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1 Introduction

D-branes are key ingredients to understand the whole picture of string theories. It is known

that the D-branes play a part in non-perturbative effects of string and gauge theories and

have been studied extensively. D-branes are dynamical objects and have its geometrical

origin in supergravity theories. There are other various extended objects in string theories,

such as Kaluza-Klein (KK) monopoles and NS5-branes. They are also geometrical objects

in supergravity theories. The meaning of “geometrical” is that corresponding solutions

in supergravity are single-valued in space-time. The D-branes, KK-monopoles and NS5-

branes are sources of the R-R, KK vector and NS-NS fluxes. Physical properties of these

objects have been studied from various viewpoints.

On the other hand, other types of less known extended objects, which are called exotic

branes (also known as Q-, and R-branes) [1–3], are beginning to attract attention. The

exotic branes are obtained by U-duality transformations of the geometric branes [4, 5]. It

has been pointed out that the exotic branes play an important role in the study of the

blackhole microstates and the polarization of D-branes [2, 6, 7]. Similar to the fact that

the geometric branes are sources of the ordinary supergravity fluxes, the exotic branes are
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sources of non-geometric fluxes [3, 8]. The non-geometric fluxes are discussed extensively

in the context of flux compactifications [9, 10]. The group theoretical classification of the

exotic branes have been studied in the past. However, only the limited physical properties of

the exotic branes are known. There are studies on the exotic branes from the framework of

supergravity [2, 4, 5, 7, 11–14], string world-sheet theories [15–17], double field theory [18–

24] and so on. Among other things, the world-volume effective theory [1, 25] is the most

direct approach to study the dynamics of the exotic branes.

The purpose of this paper is to construct world-volume effective actions of the exotic

five-branes in type IIA and IIB string theories. We focus on the exotic 522-branes and

523-branes that are obtained from the NS5-branes via T- and S-dualities [7]. Compared

with the preceding work [25], where the effective actions of the type IIB 522-brane and

the 523-brane are studied, the actions in this paper will be written in the fully space-time

covariant forms. In the actions, two Killing vectors associated with the two isometries of

the backgrounds are manifest. We also explicitly write down the effective action of the type

IIA 522-brane in a manifestly Lorentz invariant manner. After the gauge fixing, the massless

fields of the world-volume theories are organized into the N = (2, 0) tensor multiplet (IIA)

and the N = (1, 1) vector multiplet (IIB) in six dimensions. In the pioneered work [1],

the world-volume effective actions of the exotic 613-brane and seven-branes are studied

where the geometric part of the actions are written as gauged sigma models when the

NS-NS B-field is turned off. A specific property of the effective actions of the five-branes

in this paper is its dependence on the two Killing vectors kµ1 , k
µ
2 . We will see that the

actions are not written as gauged sigma models when all the closed string backgrounds are

involved.

We also discuss some properties of exotic five-branes in type I and heterotic string

theories. The orientifold projection of type IIB theory and duality chains indicate that

exotic five-branes appear also in type I and heterotic theories. To make contact with the

exotic branes in these theories, we analyze the effective actions of the 523-brane and 522-brane

in type I and heterotic theories.

The organization of this paper is as follows. In section 2, we review the basic properties

of the exotic 522-brane in string theories. We also demonstrate the string duality chains

on various five-branes. In section 3, we explicitly write down the world-volume effective

actions of the exotic 522-brane and 523-brane in IIB string theory. We also find the effective

action of the 522-brane in type IIA theory. The gauge symmetries of the effective theories are

discussed. In section 4, we discuss exotic five-branes in type I and SO(32), E8×E8 heterotic

string theories. The Abelian part of the effective actions of the 523-brane in type I and the

522-brane in SO(32), E8×E8 heterotic string theories are proposed. Section 5 is devoted to

the conclusion and discussions. Conventions and notations of the supergravity theories in

this paper are found in appendix A. In appendix B, the covariant T-duality transformation

rules for the NS-NS and R-R sectors are summarized. The explicit representations of the

second T-duality transformation of the NS-NS B-field and R-R potentials are given also in

appendix B.
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2 Exotic five-branes and string duality chains

In this section we exhibit the exotic five-branes in string theories. In the first subsection,

we briefly review the configuration of the single 522-brane. This is obtained via the T-

duality transformations of the configurations of NS5-branes. In the second subsection, we

demonstrate the string duality chains on various five-branes.

2.1 Configuration of exotic 522-brane

We begin with multi-centered H-monopoles in ten-dimensional supergravity theories. This

is a smeared solution of multi-centered NS5-branes along the x9-direction. The configura-

tion of the multi-centered H-monopoles is1,2

ds2H = dx2012345+H(~r)
(
(d~r)2+(dx9)2

)
, ~r ∈ R

3
678 , x9 = R9 ϑ ,

H(~r) = 1 +
∑

p

Hp , Hp =
α′

2R9|~r − ~rp|
,

e2φ = H(~r) , Hmnp = εmnp
q ∂q logH(~r) .

(2.1)

Here the H-monopoles are expanded along the 012345-directions. The vector ~rp denotes

the position of the p-th H-monopole in the 678-directions. The space-time metric gµν ,

the dilaton φ and the field strength Hmnp of the NS-NS B-field are given by a harmonic

function H(~r). The indices m,n, p, q run from 6 to 9. Since the harmonic function does not

depend on x9, there is an isometry along this direction. We assume that the x9-direction

is compactified on a circle of radius R9.

We perform a T-duality transformation along the x9-direction. Following the Buscher

rule [28], we transform the above description to

ds2KKM = dx2012345 +H(~r) dx2678 +
1

H(~r)

(
dx̃9 + ω

)2
, ~r ∈ R

3
678 ,

H(~r) = 1 +
∑

p

Hp , Hp =
R̃9

2|~r − ~rp|
, x̃9 = R̃9 ϑ̃ , R̃9 =

α′

R9
,

dω = ∗3dH , e2φ = 1 , B = β d

[
1

H
(dx̃9 + ω)

]
.

(2.2)

This is the configuration of multi-centered KK-monopoles (KK5-branes). The 9-th coor-

dinate x9 is transformed to x̃9. This direction is a compact circle of radius R̃9. Here the

dilaton and the NS-NS B-field are trivial up to total derivatives. Instead, the KK-vector

ω is involved in the space-time metric. The relation between the KK-vector ω and the

harmonic function H(~r) is given as a monopole equation. Indeed the transverse space of

the multi-centered KK-monopoles is given as a multi-centered Taub-NUT space.

There are no more directions with isometry in the configuration of the KK-mono-

poles (2.2). However, if an infinite number of KK-monopoles are arrayed along the x8-

direction, we can see a shift symmetry along it. Under this setup, the configuration (2.2) has

1We follow the conventions employed in [26].
2The H-monopole geometry presented in this section corresponds to the neutral solution in heterotic

supergravity. There are other five-brane solutions known as the gauge and the symmetric solutions [27].
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an additional isometry along the x8-direction. Compactifying the x8-direction with radius

R8 and performing a T-duality transformation along it, we obtain the dual coordinate x̃8

of radius R̃8 = α′/R8 and the following configuration:

ds2522
= dx2012345 +H

(
d̺2 + ̺2(dϑ̺ )2

)
+

H

K

(
(dx̃8)2 + (dx̃9)2

)
,

e2φ =
H

K
, B = −σ′′ϑ̺

K
dx̃8 ∧ dx̃9 , B(8,2) = −K

H
dx0 ∧ dx1 ∧ · · · ∧ dx5,

H = σ′′ log
µ′′

̺
= h0 + σ′′ log

µ0

̺
, K = H2 + (σ′′ϑ̺ )2, σ′′ =

R̃8R̃9

2πα′
.

(2.3)

This is the background geometry of the exotic 522-brane expanded along the 012345-

directions. The transverse space is locally described as R
2 × T 2 whose coordinates are

expressed in terms of {̺, ϑ̺; x̃
8, x̃9}. B(8,2) is a six-form whose transverse space has two

isometries. We use the notation B(8,2) instead of B(6) to denote the Hodge dual of the

T-dualized B-field. This is natural since the 522-brane couples to B(6) which is T-duality

transformed along two isometries. B(8,2) is also called the mixed-symmetry tensor [12, 29].

In this configuration, the space-time metric, the dilaton, and the NS-NS B-field are de-

scribed by not only the harmonic function H but also the angular coordinate ϑρ. The

harmonic function diverges in the IR region. This implies that asymptotic description of

the single 522-brane is not well-defined. Furthermore, caused by the dependence of the

angular coordinate, the space-time metric, the dilaton field, and the NS-NS B-field are

no longer single-valued. Due to the multi-valuedness of the solution, there is a non-trivial

monodromy around the 522-brane. The monodromy characterizes a kind of conserved charge

(Page charge) of the brane [7].

2.2 String duality chains on five-branes

In this subsection we demonstrate the string duality chains on various five-branes. We

begin with the following M-theory branes: an M5-brane, a KK6-brane, and a 53-brane.

They are related to five-branes in string theories. The former two are standard branes,

whilst the latter one is an exotic object [2]. Their tensions are evaluated in terms of the

Planck length ℓp in eleven dimensions and radii of compact circles:

M5(12345) : M =
1

ℓ6p
,

53(12345,89♮) : M =
(R8R9R♮)

2

ℓ12p
,

KK6(12345♮,9) : M =
(R9)

2

ℓ9p
.

(2.4)

We followed the conventions for branes employed in [7]. The parameter R♮ in the mass of

the 53-brane is the radius of M-theory circle. The transverse directions of the M5-brane is

a topologically flat five-dimensional space, while the transverse space of the 53-brane has

three isometry directions. The transverse four-directions of the KK6-brane is the Taub-

NUT space. All of the above branes are coupled to the six-form potentials, the dual of the

three-form potential, in M-theory.
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In type IIA string theory, we focus on the following five-branes and six-branes:3

NS5(12345) : M =
1

g2stℓ
6
st

,

KK5(12345,9) : M =
(R9)

2

g2stℓ
8
st

,

522(12345,89) : M =
(R8R9)

2

g2stℓ
10
st

,

613(123458,9) : M =
(R9)

2

g3stℓ
11
st

.

(2.5)

Here the eleven-dimensional Planck length ℓp is described by the string coupling constant

gst and the string length ℓst =
√
α′ in such a way as ℓp = gstℓ

3
st, where α

′ is the Regge-slope

parameter. The parameter R9 in the mass of the KK5-brane is the radius of the Taub-NUT

circle. The radius of the M-theory circle R♮ is also given as R♮ = gstℓst. The NS5-brane and

the KK5-brane are obtained by the dimensional reduction of one direction transverse to

the M5-brane and the KK6-brane, respectively. We find the 522-brane by the dimensional

reduction of the 53-brane along the direction of the M-theory circle. The 613-brane can be

found by the dimensional reduction of the KK6-brane along a transverse direction in R
3 of

the Taub-NUT space. We remark that the NS5-brane, the KK5-brane, and the 522-brane are

coupled to the NS-NS six-form potentials, which are dual to the NS-NS two-form potential,

while the 613-brane is coupled to a R-R seven-form potential as a mixed-symmetry tensor.

We move to type IIB string theory from type IIA string theory. The above branes (2.5)

in type IIA theory are transformed to the other branes under the following string duality

transformation rules:

Ti : Ri →
ℓ2st
Ri

, gst →
ℓst
Ri

gst ,

S : gst → g−1
st , ℓst → g

1/2
st ℓst .

(2.6)

Here Ti denotes the T-duality transformation along the i-th direction and S is the S-duality

transformation. The list of five-branes in type IIB string theory is as follows:

D5(12345) : M =
1

gstℓ6st
,

NS5(12345) : M =
1

g2stℓ
6
st

,

KK5(12345,9) : M =
(R9)

2

g2stℓ
8
st

, (2.7)

522(12345,89) : M =
(R8R9)

2

g2stℓ
10
st

,

523(12345,89) : M =
(R8R9)

2

g3stℓ
10
st

.

3Here we do not consider the D6-brane because this is not directly related to exotic five-branes in

this work.

– 5 –



J
H
E
P
0
7
(
2
0
1
4
)
1
2
7

Figure 1. Type II five-branes which are obtained from the NS5-branes by duality chains.

The NS5-brane in type IIB theory is obtained via the T-duality transformation along the

longitudinal (transverse) direction of the NS5-brane (the KK5-brane) in type IIA theory.

The KK5-brane and the 522-brane are also obtained via the T-duality transformations along

suitable directions of five-branes in type IIA theory. The D5-brane and the 523-brane

are obtained via the S-duality transformation of the NS5-brane and the 522-brane in type

IIB theory, respectively. We remark that there are other five-branes in type II string

theories. We obtain five-branes of co-dimensions less than two by performing further duality

transformations. For example, the 5
(1,2)
3 -brane in type IIA theory is obtained via the T-

duality transformation along the 7-th direction of the 523-brane in type IIB theory. A list of

five-branes in type II string theories is found in figure 1. In the following, our main focus

is on the five-branes which have co-dimension two or more.

We further move to type I string theory via the orientifold projection of type IIB

theory. Due to this projection, the NS-NS B-field and its dual are projected out. Then the

five-branes surviving in type I theory are the D5-brane and the 523-brane. Performing the

S- and T-duality transformations to the five-branes in type I theory, we can also discuss

the NS5-brane, the KK5-brane, and the 522-brane in heterotic string theories. They are

also derived from the branes (2.4) in M-theory via the S1/Z2 compactification. We discuss

the world-volume effective actions of five-branes in type I and heterotic string theories in

section 4. We summarize the above demonstration of the string duality chains on five-

branes in figure 2.

Recently, the “exotic” configurations have been investigated very well in supergravity

theories [2, 7], and in the framework of double field theory [6]. In our previous works [15–

17] we studied the worldsheet sigma model whose target space is the background geometry

– 6 –
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Figure 2. String duality chains on various five-branes. The numbers in parentheses denote the

numbers of supercharges in six dimensions (except for the KK6-brane and the 613-brane). The

subscripts T, V and H mean the tensor multiplet, the vector multiplet, and the hypermultiplet,

respectively.

of the exotic 522-brane. In the next section, we discuss the world-volume descriptions of the

exotic five-branes in type IIA and IIB string theories.

3 World-volume effective actions of type II 52

2
-brane and 52

3
-brane

In this section, we explicitly write down the bosonic part of the world-volume effective

actions of the single exotic 522-branes in type IIA and IIB, and the 523-brane in type IIB

string theories. We consider the half-BPS five-branes which preserve sixteen supercharges

in its world-volume. The supermultiplets in the world-volume theories of the NS5-branes

and the KK5-branes in type I, II and heterotic theories are classified in [30]. With the

relations by the T-duality, the world-volume theories of the type IIB 522-brane and 523-

brane are governed by the six-dimensional N = (1, 1) vector multiplet. On the other hand,

the type IIA 522-brane world-volume theory is described by the N = (2, 0) tensor multiplet.

We will work out the effective actions by the duality transformations of the geometric

branes. The transformations include those of the space-time backgrounds and the world-

volume fields. Generically, the scalar zero-modes associated with the isometry directions

are translated into the new scalar fields which do not have the geometrical meaning (it

is not the transverse fluctuation modes). The world-volume U(1) gauge field in a brane

becomes another U(1) gauge field by the duality transformation. The new gauge field has

a different gauge transformation rule from the original one. In the following subsections,

we consider the type IIA and IIB theories separately.

– 7 –
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3.1 522-brane and 523-brane in type IIB theory

As we demonstrated in section 2, the type IIB 522-brane is obtained by the T-duality

transformations along the transverse directions of the NS5-brane which is S-dual of the

D5-brane. The effective action of the single Dp-brane in type II theories is the sum of the

Dirac-Born-Infeld (DBI) part and the Wess-Zumino part:

SDp = −TDp

∫
dp+1ξ e−φ

√
− det

(
P [g]ab + P [B]ab + λFab

)

+ µp

∫

Mp+1

P

[∑

n

C(n) ∧ eB
]
∧ eλF , (3.1)

where gµν , Bµν , φ are the background space-time metric, the NS-NS B-field and the dilaton.

The fields C(n) are the R-R potentials and Fab = ∂aAb − ∂bAa is the field strength of the

U(1) gauge field Aa. The tension and the R-R charge of the BPS Dp-brane are given by

TDp = µp = 1
(2π)pgst

α′−(p+1)/2. We also defined λ = 2πα′. The symbol P [Φ] stands for the

pull-back of the space-time tensor fields Φµ1···µN
onto the world-volume:

P [Φ]a1···aN = Φµ1···µN
∂a1X

µ1 · · · ∂aNXµN . (3.2)

Here ∂a is the derivative with respect to the world-volume coordinate ξa. The summation∑
n in the Wess-Zumino part is understood such that the integration over the world-volume

dimension is well-defined. For example, the Wess-Zumino term of the D5-brane is given by

µ5

∫

M6

[
P [C(6)]+P [C(4)]∧

(
P [B]+λF

)
+

1

2!
P [C(2)]∧

(
P [B]+λF

)2
+

1

3!
C(0)

(
P [B]+λF

)3
]
.

(3.3)

The type IIB NS5-brane is S-dual of the D5-brane. The S-duality transformation rules of

the background fields [25] are

τ −→
S

−1

τ
, C(2) −→

S
B , B −→

S
−C(2), gµν −→

S
|τ | gµν ,

C(4) −→
S

C(4) + C(2) ∧B , C(6) −→
S

−B(6) +
1

2
B ∧ C(2) ∧ C(2),

(3.4)

where τ = C(0) + i e−φ is the complex axio-dilaton field. Together with the space-time

fields, the world-volume gauge field Aa is transformed as Aa −→
S

Aa. Then the effective

action of the type IIB NS5-brane [31] is

SIIB
NS5 = −TNS5

∫
d6ξ e−2φ

√
1+e2φ(C(0))2

√
− det

(
gµν ∂aXµ∂bXν+

λ eφ√
1+e2φ(C(0))2

Fab

)

−µ5

∫

M6

[
P [B(6)]− 1

2
P [B ∧ C(2) ∧ C(2)]− λP [C(4) + C(2) ∧B] ∧ F

−λ2

2
P [B] ∧ F ∧ F +

λ3

3!

C(0)

(C(0))2 + e−2φ
F ∧ F ∧ F

]
. (3.5)

– 8 –
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Here Fab = ∂aAb − ∂bAa − λ−1C
(2)
µν ∂aX

µ∂bX
ν . The tension of the NS5-brane is defined

as TNS5 = g−1
st TD5. The action (3.5) is invariant under the following space-time and world-

volume gauge transformations:

δB = dΛ(1), δB(6) = dΛ(5) − dλ(3) ∧ C(2) + dλ(1) ∧B ∧ C(2),

δC(0) = 0 , δC(2) = dλ(1), δC(4) = dλ(3) −B ∧ dλ(1),

δAa = ∂aχ+ λ−1P [λ(1)]a , δFab = 0 ,

(3.6)

where Λ(n) and λ(n) (n = 1, 3, 5) are space-time gauge parameter n-forms and χ is the

world-volume gauge parameter. The effective action of the KK-monopole in type IIA

string theory is obtained by the T-duality transformation of the action (3.5) along the one

transverse direction of the brane [31].

The type IIB 522-brane effective action is obtained by the T-duality transformations

of the action (3.5) along the two transverse directions. We consider the isometries of

the background fields. The isometries are generated by two Killing vectors kµI (I = 1, 2)

transverse to the NS5-brane world-volume. We keep the space-time covariant expression

using the covariant Buscher rules in appendix B. Then we find

e−2φ−−−→
k1k2

e−2φ(dethIJ) , gµν−−−→
k1k2

Πµν(k2)+
K

(1)
µ K

(1)
ν

(k2)2
− (k2)

2(K
(2)
µ K

(2)
ν −K

(3)
µ K

(3)
ν )

dethIJ
,

B−−−→
k1k2

B̃ ,

C(0)−−−→
k1k2

ik1ik2(C
(2)+C(0)B) , C(2)−−−→

k1k2
C̃(2), C(4)−−−→

k1k2
C̃(4),

(3.7)

where the arrow “−−−→
k1k2

” indicates that the repeated T-duality transformations along the

directions generated by the Killing vectors, first kµ1 , then kµ2 . The explicit forms of B̃, C̃(2),

C̃(4) are given in appendix B. Here we defined the following quantities:

hIJ = kµI k
ν
J (gµν +Bµν) , Πµν(k2) = gµν −

1

(k2)2
(ik2g)µ(ik2g)ν ,

(kI)
2 = gµνk

µ
I k

ν
I (no sum over I) ,

K(1)
µ = (ik2B − λ dϕ′)µ ,

K(2)
µ =

(
ik1g −

k1 · k2
(k2)2

(ik2g) +
1

(k2)2
(ik1ik2B)(ik2B − λ dϕ′)

)

µ

,

K(3)
µ =

(
(ik1B − λ dϕ)− k1 · k2

(k2)2
(ik2B − λ dϕ′) +

1

(k2)2
(ik1ik2B)ik2g

)

µ

.

(3.8)

The scalar fields ϕ and ϕ′ are associated with the dual coordinates under the T-duality

transformations along the isometries generated by the Killing vectors kµ1 and kµ2 , respec-

tively.

A salient feature of the exotic branes is its coupling to non-geometric fluxes. The T-

duality group theoretical representations of the potentials that couple to the solitonic branes

(i.e. objects that have the tension proportional to e−2φ) in ten-dimensional supergravities
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are investigated in [12]. They are anti-symmetric tensor representations of SO(10−d, 10−d)

where d is the compactified dimensions. The conjugacy class of the solitonic branes are

studied. In particular, the Wess-Zumino term of the co-dimension two defect branes are

discussed in [13].4 The explicit top coupling form of the Wess-Zumino term in the type

IIB exotic 522-brane is studied in [25]. This is defined by the T-duality transformations of

the B(6) field and represented by the mixed-symmetry tensor B(8,2) [12, 29]. We therefore

obtain5

B(6) −−−→
k1k2

ik1ik2B
(8,2). (3.9)

Along with the backgrounds fields, the world-volume gauge field is transformed as

Aa −−−→
k1k2

Ãa . (3.10)

Collecting all the formulae together, we explicitly write down the world-volume action

of the type IIB exotic 522-brane:

SIIB
522

=−T522

∫
d6ξ e−2φ(dethIJ)

√

1+
e2φ

(
ik1ik2(C

(2) + C(0)B)
)2

dethIJ

×

√√√√− det

(
Πµν(k2) ∂aXµ∂bXν+

K
(1)
a K

(1)
b

(k2)2
− (k2)2(K

(2)
a K

(2)
b −K

(3)
a K

(3)
b )

dethIJ
+ λFab

)

−µ5

∫

M6

[
P [ik1ik2B

(8,2)]− 1

2
P [B̃ ∧ C̃(2) ∧ C̃(2)]− λP [C̃(4) + C̃(2) ∧ B̃] ∧ F̃

−λ2

2!
P [B̃] ∧ F̃∧ F̃+

λ3

3!

ik1ik2(C
(2)+C(0)B)

(
ik1ik2(C

(2)+C(0)B)
)2
+e−2φ(dethIJ)

F̃∧ F̃∧ F̃

]
,

(3.11)

where T522
= TNS5 and we have defined

F̃ab = ∂aÃb − ∂bÃa − λ−1P [C̃(2)]ab . (3.12)

The action contains the following quantity:

Fab =
eφ√

dethIJ + e2φ
(
ik1ik2(C

(2) + C(0)B)
)2 F̃ab . (3.13)

The gauge transformation of ik1ik2B
(8,2) is complicated but is determined straightforwardly

such that the Wess-Zumino term of the action (3.11) is invariant under the following trans-

formations:

δB = dΛ(1),

δC(0) = 0 , δC(2) = dλ(1), δC(4) = dλ(3) −B ∧ dλ(1),

δ(dÃ(1)) = λP [δC̃(2)] , δϕ = −λ−1 ik1Λ
(1), δϕ′ = −λ−1 ik2Λ

(1).

(3.14)

4In [13] the exotic 522-branes, which come from the NS5-branes by T-dualities, are called generalized

KK-monopoles.
5Strictly speaking, the terminology ik1

ik2
B

(8,2) as the T-dualized six-form is a confusing expression.

However, in order to emphasize the Killing vectors of the isometries, we adopted this notation.
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Note that the effective action (3.11) is written in the space-time covariant fashion which is

compared with the action obtained in [25]. The action (3.11) shows specific properties of

the exotic 522-brane. The dilation coupling e−2φ implies that the brane is a solitonic object

as its notation stands for. We also see that the overall factor dethIJ , which contains

(k1)
2(k2)

2, reflects the fact that the tension of the 522-brane is proportional to the radii

of the two compactified (isometry) directions. This is the generalization of the structure

seen in the KK-monopole world-volume [31, 32] where the tension is proportional to the

Killing vector k2 associated with the Taub-NUT isometry. In order to see that the effective

action (3.11) contains zero-modes that correspond to two transverse directions, we focus

on the determinant part of the action. When the backgrounds other than the metric are

zero and Ãa = ϕ = ϕ′ = 0, the determinant part of the action is

Πµν(k2)∂aX
µ∂bX

ν

− k22
dethIJ

[
(ik1g)µ∂aX

µ − k1 · k2
(k2)2

(ik2g)µ∂aX
µ

][
(ik1g)ν∂bX

ν − k1 · k2
(k2)2

(ik2g)ν∂bX
ν

]

= Πµν∂aX
µ∂bX

ν , (3.15)

where Πµν = gµν − hIJgµρgνσk
ρ
Ik

σ
J , hIJ = gµνk

µ
I k

ν
J and hIKhKJ = δIJ . This is nothing

but the structure of the gauged sigma model with two isometries [32]. The fluctuation

modes associated with the isometry directions are projected out. We note that when the

NS-NS B-field is turned on, the action is not written as a gauged sigma model. The exotic

seven-brane with two gauged isometries is constructed in [1] where the NS-NS B-field is

turned off.

In the static gauge, the field content of the effective action (3.11) is therefore, a U(1)

gauge field Ãa, two transverse scalar zero-modes X1, X2, two scalar fields ϕ, ϕ′ that come

from the T-duality transformation. They are organized into the six-dimensional N = (1, 1)

vector multiplet as we expected.

Next, we proceed to the exotic 523-brane. The effective action of the exotic 523-

brane is obtained by applying the S-duality transformation to the 522-brane effective ac-

tion (3.11) [25] (see also figure 1). The world-volume fields are transformed as

Ãa −→
S

Ã′
a , ϕ −→

S
ϕ̃ , ϕ′ −→

S
ϕ̃′. (3.16)

The background fields are transformed by the S-duality rule (3.4). Then the action is

SIIB
523

=−T523

∫
d6ξ |τ | e−2φ(det lIJ)

√
1 +

e2φ

det lIJ

{
ik1ii2(B + |τ |−2C(0)C(2))

}

×

√√√√− det

(
Πµν(k2) ∂aXµ∂bXν+

L
(1)
a L

(1)
b

|τ |2(k2)2
− (k2)2(L

(2)
a L

(2)
b −|τ |−2L

(3)
a L

(3)
b )

det lIJ
+λF′

ab

)

−µ5

∫

M6

[
P [ik1ik2C

(8,2)]− 1

2
P [B̃′ ∧ C̃(2)′ ∧ C̃(2)′]

−λP [C̃(4)′ ∧ C̃(2)′ ∧ B̃′] ∧ F̃ ′ − λ2

2!
P [B̃′] ∧ F̃ ′ ∧ F̃ ′

+
λ3

3!

|τ |2 e2φ ik1ik2(B+|τ |−2C(0)C(2))

det lIJ+|τ |2 e2φ
(
ik1ik2(B+|τ |−2C(0)C(2))

)2 ∧ F̃ ′∧ F̃ ′∧ F̃ ′

]
, (3.17)
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where T523
= g−1

st T522
and we have defined

lIJ = kµI k
ν
J(gµν − |τ |−1C(2)

µν ) ,

L(1)
µ = (ik2C

(2) + λdϕ̃′)µ ,

L(2)
µ =

(
ik1g −

k1 · k2
(k2)2

(ik2g) +
1

|τ |2(k2)2
(ik1ik2C

(2))(ik2C
(2) + λdϕ̃′)

)

µ

,

L(3)
µ =

(
(ik1C

(2) + λdϕ̃)− k1 · k2
(k2)2

(ik2C
(2) + λdϕ̃) +

1

(k2)2
(ik1ik2C

(2))ik2g

)

µ

,

F̃ ′
ab = ∂aÃ

′
b − ∂bÃ

′
a − λ−1P [C̃(2)′]ab ,

F
′
ab =

eφ√
det lIJ + |τ |2 e2φik1ik2(B + |τ |−2C(0)C(2))

F̃ ′
ab .

(3.18)

The explicit forms of the background fields B̃′, C̃(2)′, C̃(4)′ are found in (B.19). The power

of the dilaton field implies that the tension of this five-brane is proportional to g−3
st . Notice

that C(8,2) is the R-R mixed-symmetry tensor. As we addressed in section 2, this is S-dual

of the NS-NS mixed-symmetry tensor B(8,2) in ten dimensions [25]. Although the 523-brane

does not exist in type IIA string theory, one encounters this exotic brane in type I theory.

We will come back to the 523-brane in section 4.

3.2 522-brane in type IIA theory

In this subsection, we consider the exotic 522-brane in type IIA string theory. The super-

multiplet of the type IIA 522-brane effective theory is a six-dimensional N = (2, 0) tensor

multiplet which consists of one self-dual tensor field of rank two and five scalar fields. It

is necessary to introduce an auxiliary field for a manifestly Lorentz invariant action of

self-dual fields. In order to obtain the IIA 522-brane, we start from the action of a single

M5-brane in eleven dimensions. By the direct dimensional reduction of the M5-brane, we

first obtain the type IIA NS5-brane. Performing the T-duality transformations twice, we

obtain the type IIA 522-brane.

The world-volume fields in the M5-brane effective action belong to a six-dimensional

N = (2, 0) tensor multiplet. The five scalar fields correspond to the translational moduli of

the M5-brane in eleven dimensions. The action involves the U(1) self-dual two-form gauge

field Aab. The manifestly Lorentz invariant form of the action is given in the Pasti-Sorokin-

Tonin (PST) formalism [33]:

SM5 = −TM5

∫
d6ξ

[√
− det(P [ĝ]ab + iĤ∗

ab) +

√
−ĝ

4(∂̂a)2
Ĥ∗abcĤbcd (∂aa ∂

da)

]

+ TM5

∫

M6

(
P [Ĉ(6)]− 1

2
F (3) ∧ P [Ĉ(3)]

)
, (3.19)

where TM5 = 1
(2π)5

M6
11 is the M5-brane tension in terms of the the Planck mass M11 in

eleven dimensions. F (3) = dA(2) is the field strength of the self-dual two-form gauge field.

The real auxiliary field a(ξ) is non-dynamical. The explicit expressions of the variables in
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the action are given by

F
(3)
abc = ∂aAbc−∂bAac+∂cAab , ĝ = detP [ĝ] , (∂̂a)2 = P [ĝ]ab ∂aa ∂ba ,

Ĥabc = F
(3)
abc−P [Ĉ(3)]abc , Ĥ∗abc =

1

3!
√
−ĝ

εabcdef Ĥdef , Ĥ∗
ab =

1√
(∂̂a)2

Ĥ∗
abc ∂

ca .

(3.20)

All the world-volume indices are contracted with the pull-back P [ĝ]ab. Here P [ĝ]ab is the

inverse of P [ĝ]ab. The fields ĝMN , Ĉ(3), Ĉ(6) are the space-time metric, the three-form

potential and its magnetic dual in D = 11 supergravity. The action is invariant under the

following four kinds of gauge transformations:

• The ordinary world-volume gauge transformation by the gauge parameter one-

form χa:

δAab = ∂[aχb] . (3.21)

• The field dependent world-volume gauge transformation by the gauge parameter one-

form χ′
a:

δAab = ∂[aa χ′
b] , δa = 0 . (3.22)

• The field dependent world-volume gauge transformation by the gauge parameter χ̂:

δa = χ̂ , δAab =
χ̂

2(∂̂a)2
(Habc ∂

ca− Vab) ,

Vab = −2

√

−(∂̂a)2

ĝ

δ

δĤ∗
ab

√
− det(P [ĝ] + iĤ∗) .

(3.23)

• The space-time gauge transformations by the gauge parameter five- and two-forms

Λ̂(5), Λ̂(2):

δĈ(3)(X) = dΛ̂(2)(X) , δĈ(6)(X) = dΛ̂(5) +
1

2
dΛ̂(2)(X) ∧ Ĉ(3)(X) ,

δA(2)(ξ) = Λ̂(2)
(
X(ξ)

)
.

(3.24)

Now we perform the direct dimensional reduction of the M5-brane action (3.19). The

KK ansatz is

ĝMN =

(
e−

2
3
φ(gµν + e2φC

(1)
µ C

(1)
ν ) e

4
3
φC

(1)
µ

e
4
3
φC

(1)
ν e

4
3
φ

)
, (3.25)

where M,N = 0, . . . , 10 is the space-time indices in eleven dimensions. The potential forms

are decomposed as

Ĉ(3) = C(3) −B ∧ dY,

Ĉ(6) = B(6) + C(5) ∧ dY +
1

2
C(5) ∧ C(1) +

1

2
C(3) ∧B ∧ dY.

(3.26)
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Here Y is a world-volume scalar field associated with the compact space-time coordinate

y. Note that the fields in the left-hand sides are form fields in D = 11 while the ones in

the right-hand sides are those in D = 10. For later convenience, we also define

Fµ = ∂µY + C(1)
µ . (3.27)

Performing the direct dimensional reduction, we obtain the effective action of the type IIA

NS5-brane [34]:

SIIA
NS5=−TNS5

∫
d6ξ e−2φ

√
− det(P [g]ab+λ2e2φFaFb)

√
det

(
δab+

iλ eφ(P [g]ac+λ2e2φFaFc)

N
√

det(δef+λ2e2φFeF f )
H∗bc

)

− λ2

4
TNS5

∫
d6ξ

√−g

N 2
H∗abHabc

(
P [g]cd − e2φλ2F cF d

1 + λ2e2φF 2

)
∂da√
(∂a)2

+ µ5

∫

M6

(
P [B(6)] + λP [C(5) ∧ dY ] +

1

2
P [C(5) ∧ C(1)] +

λ

2
P [C(3) ∧B ∧ dY ]

− λ

2
F (3) ∧ P [C(3)] +

λ

2
F (3) ∧ P [B ∧ dY ]

)
, (3.28)

where we have defined

Fa=P [F ]a=∂aY +λ−1P [C(1)]a , N =

√
1− λ2e2φ(F∂a)2

(∂a)2(1+λ2e2φF 2)
,

g=detP [g] , (∂a)2=P [g]ab ∂aa ∂ba ,

Habc=F
(3)
abc−λ−1P [C(3)]abc−(P [B] ∧ dY )abc ,

H∗abc=
1

3!
√−g

εabcdefHdef , H∗ab=
1√
(∂a)2

H∗abc ∂ca .

(3.29)

Here we have rescaled F
(3)
abc → λF

(3)
abc , Y → λY in order to make the dimension of the fields

be [Aab] = [Y ] = +1. All the world-volume indices are contracted with P [g]ab, i.e., the

pull-back of the ten-dimensional metric gµν . The Wess-Zumino term is invariant under the

following space-time gauge transformations:

δB = dΛ(1),

δB(6) = dΛ(5) +
1

2
C(1) ∧ dλ(4) − 1

2
(C(3) + C(1) ∧B) ∧ dλ(2)

+
1

2

(
C(5) + C(3) ∧B +

1

2
C(1) ∧B ∧B

)
∧ dλ(0),

δC(1) = dλ(0),

δC(3) = dλ(2) −B ∧ dλ(0),

δC(5) = dλ(4) −B ∧ dλ(2) +
1

2!
B ∧B ∧ dλ(0),

δY = −λ(0),

δ(dA(2)) = λ−1P [dλ(2) −B ∧ dλ(0)] + P [dΛ(1) ∧ dY −B ∧ dλ(0)] ,

(3.30)

where Λ(n) and λ(n) are gauge parameter n-forms.
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Now we perform the T-duality transformations of the action (3.28). The pull-back of

the metric is transformed as

P [g]ab −−−→
k1k2

Πµν(k2) ∂aX
µ∂bX

ν +
K

(1)
a K

(1)
b

(k2)2
− (k2)

2(K
(2)
a K

(2)
b −K

(3)
a K

(3)
b )

dethIJ

≡ g̃ab .

(3.31)

We define the inverse matrix g̃ab as follows:

g̃ab g̃
bc = g̃cb g̃ba = δa

c. (3.32)

The T-duality transformations of the R-R fields are

P [C(1)] −−−→
k1k2

P [C̃(1)] , P [C(3)] −−−→
k1k2

P [C̃(3)] , P [C(5)] −−−→
k1k2

P [C̃(5)] , (3.33)

where the explicit expressions of the right-hand sides are found in appendix B. We also have

P [g]ab+e2φFaFb −−−→
k1k2

g̃ab+
e2φ

dethIJ
(∂aY +P [C̃(1)]a)(∂bY +P [C̃(1)]b) ,

F a∂aa −−−→
k1k2

g̃ab(∂aY +P [C̃(1)]a) ∂ba ,

F 2 −−−→
k1k2

g̃ab(∂aY +P [C̃(1)]a)(∂bY +P [C̃(1)]b) ,

N 2 −−−→
k1k2

1− e2φ g̃ef (∂eY +P [C̃(1)]e) ∂fa

(∂̃a)2
(
dethIJ+e2φg̃cd(∂cY +P [C̃(1)]c)(∂dY +P [C̃(1)]d)

)

≡ Ñ 2,

(3.34)

where (∂̃a)2 ≡ g̃ab∂aa ∂ba, and

Habc −−−→
k1k2

F̃abc − P [C̃(3)]abc −
(
P [B̃] ∧ (dY + P [C̃(1)])

)
abc

≡ H̃abc . (3.35)

Here the world-volume gauge field Aab is transformed as Aab −−−→
k1k2

Ãab and F̃ (3) = dÃ(2).

Putting everything together, we obtain the effective action of the type IIA 522-brane:

SIIA
52
2

=−T52
2

∫
d6ξ e−2φ(dethIJ )

×

√√√√− det

(
Πµν(k2)∂aXµ∂bXν+

K
(1)
a K

(1)
b

(k2)2
− (k2)2(K

(2)
a K

(2)
b −K

(3)
a K

(3)
b )

dethIJ

+
λ2e2φ

dethIJ

F̃
(1)
a F̃

(1)
b

)

×

√√√√√det

(
δab +

i eφ

3! Ñ
√

dethIJ(∂̃a)2
Za

b

)

− λ2

4
T52

2

∫
d6ξ

εabgd
′e′f ′

H̃d′e′f ′ H̃abc (∂ga ∂da)

3! Ñ 2(∂̃a)2

[
g̃cd −

λ2e2φ g̃ce g̃df F̃
(1)
e F̃

(1)
f

dethIJ + λ2e2φ g̃a′b′ F̃
(1)
a′ F̃

(1)
b′

]

+ T52
2

∫

M6

(
P [ik1

ik2
B(8,2)] +

1

2
P [C̃(5) ∧ C̃(1)] + λP [C̃(5)] ∧ dY +

λ

2
P [C̃(3) ∧ B̃ ∧ dY ]

− λ

2
F (3) ∧ P [C̃(3)] +

λ

2
F (3) ∧ P [B̃ ∧ dY ]

)
. (3.36)
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Here we introduced the following expressions:

F̃ (1)
a = ∂aY + λ−1P [C̃(1)]a ,

Za
b =

εgbcdef
(
g̃ac + λ2e2φ(dethIJ)

−1 F̃
(1)
a F̃

(1)
b

)
H̃def ∂ga√

− det
(
g̃a′b′ + λ2 e2φ(dethIJ)−1F̃

(1)
a′ F̃

(1)
b′

) .
(3.37)

The gauge transformations of the scalar fields ϕ,ϕ′ are those found in (3.14). The gauge

transformation of the scalar field Y is defined such that the modified field strength F̃ (1) is

invariant, namely,

δ(dY ) = −λ−1P [δC̃(1)] . (3.38)

The world-volume gauge transformations of Ãab and the auxiliary field a are obtained

from those in the M5-brane (3.21)–(3.23) where the background fields are given in the KK

ansatz (3.25) with the T-dualized forms. Again the space-time gauge transformations of

the non-geometric flux ik1ik2B
(8,2) is determined by requiring that the Wess-Zumino term

of the action (3.36) is invariant under the gauge transformations of C̃(5), C̃(3), C̃(1) and

B̃. The calculation is straightforward but tedious and we never pursue it here. Now, we

summarize the field content of the effective action (3.36). In the static gauge, the world-

volume fields are two translational zero-modes X1, X2, a scalar field Y originated from the

dimensional reduction from D = 11 to D = 10, two scalar fields ϕ, ϕ′ associated with the

dual coordinates, a self-dual two-form gauge field Ãab and a non-dynamical auxiliary field

a. They are organized into the six-dimensional N = (2, 0) tensor multiplet as expected.

A comment is in order about world-volume effective actions of exotic five-branes. As

displayed in figure 1, there are other exotic five-branes of co-dimension less than two in

type II string theories. For example, performing the T-duality transformation of the 523-

brane, we obtain another exotic five-brane called 5
(1,2)
3 -brane in type IIA theory. This has

the tension proportional to g−3
st and is a heavy object in perturbative string theory. The

world-volume effective action of the 5
(1,2)
3 -brane should contain three Killing vectors kµ1 ,

kµ2 , k
µ
3 and the supermultiplet of the theory must be the six-dimensional N = (2, 0) tensor

multiplet. Although it is formally possible to write down the effective action of the exotic

five-branes of co-dimension less than two in the covariant fashion, we never explore it in

this paper.

4 Exotic five-branes in type I and heterotic string theories

In the previous section, we gave the world-volume effective actions of the exotic 522- and

523-branes in type II string theories by virtue of the string duality chains. In this section,

we explore exotic five-branes in type I and heterotic string theories. Through the string

duality chains, we can also discuss the effective actions of the exotic five-branes in these

theories.

The most notable fact about the world-volume theory of five-branes in type I and

heterotic theories is its non-Abelian nature even for a single brane. For example, the type

I single D5-brane supports the Sp(1) = SU(2) gauge group in its world-volume [35]. In
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addition to the vector multiplet, there are hypermultiplets transformed as (2,32) of the

SU(2)× SO(32) group. One consequence of this fact is that exotic five-branes in heterotic

theories should have non-Abelian gauge groups by the duality chains (see figure 2). It

is a common practice that non-Abelian gauge groups in the DBI type of the actions are

hard to analyze. We therefore consider a U(1) subgroup of the gauge groups in the effective

actions and extract some physical properties of the exotic five-branes in type I and heterotic

theories.

4.1 523-brane in Type I theory

Type I string theory is obtained by the orientifold projection of type IIB string theory with

the addition of an O9-plane, sixteen D9-branes and their mirror images. The most familiar

five-brane in type I theory is the D5-brane. The D5-brane preserves eight supercharges.

In type I theory, the D5-brane world-volume fields originate from the D5-D5 and the D5-

D9 open string sectors, where the D5-D5 sector provides the Sp(1) = SU(2) Chan-Paton

factor. An N = (1, 0) vector and an N = (1, 0) hypermultiplet come from the D5-D5 open

string sector. The vector multiplet belongs to the adjoint representation of SU(2) while

the hypermultiplet is SU(2) singlet. From the D5-D9 open string sector, there appears to

be SO(2)× SO(32) bi-fundamental hypermultiplets.

The exotic five-brane in type I theory is the 523-brane. Through the connection to the

D5-brane by dualities, there are at least one SU(2) adjoint vector field and four SU(2)

singlet real scalar fields in the world-volume theory of the type I 523-brane. Its U(1) part

of the effective action can be obtained from that of the type IIB 523-brane (3.17) by the

orientifold projection. The dilaton φ, the metric gµν , the R-R potentials C(2), C(6), and

the non-geometric fluxes that are related to these fields by the duality chains, survive the

projection. The half of sixteen supersymmetries is preserved in the world-volume of the

523-brane. As a result, the U(1) part of the type I 523-brane effective action is6

SI
52
3

=−T52
3

∫
d6ξ e−3φ(det lIJ )

×

√√√√− det

(
Πµν(k2) ∂aXµ∂bXν+

e2φL
(1)
a L

(1)
b

(k2)2
− (k2)2(L

(2)
a L

(2)
b −e2φL

(3)
a L

(3)
b )

det l′IJ
+

λ eφ√
det l′IJ

F ′
ab

)

+µ5

∫

M6

(
P [ik1

ik2
C(8,2)]− λ2

2
P [B̃(2)′] ∧ F ′ ∧ F ′

)
, (4.1)

where we have defined

l′IJ = kµI k
ν
J(gµν − eφC(2)

µν ) ,

L(1)
µ = (ik2C

(2) + λdϕ̃′)µ ,

L(2)
µ =

(
ik1g −

k1 · k2
(k2)2

(ik2g)

)

µ

+
eφ

(k2)2
(ik1ik2C

(2))(ik2C
(2) + λdϕ̃′)µ ,

L(3)
µ =

(
(ik1C

(2) + λdϕ)− k1 · k2
(k2)2

(ik2C
(2) + λdϕ′) +

1

(k2)2
(ik1ik2C

(2))(ik2g)

)

µ

,

F ′
ab = ∂aA

′
b − ∂bA

′
a .

(4.2)

6Here we do not consider the world-volume coupling to the background SO(32) gauge field.
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The field content of this effective theory is a U(1) gauge field A′
a, two translational zero-

modes X1, X2, two scalar fields ϕ̃, ϕ̃′ associated with the dual coordinates. Altogether,

they consist of an N = (1, 0) Abelian vector multiplet and a neutral hypermultiplet in

six dimensions. Note that we do not present hypermultiplet parts of the action which are

traced back to the D5-D9 open string sector in the D5-brane. Although it is intractable

to include these parts in the DBI action, they are necessary for the anomaly free theory of

the type I 523-brane.

4.2 522-branes in heterotic theories

We begin with the half-BPS NS5-brane (heterotic five-brane) in E8×E8 or SO(32) heterotic

string theory. In heterotic supergravities, they are gauge instantons embedded in the ten-

dimensional space-time geometry [27, 36]. The world-volume theory of the heterotic five-

brane contains an N = (1, 0) vector multiplet (SO(32)) or an N = (1, 0) tensor multiplet

(E8×E8) together with an appropriate number of hypermultiplets. The hypermultiplets are

necessary for chiral anomaly free theories. It is known that the heterotic gauge symmetry

E8 × E8 or SO(32) is broken to E7 × E8 or SO(28, 2) respectively on a heterotic five-

brane,7 which is grounded on the anomaly cancellation in six dimensions [37–45]. Heterotic

string theories contain also exotic 522-branes. Non-geometric solutions in heterotic theories

have been discussed in [46, 47]. Through the string dualities, it is considered that such

E7 × E8 or SO(28, 2) non-Abelian gauge symmetry must exist on the heterotic 522-brane.

In the following we consider relatively simple part of the effective actions of the 522-brane

in heterotic theories. We appraise that the heterotic 522-brane effective actions discussed

in this section represent an Abelian part of the non-Abelian gauge symmetries of the fully

consistent five-brane world-volume action. This would substantially lead to consider the

neutral solution of heterotic five-branes [27] where the SO(32) or E8 × E8 gauge field has

vanishing configuration.

In SO(32) heterotic string theory, the 522-brane effective action can be obtained from

the type I 523-brane effective action by the S-duality transformation:

C(2) −→
S

B , φ −→
S

−φ , gµν −→
S

e−φgµν , AI
µ −→

S
AHSO

µ , (4.3)

where the variables in the left-hand side (right-hand side) are the ones in type I (SO(32)

heterotic) string theory. As a result, the U(1) part of the SO(32) heterotic 522-brane effective

action is

SHSO
52
2

= −T52
2

∫
d6ξ e−2φ(dethIJ)

×

√√√√− det

(
Πµν(k2) ∂aXµ∂bXν+

K
(1)
a K

(1)
b

(k2)2
− (k2)2(K

(2)
a K

(2)
b −K

(3)
a K

(3)
b )

dethIJ

+
λ eφ√
dethIJ

Fab

)

+ µ5

∫

M6

(
P [ik1

ik2
B(8,2)] +

λ

2
F (3) ∧ P [B̃ ∧ dY ]

)
. (4.4)

7The broken gauge symmetries are obtained by the standard embedding of SU(2) to the original heterotic

symmetries. Since the SU(2) symmetry comes from the spin connection [27, 36], the symmetry cannot

remain as a gauge symmetry. Relations between the SU(2) symmetry originated from spin connections in

heterotic string theories and the SU(2) gauge symmetry of the D5-brane in type I theory are still unclear.
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It is also true that the same effective action is obtained by performing two T-duality

transformations along two isometry directions on the SO(32) heterotic five-brane action.

The latter is derived via the S-duality transformation of the type I D5-brane effective

action.

We can evaluate the 522-brane effective action in E8 ×E8 heterotic theory through the

repeated T-duality transformations from that of the SO(32) heterotic five-brane. First,

we perform a T-duality transformation along the world-volume direction of the SO(32)

heterotic five-brane in order to obtain the E8 × E8 heterotic five-brane effective action.

The transformation rule is the same one between the type IIA and IIB NS5-branes [31].

Next, we perform two T-duality transformations along transverse directions of the E8×E8

heterotic five-brane. Then, the U(1) part of the E8×E8 heterotic 522-brane effective action

emerges as

SHE8
522

= −T522

∫
d6ξ e−2φ(dethIJ)

×

√√√√− det

(
g̃ab +

λ2 e2φF̃
(1)
a F̃

(1)
b

dethIJ

)√√√√√det

(
δab +

i eφ

3!Ñ
√
(dethIJ)(∂̃a)2

Za
b

)

−λ2

4
T522

∫
d6ξ

εabgd
′e′f ′

H̃d′e′f ′H̃abc(∂ga ∂da)

3!Ñ 2(∂̃a)2

[
g̃cd −

λ2 e2φ g̃ced̃f F̃
(1)
e F̃

(1)
f

dethIJ + λ2 e2φ g̃a′b′F̃
(1)
a′ F̃

(1)
b′

]

+ T522

∫

M6

(
P [ik1ik2B

(8,2)] +
λ2

2
F (3) ∧ P [B̃] ∧ F̃ (1)

)
, (4.5)

where we have defined

(∂̃a)2 ≡ g̃ab ∂aa ∂ba ,

F̃ (1)
a ≡ ∂aY,

Za
b ≡ εgbcdef

(
g̃ac + λ2 e2φ(dethIJ)

−1F̃
(1)
a F̃

(1)
b

)
H̃def ∂ga√

− det
(
g̃a′b′ + λ2 e2φ(dethIJ)−1F̃

(1)
a′ F̃

(1)
b′

) .

(4.6)

In the string duality chains (see figure 2), we can see that the S1/Z2 compactification of

the M5-brane yields the E8×E8 heterotic five-brane [48]. The orbifold compactification of

the eleven dimensional supergravity leaves only the NS-NS sector of type IIA supergravity.

As far as only the Abelian part is concerned, the N = (2, 0) tensor multiplet in type IIA

theory cannot be distinguished from the combination with N = (1, 0) tensor multiplet and

hypermultiplet in heterotic string theories. Thus the heterotic 522-brane effective action can

also be given by the truncation of the R-R sector in the type IIA 522-brane effective action.

Indeed, when all the R-R potentials are dropped out in the type IIA 522-brane action (3.36),

we obtain the action (4.5).

5 Conclusion and discussions

In this paper we studied the world-volume effective actions of the exotic five-branes in string

theories. Through the duality chains, we explicitly write down the world-volume effective
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actions of the 522-brane and the 523-brane in type IIB string theory and the 522-brane in type

IIA string theory. The actions are written in a fully space-time covariant form where the

two Killing vectors associated with the isometries of the background fields are manifest.

For type IIB case, the world-volume effective action is governed by the six-dimensional

N = (1, 1) vector multiplet. The action is obtained by the DBI action of the D5-brane

with the Wess-Zumino term via S- and T-dualities. The world-volume effective theory

consists of four scalar fields X1, X2, ϕ, ϕ′ and one U(1) gauge field Ãa. The scalar fields

X1, X2 are fluctuation zero-modes along the two transverse directions of the 522-brane and

the 523-brane. The other scalars ϕ and ϕ′ are associated with the two transverse isometry

directions (one from the Taub-NUT isometry direction of the KK-monopole, the other is the

additional isometry direction needed for the second T-duality transformation). However,

the latter two scalars are not the fluctuation modes since these directions correspond to

the genuine isometries of the (non-)geometry. For type IIA case, the massless fields of the

world-volume effective theory belong to the six-dimensional N = (2, 0) tensor multiplet.

There are five scalar fields Y , X1, X2, ϕ, ϕ′ and one self-dual two-form gauge field Ãab.

The action is written in the space-time covariant form and also has the manifestly Lorentz

invariant expression with the help of the auxiliary field a. The action is obtained from the

PST action of the M5-brane in eleven dimensions through the direct dimensional reduction

and T-dualities. The scalar field Y is originated via the compactification from D = 11 to

D = 10. The two scalars X1, X2 are two transverse fluctuation modes of the IIA 522-brane

and two scalars ϕ, ϕ′ correspond to two isometry directions.

The exotic branes are sources of the non-geometric flux (the Q-flux [3], or the mixed-

symmetry tensor [12, 29]). As discussed in [25], the top couplings of the Wess-Zumino

terms of the effective actions are given by the Q-fluxes B(8,2) and C(8,2). The gauge

transformations of the Q-fluxes are determined such that the Wess-Zumino term is invariant

under the transformations of the NS-NS B-field and the R-R potentials.

We also discussed the exotic five-branes in type I and heterotic string theories. Re-

markably, the gauge groups of the world-volume effective theories are non-Abelian. We

presented a U(1) sector of the effective actions of the 523-brane in type I and the 522-branes

in SO(32), E8×E8 heterotic theories. Geometrically, this would correspond to the neutral

solution of the five-branes where the SO(32) or E8×E8 gauge field is turned off. Although

we considered only a U(1) part of the world-volume actions in these theories, it is important

to bear in mind that the non-Abelian gauge fields and hypermultiplets, that transforms

as appropriate representations of the gauge groups, need to be incorporated for consistent

anomaly free theories.

In this paper, we determined the bosonic part of the world-volume effective actions of

the exotic five-branes. Since the effective theories in this paper preserve eight or sixteen

supercharges, the fermion terms are necessary to exhibit the kappa-symmetry. Although

one of the specific properties of the exotic branes is its global monodromy, the world-volume

effective actions studied in this paper seem not to capture that. This is because the brane

effective actions possess only the local dynamics (brane fluctuation) near the center of the

position of the branes. In order to explore the global aspects around the exotic branes,

it would be important to study intersecting configurations of (exotic) branes. These are
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realized as BPS states in the world-volume theory. Co-dimension two branes (known as

defect branes) are not well-defined finite energy solutions as the stand alone objects. It is

also important to study the effective actions including other duality branes. We will come

back to these issues in future researches.
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A Conventions and notations of D = 10 supergravity

We use the conventions employed in [49] where the gauge transformations of the NS-NS

and R-R fields leave the standard Wess-Zumino term in the D-brane world-volume theory

invariant.

We start from the D = 11 supergravity action:

S(11) =
1

2κ211

∫
d11x

√
−ĝ

(
R̂− 1

2
|F̂ (4)|2

)
− 1

12κ211

∫
Ĉ(3) ∧ F̂ (4) ∧ F̂ (4), (A.1)

where the fields with the hat symbol stand for the eleven dimensional quantities. κ11
is the eleven dimensional gravitational constant, ĝMN (M,N = 0, . . . , 10) is the eleven

dimensional metric, R̂ is the Ricci scalar, Ĉ(3) is the three-form potential and F̂ (4) = dĈ(3)

is its field strength. We adopt the convention |F̂ (p)|2 = 1
p! F̂M1···Mp

F̂M1···Mp .

The D = 10 type IIA supergravity action is obtained by the dimensional reduction of

S(11). The KK ansatz is

ĝMN =

(
e−

2
3
φ gµν + e

4
3
φC

(1)
µ C

(1)
ν e

4
3
φC

(1)
µ

e
4
3
φC

(1)
ν e

4
3
φ

)
, (A.2)

where µ, ν = 0, . . . , 9 are space-time indices in ten dimensions. The fields gµν , φ and C
(1)
µ

are the space-time metric, the dilaton, and the R-R one-form potential in ten dimensions,

respectively. The ten-dimensional type IIA supergravity action is given by

SIIA =
1

2κ210

∫
d10x

√−g e−2φ

(
R+ 4(∂µφ)

2 − 1

2
|H(3)|2

)

− 1

4κ210

∫
d10x

√−g (|G(2)|2 + |G(4)|2)− 1

4κ210

∫
B ∧ F (4) ∧ F (4), (A.3)

where the modified field strengths are defined by

F (2) = dC(1), H(3) = dB , F (4) = dC(3),

G(2) ≡ F (2), G(4) ≡ F (4) +H(3) ∧ C(1).
(A.4)
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Here C(n) is the R-R n-form potential and F (n+1) = dC(n) is its field strength. H(3) = dB

is the field strength of the NS-NS B-field, and R is the Ricci scalar in ten dimensions. The

equations of motion for the R-R fields are

δC(1) : 0 = d(∗10G(2))−H(3) ∧ ∗10G(4),

δC(3) : 0 = d(∗10G(4))−H(3) ∧G(4).
(A.5)

Here ∗10 is the Hodge dual operator in ten dimensions. The Bianchi identities are

dH(3) = dF (2) = 0 , dG(4) = −H(3) ∧G(2). (A.6)

We define the dual field strengths of the R-R fields as

G(8) = ∗10G(2), G(6) = − ∗10 G(4). (A.7)

The equations of motion (A.5) become the Bianchi identities for the dual fields,

dG(6) = −H(3) ∧G(4), dG(8) = −H(3) ∧G(6). (A.8)

The modified field strengths that satisfy the Bianchi identities (A.8) are given by

G(6) = F (6) +H(3) ∧ C(3), G(8) = F (8) +H(3) ∧ C(5). (A.9)

The equation of motion for B is

δB : 0 = d(e−2φ ∗10 H(3))−G(2) ∧ ∗10G(4) − 1

2
G(4) ∧G(4). (A.10)

We define the dual field strength of the NS-NS B-field as

Ȟ(7) ≡ e−2φ ∗10 H(3). (A.11)

Then the equation of motion (A.10) becomes the Bianchi identity for Ȟ(7):

dȞ(7) +G(2) ∧G(6) − 1

2
G(4) ∧G(4) = 0 . (A.12)

Therefore the dual field strength Ȟ(7) that satisfies the Bianchi identity (A.12) is given by

Ȟ(7) = dB(6) − 1

2
G(2) ∧ C(5) +

1

2
G(4) ∧ C(3) − 1

2
G(6) ∧ C(1). (A.13)

The gauge transformations are defined such that the modified field strengths are invariant.

The explicit expressions of the transformation rules are found to be as follows:

δB = dΛ(1),

δB(6) = dΛ(5) +
1

2
C(1) ∧ dλ(4) − 1

2
(C(3) + C(1) ∧B) ∧ dλ(2)

+
1

2

(
C(5) + C(3) ∧B +

1

2
C(1) ∧B ∧B

)
∧ dλ(0),

δC(1) = dλ(0),

δC(3) = dλ(2) −B ∧ dλ(0),

δC(5) = dλ(4) −B ∧ dλ(2) +
1

2!
B ∧B ∧ dλ(0),

δC(7) = dλ(6) −B ∧ dλ(4) +
1

2!
B ∧B ∧ dλ(2) − 1

3!
B ∧B ∧B ∧ dλ(0).

(A.14)
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Here Λ(1), Λ(5), λ(n) (n = 0, 2, 4, 6) are gauge parameters. The transformation rules of the

R-R fields are summarized as

δC(p) =
∑

p

dλ(n) ∧ e−B, (A.15)

which leave the Wess-Zumino term in the D-brane world-volume theory invariant.

The ten-dimensional type IIB supergravity action is given by

SIIB =
1

2κ210

∫
d10x

√−g e−2φ

(
R+ 4(∂µφ)

2 − 1

2
|H(3)|2

)

− 1

4κ210

∫
d10x

√−g

(
|G(1)|2 + |G(3)|2 + 1

2
|G(5)|2

)

+
1

4κ210

∫ (
C(4) +

1

2
B ∧ C(2)

)
∧H(3) ∧ F (3). (A.16)

Note that, in contrast to the ones in [49], we change the sign in front of the Chern-Simons

term. The modified field strengths are given by

G(1) = F (1), G(3) = F (3) +H(3)C(0), G(5) = F (5) +H(3) ∧ C(2). (A.17)

In addition, at the level of the equation of motion, we impose the self-duality condition

on G(5):

G(5) = ∗10G(5). (A.18)

The equations of motion for the R-R fields are

δC(0) : 0 = d(∗10G(1)) + ∗10G(3) ∧H(3),

δC(2) : 0 = d(∗10G(3)) + ∗10G(5) ∧H(3),

δC(4) : 0 = d(∗10G(5)) +H(3) ∧G(3).

(A.19)

The last equation is automatically satisfied when the self-duality condition (A.18) is im-

posed. The Bianchi identities are

dH(3) = 0 , dG(1) = 0 , dG(3) = −H(3)∧G(1), dG(5) = −H(3)∧G(3). (A.20)

The dual fields are defined as

G(7) = − ∗10 G(3), G(9) = ∗10G(1). (A.21)

The Bianchi identities for the dual fields are

dG(9) = −H(3) ∧G(7), dG(7) = −H(3) ∧G(5). (A.22)

The modified field strengths of the dual fields that satisfy the Bianchi identities are found

to be
G(7) = dC(6) +H(3) ∧ C(4),

G(9) = dC(8) +H(3) ∧ C(6).
(A.23)
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The equation of motion for the NS-NS B-field is

0 = d(e−2φ ∗10 H(3)) +G(1) ∧ ∗10G(3) +G(3) ∧ ∗10G(5). (A.24)

This gives the Bianchi identity for the dual field:

dȞ(7) −G(1) ∧G(7) +G(3) ∧G(5) = 0 . (A.25)

Then the dual field strength is given by

Ȟ(7) = dB(6) + C(4) ∧ F (3) − 1

2
C(2) ∧ C(2) ∧H(3) + C(0)G(7). (A.26)

The gauge transformations are defined such that the modified field strengths are invariant:

δB = dΛ(1),

δB(6) = dΛ(5) − dλ(3) ∧ C(2) + dλ(1) ∧B ∧ C(2),

δC(0) = 0 ,

δC(2) = dλ(1),

δC(4) = dλ(3) −B ∧ dλ(1),

δC(6) = dλ(5) −B ∧ dλ(3) +
1

2
B ∧B ∧ dλ(1),

δC(8) = dλ(7) −B ∧ dλ(5) +
1

2
B ∧B ∧ dλ(3) − 1

3!
B ∧B ∧B ∧ dλ(1).

(A.27)

Here λ(n) (n = 1, 3, 5, 7) are gauge parameter n-forms. Hence the gauge transformations

of the R-R fields are

δC(p) =
∑

p

dλ(n) ∧ e−B. (A.28)

Again, these gauge transformations leave the Wess-Zumino term in the D-brane world-

volume action invariant. The type IIB supergravity has the SL(2,R) symmetry:

gµν → |τ | gµν ,

τ → −1

τ
, C(0) → −C(0)

|τ |2 , e−φ → e−φ

|τ |2 ,

F i
3 → Λi

jF
j
3 , Λi

j =

(
0 −1

1 0

)
∈ SL(2,R) ,

C(2) → B , B → −C(2), C(4) → C(4) + C(2) ∧B ,

(A.29)

where we have defined

τ = C(0) + ie−φ, |τ |2 = (C(0))2 + e−2φ,

Mij =
1

Imτ

(
|τ |2 −Reτ

−Reτ 1

)
= eφ

(
(C(0))2 + e−2φ −C(0)

−C(0) 1

)
,

F i
3 =

(
H(3)

F (3)

)
.

(A.30)
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This is nothing but the S-duality symmetry. The S-duality transformations of the dual

fields are

C(6) → −B(6) +
1

2
B ∧ C(2) ∧ C(2),

B(6) → C(6) − 1

2
C(2) ∧B ∧B .

(A.31)

Under the S-duality, D5-branes transform to NS5-branes. One can confirm that the trans-

formation rules given above provide the correct gauge invariant Wess-Zumino term of the

NS5-brane in the world-volume effective action.

B Covariant T-duality transformation rules for supergravity fields

In this appendix, we provide the space-time covariant expressions of the T-duality Buscher

rule [28] for the NS-NS and R-R fields.

B.1 NS-NS sector

The string world-sheet sigma model action is given by

S = − 1

2πα′

∫
d2σ

√−γ
[
(γabgµν + ǫabBµν)∂aX

µ∂bX
ν
]
, (B.1)

where γab is the world-sheet metric, while gµν , Bµν are the background space-time metric

and the NS-NS B-field. We have omitted the coupling to the dilaton term for simplicity.

The background fields gµν and Bµν have isometries Xµ → Xµ + ηIkµI (I = 1, . . . , N)

generated by the Killing vectors kµI . Here ηI are the transformation parameters. Now we

gauge the isometry on the world-sheet. Then the world-sheet action becomes

Sgauged = − 1

2πα′

∫
d2σ

√−γ (γabgµν + ǫabBµν)DaX
µDbX

ν +
1

2πα′

∫
d2σ λ εabϕIF

I
ab ,

(B.2)

whereDaX
µ = ∂aX

µ+CI
ak

µ
I is the gauge covariant derivative and εab =

√−γǫab is the Levi-

Civita antisymmetric symbol. Here we introduced Lagrange multipliers ϕI to ensure that

the auxiliary gauge field CI
a takes valued in the trivial homotopy class F I

ab=∂aC
I
b −∂bC

I
a=0.

The equation of motion for CI
a is

(γab kµI gµν + ǫab kµIBµν)k
ν
J C

J
b = −(γab kµI gµν + ǫab kµIBµν)∂bX

ν + λ ǫab∂bϕ . (B.3)

We consider the case where one Killing vector kµ exists. Then the solution is

Ca = − 1

k2
(
δa

b(ikg)µ + γac ǫ
cb(ikB − λdϕ)µ

)
∂bX

µ, (B.4)

where

k2 = gµν k
µkν , (ikg)µ = kρgρµ , (ikB)µ = kρBρµ . (B.5)

Plugging the solution back into the action, we find

Sgauged = − 1

2πα′

∫
d2σLgauged , (B.6)
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where

Lgauged =
√−γ γab

{
gµν −

(ikg)µ(ikg)ν − (ikB − λdϕ)µ(ikB − λdϕ)ν
k2

}
∂aX

µ∂bX
ν

+
√−γ ǫab

{
Bµν −

(ikg)µ(ikB − λdϕ)ν − (ikB − λdϕ)µ(ikg)ν
k2

}
∂aX

µ∂bX
ν .

(B.7)

The T-duality transformation rule of the dilaton is determined at the one-loop level [28].

Making it covariant form, we obtain the following covariant Buscher rules:

g′µν = gµν −
(ikg)µ(ikg)ν − (ikB − λdϕ)µ(ikB − λdϕ)ν

k2
,

B′
µν = Bµν −

(ikg)µ(ikB − λdϕ)ν − (ikB − λdϕ)µ(ikg)ν
k2

,

e2φ
′

=
1

k2
e2φ.

(B.8)

For the NS-NS B field, the transformation rule is written as

B′ = B − 1

k2
(ikg) ∧ (ikB − λdϕ) , (B.9)

where ikg is treated as a one-form. We note that the field ϕ is associated with the dual

coordinate. Then we find λkµ∂µϕ = 1. In an adapted coordinate kµ = δµy, we recover the

well-known non-covariant Buscher rule.

The repeated application of the Buscher rule gives

ik1g −→
k2

ik1g −
1

(k2)2
{
(k1 · k2)ik2g − (ik1ik2B)(ik2B − λdϕ′)

}
,

ik1B −→
k2

ik1B − 1

(k2)2
ik1

(
ik2g ∧ (ik2B − λdϕ′)

)
,

k21 −→
k2

dethIJ
(k2)2

, hIJ = kµI k
ν
J(gµν +Bµν) , (I, J = 1, 2) .

(B.10)

Here the arrow “−→
k2

” indicates the T-duality transformation along the isometry generated

by the Killing vector kµ2 . Performing the T-duality transformations along the two isometry

directions, we obtain B −−−→
k1k2

B̃ where

B̃ = B − 1

(k2)2
(ik2g) ∧K(1) − (k2)

2

dethIJ
K(2) ∧K(3). (B.11)

Here K(1), K(2), K(3) are given in (3.8).

B.2 R-R sector

For the R-R sector, the T-duality transformation rules of the R-R fields are given in the

non-covariant expressions in [29]. We decompose the space-time indices µ into y (i.e., the
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T-dual direction), and µ̂, ν̂, . . . 6= y. Then the transformations of the R-R fields are

C ′(n)
µ̂1···µ̂n−2ν̂y

= C
(n−1)
µ̂1···µ̂2ν̂

− n− 1

gyy
C

(n−1)
[µ̂1···µ̂n−2|y

g|ν̂]y ,

C ′(n)
µ̂1···µ̂n−2ν̂ρ̂

= C
(n+1)
µ̂1···µ̂n−2ν̂ρ̂y

+ nC
(n−1)
[µ̂1···µ̂n−2ν̂

Bρ̂]y +
n(n− 1)

gyy
C

(n−1)
[µ̂1···µ̂n−2|y

B|ν̂|y g|ρ̂]y ,

(B.12)

where the antisymmetric symbol is defined such that A[µ1···µn] = 1
n!(Aµ1···µn ± (perm)).

Here (perm) stands for terms with possible permutation of indices. Although these are not

covariant forms, the covariant expression of the T-duality transformation for the pull-back

of the R-R field is obtained as follows. The pull-back of the R-R field C
(n)
µ1···µn is

P [C(n)]a1···an = n!C
(n)
yµ̂2···µ̂n

∂[a1Y ∂a2X
µ̂2 · · · ∂an]X µ̂n +C

(n)
µ̂1···µ̂n

∂a1X
µ̂1 · · · ∂anX µ̂n . (B.13)

Here Y is the world-volume scalar field associated with the T-dual direction y. Using the

T-duality rule (B.12), P [C(n)] transforms as

P [C(n)′]a1···an =n!(−)n−1C
(n−1)
µ̂2···µ̂n

∂[a1Y
′ · · · ∂an]X µ̂n

+n!(−)n(ikC
(n+1))µ̂1···µ̂n

∂[a1X
µ̂1 · · · ∂an]X µ̂n

−n!nC
(n−1)
[µ̂1···µ̂n−1

(ikB)µ̂n]
∂[a1X

µ̂1 · · · ∂an]X
µ̂n

+n!
n− 1

k2
(ikC

(n−1))[µ̂2···µ̂n−1
(ikg)µ̂n]

∂[a1Y
′ · · · ∂an]X

µ̂n

−n!(−)n−2n(n−1)

k2
(ikC

(n−1))[µ̂1···µ̂n−2
(ikB)µ̂n−1(ikg)µ̂n]∂[a1X

µ̂1 · · · ∂an]X µ̂n ,

(B.14)

where we have used the fact that gyy = k2, C
(n)
µ̂1···µ̂n−1y

= (ikC
(n))µ̂1···µ̂n−1 and so on. Here

we defined the dual coordinate of Y as Y ′ and ikC
(n) is the interior product of kµ and

C(n). Due to the antisymmetric nature of indices, we can replace µ̂ with µ in the first,

second and the fourth lines in (B.14). Careful treatments of terms in the combination of

the third and fifth lines in (B.14) allow one to replace the indices µ̂ with µ in these terms.

Collecting all together, we find the space-time covariant Buscher rule for the pull-back of

R-R fields as follows:

P [C(n)′]a1···an
=

[
(−)n(ikC

(n+1))µ1···µn
− nC

(n−1)
[µ1···µn−1

(ikB−λdϕ)
µn]

−(−)n−2n(n−1)

k2
(ikC

(n−1))[µ1···µn−2
(ikB−λdϕ)µn−1

(ikg)µn]

]
∂a1

Xµ1 · · · ∂an
Xµn ,

(B.15)

where we have redefined Y ′ = λϕ. Therefore, the R-R field in the pull-back is trans-

formed as

C(n)′ = (−)nikC
(n+1) −C(n−1) ∧ (ikB − λdϕ)− (−)n−2

k2
ikC

(n−1) ∧ (ikB − λdϕ)∧ ikg .

(B.16)

– 27 –



J
H
E
P
0
7
(
2
0
1
4
)
1
2
7

Performing the T-duality transformations along the two isometry directions, the R-R

potentials become

C̃(0)=−ik1
ik2

(C(2) + C(0)B) ,

C̃(1)=−ik1
ik2

C(3) + (ik1
C(1))K(1) − (ik1

ik2
B)C(1) +

1

(k2)2
(ik2

C(1))(ik1
ik2

B) (ik2
g)

− 1

(k2)2
(ik2

C(1))(k1 · k2)K(1) − (ik2
C(1))K(3), (B.17a)

C̃(2)=−ik1
ik2

C(4) − (ik1
C(2)) ∧K(1) − (ik1

ik2
B)C(2)

+
1

(k2)2
(ik1

ik2
C(2))K(1) ∧ (ik2

g)− 1

(k2)2
(ik1

ik2
B) (ik2

C(2)) ∧ (ik2
g)

+
k1 · k2
(k2)2

(ik2
C(2)) ∧K(1) +

[
ik2

C(2) + C(0)K(1)
]
∧K(3)

+
(k2)

2

dethIJ

[
ik1

ik2
(C(2) + C(0)B)

]
K(3) ∧K(2), (B.17b)

C̃(3)=−ik1
ik2

C(5) + (ik1
C(3)) ∧K(3) − (ik1

ik2
B)C(3)

+
1

(k2)2
(ik1

ik2
C(3))∧K(1)∧(ik2

g)+
1

(k2)2
(ik1

ik2
B)(ik2

C(3))∧(ik2
g)− k1 · k2

(k2)2
(ik2

C(3))∧K(1)

−
[
ik2

C(3) − C(1) ∧K(1) − 1

(k2)2
(ik2

C(1))K(1) ∧ (ik2
g)

]
∧K(3)

+
(k2)

2

dethIJ

[
ik1

ik2
C(3) − (ik2

C(1))K(1) + (ik1
ik2

B)C(1) − 1

(k2)2
(ik2

C(1))(ik1
ik2

B)(ik2
g)

+
1

(k2)2
(ik2

C(1))(k1 · k2)K(1)

]
∧K(3) ∧K(2), (B.17c)

and

C̃(4)=−ik1
ik2

C(6) − (ik1
C(4)) ∧K(1) − (ik1

ik2
B)C(4)

+
1

(k2)2
(ik1

ik2
C(4))∧K(1)∧(ik2

g)− 1

(k2)2
(ik1

ik2
B)(ik2

C(4))∧(ik2
g)+

k1 · k2
(k2)2

(ik2
C(4))∧K(1)

+

[
ik2

C(4) + C(2) ∧K(1) − 1

(k2)2
(ik2

C(2)) ∧K(1) ∧ (ik2
g)

]
∧K(3)

+
(k2)

2

dethIJ

{
ik1

ik2
C(4) + (ik1

C(2)) ∧K(1) + (ik1
ik2

B)C(2) − 1

(k2)2
(ik1

ik2
C(2))K(1) ∧ ik2

g

+
1

(k2)2
(ik1

ik2
B)(ik2

C(2)) ∧ (ik2
g)− k1 · k2

(k2)2
(ik2

C(2)) ∧K(1)

}
∧K(3) ∧K(2),

(B.18a)

C̃(5)=−ik1
ik2

C(7) + (ik1
C(5)) ∧K(1) − (ik1

ik2
B)C(5)

+
1

(k2)2
(ik1

ik2
C(5))∧K(1)∧(ik2

g)+
1

(k2)2
(ik1

ik2
B)(ik2

C(5))∧(ik2
g)− k1 · k2

(k2)2
(ik2

C(5))∧K(1)

−
[
ik2

C(5) − C(3) ∧K(1) − 1

(k2)2
(ik2

C(3)) ∧K(1) ∧ (ik2
g)

]
∧K(3)

+
(k2)

2

dethIJ

[
ik1

ik2
C(5) − (ik1

C(3)) ∧K(1) + (ik1
ik2

B)C(3) − 1

(k2)2
(ik1

ik2
C(3)) ∧K(1) ∧ (ik2

g)

− 1

(k2)2
(ik1

ik2
B)(ik2

C(3)) ∧ (ik2
g) +

k1 · k2
(k2)2

(ik2
C(3)) ∧K(1)

]
∧K(3) ∧K(1).

(B.18b)

Note that these transformation rules hold true only in the pull-back.
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Finally, we exhibit the NS-NS B-field and the R-R fields that appear in the effective

action of the type IIB 523-brane. They are obtained by the S-duality transformations of the

fields B̃, C̃(2), C̃(4). Again in the pull-back, the explicit forms are found to be

B̃′=−C(2) +
1

(k2)2
(ik2

g) ∧ L(1) +
(k2)

2

det lIJ
L(2) ∧ L(3), (B.19a)

C̃(2)′=−ik1
ik2

(C(4)+C(2)∧B)+(ik1
B)∧L(1)+(ik1

ik2
C(2))B− 1

(k2)2
(ik1

ik2
B)L(1) ∧ (ik2

g)

+
1

(k2)2
(ik1

ik2
C(2))(ik2

B) ∧ (ik2
g)− k1 · k2

(k2)2
(ik2

B) ∧ L(1) − (ik2
B − C(0)L(1)) ∧ L(3)

− (k2)
2

det lIJ

(
ik1

ik2
(B − C(0)C(2))L(3) ∧ L(2)

)
, (B.19b)

C̃(4)′= ik1
ik2

(
B(6)− 1

2
B∧C(2)∧C(2)

)
+ik1

(
C(4)+C(2)∧B

)
∧L(1)+(ik1

ik2
C(2))(C(4)+C(2) ∧B)

− 1

(k2)2
ik1

ik2
(C(4)+C(2)∧B)∧L(1)∧ik2

g+
1

(k2)2
(ik1

ik2
C(2))ik2

(C(4)+C(2)∧B)∧ik2
g

− k1 · k2
(k2)2

ik2
(C(4) + C(2) ∧B) ∧ L(1)

−
[
ik2

(C(4) + C(2) ∧B)−B ∧ L(1) +
1

(k2)2
(ik2

B) ∧ L(1) ∧ ik2
g

]
∧ L(3)

− (k2)
2

det lIJ

[
ik1

ik2
(C(4)+C(2)∧B)−(ik1

B) ∧ L(1)−(ik1
ik2

C(2))B+
1

(k2)2
(ik1

ik2
B)L(1)∧ik2

g

− 1

(k2)2
(ik1

ik2
C(2))B ∧ ik2

g +
k1 · k2
(k2)2

(ik2
B) ∧ L(1)

]
∧ L(3) ∧ L(2). (B.19c)
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