Mn this corresponds to g(M) ∼ 1/

√
Mn or in other words y = 1/2.

With z = 2, (3.4) once more yields θ = −1. The hyperscaling violating exponent again

simply encodes the higher dimensional character of the theory. Of course the confining

potential will in general not take this simple form, but the main point is that we can view

any 3d system confined to a quantum well (like the copper oxide layers in the cuprate) as

a 2d theory with an infinite number of flavors, so the system is intrinsically “large N” for

the purposes of the phenomena discussed here.

– 6 –



J
H
E
P
0
7
(
2
0
1
5
)
0
2
1

5 Anomalous scaling for conserved currents, electric and magnetic fields

What we have demonstrated so far is that in systems with many flavors, such as KK

reductions or quantum wells, physical quantities can aquire anomalous dimensions from

performing the sum over flavors. So far all we accomplished is to obtain a non-trivial

hyperscaling violating exponent θ. Non-vanishing θ has long been appreciated as being

an important aspect of critical systems and can be realized without appealing to large

N theories, for example in standard critical systems above their critical dimension. A

much more puzzling exponent is the anomalous dimension Φ for conserved currents and

consequently for background electric and magnetic field which we recently proposed [8] to

play an important role in the phenomenology of the cuprates based on earlier holographic

studies. Holography makes it abundantly clear that Φ is part of generic critical systems,

but no field theory examples with non-vanishing Φ had been known that did not rely on

the holographic duality to determine Φ. We would like to demonstrate that multi-band

systems can give us non-vanishing Φ just as easily as they gave us non-vanishing θ.

From the derivation in section 3 it is clear that the reason we ended up with a vanishing

Φ was that the relative strength with which the various flavors coupled to the background

gauge field was equal. All flavors had the same charge. We can generalize our previous

construction to flavors with non-equal charge. If we denote the charge of the n-the flavor

as e(Mn) we see that the free energy of the individual flavor is now given by

ω(µ, T,Ai,Mn) = T
d+z
z f

(
e(Mn)µ

T
,
e(M)Ai

T 1/z
,
Mn

T

)
(5.1)

in analogy with (3.1). That is, in the action for the individual flavor e(M), µ and Ai only

appear in the combination e(M)µ and e(M)Ai and so any dependence on e(M), Ai and µ

can only be in this product form. For the multi-band model we obtain,

ωtot(µ, T,Ai, . . .) = T
d+z
z

∫ ∞
0

dMg(M) f

(
e(Mn)µ

T
,
e(M)Ai

T 1/z
,
Mn

T

)
. (5.2)

For the full theory to still respect any kind of scaling symmetry, we this time need both

g(M) and e(M) to be given by power laws

g(M) =
My−1

my
0

, e(M) =
M ỹ

m̃ỹ
0

. (5.3)

m0 and m̃0 are parameters with dimension of energy and the power with which they appear

in g(M) and e(M) respectively is determined by the fact that e(M) is dimensionless whereas

g(M) has dimension of energy−1. Following the logic of the previous sections we can fix

the resulting form of the free energy

ωtot = m−y0 T
d+z
z

+y Ω

(
µ

T

(
T

m̃0

)ỹ
,
Ai

T 1/z

(
T

m̃0

)ỹ )
. (5.4)

Concretely, we use that

1. m0 appears only as an overall prefactor from g(M)

– 7 –
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2. µ and Ai show up in the integrand in the combination µ/m̃ỹ
0 and Ai/m̃

ỹ
0 and so they

have to appear in this combination in the final answer. m̃0 only appears in these

combinations, so no other powers of m̃0 occur.

3. The free energy has to respect the scale invariance of the underlying theory with m0

and m̃0 transforming like energies.

With the standard [4] assignments [µ] = z − Φ and [Ai] = 1 − Φ we see that the final

answer (5.4) exactly corresponds to the form the free energy should take in a theory with

θ = −yz, Φ = ỹz . (5.5)

6 A simple physical realization of non-zero Φ

As for our theories with non-zero θ, a simple example of a theory which obtains non-

vanishing Φ via the construction outlined in here can be obtained by looking at a Kaluza-

Klein example. If we start with a relativistic field that carries charge q already in d + 1

spatial dimensions, compactification on circle of radius R will give us a tower of particles

with mass n/R in d dimensions, every single one of which will carry charge q. This is the

theory we discussed in section 4. The KK-reduction itself however introduces a new U(1)

charge in the system. The quantized momentum along the compact direction appears as

an extra global U(1) charge in the d dimensional theory. Under this KK U(1) symmetry

the particle with mass n/R carries charge n. In the language of our construction this

corresponds to y = ỹ = 1, or in other words

θ = −1, Φ = 1. (6.1)

These dimension assignments can of course easily be understood from the higher dimen-

sional point of view. θ, as before, just signals that an extra dimension opens up. Φ = 1

implies that the gauge field has dimension 0 instead of its standard dimension 1. This is to

be expected, since the background field Aµ in the d dimensional theory is just the metric

component gµφ of the higher dimensional theory, where φ denotes the compact direction.

0 is indeed the standard dimension assigned to the metric tensor under scaling.

7 Finite N effects

Strictly speaking, the scaling symmetry with the non-trivial exponent only emerges in the

large N , that is in the large number of flavors, limit in the examples we constructed here.

However, already at moderately large N is the field theory very well approximated by the

large N scaling answer. Scaling with the non-trivial exponents dominates the physics even

at finite N . To demonstrate this quantitatively, let us return to our simplest toy model of

section 2. In figure 1 we compare the finite N answer for 1, 10 and 20 levels to the infinite

N scaling answer. While of course for a single level the two disagree wildly one can see

that already at the moderately large values of levels the infinite N scaling answer is an

extremely good approximation to the full finite N answer.
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Figure 1. Free energy for d = 2 as a function of chemical potential. Depicted is the comparison

between the finite sum (solid line) with a) N = 1, b) N = 10 and c) N = 20 levels to the scale

invariant answer (dashed line) that emerges at large N . The free energy is given by (2.6) with

a = 1. m0 in the continuum answer (2.9) is adjusted to account for the presence of 1, 10, 20 levels

in the range of µ depicted.

One important lesson to take away from this study of finite N effects is that the correct

notion of N is to count the number of bands within the energy range one wants to study.

For scaling to govern the free energy density within a certain range of temperatures or

chemical potentials, the number of bands with energy within this range has to be large for

the scaling considered in here to be an approximate symmetry.

8 Comments

• These examples easily avoid any theorems based on Ward identities forbidding anoma-

lies for the current. Note that the construction outlined in here would already as-

sign the currents anomalous dimensions classically. It is the infinite number of fla-

vors/bands that allows currents to pick up an anomalous scaling transformation. The

anomalous dimension here is not due to quantum effects

• We so far neglected interactions between the bands. The flavors within a band can al-

ready have arbitrary interactions as long as they do not generate any additional scale.

Inter-band interactions will almost certainly renormalize the critical exponents, but

since the dimension of the currents was already unconstrained before the interactions

are taken into account, any fixed point that emerges in the IR will surely not have

to have Φ = 0.

• While it is easy to demonstrate that this construction does give non-vanishing Φ, it

is less clear that this is how either holography or cuprates accomplish the feat. Note

however that the appearances of many flavors appears natural from the point of view

of holography, where the extra dimensions gives infinite towers of states. The fact

that cuprates have 2d layers also potentially allows an interpretation in terms of a

theory with many flavors, even though in this case the notion that different flavors

have different charge still would require quite unusual physics.

– 9 –
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[3] B. Goutéraux, Universal scaling properties of extremal cohesive holographic phases, JHEP 01

(2014) 080 [arXiv:1308.2084] [INSPIRE].

[4] A. Karch, Conductivities for hyperscaling violating geometries, JHEP 06 (2014) 140

[arXiv:1405.2926] [INSPIRE].

[5] D.V. Khveshchenko, Taking a critical look at holographic critical matter, arXiv:1404.7000

[INSPIRE].

[6] X.-G. Wen, Scaling theory of conserved current and universal amplitudes at anisotropic

critical points, Phys. Rev. B 46 (1992) 2655.

[7] S. Sachdev, Quantum phase transitions and conserved charges, Z. Physik B 94 (1994) 469.

[8] S.A. Hartnoll and A. Karch, Scaling theory of the cuprate strange metals, Phys. Rev. B 91

(2015) 155126 [arXiv:1501.03165] [INSPIRE].

[9] H.T. Nieh, Quantum effects on four-dimensional space-time symmetries, Phys. Rev. Lett. 53

(1984) 2219 [INSPIRE].

[10] M. Matusiak, K. Rogacki, and B. Veal, Enhancement of the Hall-Lorenz number in optimally

doped YBa2Cu3O7−d, EPL 88 (2009) 47005.

[11] D.V. Khveshchenko, Constructing (un)successful phenomenologies of the normal state of

cuprates, arXiv:1502.03375 [INSPIRE].

[12] P.W. Phillips, B.W. Langley and J.A. Hutasoit, Un-Fermi liquids: unparticles in strongly

correlated electron matter, Phys. Rev. B 88 (2013) 115129 [arXiv:1305.0006] [INSPIRE].

[13] P.W. Phillips, Beyond particles: unparticles in strongly correlated electron matter,

arXiv:1412.1098 [INSPIRE].

– 10 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP04(2013)053
http://arxiv.org/abs/1212.2625
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2625
http://dx.doi.org/10.1007/JHEP04(2013)159
http://arxiv.org/abs/1212.3263
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3263
http://dx.doi.org/10.1007/JHEP01(2014)080
http://dx.doi.org/10.1007/JHEP01(2014)080
http://arxiv.org/abs/1308.2084
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2084
http://dx.doi.org/10.1007/JHEP06(2014)140
http://arxiv.org/abs/1405.2926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2926
http://arxiv.org/abs/1404.7000
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7000
http://dx.doi.org/10.1103/PhysRevB.46.2655
http://dx.doi.org/10.1007/BF01317409
http://dx.doi.org/10.1103/PhysRevB.91.155126
http://dx.doi.org/10.1103/PhysRevB.91.155126
http://arxiv.org/abs/1501.03165
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.03165
http://dx.doi.org/10.1103/PhysRevLett.53.2219
http://dx.doi.org/10.1103/PhysRevLett.53.2219
http://inspirehep.net/search?p=find+Phys.Rev.Lett.,84,2219
http://dx.doi.org/10.1209/0295-5075/88/47005
http://arxiv.org/abs/1502.03375
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03375
http://dx.doi.org/10.1103/PhysRevB.88.115129
http://arxiv.org/abs/1305.0006
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0006
http://arxiv.org/abs/1412.1098
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.1098

	Introduction
	Hyperscaling violation from a non-relativistic multi-band theory
	General construction including finite temperature and background fields
	A simple physical example
	Anomalous scaling for conserved currents, electric and magnetic fields
	A simple physical realization of non-zero Phi
	Finite N effects
	Comments

