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ABSTRACT: We analyze the large N limit of adjoint QCD, an SU(N) gauge theory with
Ny flavors of massless adjoint Majorana fermions, compactified on S3 x S'. We focus on
the weakly-coupled confining small-S® regime. If the fermions are given periodic boundary
conditions on S', we show that there are large cancellations between bosonic and fermionic
contributions to the twisted partition function. These cancellations follow a pattern previ-
ously seen in the context of misaligned supersymmetry, and lead to the absence of Hagedorn
instabilities for any S! size L, even though the bosonic and fermionic densities of states
both have Hagedorn growth. Adjoint QCD stays in the confining phase for any L ~ N,
explaining how it is able to enjoy large N volume independence for any L. The large N
boson-fermion cancellations take place in a setting where adjoint QCD is manifestly non-
supersymmetric at any finite /N, and are consistent with the recent conjecture that adjoint
QCD has emergent fermionic symmetries in the large N limit.
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1 Introduction

In this paper we explore adjoint QCD, an SU(N) gauge theory with N flavors of massless
Majorana quarks in the adjoint representation of SU(N). Working in a weakly coupled and
analytically tractable regime, we show that for any Ny > 1 there are large cancellations
between bosonic and fermionic contributions to the (—1)f-twisted partition function at



large N. The cancellations are so strong that when large N adjoint QCD is compactified
on a spatial circle of size L, with periodic boundary conditions for the fermions, it has no
Hagedorn instabilities and stays in a confined phase for any L ~ N°, and enjoys large N
volume independence for any L ~ N9,

The weakly coupled regime used in our calculations opens up when the theory is
compactified on S? x S and the S radius is made small [1-3]. When the S* is large,
the large N theory can be shown to be in a confined phase, with the physical spectrum
consisting of weakly coupled ‘hadron’ states created by single-trace operators and an order
NO free energy. If the S' circle is spatial, with periodic boundary conditions for the
fermions, the Euclidean path integral computes the twisted partition function [4]

Z(L) = Tr(—-1)Fe LH = /dE [pB(E) — pr(E)]e 1E (1.1)

where pp r are the bosonic and fermionic densities of states and L is the circumference of
the S'. We verify that as a consequence of the Hagedorn phenomenon, both pp and pg
grow exponentially in E. In principle pp and pp might be expected to be quite different
from each other. Remarkably, we find that pp and pr have the same asymptotic behavior,
with all exponentially-growing parts coinciding exactly for any Ny > 1. Such a relation
between the bosonic and fermionic densities of states leads to the dramatic consequence
that adjoint QCD on S? x S! does not have a Hagedorn instability, and the theory stays
in the confined phase for any spatial circle size L ~ N° for any N ¢ > 1. This is due to
the fact that (1.1) involves pp — pp, in contrast to the thermal partition function, which
involves pp+ pr. The boson-fermion degeneracies lead to strong cancellations in (1.1), and
keep Z(L) a smooth function of L for any L ~ N°. Our results provide physical insight
into the result of [4], which found that adjoint QCD on S® x S! enjoys large N volume
independence for any L.

The observation of degeneracies between bosonic and fermionic spectra normally sug-
gests that the theory has a fermionic symmetry. But at any finite N, adjoint QCD on
S3 x S' is not supersymmetric. The S® curvature breaks the flat-space N' = 1 super-
symmetry of the Ny = 1 theory, while if Ny > 1 the theory has 2(N? — 1) bosonic and
2Nf(N? — 1) fermionic degrees of freedom at the microscopic level, and hence cannot be
supersymimetric in any conventional sense even in flat space. Since the degeneracies we
observe appear in the large N limit, our results are consistent with the conjecture posed
in [5] that adjoint QCD should have an emergent fermionic symmetry in the large N limit
even away from N; = 1 if the theory enjoys volume independence. Emergent fermionic
symmetries in the large N limit of otherwise non-supersymmetric theories do not contra-
dict the Coleman-Mandula and Haag-Lopuszanski-Sohnius theorems, since the S-matrix
elements of physical states vanish in the large N limit.

The paper is organized as follows. In section 2 we review some relevant properties
of adjoint QCD, and summarize the arguments of [5] concerning Hagedorn instabilities
and large N volume independence which motivated our search for spectral degeneracies in
adjoint QCD. In section 3 we describe the calculation of the twisted and thermal partition
functions for adjoint QCD in the large N limit on S3 x S!, using the technology of [1-3].



Section 4 is the key part of the paper, and describes the behavior of the twisted and thermal
densities of states which are relevant for spatial and thermal compactifications respectively.
Figure 1 gives a visual summary of our story. Thermally-compactified adjoint QCD has
Hagedorn instabilities, as shown in section 4.1, but there are no Hagedorn instabilities for
spatial compactification as shown in section 4.2. We compute the twisted Casimir energy
in adjoint QCD at large N and show that it vanishes in section 4.3, while section 4.4
comments on the connections between our results and misaligned supersymmetry. Finally,
in section 5, we make some remarks on the relation of our findings to the underlying
symmetries of adjoint QCD, and conclude in section 6.

2 Properties of large N adjoint QCD

In this section we briefly review two properties of large IV gauge theories — and in particular
of adjoint QCD — which play a key role in the rest of our analysis. These properties are
the presence of Hagedorn instabilities in generic confining large N gauge theories, and
the phenomenon of large N volume independence, which is special to adjoint QCD. The
tension between Hagedorn instabilities and volume independence motivate our study of
adjoint QCD on S3 x S1.

2.1 Hagedorn instability

Large N gauge theories with a confinement scale A. are believed to have a density of states
p(E) with a Hagedorn scaling [6]

p(E > A) — Pl gy~ AT (2.1)

A heuristic argument for this relation is that large N theories have an infinite number
of stable hadronic states, and highly-excited states can be thought of as excitations of
confining strings, see e.g. [7]. Relativistic string theories famously have Hagedorn densities
of states, motivating (2.1). A more rigorous argument in favor of (2.1) based directly on
the known properties of large N gauge theories was recently given in [8, 9].

If such a theory is compactified on M x Sé, where Sé is a thermal circle, then the
associated partition function can be written as

2(9) = re " = [ dB[pu(E) + pe(B)]e " (2.2)

with pp r being the bosonic and fermionic densities of states respectively. If pp + pr = p
satisfies (2.1), then the sum over states in Z(3) will diverge for § < Sp. This is known
as a Hagedorn instability. Consequently, it is believed that all confining large N theories
undergo a deconfinement phase transition at some inverse temperature 54 > G-

2.2 Large N volume independence

Consider a confining gauge theory with one or more directions compactified on a spatial
torus T with periodic boundary conditions for fermions, and suppose the theory is in the
confining phase. In general, connected correlation functions of single-trace color singlet



operators will depend on the volume of T', with the dependence taking the form e~ %A

where A is the mass gap and L ~ NY is the scale of the volume.!

Large N volume
independence is the statement that in the ‘t Hooft large N limit, the connected correlation
functions of topologically trivial single-trace operators do not depend on L, provided center
symmetry and translation invariance are not broken [10-15].? Volume independence implies
that the connected parts of n > 1-point correlation functions of single-trace topologically-
trivial operators are L-independent up to 1/N corrections. For zero point-functions such
as log Z (the free energy), volume independence forces their O(N?) parts to be volume
independent. Of course, in the confining phase, where center symmetry is unbroken and
volume independence is valid, log Z is O(NY). Hence the validity of volume independence
for L € [Lyin,00) implies that a theory must not have any Hagedorn instabilities for
L € [Luin,o0), since these would drive the appearance of an O(N?) volume-dependent
part in log Z.

Recently, convincing numerical and analytic evidence [16-31] has appeared that adjoint
QCD with massless quarks is special in the sense that, when compactified on M x Si, it
enjoys large N volume independence for any circle size L ~ N [14] so long as the circle
is a spatial one, with periodic boundary conditions for fermions. That is, in adjoint QCD,
large N volume independence is believed to hold for L € (0,00) for any Ny € [1,5.5).2

2.3 The tension

Volume independence for any L implies the absence of phase transitions as a function of L.
As a result, one might worry that large N volume independence for any L is not consistent
with the well-established existence of Hagedorn instabilities at Ly ~ A_! in confining
theories. Indeed, in many theories there truly is a clash between volume independence
and the Hagedorn instability, which is resolved by the failure of volume independence at
B = By [13, 32]. From a modern perspective, this gives a simple heuristic explanation for
the failure of the original large N volume independence proposal of Eguchi and Kawai in
the context of pure Yang-Mills theory [10, 11]. However, adjoint QCD does not necessarily
suffer from this issue [5]. To see this, recall that the modern formulation of large N
volume independence is a statement about the sensitivity of observables to the size of

IThe restriction to L ~ N is important, since in general volume dependence is expected to set in once
L ~ N7', with e.g. possible chiral phase transitions at L ~ 1/(NA) where A is the strong scale. The
restriction to toroidal compactifications is also important, since on e.g. S% x St the physics depends on R
even at large IV, in contrast to what sometimes happens to the dependence on L.

2There is a simple heuristic picture behind the phenomenon of large N volume independence. The way
a given hadron knows that it is a periodic box is to interact with the ‘image’ hadrons introduced by the
boundary conditions on the walls. If we take an ‘t Hooft large N limit, with N — oo with all physical
scales fixed, then the interactions between hadrons become 1/N suppressed, and the finite volume effects
must disappear at leading order in the 1/N expansion. So as long as a large N theory is in its confining
phase, it will enjoy volume independence for toroidal compactifications.

*When N; < 5.5, adjoint QCD is asymptotically-free and has a strong scale A as determined from the
IR Landau pole in the one-loop beta function. For Ny < 4 adjoint QCD on R* is believed to develop a
mass gap of order A. If 5.5 > N > 4, it is believed that adjoint QCD on R* flows to a conformal fixed
point in IR, and for Ny =5 this fixed point can be seen in the two-loop beta function, and occurs at weak
coupling.



spatial circles [14]. The Euclidean path integral for a theory compactified on a spatial
circle computes the twisted partition function, Z (L), defined in (1.1); it does not compute
the thermal partition function Z(f3). The twisted and thermal partition functions are
sharply different in theories with bosonic and fermionic states of similar energies. This
is the case in SU(N) adjoint QCD with massless fermions. In contrast, in QCD with N
fundamental fermions, with even IV there are no fermionic states at all, while for odd N the
only fermionic states are baryons, which become parametrically heavy in the large N limit.
The general statement is that the twisted and thermal partition functions are qualitatively
similar for 3 ~ L ~ N° for large N gauge theories with complex-representation fermions,
but they are very different in theories with light adjoint fermions.

The relevance of Z(L) rather than Z(/3) means that the tension between volume inde-
pendence and Hagedorn instabilities would be relieved if the exponentially-growing parts
of pp and pp were the same, leading to sufficient cancellations in (1.1) to avoid Hagedorn
instabilities. Supersymmetry would of course be sufficient to drive such cancellations, since
in flat space the twisted partition function of a supersymmetric QFT is the Witten index,
which is trivially volume-independent.

However, adjoint QCD is not supersymmetric for generic Ny, so it is not a priori
obvious why one should expect sufficient cancellations in the twisted partition function
to avoid Hagedorn instabilities. In this paper we show that the necessary cancellations
do indeed happen in adjoint QCD on S% x S! for any N ¢ = 1. Since our results in-
volve degeneracies between the energies of an infinite number of bosonic and fermionic
states, it appears to call for the presence of emergent fermionic symmetries in large N
adjoint QCD.

2.4 Utility of S3 x S! compactifications

Both volume independence and Hagedorn instabilities are usually strong coupling phe-
nomena, which makes their interplay difficult to explore analytically. In this paper we
discuss volume independence and Hagedorn instabilities in adjoint QCD on S% X Sé and
S% X Si, using methods developed in [1, 3, 4]. The reason this setting is interesting is
that if Ny < 5.5, then the 't Hooft coupling A(R) — 0 as AR — 0, where A is the strong
scale. Hence the theory becomes weakly coupled and analytically calculable for any L or
B.%4 At the same time, the AR < 1 theory is confining with a mass gap of order 1/R, with
the realization of center symmetry serving as an order parameter for confinement. From
a path integral point of view, the small-S® theory can be thought of as a matrix model
integral for the holonomy of the Wilson loop wrapping S'. One can then show that, at
least at large L/ R, the matrix model is dominated by a center-symmetric saddle-point, and
hence describes a confining theory [3]. This is true at large N. At finite N the analysis is
much more subtle, because there cannot be distinct phases at finite N on a finite volume;
equivalently, at finite IV, subleading saddles must be taken into account. We only analyze

4Our results also apply if Ny > 5.5, when the theory becomes IR-free, with a Landau pole A for the
coupling in the UV. In this regime we can maintain weak coupling by setting RA > 1.



the physics to leading order in the large N limit in this paper. We also work only at A = 0,
or equivalently at leading order in the small RA expansion.’

As we will review, the presence of a Hagedorn density of states in adjoint QCD can
be shown by direct calculation so long as AR < 1 using the techniques of [1, 3]. Conse-
quently, the RA < 1 limit gives us a regime where Hagedorn phenomena, center symmetry
realizations and large N volume independence can all be explored simultaneously at weak
coupling.

The presence of S? curvature couplings explicitly breaks the flat-space supersymmetry
of the Ny = 1 SU(N) theory, while Ny > 1 adjoint QCD is not supersymmetric even in
flat space. So one might worry that on S})’% X S}J, volume independence would be doomed
both with Ny = 1 and N; > 1. However, some time ago, it was shown by Unsal [4] that
in adjoint QCD center symmetry is always unbroken on S% x S} for any Ny > 1, and
hence large N volume independence must hold for any Ny > 1.5 We illuminate the physics
of this result by explicitly showing that there are no Hagedorn instabilities any N; > 1
for any L ~ N in the spatially-compactified theory. On the other hand, we show that
there are Hagedorn instabilities for thermal compactification with § ~ 1/R. The spatially-
compactified theory with Ny > 1 avoids Hagedorn instabilities due to large cancellations
between bosonic and fermionic densities of states, as was advocated on general grounds
in [5].

Before diving into the analysis, we make a remark on the global symmetries of adjoint
QCD. Since the Ny Majorana fermions are in a real representation of the gauge group, the
theory has a classical U(NNy) flavor symmetry. The overall U(1) C U(Ny) is anomalous,
and on R3 x S! it is believed that SU(Ny) is spontaneously broken to SO(Ny) by a chiral
condensate when the S' is large.” The situation is quite different on S% X Si, since
the chiral symmetry realization depends on RA. For small RA, where the theory is weakly
coupled for any L ~ N the SU(N #) chiral symmetry is not spontaneously broken, and the
curvature couplings induce a chirally-symmetric mass gap for the fermions [4]. The small
RA regime is an example of a setting where confinement and chiral symmetry breaking are
not entangled with each other. These remarks will be important in section 5.

3 Large N partition functions on §2 x S*!

When RA < 1, large N adjoint QCD is a nearly free quantum theory with an infinite
number of degrees of freedom. Since all of the fields in the theory transform in the adjoint

°Tt is not known whether QCD(Adj) stays in a confined phase for all RA. This is certainly the case when
RA is parametrically small, and the theory is also believed to confine when RA is large, but in between
there are no techniques to study the theory. Indeed, it is known that the theory must have a chiral phase
transition at around RA ~ 1. So it is not known whether our analysis is in a regime which is smoothly
connected, as far as confinement dynamics are concerned, to the large volume theory.

6See also [33] for a discussion of the fate of volume independence in this setting when a quark mass is
turned on.

"See e.g. [34-40] for studies of confinement and chiral symmetry breaking in adjoint QCD in the volume-
dependent weakly coupled regime which opens up for spatial circle compactification if NLA < 1. See
also [41] for a recent overview of some properties of adjoint QCD.



of the gauge group, in the A — 0 limit, each one of these degrees of freedom can be
represented by N x N matrix harmonic oscillators, which transform as color-adjoints. The
frequency of each oscillator is of order 1/R. On a compact space, the Gauss law constraint,
which applies no matter how small RA becomes, implies that the only states which can
contribute to a partition function must be color singlets.® Hence all the matrix oscillators
have to occur inside color traces, and a typical state looks something like

Tr [BY, BIBI B, F]|0) (3.1)

where Bg , FiT are bosonic and fermionic oscillator creation operators, respectively, with
spin and flavor indices suppressed for simplicity.

We will confine our attention to the behavior of adjoint QCD in the 't Hooft large N
limit. This means sending N to infinity while fixing (i) Ny, (ii) 't Hooft coupling A = ¢*N,
(iii) S® radius R, and (iv) the circle sizes L or 3. Thanks to Boltzmann suppression
factors, the last condition means that the only states that can contribute significantly to
the partition function have energies of order N°. When RA < 1, the energy of a state
created by an a single-trace operator is directly proportional to the number of oscillators
entering the trace. Thus by working in the 't Hooft large N limit defined by the conditions
(i)-(iv) we are justified in only considering states created by N oscillators. This is a major
simplification, because it means that the space of multi-trace states is the Fock space of
single-trace states.’

Combinatorially, the partition function of a system is a generating function which
counts the number of states of each energy. In the rest of this section, we review the
technology [1-3] that lets one directly count the states in the large N limit provided that
RA <« 1. First, we recall how to count the independent B; and F; operators, taking into
account gauge freedom and the equations of motion. Then we count the single-trace and
multi-trace color-singlet states. All this is already known from [1-3], but we repeat it
here to keep the presentation self-contained. At the end of the section we obtain exact
expressions for the thermal and twisted partition function of adjoint QCD at large N in
the weakly coupled small R limit.

3.1 Single particle partition functions

Adjoint QCD has a gauge field A, and fermion fields v¢,,a = 1,...,Ny. To build up
a single-trace state, one can put together states composed of (a) various combinations
of derivatives acting on A, as well as (b) various combinations of derivatives acting on
w. It is convenient to define generating functions zy and zp which count the number of

8The heuristic reason for this is that if one tries to put a source for color charge on a three-sphere there
is no place for the color-flux lines to end. In flat space, in contrast, the flux lines have the option of ‘ending’
at the boundary at infinity.

If the number of oscillators entering a single-trace operator scales with N there are algebraic rela-
tions between the single-trace operator and linear combinations of multi-trace operators, making the state
counting much more complicated. These relations can be thought of as representing interactions between
hadrons, which are 1/N suppressed for light states but may be unsuppressed for heavy states, as is well
known from studies of large N baryons [42]. These subtleties become important at finite N, and also become
important if we consider non-"t Hooft large limits where we allow L to scale as 1/N.



independent color-adjoint states of type (a) and type (b) respectively. Following tradition
we will call 2y, and zp “single particle” partition functions, though we emphasize that they
are not the generating functions for the physical single-particle states of a non-Abelian
gauge theory. The state-operator correspondence maps the energies associated with these
states, Ey p, to their classical scaling dimensions, Ag p, as Ey.p = Apy /R on S% X Si or B
in the RA < 1 limit, and provides an easy way to calculate the single particle partition
functions as

2r(q) =Y dapg®” (3.2)
AR

2v(q) = Z dAVqAV~ (3.3)
Ay

Here da ., denotes the degeneracy of the operator with dimension Apy and g = e /R or
g = e L/E depending on whether we consider thermal or spatial compactification respec-
tively. Explicitly counting the operators by taking into account the equations of motion
and gauge constraints, one obtains [1-3]

o

(@)= ¢ “ (3.4)

1-¢q)*
_ 6q2 _ 26]3
A

See appendix A for a review of the derivations of these functions. Notably, these single
particle partition functions have simple properties under the T-reflection symmetry 5 —
—f introduced in [43]:

zp(1/q) = —2r(q) (3.5)
1—2v(1/g) = —(1 - 2v(a)) -

These T-reflection properties are very useful for obtaining analytic expressions for the
Hagedorn temperatures of the theory, as well as for being able to write the full partition
functions in terms of elliptic functions.

3.2 Twisted and thermal partition functions of adjoint QCD

We now write down the twisted and thermal partition functions. To get some intuition
on the physics, note that at large N we expect single-trace states to make the dominant
contribution in the confined phase. A rough estimate of the contribution to the partition
function from e.g. the gauge fields is

[2v()]" = —log [1 - 21/(q)] (3.6)

ZST7 naive — Z

e
k=1

| =

This naive estimate counts single-trace operators made with k oscillators with a factor of
1/k to account for the cyclicity of the trace. The counting entering this estimate does not



correctly deal with the combinatorics of repetitions of oscillators inside a single-trace, and
multi-particle contributions are neglected. Both of these omissions lead to an undercounting
of the states. Nevertheless, the naive estimate above manages to capture the leading
asymptotics of the state degeneracies, which control e.g. the Hagedorn temperature, so it
is useful to keep it in mind in what follows.

As shown in [1-3] the proper way to count the single-trace states with the correct
weight for repetitions involves the use of Polya theory. The result is

Zerla) = = 32 P log [1 — 2y (g™) + (1) Nyzr(a™)]. (3.7
m=1
Zsrl =" 2™ 10 [1 — 2y (g™) + Npzr(g™)] (3.5)

m

3
Il

Here, ¢(m), the Euler totient function, is the number of positive integers less than or
equal to, and relatively prime to m. In the 't Hooft large N limit, the full confining-phase
partition function can be obtained from the one above by including contributions from
states involving an arbitrary number of particles. The full large N partition function can

be written as [3]1°
o~ Zstld"]
1 = . .
og Z|q] Z 7 (3.9)
k=1
Euler’s formula, ka ©(k) = n, then implies
log Z[g) = — > log (1 - 2v(¢") + (—1)"Nyzr(d")) (3.10)
k=1
log Z[q] = — Y _log (1 — 2v(¢") + Nyzr(d")) (3.11)
k=1

Note that these expressions are only correct at large N. At finite N (or in non-"t Hooft
large N limits) there are relations between e.g. single-traces with = N oscillators and
multi-trace states, and such relations are ignored in the derivation leading to the above
result.

Before giving more explicit expressions for the partition functions, we make an impor-
tant observation regarding the fermionic contributions to the single-trace and full partition
functions. Due to the ¢3/2 term in the fermionic single particle partition function, the
fermions contribute to the expansions of the single-trace and full partition functions as
half integer powers of ¢q. Furthermore from egs. (3.4), (3.10) and (3.11) we see that go-
ing from the thermal to the twisted compactification amounts to flipping the sign of the

10This construction, and its generalizations to finite N, is sometimes referred to as the ‘plethystic expo-
nential’, popularized in the physics literature in [44, 45].



coefficients of the half integer powers of ¢, so that

o0 [ee]
Z = Z g + Z Crt1/2 g2 (3.12)
S
Z = Z cnq" — Z Cn+1/2 qn+1/2' (3.13)
n=0 n=0

So as expected, the difference between the twisted and the thermal partition functions is
that all the fermionic degeneracy factors (i.e. coefficients of the half integer powers of ¢q)
enter with a negative sign to the twisted partition function. It is convenient to make the

1/2 5o that the partition functions are power series expansion in Q with

substitution ) = ¢
the even and odd powers of corresponding to bosons and fermions, respectively.

We now give give the expressions for the full partition functions in a more useful form.
With the explicit single particle partition functions in eq. (3.4), the large N pure YM

partition function is

Zola) = Zoa() = [ (1=d)° (3.14)
i (L") (e—gF) (e = ¢¥)

where ¢ = 2 4+ /3.1 For pure YM, there is no difference between twisted and thermal
partition functions by definition, since there are no fermionic states. Defining

Q5 —3Q" —4AN;Q* - 3Q*+1  P(Q)

1- N 2 = 1

ZV(Q ) FZF (Q ) (1 — Q2)3 (1 — Q2)3 (3 5)
with Ny massless adjoint fermions, the thermal partition function is
[e.e]
(1- @
Zaopiag) (Q) = (3.16)
QCDJ[Adj] s
: klel [Ty (i + (-Q)F)

where Q = ¢%/2 = ¢ B/2E and r; with i = 1,2, ...,6 are the six solutions of the equation

P(Q)=Q°%-3Q" —4N;Q* -3Q*+1=0 (3.17)

Note that, due to the @ — 1/Q T-reflection symmetry of the equation (3.17), the roots of
P(Q) come in reciprocal pairs. Organizing the roots as ry 56 = 1/r1,2,3, we obtain

Zqcpadj) (@ HH 1_Q2k) i : (3.18)
isiimn L+ri(=@F) (L4 (-Q)F)

The exact expressions for the roots r; are given in appendix B.

As discussed above, the twisted partition function can be obtained by taking Q@ — —Q
in the thermal partition function, and it is given as

Pl 1—|—er Y1 +7QF)

HThe constant ¢ = 2 + /3 appearing in the pure YM expression is a solution of (3.17) for the variable
q = Q* with Ny = 0, along with —1 and 1/c.

~10 -



For completeness, note that the twisted partition function can also be written in terms
of elliptic functions as

ZQCD[Adj] (L) =7’ (4?3) <27TR> H

(3.20)

/2 r1/2]

192 I/Z|6 4R)

where €2 = r;, and the derivation is given in appendix C. Here n(7) = T I, (1-

€27 is the Dedekind eta function and

192(u|6i7r7) _ Z 6i(n+1/2)2 7r’r€(2n+1)iu’ (321)

n=—oo

. _ L ;
with Q = e 2k =: 2",

4 Instabilities and their disappearance

Equipped with the exact formulas for the partition functions, we now discuss Hagedorn
instabilities. In this section we show that the bosonic and fermionic states have identical
asymptotics for Ny > 1. As a consequence spatially-compactified adjoint QCD with Ny > 1
does not have a Hagedorn instability. In contrast, the thermal theory has a Hagedorn
instability, as expected.

4.1 Thermal compactification and the Hagedorn instability

The Hagedorn instability shows up as a singularity in the partition function at 8 = By,
where S is the first singularity encountered as f is lowered from infinity. The presence
of the Hagedorn instability signals that the system goes through a phase transition at a
temperature T' < Ty = 6;11. This phase transition is believed to be the deconfinement
transition of the gauge theory. On S3 x S! it was first explored in [1, 3], and was discussed
in the specific context of large N volume independence in [4].

The Hagedorn singularity arises when one of the roots r; is in the unit interval [0, 1)
and we hit a pole in (3.18) as we vary 3. As the circle size is decreased from 8 = oo (or
Q@ = 0), the first singularity occurs when @ = r,, where r, is the root closest to the the
origin on the unit interval. For the thermal compactification, we are guaranteed to have
such a root for any Ny > 0, since P(0) =1 and P(1) = —4(1 + Ny) so that there is at least
one root r, € [0,1). Furthermore the first singularity of (3.18), 7, is determined solely by
the k = 1 factor in the infinite product since for k£ > 1 the singularity is at (r*)l/ k>,
The Hagedorn temperature is thus

By = —2Rlogr,, (4.1)

and the asymptotic behavior of the thermal density of states is

p(E) ~ (1>E/R- (4.2)

T'x
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Number of flavors | Ny =0 | Ny =1 | Ny=2 | Ny=3 | Ny=4 | Ny =5
RTy 0.759 0.601 0.532 0.490 0.461 0.440

Table 1. Hagedorn temperatures (rounded to three digits) for the large N limit of on Sj”% X Sé
with Ny massless fermion flavors in the limit RA — 0 with anti-periodic boundary conditions for
fermions, so that S is a thermal circle.

This asymptotic behavior follows from the fact that the coefficient of a given term, say Q",
in (3.18) is generated by an finite product of geometric series with £ = 1,...,n and is of
the form

k1 ko k
Pn = Z Chy ko ks 1 T2°T3° (4.3)
{—n<k1 2,3<n}

with some constants cg, , ks, and the set of allowed £;’s is determined by a combinatorial
constraint. Then we see that asymptotically p, ~ (1/r4)™. In fact, this leading asymptotic
is simply generated by the geometric series (1 — 7,Q)~! in the infinite product (3.18),
which is consistent with the statement that the Hagedorn singularity is encoded in the
k =1 factor in (3.18).

As explained in appendix B, the roots r, can be expressed analytically and they are
given in closed form as

Ny=0: r.=1/2-V3 (4.4)

1 V2v3 V3
Ny=1: == - 4.
; n=(3-50+%) (15)
K2+2—-VKi4+4 . 2 1/3
Np>2: .= o ;K= (2Np+2,/N;-2)7", (4.6)

The corresponding Hagedorn temperatures are given in table 1. Notice that with
increasing Ny, the Hagedorn temperature decreases, as expected, since adding more degrees
of freedom to the theory leads to a faster growth of density of states.

4.2 Spatial compactification and the disappearance of the Hagedorn insta-
bility
We now discuss the theory on a spatial circle, with periodic boundary conditions for the
fermions. The Euclidean path integral now computes the twisted partition function, Z,
given in (3.19). This is the setting in which we expect large N volume independence to
apply [4], so the Hagedorn instability should disappear. But getting rid of the Hagedorn
instability is hard. It is not enough for the leading exponential behavior of the bosonic
and fermionic density of states to be identical to get a twisted partition function without
singularities. There are an infinite number of subleading exponentially-growing terms in
the asymptotics of the bosonic and fermionic densities of states, and if any of them differ
there will still be a Hagedorn instability. We now show that the degeneracies between the
bosonic and fermionic states are sufficiently strong that this does not happen, and there
are no Hagedorn instabilities in the twisted partition function. The absence of instabilities
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Figure 1. (Color online.) This plot summarizes much of the paper. The red dots are singularities
of the thermal (top row) and twisted (bottom row) partition functions of adjoint QCD as a function
of complex temperature Q = e L/2E for N r =1 (left column) and Ny = 2 (right column). The
absence of singularities on the positive real axis (except at @ = 1, corresponding to L = 0) is tied
to the absence of Hagedorn instabilities in the twisted partition function. The evident Q@ — —@Q
symmetry relating the singularity structure of the twisted and thermal partition follows from (3.18)
and (3.19). For visual clarity we only show singularities arising from the first 30 terms in (3.18)
and the first 45 terms in (3.19).

as a function of L € R™ in the twisted partition function is illustrated in figure 1, which
shows the locations of the poles in the twisted and thermal partition function as a function
of Q € C.

With a spatial S*, the polynomials that appear in the denominator of Z are P [(—Q)"],
and the singularities of Z are determined by the roots of I5(Q) = P(—Q),

P(Q) =Q°%-3Q" +4N;Q* - 3Q* +1=0. (4.7)
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Given that the polynomial Q% — 3Q* — 3Q? + 1 = (Q? + 1)(Q* — 4Q? + 1) has only one
root in [0, 1), and P(0) = 1 and P(1) = 4(Ny — 1) are both non-negative, we see that none
of roots of P(Q) can be in [0,1). In fact, due to the Q — Q~' symmetry of (4.7), the only
roots of P(Q) along the positive real axis can be at @@ = 1. This is the case for Ny = 1. For
Ny > 1, P(Q) has no roots in the positive real axis at all. Furthermore, none of the factors
with & > 1 can produce singularities in [0, 1) either, since those singularities are given by
the 1/k"™ powers of roots of P(Q), none of which are in [0,1). Therefore we conclude that
the twisted partition function is singularity free for any L and reach our main conclusion:

Adjoint QCD on S}”% X Si with Ny > 1 and periodic boundary conditions on Si
does not have a Hagedorn instability and stays in the confined phase for any L
at N = oo.

We now give a physical explanation for this result by taking a closer look at the the
twisted and thermal partition functions. The coefficients of Q™ in Z count the number
of bosonic states minus the number of fermionic states at energy E, = n/(2R), while in
Z they count the number of bosonic states plus fermion states. The states counted by
even powers of () are purely bosonic, while states counted by odd powers of @) are purely
fermionic.'? Expanding the partition functions in @ with e.g. N =1 yields

Znp1(Q) = 1-4Q% + 6Q" — 12Q° + 28Q° — 72Q7 + 168Q° — 364Q° + 828Q™" + - --
(4.8)

Zn=1(Q) = 1+4Q° + 6Q" + 12Q° + 28Q° + 72Q" + 168Q° + 364Q° + 828Q'% + - --
(4.9)

The coefficients p,, of Q™ grow rapidly with n and reach their asymptotic behavior p, ~
(1/r)™ quickly.

As illustrated in figure 3, where we plot the logarithms of d,, for Ny = 2, the asymptotic
behavior of bosonic and fermionic density of states is identical. The sole difference between
the thermal and the twisted case is that

d;vmsted _ (_l)nd;nlhermal (4'10)
where d;WiSted/ thermal .16 the coefficients of Q". This is of course an obvious consequence of
the definitions. What is far less obvious a priori is that as illustrated in figure 3, it appears
that both the bosonic and fermionic degeneracy factors in the thermal partition function
can be thought as coming from the same smooth function of n, which becomes monotonic
past some n = n, (in the figure n, = 4). This apparent underlying function gets sampled
at even integers to give the bosonic degeneracies, and gets sampled at the odd integers

12The same result also follows from the fact that in the RA — 0 limit, the energy of a given
bosonic/fermionic state is simply given by the radial quantum number of the vector/spinor S3 spherical
harmonic function, i.e.
n+1 n+i
"R YP"T TR

Since Q™ = e72L“n even/odd powers of Q™ correspond to bosonic/fermionic states respectively.

WBn =
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Figure 2. Logarithms of the coefficients of Q™ of the series expansion of the twisted partition
function Z(Q), with +/— signs for bosons/fermions. The coefficients of even/odd powers of @ are
boson/fermion degeneracy factors. We draw lines between successive data points as a visual aid
to make the oscillations easier to follow. The linearity of the envelope function means that the
bosonic and fermionic densities of states both have Hagedorn growth, while the symmetry of the
envelope function around zero is responsible for the elimination of Hagedorn instabilities in the
twisted partition function.
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Figure 3. Logarithms of the coefficients of Q™ of the series expansion of the thermal partition
function Z(Q) for Np = 2. The bosonic and fermionic state degeneracy factors have identical
asymptotic scaling with n.

to give the fermionic degeneracies. If an analytic continuation of d,, to a function f(n) of
n € C were to be found explicitly and could be shown to be monotonic, it would be one
way to demonstrate that the bosonic and fermionic hadronic states are entirely degenerate
up to an offset due to the curvature for any Ny. We leave this challenging task to future
work, since in our view understanding the degeneracy pattern in terms of symmetries may
be more directly illuminating.

From figure 2 and figure 3 it is clear that the dtVis*d coefficients form an alternating
sequence with a symmetric envelope around zero. These oscillations, illustrated in figure 2,
are behind the disappearance of the Hagedorn instability for the spatial compactification.
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We note that this type of cancellation mechanism of bosonic and fermionic con-
tributions to the twisted partition function is rather different than the