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1 Introduction

It is an interesting question how low the unification scale can be. The most obvious issue

is the proton lifetime. This is not necessarily a severe constraint on models of quark-

lepton unification based on the Pati-Salam group [1], since the gauge interactions in such

models do not violate baryon number. And recently the possibility of a very low scale for

Pati-Salam unification of quarks and leptons has been discussed [2].

Proton decay is a much more serious constraint on models with gauge unification, by

which we mean the unification of SU(3) of color and SU(2) of weak isospin in a single simple

gauge group. (Gauge unification includes both “grand” unification and “flipped” unifica-

tion [3].) A very low gauge unification scale would be conceivable, however, if somehow

the proton could be rendered absolutely stable. Of course, the lower the unification scale

the less room for the Standard Model gauge couplings to run. Nevertheless, if there were

significant corrections to the gauge couplings coming from new physics at or just above the

unification scale, gauge coupling unification might nevertheless occur with a relatively low

unification scale, perhaps even quite near the weak scale.

In section 2 of the paper, we construct a simple model based on flipped SU(5) [4–6]

in which the proton is absolutely stable due to an exact local symmetry. We prove the

absolute stability of the proton in the model in section 3. In section 4, we show that

the symmetry that forbids proton decay in the model is anomaly-free and can therefore

be gauged, thus ensuring that quantum gravity effects respect it. We also show that the

model can be embedded in SU(6)× SU(2).

In section 5, we discuss the lepton sector, which has a rich low-energy phenomenology.

The model requires the existence of several extra lepton doublets whose masses come from

the Standard Model Higgs field and which therefore should be accessible to accelerator

searches. Such extra lepton doublets would have a large effect on the amplitude for Higgs
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decay to two photons. We show how agreement with experiment is nonetheless possible.

(The H → γγ decay rate can also be smaller or larger than the Standard Model predic-

tion, depending on the particle content of the model.) In section 5, we also show that

small Majorana masses for the neutrinos can arise in a simple way despite the absence of

superheavy right-handed neutrinos in the model.

In section 6, we briefly discuss the unification of gauge couplings, and consider the

radical possibility that the unification scale could be near the weak scale, and even more

radically that the gravity scale could be near the weak scale as well, eliminating all large

mass hierarchies.

2 A unified model with an absolutely stable proton

Proton decay can be suppressed if some of the baryon-number-violating gauge and Higgs

couplings to quarks and leptons have the effect of converting u or d quarks into fermions that

are too heavy to appear in the final state of proton decay. One could call this “kinematic

blocking” of proton decay.

The most obvious way this might happen is that the unified interactions convert

fermions of the lighter families into those of the heavier families, for example a d quark

into a τ lepton. If the unified group is SU(5) and only the Standard Model quarks and

leptons exist, then proton decay cannot be completely suppressed by kinematic blocking

even at tree-level, as it was shown already in [7–9]. On the other hand, it was shown in [10]

that it can be completely suppressed at tree-level if the group is flipped SU(5), but only

by tuning certain fermion mixing angle within SU(5) multiplets.

If non-Standard Model quarks and leptons are introduced, more possibilities exist for

kinematic blocking of proton decay. Already in 1980 an SU(5) model in which proton decay

was kinematically blocked by heavy non-Standard Model fermions was proposed in [11].

That model, however, is no longer viable, as the new quarks and leptons it proposed should

have been seen by experiments. In another interesting paper [12], it was shown that proton

decay can be forbidden to all orders in perturbation theory in SU(5) by introducing into

each family extra vectorlike fermions in 5+5+2×(10+10). However, proton stability was

due to global symmetries in that model, and thus not immune to gravitational and other

non-perturbative effects. Moreover, the pattern of vacuum expectation values assumed in

that model cannot be exact without fine-tuning. (Another interesting model with kinematic

blocking of proton decay in a supersymmetric SU(5) model with extra dimensions is [13].)

Recently, in [14], it was shown that in flipped SU(5) with new non-Standard Model

fermions complete kinematic blocking of proton decay can be achieved at tree level in a

simple way without fine-tuning tuning of parameters. But even in that scheme, the proton

decay was not absolutely forbidden, since loop-diagrams and non-perturbative effects could

induce it.

The model we present here, which like that of [14] is based on flipped SU(5), has an

absolutely stable proton. Flipped SU(5) seems to be the smallest unification group that

allows proton decay to be completely forbidden by kinematic blocking in a realistic model

without any fine tuning of mixing angles. In this model, as in [14], the new types of heavy
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10(1) ψαβ =

[
ψ12,

(
ψ1a

ψ2a

)
, ψab

]
=

[
νc,

(
u

d

)
, Dc

]

5
(−3)

ψα =

[(
ψ2

ψ1

)
, ψa

]
=

[(
ν

`−

)
, uc

]
1(5) ψ = ψ = `+

5(−2) χα =

[(
χ1

χ2

)
, χa

]
=

[(
N ′

L′−

)
, D

]

5
(2)

χα =

[(
χ1

χ2

)
, χa

]
=

[(
N
′′

L′′+

)
, dc

]
1′(5) σ′ = L′+

1′(0) τ ′ = N
′

1′′(−5) σ′′ = L′′−

1′′(0) τ ′′ = N ′′

Table 1. The fermion content of one family of the model. The left column gives the SU(5)×U(1)X
quantum numbers. The other column shows how the different species of quark and lepton are

contained in the SU(5) multiplets.

fermions that block proton decay are quarks and leptons that are vectorlike under the

Standard Model group. These vectorlike fermions will be assumed to have masses of at

least hundreds of GeV. We will denote these new heavy fermions by capital letters, and

the known Standard Model fermions by lower-case letters.

The mechanism for blocking proton decay does not depend on the number of families,

so we will suppress family indices throughout this paper for notational simplicity; and the

discussion will proceed just as though there were only one family. It will be obvious that

this does not matter.

The gauge group of “flipped SU(5)” is SU(5) × U(1)X , with the weak hypercharge

Y/2 of the Standard Model being a linear combination of the U(1)X generator X and the

SU(5) generator Y5/2 ≡ diag(12 ,
1
2 ,−

1
3 ,−

1
3 ,−

1
3), specifically Y/2 = 1

5(−Y5/2 + X),with X

normalized as in table 1, which gives the quark and lepton content of the model. The

left column in table 1 gives the SU(5) × U(1)X representation, where the superscript is

the value of X. In the rest of the table, the Greek indices run from 1 to 5 and are the

fundamental indices of SU(5). The index values 1,2 correspond to the weak hypercharge

group SU(2)L, while the values 3,4,5 correspond to the QCD color group SU(3)c and are

denoted by lower-case Latin letters, a, b, etc. (Note, however, that the superscript c when

appearing alone denotes an antiparticle, for example dc denotes the anti-down quark.)

One sees from table 1 that a single family of fermions in this model consists of the usual

10(1) + 5
(−3)

+ 1(5) family of flipped SU(5) (denoted by the letter ψ), plus a vectorlike pair

5(−2) + 5
(2)

(denoted by χ), and a vectorlike set of SU(5)-singlet fermions, denoted by σ

and τ . This may look like a somewhat arbitrary assortment, but, as will be seen in section

4, they fit exactly into a small set of representations of SU(6) × SU(2), namely (15, 1) +
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5
(−2)
H Hα =

[(
H1

H2

)
, Ha

]
=

[(
H0

H−

)
, H−1/3

]

5
(3)
H H̃α =

[(
H̃1

H̃2

)
, H̃a

]
=

[(
H̃+

H̃0

)
, H̃2/3

]

10
(1)
H Ωαβ =

[
Ω12,

(
Ω1a

Ω2a

)
,Ωab

]
=

[
Ω0,

(
Ω2/3

Ω−1/3

)
,Ω−2/3

]
Table 2. The Higgs field content of the model.

(6, 2) + (1, 3). (In fact, the smallest anomaly free chiral set of fermions of SU(6) × SU(2)

would consist of (15, 1) + (6, 2), so from the viewpoint of this larger group the fermions of

this model form quite an economical set.)

Notice one peculiarity of the normal flipped SU(5) family shown in the first three lines

of table 1: it contains all the fermions of a Standard Model family with the exception of

dc. Where the dc would normally be, one finds the new heavy field Dc. And, conversely, dc

occupies the place where one would expect to find Dc in the extra vectorlike pair 5(−2)+5
(2)

.

This substitution is essentially what leads to the kinematic blocking of proton decay. How

it happens will be seen shortly.

This explains the need for the extra vectorlike 5(−2) + 5
(2)

of each family. What,

however, explains the need for the extra SU(5)-singlet fermions (the ones denoted by σ and

τ)? The answer is that they are there to “mate” with the leptons in 5(−2) + 5
(2)

to give

them Dirac masses. One might ask whether these leptons could acquire mass more simply

through a mass term M5
(2)

5(−2) = Mχαχα. Indeed, they could; but such a term would

necessarily include the term MdcD, which would cause mixing between dc and Dc. That

would mean that what we call Dc in table 1 would, through mixing, actually be partly the

light Standard Model field. This would cause the kinematic blocking of proton decay to

be imperfect; and proton decay would only be suppressed by a mixing angle. This is what

happens in the scheme proposed in [14]. This would not suppress proton decay sufficiently

if the unification scale were very low. This is the reason why this scheme requires the

existence of extra leptons whose masses come from electroweak breaking. These leptons

have many phenomenological consequences, as will be discussed in section 5. On the other

hand, note that the extra quarks, D and Dc, acquire mass from a Higgs field that is an

electroweak singlet, i.e. Ω12, and do not couple to the Standard Model Higgs doublet. This

difference between the extra quarks and extra leptons is a peculiar feature of the kind of

model we are discussing.

Breaking the gauge symmetries and giving quarks and leptons masses can be done with

just the three types of Higgs fields shown in table 2. As is usual in flipped SU(5) models,

the breaking of SU(5)×U(1)X down to the Standard Model group is done by a Higgs field

that transforms as 10(1), which we denote Ωαβ. The component Ω12 has Y5/2 = 1 and

X = 1 and so has Y/2 = 0, and is also obviously a singlet under SU(3)c × SU(2)L, so that
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ddc〈H̃∗〉 = ψ2aχa〈H̃∗2 〉 ⊂ 10(1)5
(2)〈(5(3)H )∗〉

(uuc, νcν)〈H∗〉 = (ψ1aψa, ψ
12ψ2)〈H∗1 〉 ⊂ 10(1)5

(−3)〈(5(−2)H )∗〉

``c〈H〉 = ψ1ψ〈H1〉 ⊂ 5
(−3)

1(5)〈5(−2)H 〉
DcD〈Ω〉 = ψabχd〈Ω12〉ε12abd ⊂ 10(1)5(−2)〈10

(1)
H 〉

L′−L′+〈H̃∗〉 = χ2ψ〈H̃∗2 〉 ⊂ 5(−2)1′(5)〈(5(3)H )∗〉

N ′N
′〈H∗〉 = χ1τ ′〈H∗1 〉 ⊂ 5(−2)1′(0)〈(5(−2)H )∗〉

L′′−L′′+〈H̃〉 = σ′′χ2〈H̃2〉 ⊂ 1′′(−5)5
(2)〈5(3)H 〉

N ′′N
′′〈H〉 = τ ′′χ1〈H1〉 ⊂ 1′′(0)5

(2)〈5(−2)H 〉
ΩH̃∗H∗ = Ω12H̃∗2H

∗
1 ⊂ 10

(1)
H (5

(3)
H )∗(5

(−2)
H )∗

νN ′′〈H̃〉 = ψ2τ
′′〈H̃2〉 ⊂ 5

(−3)
1′′(0)〈5(3)H 〉

Table 3. The Yukawa terms needed to give mass to the fermions. The ninth row is a term needed

in the Higgs potential to align vacuum expectation values.

its vacuum expectation value (VEV) leaves the Standard Model group unbroken. This

VEV is of order the unification scale. The Higgs fields that do the electroweak breaking

are the SU(2)L doublets in the 5
(−2)
H and 5

(3)
H , which we denote respectively by H and H̃.

There are eight Yukawa terms that are needed to give quarks and leptons mass, which

are listed in the first seven rows of table 3, where we write these terms using the various

alternative notations given in table 1. The ninth row of table 3 gives a cubic term in the

Higgs potential that is needed to tie the various Higgs fields together, thereby aligning

their VEVs and avoiding accidental global symmetries in the Higgs potential that would

lead to goldstone bosons.

The terms in the first nine rows of table 3 are needed in the model. There are also

terms that must be forbidden if proton decay is to be suppressed. We already mentioned

one such term, namely an explicit mass term of the form 5
(2)

5(−2), which would mix dc and

Dc. Let us suppose for a moment that the terms in the first nine rows of table 3 are the

only non-trivial terms in the Yukawa sector and Higgs potential. (We count as “trivial”

any terms that always must be present no matter what the symmetries of the model are,

such as the absolute square of any Higgs field.) With only those nine terms, the model is

easily found to have a U(1)×U(1) accidental symmetry, which we will call U(1)a ×U(1)b.

In table 4 we give the a and b charges for all the fermion and Higgs multiplets listed

in tables I and II. These charge assignments may look somewhat random, but it will be

seen later that they have simple group theory interpretations if the flipped SU(5) group

is embedded in SU(6) × SU(2). Moreover, note that the b values have a simple pattern:

fermions that are odd-rank SU(5) tensors have b = −1, those that are even-rank tensors

– 5 –
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field 10(1) 5
(−3)

1(5) 5(−2) 5
(2)

1′(5) 1′(0) 1′′(−5) 1′′(0) 5
(−2)
H 5

(3)
H 10

(1)
H

a 0 −1 2 0 1 1 −1 −2 0 −1 1 0

b 1 −1 1 −1 −1 1 1 1 1 0 0 0

Table 4. The U(1)a and U(1)B charges of the fields of the model.

have b = +1, and Higgs bosons have b = 0. The U(1)a ×U(1)b symmetry allows one more

Yukawa interaction, 5
(−3)

1′′(0)〈5(3)H 〉, which is shown in the last row of table 3. This term,

which couples ν to N ′′, has the effect of mixing of ν and N
′′
. As we shall see, this is

harmless and does not destabilize the proton. We will now prove that the symmetry U(1)a
forbids all operators of any dimension that would give proton decay.

3 Proof of proton stability and gauging “baryon number”

Any effective operator that leads to proton decay must involve only quark and lepton fields

that are lighter than the proton, and thus not the new vectorlike fields denoted by capital

letters in table 1. Consequently, it can be written in the general form

(u, d)m(uc)n(dc)p(ν, `−)q(`+)r(N
′′
)s(〈H0〉)t(〈H̃0〉)u(〈Ω〉)v

⊂(10(1))m(5
(−3)

)n(5
(2)

)p(5
(−3)

)q(1(5))r(5
(2)

)s(5
(−2)
H )t(5

(3)
H )u(10

(1)
H )v,

(3.1)

where the exponents m,n, p, q, r, s, t, u, v are integers. Note that here d stands for either d

or s, and e stands for either e or µ, since we are not showing family indices. Also note that

we have included N
′′

in this product. The reason is that this is not a purely heavy field,

since (as we noted previously) there is mixing between the fields that are called ν and N
′′

in table 1, due to the last term in table 4.

If U(1)a is not explicitly broken, then the value of the generator a of the operator in

eq. (1) must vanish, giving

− n+ p− q + 2r + s− t+ u = 0. (3.2)

By conservation of weak hypercharge, the value of Y/2 of the operator in eq. (1) must

vanish also, giving

1

6
m− 2

3
n+

1

3
p− 1

2
q + r +

1

2
s− 1

2
t+

1

2
u = 0. (3.3)

Multiplying eq. (3) by 2 and subtracting eq. (1) gives

1

3
(m− n− p) = B = 0,

where B is baryon number. So no baryon-number-violating operators involving only quarks

and leptons lighter than the proton exist to any order.

Note that the above arithmetic shows that the linear combination of generators

B̃ ≡ 2

(
Y

2

)
− a (3.4)

– 6 –
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is the same as baryon number for the Standard Model fermions. (On the heavy new

fermions, however, B̃ has peculiar values: the heavy quarks D have B̃ = 2
3 , and the heavy

leptons N ′ and L
′− have B̃ = −1, with the corresponding antiparticles having the opposite

values.) As we shall see in the next section, U(1)a is anomaly free, and must be gauged

in order to protect the stability of the proton from quantum gravity effects. Thus, in

this model we are gauging a quantum number that coincides with baryon number on the

Standard Model fields. The gauging of baryon number has been discussed in other recent

papers [15, 16].

4 Anomaly-freedom, and possible embedding in SU(6) × SU(2)

The proof of proton stability just given assumed that the symmetry U(1)a is not explicitly

broken. If it is a global symmetry, however, one would expect gravitational effects to break

it explicitly. Therefore, to render the proton absolutely stable, it is necessary to gauge

U(1)a, which would require that U(1)a be anomaly-free. And indeed, it turns out that it

is. With the set of fermions given in table 1, and the U(1)a charges given in table 4, both

the anomalies of U(1)a alone and its mixed anomalies involving SU(5) × U(1)X vanish.

That is, the following five conditions are satisfied: Tr(a3) = 0, Tr(a) = 0, Tr(a2X) = 0,

Tr(aX2) = 0, and Tr(a(λ5)
2) = 0 (where λ5 is an SU(5) generator), as can easily be

checked.

The satisfying of all these conditions seems like an amazing coincidence, but actually

it has a simple explanation based on the group SU(6) × SU(2). The explanation consists

in these three facts: (1) the group SU(6)× SU(2) contains SU(5)×U(1)X ×U(1)a; (2) the

set of SU(6)× SU(2) representations (15, 1) + (6, 2) + (1, 3) is anomaly-free; and (3) when

decomposed under SU(5)×U(1)X ×U(1)a this set of representations contains exactly the

set of fermions of one family of our model. We will now demonstrate each of these points.

That the set of SU(6) × SU(2) representations (15, 1) + (6, 2) is anomaly-free is well-

known and follows simply from the possibility of embedding in E6. That (1, 3) is anomaly-

free follows simply from the fact that it is a real representation. Therefore, obviously,

the combined set (15, 1) + (6, 2) + (1, 3) is anomaly-free under SU(6) × SU(2). Moreover,

SU(6)× SU(2) obviously contains the subgroup SU(5)×U(1)6×U(1)2, where U(1)6 is the

subgroup of SU(6) corresponding to the diagonal generator T6 ≡ diag(12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,−

5
2), and

U(1)2 is the subgroup of SU(2) corresponding to the diagonal generator T2 ≡ diag(12 ,−
1
2).

If one defines X ≡ T6 + 5T2, then the (15, 1) + (6, 2) + (1, 3) is easily seen to decompose

under SU(5) × U(1)X into exactly the set of fermions in table 1. And if one identifies a

with 2T2, one immediately finds that those fermions have exactly the values of a given in

table 4.

It should be mentioned that if the model is embedded in SU(6)× SU(2), then all the

Yukawa couplings shown in table 3 can arise from just a few types of terms, namely terms

of the form (15, 1)(15, 1)〈(15, 1)H〉, (15, 1)(6, 2)〈(6, 2)H〉, and (6, 2)H(1, 3)〈(6, 2)H〉∗.
The symmetry U(1)b is not contained in SU(6)×SU(2). yet it turns out, quite remark-

ably, that all its anomalies vanish over the set of fermions shown in table 1. This includes

both the anomalies of U(1)b alone and its mixed anomalies with SU(5) × U(1)X × U(1)a.

– 7 –
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X = a = b =

[SU(6)× SU(2)]T SU(5) T6 T2 T T6 + 5T2 2T2
2
3T6 + 1

3T

(15, 1)1 10 1 0 1 1 0 1

” 5 −2 0 1 −2 0 −1

(6, 2)−2 5 −1
2

1
2 −2 2 1 −1

” 1 5
2

1
2 −2 5 1 1

” 5 −1
2 −1

2 −2 −3 −1 −1

” 1 5
2 −1

2 −2 0 −1 1

(1, 3)3 1 0 1 3 5 2 1

” 1 0 0 3 0 0 1

” 1 0 −1 3 −5 −2 1

Table 5. How the generators of U(1)X , U(1)a, and U(1)b are related to those of SU(6)× SU(2)×
U(1)T .

This involves altogether eight trace conditions: Tr(b3) = 0, Tr(b) = 0, Tr(b2X) = 0,

Tr(bX2) = 0, Tr(b2a) = 0, Tr(ba2) = 0, Tr(baX) = 0, and Tr(b(λ5)
2) = 0. Because

of this it is possible to gauge the full group SU(5) × U(1)X × U(1)a × U(1)b. However,

it is not necessary to gauge U(1)b to insure proton stability. If U(1)b is not gauged, and

therefore presumably broken explicitly by gravity effects, then several more Yukawa terms

would be allowed besides those shown in table 3. (In particular, it would allow the coupling

5
(−3)

5
(2)〈10

(1)
H 〉.) Those additional terms would cause Standard Model leptons to mix with

heavy, vectorlike leptons, but it can easily be shown that it would not cause protons to

decay.

Though it is not important for proton stability that U(1)b be anomaly free, it is quite

interesting that it is, since it involves eight independent non-trivial conditions, as we saw.

The question is whether there is also some underlying group-theoretical explanation for

these cancellations based on embedding in SU(6) × SU(2), as there was for the anomaly-

freedom of U(1)a. It happens there is a partial explanation, as we will now see.

Consider the group SU(6)×SU(2)×U(1)T , where (15, 1) has T = 1, (6, 2) has T = −2,

and (1, 3) has T = 3. One can easily easily check that U(1)T is anomaly-free. There are

four conditions:

Tr(T 3) = 15 · (1)3 + 12 · (−2)3 + 3 · (3)3 = 15− 96 + 81 = 0,

Tr(T ) = 15 · (1) + 12 · (−2) + 3 · (3) = 15− 24 + 9 = 0,

Tr((T6)
2T ) = 1 · 4 · (1) + 2 · 1 · (−2) = 0,

Tr((T2)
2T ) = 6 · 1 · (−2) + 1 · 4 · (3) = 0.

(4.1)

Though this is a surprising coincidence, it is far less surprising than the satisfying of eight

anomaly-cancellation conditions for U(1)b at the SU(5) × U(1)X level. If one now defines

b ≡ 2
3T6 + 1

3T , one discovers that the representations in table 1 have exactly the b values

given in table 4. All of this is displayed in table 5. As noted above, the group U(1)a must

be local to prevent gravity-induced proton decay. If U(1)a is gauged, however, its gauge

boson could create difficulties. For if U(1)a is not spontaneously broken there is a new

– 8 –
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long-range force, while if it is spontaneously broken the proof of proton stability could be

invalidated, since it depended on conservation of a.

First, consider the case that SU(5)×U(1)X×U(1)a is not embedded in SU(6)×SU(2).

Then one can simply introduce a scalar field η which is neutral under SU(5)× U(1)X but

has charge a(η) 6= 0 under U(1)a. This field can obtain a vacuum expectation value that

makes the mass of the U(1)a gauge boson large enough to avoid conflict with experiment.

(There is also nothing to prevent the gauge coupling of U(1)a being small.) The existence

of such a field would modify eqs. (1) and (2). One must put into the operator of eq. (1)

a factor (〈η〉)w, where w is some integer. Then an additional term wa(η) would appear on

the left-hand side of eq. (2). This changes eq. (4) to B = wa(η). As long as a(η) is not of

the form 1/w for some integral value of w, proton decay cannot happen.

Another possibility is that U(1)a is not spontaneously broken, but has such a tiny

gauge coupling constant that the resulting long-range force has not been seen. This seems

highly implausible, but is certainly possible.

If SU(5)×U(1)X×U(1)a is embedded in SU(6)×SU(2), then the possibilities are more

limited. The gauge coupling of U(1)a cannot then be arbitrarily small, and the possible

values of a(η) are restricted. Moreover, if 〈η〉 is large compared to the electroweak scale, one

requires that it break U(1)a without breaking the electroweak gauge group. The smallest

SU(6)× SU(2) multiplet that has a component that can do this is (6, 2). Then η6,2 (where

the 6 is the SU(6) index and the 2 is the SU(2) index) has Y/2 = 0, I2L = 0, and a = 1.

But this value of a(η) allows the proton to decay. The smallest multiplet that can break

U(1)a above the electroweak without allowing proton decay is a (21, 3) of SU(6)× SU(2).

This has a component that has I2L = Y/2 = 0 and a = 2. This allows operators that give

∆B = ±2, and thus possibly neutron-antineutron oscillations, but not proton decay.

5 The lepton phenomenology of the model

The model presented above has six doublets of extra leptons (two for each family). This

raises several possible phenomenological problems, including consistency with the measured

value of the ρ parameter, the rates for H → γγ and H → Z0γ, and the stability of the

Higgs potential. We shall discuss these in turn.

The effect of the new fermions on the ρ parameter can be made small if the extra

lepton doublets are not “split”, i.e. if the neutral and charged components have the same

or nearly the same mass. This seems somewhat artificial, but perhaps could be enforced

by some symmetry, though we have not investigated this possibility.

The extra lepton doublets will definitely contribute very significantly to the amplitude

for H → γγ. This process comes, as is well known, from one-loop triangle graphs, where

in the Standard Model the amplitude is dominated by the W boson loop and t quark

loop [17–20]. In the model presented here, one must include the diagrams with the extra

charged leptons running around the loop. The matrix element squared for H → γγ is

given by |M |2 =
g2m4

H

32π2m2
W

∣∣∑
i αNce

2
iFi
∣∣2, where i stands for the type of particle in the loop,

and Fi is given (for i being a gauge boson, fermion, or scalar, respectively) by Fgauge =

2 + 3τ + 3τ(2− τ)f(τ), Ffermion = −2τ(1 + [1− τ ]f(τ)), Fscalar = τ(1− τf(τ)), for τ > 1,
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where τ ≡ (2mi/mH)2, and f(τ) = (sin−1
√

1/τ)2. For the Standard Model contributions,

one has FSM ∼= FW +Ft ∼= +8.4−1.8 = 6.6. Since the six new charged leptons in our model

must be heavy enough not to have been seen, τ for them is large and FL± ∼= 6(−4/3) ∼= −8.

This is larger than the Standard Model contribution and of opposite sign. If there are

additional fermions that contribute to H → γγ, the total amplitude can be close to −1

times the Standard Model value, giving the same rate. Or, depending on the number and

type of additional fermions, the rate could be somewhat smaller or larger than the Standard

Model prediction.

The process H → Z0γ [20, 21] is not a difficulty for the model. The present limits

on this decay are very loose, and the contribution of charged leptons to it are highly

suppressed, since the Z coupling to the charged leptons is proportional to the well-known

factor I3L − 2Q sin2 θW = −1
2 + 2(0.23) ∼= −0.04.

The presence of six lepton doublets withO(1) Yukawa couplings will give large radiative

contributions to the Higgs quartic self-coupling. However, we envision the unification scale

being much lower than it is in typical unified models, and the unified theory may be effective

theory valid only below some cutoff. If that cutoff scale is relatively low, the Higgs quartic

coupling can remain positive below that scale.

We conclude that the existence of the extra leptons is compatible with present lim-

its. One might worry, on the other hand, that the new quarks D = Dc would present

phenomenological problems, for instance by substantially affecting the H → 2 gluon am-

plitude. However, a curious feature of our model is that the extra D + Dc quarks (unlike

the extra leptons) do not couple to the Standard Model Higgs doublet, but get their mass

from a Standard Model singlet Higgs field (Ω12). Thus they do not contribute to the Higgs

decay amplitudes, the ρ parameter, or the running of the Higgs quartic coupling. Moreover,

their mass could be much higher than the weak scale.

Returning to the leptons, there remains the question of neutrino mass. Realistic neu-

trino masses seem at first sight to be a problem for the model. The first question is how

those masses can be fractions of an eV, since this would not emerge from the usual see-

saw mechanisms if the unification scale is very low. The second question is how to avoid

neutrino masses that are of the same order as the quark and charged lepton masses.

If one looks at the Yukawa couplings allowed by SU(5)×U(1)X ×U(1)a×U(1)b, all of

which are shown in table 3, one finds several mass terms for neutral fermions. Specifically,

the second, eighth, and tenth lines of table 3 have operators that give, respectively, oper-

ators of the form νcν〈H∗〉, N ′′N ′′〈H〉, and νN ′′〈H̃〉. Ignoring family indices, this gives a

mass matrix of the following form:

(
ν, νc, N ′′, N

′′
)

0 〈H∗〉 〈H̃〉 0

〈H∗〉 0 0 0

〈H̃〉 0 0 〈H〉
0 0 〈H〉 0




ν

νc

N ′′

N
′′

 . (5.1)

This matrix has non-zero determinant, and the VEVs that appear in it are of order the

electroweak scale. Thus, one would not expect neutrino masses of order a fraction of an eV

unless some Yukawa couplings were extremely small. For example, if the Yukawa coupling
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in the terms νcν〈H∗〉, and N ′′N
′′〈H〉 were of order ε and those in νN ′′〈H̃〉 were of order

1, then there would be (for each family) one pseudo-Dirac neutrino with mass of order the

electroweak scale (composed approximately of ν and N ′′) and one pseudo-Dirac neutrino

with mass of order ε2 times the electroweak scale (composed approximately of νc and N
′′
),

as can be seen from the form of eq. (5). One would therefore need to have ε be of order

10−6 to 10−7 even for the third family. This seems contrived.

A more attractive possibility arises if there is an additional type of neutral fermion

introduced for each family. Let is call it S and say that it is neutral under SU(5) ×
U(1)X ×U(1)a, but has b = −1. Then one can have a coupling of the type ψ12S〈(Ω12)∗〉 =

νcS〈(Ω12)∗〉, which is contained in 10(1)1(0)〈(10
(1)
H )∗〉. This term is invariant under SU(5)×

U(1)X ×U(1)a ×U(1)b. The mass matrix then has the form

(
S, ν, νc, N ′′, N

′′
)


0 0 〈Ω〉 0 0

0 0 〈H∗〉 〈H̃〉 0

〈Ω〉 〈H∗〉 0 0 0

0 〈H̃〉 0 0 〈H〉
0 0 0 〈H〉 0




S

ν

νc

N ′′

N
′′

 . (5.2)

This matrix has one zero eigenvalue. So (for each family) there is a massless neutral

fermion. These can be given tiny masses in various ways, one of which we will describe

shortly. These light neutrinos are linear combinations of S, ν and N
′′
, as can be seen

from eq. (6). Of course, to be consistent with bounds on lepton universality, these linear

combinations would have to be mostly ν; but this only requires certain ratios of Yukawa

couplings in eq. (6) to be of order 10−1.

One can give a small mass to the neutrinos by a higher-dimension operator of the form

S S〈ζ〉n, where ζ is a 1(0) of SU(5)×U(1)X and has a = 0 and b = 1/n. Such an operator

might be induced by gravity. The value of n needed to get realistic neutrino masses would

depend on the gravity scale.

6 Low scale grand unification?

If a unified model has an absolutely stable proton due to an exact symmetry, then obviously

proton lifetime limits would not constrain the unification scale at all. The question would

then arise how low the unification scale could be. Could it be near the electroweak scale?

If the unification scale is low, one has to explain how the gauge couplings are able to unify.

One possibility is to exploit an idea first proposed by Shafi and Wetterich many years

ago [22] (see also [23, 24]).

Let us consider an effective operator for physics below some cutoff scale Λ given by

c

Λ
Tr (GµνG

µνA) , (6.1)

where Gµν is the Grand Unified Theory field strength and A is a scalar multiplet in the

adjoint representation of SU(5). The scale Λ is kept as a free parameter for the time

being. Upon symmetry breaking at the unification scale MU , the Higgs field gets a vacuum
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expectation value 〈A〉 = MU (2, 2, 2,−3,−3) /
√

50παG, where αG is the value of the SU(5)

gauge coupling at MU .

The dimension 5 operator modifies the gauge kinetic terms of SU(3) × SU(2) × U(1)

below the scale Mu to

− 1

4
(1 + ε1)FµνF

µν
U(1) −

1

2
(1 + ε2) Tr

(
FµνF

µν
SU(2)

)
− 1

2
(1 + ε3) Tr

(
FµνF

µν
SU(3)

)
(6.2)

with

ε1 =
ε2
3

= −ε3
2

=

√
2

5
√
π

c
√
αG

Mu

Λ
. (6.3)

If we were to take Λ = Mu, then

ε1 =
ε2
3

= −ε3
2

=

√
2

5
√
π

c
√
αG

. (6.4)

We can now perform a finite field redefinition Aiµ → (1 + εi)
1/2Aiµ to canonically

normalize the kinetic terms of the gauge bosons. Then the corresponding redefined coupling

constants are gi → (1 + εi)
−1/2 gi. We get the unification condition:

αG = (1 + ε1)α1(Mu) = (1 + ε2)α2(Mu) = (1 + ε3)α3(Mu) . (6.5)

We now wish to consider low scale unification. Direct observational bounds on the

heavy gauge bosons of SU(5)/GSM as well as on the color octet scalars lead us to consider

a unification scale in the few TeV region. We thus take MU a few TeV which implies that

there is very little running for the gauge couplings and we can use the LEP values, at least

to first approximation. We take α2(MZ) = 0.03322 and α3(MZ) = 0.118. Since α1 is a

free parameter, we will use c to obtain the numerical unification of α2 and α3. We need

c = 5

√
π

2

(
α2 − α3

3α2 + 2α3

)
√
αG. (6.6)

We then find

ε1 = 5

(
α2 − α3

3α2 + 2α3

)
1

αG
(6.7)

and thus

α1 =
αG

1 + 5
(

α2−α3
3α2+2α3

)
1
αG

(6.8)

Numerically we have c = −1.58/
√
αG. If I take αG = 0.05 for illustration, We get

c = −7. In a sense we see that if the grand unified theory is strongly coupled, the Wilsonian

expansion works best as the Wilson coefficients get smaller: for αG = 1, we get c = −1.58.

The U(1) of hypercharge is not purely a subgroup of SU(5), but lies partly in the U(1)X ,

whose gauge coupling is an independent, free parameter. This coupling can be chosen to

give the observed value of the hypercharge (and electromagnetic) gauge coupling.

Interestingly, the Planck scale could also be lowered to the TeV region to remove all

hierarchies. There are two known mechanisms for that. One is to assume that large extra
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dimensions open up at an energy scale of a few TeV [25–27]. The other one relies on a

large hidden sector of particles which lead to a running of the Planck mass [28]. Note that

the running can also be obtained by a scalar field with a large non-minimal coupling to the

Ricci scalar [29]. As pointed out in [30, 31], large extra dimensions are a natural framework

to incorporate low scale unification.
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