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1 Introduction

In recent work we have advocated the use of a small parameter in the study of black

hole physics, namely, 1/D when the number of spacetime dimensions D is large [1, 2].

One important property of this limit is that black holes possess well-defined near-horizon

regions with universal features and enhanced symmetry [3], affording analytical control

over several problems in perturbative black hole dynamics [1, 2, 4–6].

The existence of sharply defined near-horizon geometries is a familiar feature of charged

or rotating black holes that are close to extremality. Such near-horizon regions, however,

are not present for generic black holes away from any extremal limit, in particular for

Schwarzschild black holes. These possess only one scale, the horizon radius r0, and therefore

all their dynamics — e.g., their free, unforced oscillations — occurs over distances of the

same order as r0. However, when D is regarded as a parameter that is allowed to be large,

the strong localization of the gravitational field results in the appearance of a small length

scale r0/D which determines the extent of a near-horizon region where all the non-trivial

black hole physics takes place.

In this article we study the implications of this phenomenon for the classical perturba-

tive dynamics of the Schwarzschild black hole, specifically the quasinormal spectrum of its

oscillations, which we compute in analytic form in the 1/D expansion. We investigate its

characterization in terms of the dynamics of the near-horizon geometry, and find a sharp

distinction between two classes of quasinormal modes:

1. Non-decoupling modes, with frequencies ω ∼ D/r0, straddle between the near-

horizon zone and the asymptotic region. In the near-horizon geometry they are

non-normalizable states. Most quasinormal modes fall in this class. This spectrum

carries little information about the black hole geometry and is in fact universally

shared by asymptotically flat, static black holes.1

2. Decoupled modes, with ω ∼ 1/r0,
2 and angular momentum number ` � D, have

wavefunctions strongly suppressed in the asymptotic region, and can be said to de-

couple from it. They are localized within the near-horizon zone, where they are

normalizable states. These are few modes, and are specific of each black hole.

This appearance of two different scalings with D of the quasinormal frequencies has been

first identified numerically in [7].

The non-decoupling spectrum, with frequencies of the order of the surface gravity,

is expected [2]. But the existence of a decoupled sector of the dynamics at much lower

frequencies is a surprise. In contrast to the long ‘throats’ that appear in (near-)extremal

black holes, the near-horizon region of the Schwarzschild black hole at large D has very

small radial extent, so one would not expect to find states trapped for an arbitrarily long

time within it and decoupled from the asymptotic region.

1For rotating black holes, this spectrum appears in boosted form by the rotation of the horizon [6].
2Throughout this article ω = O(1/r0) means ω = O(D0/r0), i.e., in this regime we may have ω � 1/r0

as long as ωr0 is parametrically smaller than D.
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Normally, the existence of decoupled dynamics requires that states of finite frequency,

as measured in the near-horizon time scale, are normalizable states within the near-horizon

geometry. The precision about the time scale is important, since due to the small radial

size of the large D near-horizon region, the characteristic ‘near-horizon time’ t̂ runs D

times faster than the time t = t̂/D of the asymptotic region, and therefore a finite far-zone

frequency ω is a vanishingly small frequency ω̂ = ω/D when measured in near-horizon

time scales.

Most of the quasinormal modes that we find have finite non-zero frequency ω̂ and are

not normalizable near the horizon, hence not decoupled from the asymptotic region.3 These

modes are present for the three types of gravitational perturbations obtained according

to their SO(D − 1) tensorial character, namely scalar-, vector- and tensor-type. Thus,

there is a degeneracy ∝ D2 for every quasinormal mode of partial wave number ` and

overtone number k. One interesting property of modes with k � D is that their damping

ratio vanishes,

Imω

Reω
∼ D−2/3 → 0 , (1.1)

so these modes can be said to approach normal, non-dissipative oscillations [5]. Higher

overtone modes have damping ratios of order one or larger.

Interestingly, we also find a decoupled sector of black hole dynamics with very different

properties. It consists of a few quasinormal modes of gravitational vector and scalar types,

with ` = O(1) and finite frequencies ω as measured in the slower asymptotic time t. Thus

their near-horizon frequencies ω̂ = ω/D vanish when D →∞. So, to leading order in 1/D,

these normalizable states are static modes in the near-horizon geometry, which become

dynamical only at the next order in 1/D. Still, they remain decoupled at all perturbative

orders in the expansion. These modes are not universal but instead depend on the specific

black hole geometry beyond the leading large D limit. Therefore they can encode features,

such as stability properties [6], that distinguish among different neutral black holes with the

same leading near-horizon geometry. Their damping ratios are of order one. The existence

at leading large D order of these static, zero-mode perturbations of the horizon dovetails

with the observation in [2] that when D → ∞ black holes appear to become ‘soft’, i.e.,

arbitrarily deformable.

In addition to uncovering these aspects of the black hole spectrum at large D, our study

also demonstrates the large D expansion as a calculational tool. Some of our results can be

checked for accuracy against the recent numerical computations of [7]. For non-decoupling

modes with low overtone number k, we find that our analytical result for Reω provides a

good approximation to the numerical values even at moderate values of D. However, our

calculation of Imω for these modes appears to be accurate only at very high values of D.

In this respect, the interest of the latter result is more formal than practical. In contrast,

in the decoupled sector, where we have obtained the frequencies up to terms of order 1/D3

in the expansion, we find remarkably good agreement with the numerical calculations. The

3Quanta of Hawking radiation also do not decouple: their typical frequencies are very high, ∼ D2/r0 [8],

and therefore leave easily the near-horizon region.

– 3 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
3

accuracy of our results suggests that the actual expansion parameter is 1/(2(D − 3)), so

the third-order calculation in D = 4 has an error of ∼ 6%.

The plan of the paper is the following: in the next section we discuss the main qual-

itative aspects of the large D limit of the effective radial potentials for the black hole

perturbations, and of the near-horizon geometry. In section 3 we solve the perturbation

equations in the far- and near-zones, and find their respective forms in the overlap zone. In

section 4 we match them to obtain the quasinormal frequencies of non-decoupling modes,

and in section 5 those of the decoupled sector. In section 6 we compare our results to the

numerical calculations of [7]. Section 7 gives a brief graphical summary of our findings,

and we conclude in section 8 with some additional comments. In one of the appendices we

resolve an issue posed in [5] and show that the universal non-decoupling spectrum is also

present in extremal charged black holes.

2 Qualitative analysis of large D black hole dynamics

2.1 Effective radial potentials

The main qualitative aspects of the quasinormal spectrum of Schwarzschild black holes at

large D can be anticipated from the form of the effective radial potential for the perturba-

tions [9]. In

D = n+ 3 (2.1)

spacetime dimensions, we consider the black hole solution [10]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩn+1 (2.2)

with

f(r) = 1− rn0
rn
, (2.3)

and study its linearized gravitational perturbations δgµν = e−iωthµν(r,Ω). The angular

dependence can be separated and the perturbations classified according to their algebraic

transformation properties under the SO(n+ 2) symmetry of the sphere Sn+1: scalar-type

(S), vector-type (V ) and tensor-type (T ) gravitational perturbations. Tensor perturbations

exists only in five or more spacetime dimensions (n ≥ 2). Also, the isospectrality of the four-

dimensional scalar (‘polar’) and vector (‘axial’) perturbations does not extend to higher

dimensions.

Ref. [9] obtained decoupled master variables Ψs(r∗), with r∗ =
∫
dr/f , for each of

these perturbations which satisfy master equations of the form(
d2

dr2∗
+ ω2 − Vs

)
Ψs = 0 s = S, V, T . (2.4)

The effective radial potential for tensors is

VT =
n2f

4r2

[(
1 +

2`

n

)2

− 1

n2
+

(
1 +

1

n

)2 (r0
r

)n]
, (2.5)
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which is the same as for a free massless scalar field propagating in this background. For

vectors it is

VV =
n2f

4r2

[(
1 +

2`

n

)2

− 1

n2
− 3

(
1 +

1

n

)2 (r0
r

)n]
, (2.6)

and for scalars,

VS =
f(r)Q(r)

4r2
(

2µ+ (n+2)(n+1)
R

)2 , (2.7)

where µ = (`+ n− 1)(`− 1) and we abbreviate

R =

(
r

r0

)n
, (2.8)

which is a radial coordinate that will be useful later on. Q(r) is defined as

Q(r) =
(n+ 2)2(n+ 1)4

R3

+
(
4µ
(
2(n+ 3)2 − 11(n+ 3) + 18

)
+ (n+ 2)(n2 − 1)(n− 3)

) (n+ 2)(n+ 1)

R2

−
(
(n− 3)µ+ (n+ 2)(n2 − 1)

) 12(n+ 1)µ

R
+16µ3 + 4(n+ 3)(n+ 1)µ2 . (2.9)

For considering large frequencies ω = O(n/r0) and angular momentum numbers ` =

O(n), it will be convenient to introduce

ω̂ =
ω

n
, ˆ̀=

`

n
. (2.10)

2.2 Decoupling and non-decoupling quasinormal modes

Quasinormal modes are solutions of (2.4) characterized by the absence of any amplitudes

coming in from infinity or coming out of the horizon. Using the coordinate in (2.8), the

ingoing boundary condition at the future horizon at R = 1 is implemented by writing the

master field as

Ψs(R) = (R− 1)−iωr0/nφs(R) (2.11)

with φs(R) regular at R = 1.

Figure 1 illustrates Vs(r∗) for moderate values of n and `. There is a barrier, which

grows with `, corresponding to radial gradients and centrifugal energy. For small enough

`/n, the scalar and vector potentials possess additional minima and maxima closer to the

horizon, which are absent for the tensor perturbations.

Figures 2 and 3 illustrate the potentials for very large n. We choose n = 1000, and

` = 2 and ` = 1000 as two representative cases of ` = O(1) and ` = O(n).

The height of the potentials grows like n2/r20, with the maximum approaching

V max
s → n2ω2

c (2.12)
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Figure 1. Radial potential Vs(r∗) for perturbations of the Schwarzschild black hole for n = 7

and ` = 2. The horizon is at r∗ → −∞. We use the coding solid/dashed/dot-dashed = ten-

sor/vector/scalar in this and in the next two figures. Units are r0 = 1.
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Figure 2. Radial potential Vs(r∗) for n = 1000 and ` = 2. On the right is a blow-up of the

potential near the peak at r∗ ' 1.
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Figure 3. Radial potential Vs(r∗) for n = 1000 and ` = 1000. On the right is a blow-up of the

potential near the peak at r∗ ' 1.

where

ωc =
1

2r0

(
1 +

2`

n

)
. (2.13)

As a consequence, waves with frequency ω = O(1/r0) � nωc cannot penetrate the po-

tential: they stay either outside or inside the barrier, since their tunneling probability is

infinitely suppressed as n→∞.
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We can now expect to find quasinormal modes as solutions that connect outgoing and

ingoing waves by joining them below the peak of the potential, with Re ω̂ < ωc. The

potentials that these modes ‘see’ are the ones on the left in figures 2 and 3. The tensor

potential for all `, and the vector and scalar potentials for ` = O(n), all approach the form

Vs →
n2ω2

cr
2
0

r2∗
Θ(r∗ − r0) . (2.14)

Therefore the frequency spectrum will be shared by the three kinds of perturbations. For

each ` there is a sequence of modes, called ‘overtones’, whose wavefunctions have k−1 nodes,

k = 1, 2, . . . . The first overtones — the least damped of these modes, with k � n — are

sensitive only to the structure near the tip of the potential, which approaches a triangular

shape that makes it easy to obtain their frequencies [5]. We will also identify higher

overtones that probe lower heights of the potential and have damping ratios of order one.

But we may also seek quasinormal modes in the form of waves with frequency ω =

O(1/r0) that are ingoing at the horizon and are trapped inside the barrier, with wavefunc-

tions that vanish exponentially in n outside the barrier, so they satisfy the condition that

any incoming component is absent. These modes should be sensitive to the features of the

potential in the near-horizon region, which is shown in the plots on the right in figures 2

and 3. Radial gradients in this region are large, with the derivatives scaling like n. Since

also Vs ∝ n2, it follows that frequencies of order ω = O(1/r0) do not enter eq. (2.4) to lead-

ing order in the large n expansion. So these quasinormal modes, with ω̂ = 0, correspond

to static, zero-energy states in the potential.

Such states can only exist if the potential has a negative minimum, which occurs in

the vector and scalar potentials with ` = O(1), figure 2 (right), but not in any other cases.

The zero-energy states in these potentials for a given ` are unique, with no other overtones

close to them.

2.3 Near-horizon geometry

The near-horizon zone is conveniently described in terms of the radial coordinate (2.8) as

the region where R� en. The limiting geometry is

ds2 → −
(

1− 1

R

)
dt2 +

r20
n2

dR2

R(R− 1)
+ r20dΩn+1 . (2.15)

The smallness in the radial direction is apparent from the prefactor 1/n2 in gRR. If we

separate the angular part, we obtain a finite geometry by introducing a near-horizon time

coordinate t̂ = nt. Then fields move in the geometry

n2

r20
ds2nh = −

(
1− 1

R

)
dt̂2

r20
+

dR2

R(R− 1)
, (2.16)

which is the two-dimensional string theory black hole of [11–13], as observed in [3] (see

also [14, 15]). Propagating modes in this spacetime have frequencies ω̂ = O(1/r0). Instead,

modes with frequency ω = O(1/r0) are effectively static to leading order in 1/n, and

therefore, as discussed above, are obtained as zero-energy states of the potential Vs.

– 7 –
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At large R, (2.16) becomes the linear dilaton vacuum of string theory. The wave

equations in this region have the form(
d2

d(lnR)2
−
(
ω2
c − ω̂2

)
r20

)
Ψs = 0 (R� 1) (2.17)

(the metric perturbation hµν or a masless scalar field in (2.2) would correspond to Ψs/
√
R).

The solutions of (2.17) are

Ψs = A+ Ψ+(R) +A−Ψ−(R) , (2.18)

where

Ψ±(R) = R±
√
ω2
c−ω̂2 r0 . (2.19)

Propagating fields with real frequency ω̂ > ωc have non-zero flux across the asymptotic

boundary at R � 1, and thus violate the unitarity bound, of Breitenlohner-Freedman

(BF)-type, in the near-horizon spacetime.4

When Re ω̂ < ωc, which implies that Re
√
ω2
c − ω̂2 > 0, the solutions that approach

Ψ− at large R are normalizable, while Ψ+ is non-normalizable.

States with ω̂ = ωc are at the BF bound, and their general form at R� 1 is

Ψ ∼ A+B lnR . (2.20)

These are not normalizable.

The method to solve the equations exploits the separation of scales r0/n � r0 to

perform a matched asymptotic construction, matching the near- and far-zone solutions over

the region r0/n� r − r0 � r0 where they overlap. The overlap-zone is the asymptopia of

the near-zone, so in terms of R it is defined as

1� R� en . (2.21)

3 Far- and near-zone solutions

3.1 Far-zone solutions

In the far-zone where r− r0 � r0/n, the terms (r0/r)
n are exponentially small in n. Thus

we can set f = 1 in the wave equation, which then becomes the same as in Minkowski

spacetime. Up to normalization, the outgoing waves are Hankel functions,

Ψs =
√
r H(1)

nωcr0(ωr) . (3.1)

The radial dependence of the metric perturbation is hµν ∼ r−(n+1)/2Ψs.

This solution can now be taken to the overlap zone r− r0 � r0. In terms of the coor-

dinate R it takes the form (2.18) with coefficients A±(ω) computed in [2] and appendix A,

and whose relevant properties will be discussed below. The expansion (2.18) is valid only

if ω̂ differs from ωc by more than O
(
n−2/3

)
. Let us discuss the three relevant cases.

4For static states of a two-dimensional massive scalar field in (2.16), the BF bound on the mass is

m2 ≥ −1/4 [4]. The two-dimensional mass of ˆ̀-waves is m2
` = ω2

c − 1/4 = ˆ̀(ˆ̀+ 1) ≥ 0, i.e., above the

bound.

– 8 –
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3.1.1 ω̂ > ωc: above the BF bound

In this case A−(ω) = 0 [2]. The solution is oscillating and the wave remains purely outgoing

in the overlap region: it travels above the peak of the potential and transmission is perfect.

Since in the near-horizon region there is not any other higher peak to scatter it back, the

wave must remain outgoing also at the horizon. Hence it is impossible to satisfy the ingoing

boundary condition there, and there are no quasinormal modes with these frequencies.

States with ω̂ > ωc violate the BF bound on scalars in the geometry (2.16). The

violation of unitarity corresponds to the states being able to freely leave or enter the near-

horizon region.

3.1.2 |ω̂|2 < ω2
c

At these frequencies we find (see appendix A)∣∣∣∣A+(ω)

A−(ω)

∣∣∣∣
far

= e−2nωcr0Re f(ω̂/ωc) (3.2)

with

f(z) = ln

(
1 +
√

1− z2
z

)
−
√

1− z2 . (3.3)

The function Re f(z) is non-zero on the complex z plane except on a line (to be discussed

below), which implies that in general one of the two amplitudes is suppressed exponentially

in n relative to the other one, so it is too small to be obtained in a near-horizon analysis

in a power-series expansion in 1/n. For instance, if Im ω̂/ωc is small enough then the

non-normalizable component is suppressed.

3.1.3 ωc − ω̂ = O
(
n−2/3

)
We may have waves with frequency just below the peak of the potential for which the

transmitted amplitude is not suppressed factorially in n. Take

ω̂ = ωc −
(
eiπωc
2n2r20

)1/3

δω , (3.4)

with δω = O(1), and where the prefactors have been chosen for later convenience. For

these frequencies the expansion that gives (3.2) is not valid and instead one gets

Ψs ∝ Ai(−δω) + Ai′(−δω)

(
2ω2

c

neiπ

)1/3

lnR +O(n−2/3) , (3.5)

where Ai is the Airy function. This is of the form (2.20), with∣∣∣∣AB
∣∣∣∣
far

∼ n1/3 . (3.6)

One situation of potential relevance that we are not covering here is when Re ω̂ < ωc
but |ω̂|2 > ω2

c . Our approximations do not apply in this regime, in which the modes are

very strongly damped. We will make some more comments in section 7.

– 9 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
3

3.2 Near-zone solutions

The equations (2.4) for tensors and vectors, to leading order in 1/n in the near-zone, are

of hypergeometric type. The solutions that satisfy the horizon boundary condition in the

form (2.11) are, for tensors [2],

ΨT (R) = (R− 1)−iω̂r0
√
R 2F1 (q+, q−, q+ + q−;R− 1) , (3.7)

and for vectors,

ΨV (R) = (R− 1)−iω̂r0 R3/2
2F1 (1 + q+, 1 + q−, 1 + q+ + q−;R− 1) , (3.8)

where

q± =
1

2
− iω̂r0 ±

√
ω2
c − ω̂2 r0 . (3.9)

For scalar-type perturbations the equation is more complicated, but in appendix B we show

that the appropriate solution is

ΨS(R) = (R− 1)−iω̂r0
√
R

1 + 2ˆ̀(ˆ̀+ 1)R
D1 2F1(1− q+, 1− q−, 2− q+ − q−; 1− R) , (3.10)

where D1 is the differential operator defined in (B.6).

These solutions may look complicated, but the only information that we need from

them is their asymptotic behavior in the overlap zone where R� 1. The case ω̂ = 0 = ˆ̀ is

special and we will discuss it separately in section 5. For other generic ω̂ and ωc, it is easy

to find that at large R these solutions contain both the normalizable and non-normalizable

components Ψ± with amplitudes of the same order in n,5∣∣∣∣A+(ω̂)

A−(ω̂)

∣∣∣∣
near

= O (1) . (3.11)

The large R expansion is different when ω̂ = ωc, in which case we obtain (2.20) with∣∣∣∣AB
∣∣∣∣
near

= O (1) . (3.12)

We will not need the detailed values of these ratios, but only the fact that the two am-

plitudes are of the same order in n. Actually, we should expect that a horizon boundary

condition generically results in comparable amplitudes of the two independent components

at R� 1. This is one of the main assumptions that underlie the universality of the result

in [5]. We will return to it in section 4.3.

The matching of far- and near-zone solutions is only possible for specific values of the

frequency. There are two different ways to achieve this, which lead to two different sets of

quasinormal modes.

5When 2
√
ω2
c − ω̂2r0 ∈ N there appear subleading terms ∼ (lnR)/R in the normalizable wavefunction

but the amplitudes satisfy the ratio (3.11).
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4 Non-decoupling modes

This class of modes is obtained by considering frequencies for which the generic near-

horizon conditions (3.11) and (3.12) hold — so the modes are non-normalizable —, which

restricts the frequencies of far-zone outgoing waves.

4.1 Least-damped modes

The far-zone result (3.6) is incompatible for general δω with the near-zone one (3.12). But

we can match the solutions if we require that6

Ai(−δω) = 0 , (4.1)

i.e., quasinormal frequencies are in correspondence with the zeroes of the Airy function.

These all occur at negative values of the argument, Ai(−ak) = 0, so

δω = ak

'
(

3π

8
(4k − 1)

)2/3

, (4.2)

with k = 1, 2, . . . . The second line is the asymptotic approximation to the Airy zeroes,

which is very accurate (to better than 1%) even for a1. From this result and (3.4) we find

the quasinormal frequency spectrum

ωr0 =
n

2
+ `− ak

(
eiπ

2

(n
2

+ `
))1/3

. (4.3)

Equivalently,

Reωr0 =
n

2
+ `− ak

24/3

(n
2

+ `
)1/3

, (4.4)

and

Imωr0 = −
√

3 ak
24/3

(n
2

+ `
)1/3

. (4.5)

The real part of the frequency is slightly below nωc, as expected, and the imaginary part

is negative, in accord with the stability of the Schwarzschild black hole [16].

The index k corresponds to the number k − 1 of nodes of the perturbation and labels

different overtones of the quasinormal modes for a given `. Higher overtones have lower

Reω and higher |Imω| i.e., lower overtones are less damped. Our approximations break

down when k ∼ n.

The damping ratio of these modes

Imω

Reω
∼ n−2/3 (4.6)

vanishes as n → ∞ and thus they are long-lived in their characteristic time scale. They

limit to undamped normal modes.

6n-independent rescalings of R are allowed that can generate a constant term of the same order as the

lnR term.
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Figure 4. Solution of (4.7) determining quasinormal frequencies for 0 < |ω̂|2 < ω2
c . The continuous

line of frequencies should become a discrete spectrum when higher order terms at large n are

included. Near ω̂ = ωc the curve connects smoothly to the spectrum (4.3).

In ref. [5] we exploited the fact that the potential near its maximum takes a triangu-

lar shape in order to give a simple, universal derivation of the spectrum of quasinormal

frequencies in this range. Our more detailed derivation here demonstrates that complete

explicit solutions can be found which satisfy the required boundary conditions.

4.2 Higher overtones

When |ω̂|2 < ω2
c we find again that (3.2) and (3.11) are incompatible except if the exponent

in (3.2) is O(1), which requires that

Re f(ω̂/ωc) = 0 , (4.7)

with f given in (3.3). This equation determines a set of quasinormal frequencies to leading

order in 1/n. It gives a continuous spectrum, which should be discretized into separate

overtones when one includes the next correction in the large D expansion (which does

not seem easy to obtain). The equation is transcendental and does not admit any simple

explicit solution, but nevertheless it is easily solved numerically and we plot it in figure 4.

The curve reaches the imaginary axis at −Im (ω̂/ωc) ' 0.6627. For frequencies close

to the real axis we find that

Re ω̂ ' ωc +
1√
3

Im ω̂ . (4.8)

Since in this region ω̂ → ωc, the spectrum should be replaced by (4.4), (4.5). In fact, the

latter also has the form (4.8), so it continues smoothly into the higher-overtone regime

given by (4.7).

For these modes both Reω and Imω are O(n/r0), so their damping ratio is

Imω

Reω
= O(1) . (4.9)

4.3 Universality of non-decoupling spectrum

This analysis has not required any detailed information about the near-horizon solutions,

only the generic results (3.11) and (3.12) for the amplitude ratios, which then constrain
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the far-zone waves. But the latter are actually waves in flat spacetime, which effectively

propagate in a potential (2.14) that is abruptly cut off at r = r0. This was argued in [2] to

be the universal far-zone structure for all static, spherically symmetric black holes in the

limit D →∞.

This implies that the non-decoupling spectra (4.3) and (4.7) are universally present

in all asymptotically flat, static, spherically symmetric black holes in the limit D → ∞.7

This extends the findings of [5] to the spectrum given by (4.7). In appendix C we show

that the result also applies to extremal charged black holes, in an illustrative case where

the equations can be solved explicitly, thus resolving a potential issue mentioned in [5].

Finally, note that the additional extrema of the scalar and vector potentials for ` =

O(1) are not expected to modify the spectrum to leading large n order, since in the limit

n → ∞ the positions in r∗ of these maxima and minima is coincident. So the universal

spectrum applies both for ` = O(n) and ` = O(1), but in the latter case the accuracy of

the result at finite n, in particular for scalar modes, may be affected.

5 Decoupled modes

Here we seek near-horizon solutions at special frequencies such that their large R behavior

is not the generic one in (3.11), but instead has vanishing non-normalizable component,

A+ = 0, so

Ψs ∝ Ψ−(R) . (5.1)

In contrast to the previous sector of non-decoupling modes, these normalizable modes

involve detailed properties of the wave equation in the near-horizon region. Our analysis

in section 3.2 leaves only one possibility for (5.1), namely modes with ω̂ = 0 = ˆ̀, i.e., with

ω = O(1/r0) and ` = O(1). Any normalizable solutions in this frequency range are static

to leading order, so one needs to go to higher orders in 1/n to determine the quasinormal

frequencies.8

The method to solve the equations is conventional in perturbation analysis. Beginning

from the exact equation in the form

(L+ Us) Ψs(R) = 0 (5.2)

where

LΨ = −R− 1

R1/n

d

dR

(
R− 1

R1/n

d

dR
Ψ

)
(5.3)

and

Us =
1

n2
(
Vs(R)− ω2

)
, (5.4)

7If the asymptotic conditions change, like in AdS, these may not be quasinormal modes, although their

frequencies can still play a role in the relaxation of the black hole.
8While it is clear that it is possible to match these modes to an outgoing far-zone wave, in order to

distinguish between far-zone outgoing and ingoing waves, one needs to include a near-zone non-normalizable

amplitude that is exponentially small in n, i.e., cannot be obtained at any order in 1/n perturbation theory.
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we expand all quantities in powers of 1/n as

Ψs =
∑
k≥0

Ψ
(k)
s

nk
, L =

∑
k≥0

L(k)

nk
, Us =

∑
k≥0

U
(k)
s

nk
, ω =

∑
k≥0

ω(k)

nk
. (5.5)

The equations become of the form(
L(0) + U (0)

s

)
Ψ(k)
s = S(k) (5.6)

where

L(0)Ψ = −(R− 1)
d

dR

(
(R− 1)

d

dR
Ψ

)
(5.7)

and for k ≥ 1 the source terms S(k) are obtained from L(j) + U
(j)
s with j ≤ k, and from

the solutions Ψ
(j)
s with j < k. If we have the two independent solutions u0(R), v0(R) to

the leading order homogeneous equation, then the successive solutions can be obtained

perturbatively by the method of variation of constants.

The boundary condition at R� 1 (5.1) is

Ψ(R→∞)→ 1√
R
, (5.8)

i.e., the non-normalizable terms ∼
√
R must be absent. This is the same condition at all

orders in the expansion in 1/n,9 so the mode remains normalizable — hence decoupled —

at all perturbative orders in 1/n. Regularity at the future horizon (2.11) gives different

conditions at each order,

Ψ(0)(R→ 1) → 1 , (5.9)

Ψ(1)(R→ 1) → −iω(0) ln(R− 1) , (5.10)

Ψ(2)(R→ 1) → −iω(1) ln(R− 1)− 1

2
ω2
(0) (ln(R− 1))2 , (5.11)

etc., where we have (arbitrarily) fixed the overall amplitude factor and have set, also for

the remainder of this section,

r0 = 1 . (5.12)

Since the procedure is straightforward, we only give details of the calculation of the

leading-order frequencies.

5.1 Tensor-type modes

The tensor potential (2.5) gives

UT =
R− 1

4R1+2/n

[(
1 +

2`

n

)2

− 1

n2
+

1

R

(
1 +

1

n

)2
]
− ω2

n2
, (5.13)

9At higher orders there can be terms lnR/n multiplying 1/
√
R. These are allowed since in this region

we assume R� en. We will find them below.
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so

U
(0)
T =

R2 − 1

4R2
, (5.14)

and the leading order independent solutions are

u0 =
√
R , v0 =

√
R ln

(
1− R−1

)
. (5.15)

The two boundary conditions (5.8) and (5.9) are impossible to satisfy simultaneously, so

there are no decoupled quasinormal modes of tensor type. This was indeed expected given

the absence of minima in the potential VT .

5.2 Vector-type modes

The vector potential (2.6) gives

UV =
R− 1

4R1+2/n

[(
1 +

2`

n

)2

− 1

n2
− 3

R

(
1 +

1

n

)2
]
− ω2

n2
, (5.16)

so10

U
(0)
V =

(R− 1)(R− 3)

4R2
, (5.17)

and the leading order independent solutions are

u0 =
1√
R
, v0 =

R + ln (R− 1)√
R

. (5.18)

The boundary conditions (5.8) and (5.9) select

Ψ
(0)
V = u0 . (5.19)

So there does exist a vector quasinormal mode, although its frequency, as explained before,

is not determined at this order.

At the next order, the solution that satisfies (5.8) is found to be

Ψ
(1)
V = A1u0 −

(`− 1) ln(R− 1) + ln
√
R√

R
, (5.20)

with integration constant A1. The boundary condition at the horizon (5.10) selects A1 = 0

and determines the frequency as

ω(0) = −i(`− 1) . (5.21)

Observe that the frequency is determined by the horizon boundary condition, and not

through its appearance in the equation via UV , which is at a higher order in the expansion.

This feature recurs through all higher orders in the perturbation analysis.

10Changing to r̂∗ = ln(R− 1) in U
(0)
V reproduces the form of the vector potential in figure 2 (right).
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It is straightforward to carry the calculation to higher orders, the limit being the ability

to perform the successive integrations in analytic form. We have done them up to 1/n3,

finding

ω = −i(`− 1)

(
1 +

1

n
(`− 1) +

2

n2
(`− 1)

(
π2

6
− 1

)

+
4

n3
(`− 1)

(
1− `ζ(3) + (`− 1)

π2

6

))
, (5.22)

or, perhaps more suggestively,

ω = −i(`− 1)

(
1 +

(
1 +

2 (ζ(2)− 1)

n
− 4 (ζ(3)− 1)

n2

)
`− 1

n

+
4 (ζ(2)− ζ(3))

n3
(`− 1)2

)
. (5.23)

Notice that the modes are purely imaginary, and that for a given value of ` they

are unique, so they are isolated in the complex ω plane without any other overtones

nearby them.

5.3 Scalar-type modes

For the scalar modes a technical complication arises when using the formulation of the

problem in the master-variable form (2.4) of [9]. If one takes the large n limit of the scalar

potential VS(R), the leading order term is (5.14), the same as for tensor perturbations.

Since we have found that this potential does not admit normalizable zero energy states,

naively one would conclude that there cannot be any scalar quasinormal modes. However,

this limit misses the presence of the non-trivial maxima and minima of the scalar potential

in the near-horizon region, which lie at R ∼ n, i.e., still within the near-zone R� en. This

is problematic, since the denominator in VS in (2.7) (introduced through the definition of

ΨS(R) in [9]) has a behavior at large n that differs depending on whether R = O(1) or

R = O(n). This modifies the asymptotic behavior of the solution, even at the leading order

in the expansion. In order to properly deal with the region where R = O(n) we introduce

a new variable

R̄ =
R

n
(5.24)

that remains finite in the region of interest, and expand and solve the equations while

keeping R̄ = O(1). These solutions can be matched at small R̄ to those at R = O(1) in the

new overlap zone 1� R� n.

When R̄ = O(1) the potential to leading order becomes

VS(R̄)→ n2V̄S(R̄) =
n2

4

4(`− 1)2R̄2 − 12(`− 1)R̄ + 1(
2(`− 1)R̄ + 1

)2 . (5.25)

This potential reaches two maxima of equal height V max
S = n2/4 at its endpoints, one at

small R̄ = R/n where it can be matched to the potential (5.14) obtained in the region
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1� R� n, and the other at R̄� 1 where it joins the maximum (2.12) from the far-zone.

In between them, it reaches a minimum at R̄ = 2/(3` − 2). In this way we reproduce all

the features of the scalar potential in figure 2 (right).

The leading order, homogeneous equation in this region is now

R̄Ψ′′(R̄) + Ψ′(R̄)− V̄S(R̄)Ψ(R̄) = 0 , (5.26)

which is solved by

ū0 =

√
R̄

1 + 2(`− 1)R̄
,

v̄0 =

√
R̄

1 + 2(`− 1)R̄

(
4(`− 1)2R̄ + 4(`− 1) ln R̄− 1

R̄

)
. (5.27)

At R̄ → ∞ we find that ū0 → 1/
√
R̄ and therefore satisfies the asymptotic boundary

condition. On the other hand, at small R̄ = R/n we find

ū0 →
√

R/n , (5.28)

which can be matched to the solution u0 =
√
R, valid where R = O(1) and which satisfies

the boundary condition at the horizon.

So with this new matched asymptotic expansion, entirely within the near-horizon re-

gion R � en, we have obtained a quasinormal mode solution. Again, at this order the

frequency is not determined, but in appendix D.1 we explain how to iterate the calculation

to the next order to find two modes, related by ω− = −ω∗+, with frequencies

ω(0)± = ±
√
`− 1− i(`− 1) . (5.29)

The formulation of the scalar perturbations in [9] using three gauge-invariant variables

X(R), Y (R), Z(R), instead of the single master variable ΨS(R), does not change qualita-

tively when one considers R of order n and so does not require this second matching. It

is a more practical method that we have carried through up to 1/n3. The details are still

cumbersome, so we postpone them to appendix D.2 and quote only the final result,

Reω± = ±
√
`− 1

(
1 +

1

n

(
3`

2
− 2

)
+

1

n2

(
7`2

8
+

2π2`

3
− 9`

2
− 2π2

3
+ 4

)
+

1

n3

(
−5`3

16
− `2

(
6ζ(3) +

5

2
− 5π2

3

)
− `

6

(
26π2 − 72ζ(3)− 63

)
− 8ζ(3) +

8π2

3
− 8

))
. (5.30)

Imω± = −i(`− 1)

(
1 +

1

n
(`− 2) +

1

n2

(
4− 3`+ (`− 2)

π2

3

)
+

1

n3

(
2`2
(
π2

3
− 2ζ(3)

)
+ `
(
8ζ(3) + 7− 3π2

)
+8

(
π2

3
− ζ(3)− 1

)))
. (5.31)

Again, there are no other overtones nearby these modes in the complex ω plane.

– 17 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
3

5 10 15 20 25 30
D

2

4

6

8

10

12

14

Re Ω

20 40 60 80 100
D

1

2

3

4

5

6

-Im Ω

Figure 5. Frequency of ` = 2, k = 0 (fundamental) tensor quasinormal mode as a function of D.

Solid lines: analytical results eq. (4.4), (4.5); dashed line: leading order result ω = (D−3)ωc. Gray

lines: numerical results [7]. For Re ω we only include data up to D = 30 for greater clarity.

6 Numerical accuracy

Ref. [7] contains numerical results of high precision for quasinormal frequencies up to very

large values of n. Moreover, these values are computed not only at integer n but also at

fractional values separated by small steps, which can be compared with our calculations.

6.1 Non-decoupling modes

The results of [7] in this sector only allow to make comparisons to modes with low overtone

number. In figure 5 we compare them to (4.3), with n = D − 3. The real part of the

frequency agrees well, to accuracy ≈ 1/(2(D − 3)). However, the imaginary part shows

poorer agreement, with significant discrepancies even at the largest value D = 100 com-

puted in [7]. Furthermore, ref. [7] found that Im ω ∼ D1/2 rather than ∼ D1/3 as implied

by (4.5). We can argue that this disagreement is not unexpected. The ∼ D1/2 behavior is

actually the one predicted by the WKB method [17–19], which approximates the potential

near its maximum by an inverted parabola. It is clear from our analysis in section 2 (e.g.,

figures 2 and 3), that at sufficiently large D the inverted parabola must become a bad

approximation. The breakdown of the WKB approximation can be estimated to occur at

the value of D where the successive WKB corrections become as large as the leading result.

At large n one has

djV

drj∗

∣∣∣∣
max

' −(−2)j−2nj+1 (j ≥ 2) , (6.1)

which when plugged into the WKB expansion in [17, 18] can be seen to imply that it

breaks down at D ≈ 60. Departures of WKB from the numerical results are well apparent

at around this value of D. Still, this does not necessarily imply that the approximation by

a triangular potential becomes valid at this value of D. Direct inspection shows that the

peak of the potential remains quite smooth, and thus (4.5) is not a good approximation,

until around D ∼ 300, which is higher than numerically computed, and also than what

may be interesting for practical applications.
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Figure 6. Frequency of decoupled vector quasinormal mode ` = 2 as a function of D.

Solid/dotdashed/dashed lines = eq. (5.22) to D−3 / to D−2 / to D−1. Gray dots: numerical re-

sults [7].

It is remarkable, however, that Reω in (4.4) is significantly improved by the ∼ D1/3

correction term even at low D, see figure 5 (left).11 This phenomenon was also observed

in [4], and suggests that in some respects large D universal behavior may begin to become

apparent at lower values of D than might be expected.

6.2 Decoupled modes

In this sector our results are in remarkable agreement with the numerical ones. For instance,

for the vector mode at n = 100 and ` = 2 we find

− Imω|(n=100,`=2) =

{
1.01044741 numerical [7],

1.01044742 analytical eq. (5.22),
(6.2)

which is a non-trivial check of the correctness of both calculations. Figure 6 shows that

the agreement remains excellent at smaller values of n and also how the approximation

improves with each higher order correction.

At low values of D, and in particular at D = 4 where vector and scalar modes are

isospectral, it is not obvious what overtone at a given ` must be assigned to a decoupled

mode obtained in the large D expansion. However, there is one set of modes in D = 4 that

is particularly apt for this, namely the algebraically special modes [20], whose frequency

can be computed exactly to be

ω = −i`(`
2 − 1)(`+ 2)

6
. (6.3)

Since these modes are purely imaginary, it is natural to identify them with the decoupled

vector modes. The identification does bear out: for the mode ` = 2 we find

− Imω|(D=4,`=2) =

{
4 exact, eq. (6.3),

4.25 O(1/n3) approximation, eq. (5.22),
(6.4)

11This may be partly due to the fact that the relative size of the correction to the real part is ∼ D−2/3,

while for the imaginary part it will be (once it is computed) ∼ D−1/3, and therefore larger.

– 19 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
3

2 3 4 5 6
l0

50

100

150

200

250

-Im Ω

Figure 7. Dashed: frequency (6.3), as a function of `, of the algebraically special mode of the

four-dimensional Schwarzschild black hole. Solid: vector mode frequency (5.22) for D = 4.
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Figure 8. Frequency of (decoupled) scalar quasinormal mode ` = 2 as a function of D. Eqs. (5.30)

(left plot), (5.31) (right plot) are shown as solid/dotdashed/dashed lines = to D−3 / to D−2 / to

D−1. Gray lines: numerical results [7].

so even at n = 1, eq. (5.22) approximates the correct value with 6% accuracy. Figure 7

shows that, although the functional dependence on ` in (5.22) and (6.3) looks very different,

it is nevertheless actually very similar, at least for values of ` not very much larger than n.

We find this level of agreement at n = 1 startling.

The accuracy for the scalar modes is also very good, although not as striking as for the

vector modes. This could be expected given the more complicated features of the scalar

radial potential. In figure 8 we present the comparison to [7] using (5.30) and (5.31) for

the scalar mode with ` = 2. At low D the identification of modes may be complicated or

ambiguous due to branch crossings.

7 Quasinormal modes in the complex frequency plane

In figure 9 we summarize how the different sets of modes get distributed in the complex

frequency plane at large D. The main feature is that, for each `, non-decoupling frequencies

are a distance ∼ D/r0 or larger from the origin. Decoupled quasinormal modes, instead,

become isolated in a region within a distance of order 1/r0 of the origin.
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Figure 9. Sketch of large D quasinormal frequencies, for a given value of `, in the complex

ω plane in units r−1
0 = 1. Dots represent quasinormal frequencies. Scalar, vector, and tensor

modes are isospectral except for the vector and scalar decoupled modes close to the origin (present

only for ` � n), magnified in the inset. Highly damped modes are expected in a sequence near

the imaginary axis with −Imω ∼ n and higher, but we have not obtained them in our analysis.

Numbers in brackets refer to equations in the text.

Our large D analysis has focused on the region where |ω|2 ≤ n2ω2
c . But we have not

obtained any quasinormal frequency in the range −Imω & .6627nωc, since our expansions

were not valid for large damping. Such modes must nevertheless exist, and perhaps in

some range they can be computed by a refinement of our techniques. Quasinormal modes

at extremely large damping have in fact been calculated exactly at finite n [21, 22], with

the result that

ω =
n

2r0

(
ln 3

2π
− i
(
k +

1

2

))
, (7.1)

where k is the overtone number. However, since this result is obtained assuming that

k � n, this regime is far from the region of the ω-plane that we have analyzed. At any

rate, since these modes are so strongly damped their relevance for the dynamics of black

holes is unclear.

8 Final remarks

Our study has centered on the Schwarzschild black hole, but some of its conclusions have

broader applicability for general black holes.

The presence of a distinct near-horizon geometry partitions in two the spectrum of

black hole oscillations at large D. It is tempting to think of the non-decoupling sector

as governing the interaction between a black hole and its environment. This interaction

appears to be universal for all black holes, in a way perhaps reminiscent of the universality
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of black hole thermodynamics and the area-law for the entropy. Decoupled modes instead

contain information specific of each black hole. For instance, the instabilities of black

strings [2] and of black holes at large enough rotations [6], as well as the hydrodynamic

modes of black branes [23], appear in this sector.

We expect that these features of the spectrum should be useful for a better under-

standing of the dynamics of black holes, classical and possibly also quantum.

The analytic determination of the frequency of decoupled modes can be carried very

efficiently to high orders in the 1/n expansion, with excellent quantitative agreement with

numerical computations, in some cases even down to relatively low, realistic dimensions.

Although for D = 4 black holes the method is not competitive in precision with other more

developed techniques, its wide applicability may make it convenient for other situations.
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A Asymptotic expansion of far-zone solution

When the order and the argument of the Hankel function grow large at the same rate, one

can approximate it by the asymptotic formula

H(1)
ν (νz) = 2e−iπ/3

(
4ζ

1− z2

)1/4 Ai
(
ei2π/3ν2/3ζ

)
ν1/3

(
1 +O

(
(ν−4/3

))
, (A.1)

where
2

3
ζ2/3 = ln

(
1 +
√

1− z2
z

)
−
√

1− z2 , (A.2)

or
2

3
(−ζ)2/3 =

√
z2 − 1− arcsec z . (A.3)

When z ∈ R, if z < 1 then (A.2) applies, while if z > 1 (A.3) applies instead. The case

where z = 1 gives the expansion in section 3.1.3. The function ζ(z) can be analytically

continued in the complex z plane, with a branch cut running along the negative real axis.

The Airy function Ai(x) in (A.1) can also be expanded for large absolute values of its

argument. The expansion we will use is valid when | arg x| < 2π/3, and gives

Ai(−x) =
1

√
π x1/4

cos

(
2

3
x3/2 − π

4

)(
1−O(x−3/2)

)
. (A.4)
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We can now apply these expansions to the far-zone solution (3.1) in the overlap zone,

assuming that |ω̂|2 < ω2
c , to find that

Ψs ∝ e−nωcr0f(ω̂/ωc)+iπ/4Ψ+(R) + enωcr0f(ω̂/ωc)−iπ/4Ψ−(R) , (A.5)

where Ψ±(R) are the non-normalizable and normalizable wavefunctions in (2.19), and f(z)

is in (3.3). This yields (3.2).

B Scalar field solution with ω = O(n/r0) and ` = O(n)

In the large n limit in the near-zone, the scalar master equation becomes

0 = Ψ′′S(R) +
Ψ′S(R)

R− 1

+

 ω̂2

(R− 1)2
−

16ω2
c λ̂l

2R3 − 12λ̂(1 + λ̂)R2 +
(

8λ̂+ 1
)
R + 1

4R2(R− 1)
(

2λ̂R + 1
)2

ΨS(R)

≡ LKIΨ (B.1)

where we have abbreviated

λ̂ = l̂(l̂ + 1) = ω2
c −

1

4
, (B.2)

and set r0 = 1. This is a Heun’s differential equation with four singular points at R =

0, 1,−1/(2λ̂),∞, which cannot be solved in general. But using a method similar to the

one in [24], it can be solved through an associated hypergeometric differential equation,

namely,

LHypy(R) ≡ y′′(R) +

(
1

R
+

1 + 2iω̂

R− 1

)
y′(R) +

iω̂ − λ̂
R(R− 1)

y(R). (B.3)

LKI and LHyp satisfy the relation

α(R)−1LKI[α(R)D1] = D2LHyp (B.4)

where

α(R) =
(R− 1)−iω̂

√
R

1 + 2λ̂R
, (B.5)

D1 ≡ R(R− 1)

 d

dR
− λ̂2 + ω̂2

2λ̂(1 + 2λ̂)R
−

(
λ̂+ iω̂

)2
2λ̂(R− 1)

 , (B.6)

D2 ≡ R(R− 1)

(
d

dR
+
λ̂(7λ̂+ 4)− ω̂2

2λ̂(1 + 2λ̂)R
− λ̂(λ̂− 4) + 2iλ̂ω̂ − ω̂2

2λ̂(R− 1)
− 4λ̂

2λ̂R + 1

)
. (B.7)

If y(R) is a solution of eq. (B.3), then Ψ(R) = α(R)D1y(R) becomes a solution of eq. (B.1).

The ingoing solution can now be found to be given by (3.10).
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C Universal spectrum in an extremal charged black hole

For illustration we consider a massless scalar field propagating in the geometry of the D-

dimensional extremal Reissner-Nordstrom solution. The same field equation describes its

gravitational tensor perturbations.

The far-zone solution is the same as in section 3. The limiting near-horizon geometry

at large D can be obtained from the general analysis in [3], with the two-dimensional (t̂,R)

sector being

n2ds2nh = −
(

1− 1

R

)2

dt̂2 +
dR2

(R− 1)2
(C.1)

(we set the horizon radius r0 = 1). The field equation is

d

dR

(
(R− 1)2

d

dR
Ψ

)
+

R2

(R− 1)2
ω̂2Ψ−

(
ω2
c −

1

4

)
Ψ = 0 . (C.2)

The ingoing condition at the future horizon requires that

Ψ ∼ e−iω̂/(R−1) (C.3)

near R = 1, and the solution that satisfies it is given in terms of a Whittaker W function

Ψ = W

(
iω̂,
√
ω2
c − ω̂2,

2iω̂

R− 1

)
. (C.4)

At large R this solution contains normalizable and non-normalizable components Ψ± with

ratio |A+/A−| = O(1). When ω̂ = ωc one obtains (2.20) with |A/B| = O(1). Since

these are the same conditions as are used in section 4, we obtain the same, universal,

non-decoupling spectrum.

D Scalar quasinormal frequencies with ω = O(1/r0) and ` = O(1)

D.1 Master variable formulation: next to leading order

If we include the next-to-leading order, the solution for ΨS(R) with the horizon ingoing

boundary condition is

ΨS(R) = Ψ
(0)
S (R) +

1

n
Ψ

(1)
S (R) (D.1)

=
√
R

[
1 +

1

n

(
(1− 2`+ 2iω) ln

√
R− 2(`− 1)(R− 1)− iω ln(R− 1)

)]
, (D.2)

where we have fixed the overall amplitude like in (5.9). The expansion of ΨS(R) at large

R gives

ΨS(R) =
√
R

[
1 +

1

n

(
iω

R
+ 2(`− 1)− 2(`− 1)R− (2`− 1) ln

√
R +O(R−2)

)]
+O(n−2) . (D.3)
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Here we expanded the terms at order n−1 only up to R−1, since R � n in the matching

region.

To the same order, the solution for Ψ̄S(R̄) with the condition Ψ̄S(R̄) ∼ R̄−1/2 as

R̄→∞ is

Ψ̄
(0)
S (R̄) +

1

n
Ψ̄

(1)
S (R̄) =

B0

√
R̄

1+2(`−1)R̄

[
1− 1

n

(
3+(2−6`+ 4`2)R̄

2 + 4(`−1)R̄
− (2`−1) ln

√
R̄

)]
. (D.4)

Matching the leading order amplitude requires B0 =
√
n + O(n−1/2). If we write B0 =√

n (1 +B1/n), the expansion in 1/n becomes

Ψ̄
(0)
S (R̄) +

1

n
Ψ̄

(1)
S (R̄) =

√
R

[
1 +

1

n
(b1 + b2R + b3 lnR) +O(n−2)

]
, (D.5)

where

b1 = B1 +

(
`− 1

2

)
lnn− 3

2
, b2 = −2(`− 1), b3 =

1

2
− ` . (D.6)

However, this is not enough to do the matching, since a term ∼ 1/R̄ in Ψ̄
(2)
S (R̄) would also

contribute to order 1/n. We find that there is such a term,

1

n2
Ψ̄

(2)
S (R/n) =

1

n

`− `2 + ω2

2(`− 1)R
+O(n−2) (D.7)

(we do not show the other terms in Ψ̄
(2)
S (R̄) that we do not need). Then, the correct

expansion up to next-to-leading order is

Ψ̄S(R) '
√
R

[
1 +

1

n

(
b0
R

+ b1 + b2R + b3 lnR

)
+O(n−2)

]
, (D.8)

where

b0 =
`2 − `− ω2

2(`− 1)
, (D.9)

Matching (D.8) and (D.3) requires

B1 = 2`− 1

2
−
(
`− 1

2

)
lnn,

iω =
`2 − `− ω2

2(`− 1)
. (D.10)

This last equation gives the quasinormal frequencies (5.29).

D.2 Higher order calculations

Using the Kodama-Ishibashi gauge-invariant variables X,Y, Z [9], the leading equation

decouples for

X(R) =
1

2
P (R) +

1

2

R

R− 1
Q(R), Y (R) =

1

2
P (R)− 1

2

R

R− 1
Q(R) (D.11)

d

dR
P (k)(R) = S(k)P ,

d

dR
Q(k)(R) = S(k)Q , (D.12)
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and

Z(k)(R) = − 1

2`
(P (k)(R) +Q(k)(R)) + S(k)Z , (D.13)

where variables are expanded in 1/n as

X(R) =
∑
k≥0

X(k)(R)

nk
, Y (R) =

∑
k≥0

Y (k)(R)

nk
, Z(R) =

∑
k≥0

Z(k)(R)

nk
, (D.14)

and

P (R) =
∑
k≥0

P (k)(R)

nk
, Q(R) =

∑
k≥0

Q(k)(R)

nk
. (D.15)

The differential equation for Z(k)(R) is automatically satisfied if eqs. (D.12) and (D.13)

hold, by virtue of the Bianchi identity. The leading solution becomes

P (0) = `P0, Q(0) = `Q0. (D.16)

Since the integration constants that appear at higher order can be absorbed by a redefinition

of P0, Q0, the amplitude of the perturbation is determined only by P0 and Q0.

In the original variables this is

X(0) =
`P0

2
+

`Q0R

2(R− 1)
, Y (0) =

`P0

2
− `Q0R

2(R− 1)
, Z(0) = −1

2
(P0 +Q0). (D.17)

At the next order, the solutions for P,Q are

P (1)(R) = R
(
`2 (P0 −Q0) + ` (Q0 − P0)− ω2 (P0 +Q0)

)
− ln(R− 1)

(
`2Q0 + ω2 (P0 +Q0)

)
− `P0 lnR, (D.18)

Q(1)(R) = R
(
`2 (P0 −Q0) + ` (Q0 − P0)− ω2 (P0 +Q0)

)
−` lnR (`P0 +Q0)−

`P0

R
+ ω2 (P0 +Q0) ln(R− 1). (D.19)

We have also computed the solutions at second, third and fourth order, but they are too

long to give explicitly here.

D.2.1 Boundary condition

The ingoing condition is imposed at R = 1, in such a way that the following quantities are

regular,(
X(0) +

1

n
X(1) +

1

n2
X(2) +

1

n3
X(3) +

1

n4
X(4)

)
× (R− 1)1+iωr0/n

=
(
α4(ω) + a4(ω) ln(R− 1) + b4(ω) ln2(R− 1) + c4(ω) ln3(R− 1) + d4(ω) ln4(R− 1)

+O(n−5)
)

+O(R− 1) (D.20)
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where it turns out that a4(ω) = 0 is the only independent condition and

a4(ω) =
ω

2n

[
P0ω +Q0(ω + i`)

+
iP0

(
`2 + `(−2− iω)− ω(ω − 3i)

)
− iQ0

(
`2 + `(−1− iω) + ω(ω + 3i)

)
n

+
1

`n2

(
P0

(
−i`4 − `3(ω − 2i) + `2(4− iω)ω + `ω

(
2ω2 + 2iω − 3

)
− ω3

)
+ Q0

(
i`4 + `3(3ω − 2i) + i`2

(
3ω2 + 6iω + 1

)
+ `ω

(
2ω2 − 4iω + 3

)
− ω3

))
+

1

`n3

(
iP0

(
`5 + `4(−3− 3iω) + `3

(
ω2 + 11iω + 3

)
− `2

(
6ω2 + 11iω + 2

)
+ `ω

(
ω3 + 4iω2 + 5ω + 3i

)
+ ω4

)
+ Q0

(
−i`5 + `4(−5ω + 3i) + `3

(
−5iω2 + 11ω − 3i

)
+`2

(
−8ω3 + 12iω2 − 9ω + i

)
+`ω

(
iω3 + 12ω2 − 7iω + 3

)
+ iω3(ω + 6i)

))]
. (D.21)

The asymptotic boundary condition is imposed by requiring(
X(0) +

1

n
X(1) +

1

n2
X(2) +

1

n3
X(3) +

1

n4
X(4)

)
/R

' ã4(ω) + b̃4(ω) lnR + c̃4(ω) ln2 R + d̃4(ω) ln3 R +O(n−5) = 0. (D.22)

Similarly, ã4(ω) = 0 is the only independent condition,

ã4(ω) =
P0

(
`2 − `− ω2

)
+Q0

(
−`2 + `− ω2

)
n

+
P0

(
−`3 + 2`2 − `

(
ω2 + 1

)
+ 2ω2

)
+Q0

(
`3 − 2`2 + 3`ω2 + `− 4ω2

)
n2

+
1

6`n3

(
P0

((
6 + π2

)
`5 −

(
18 + π2

)
`4 + 2`3

((
6 + π2

)
ω2 + 9

)
−`2

(
7
(
6 + π2

)
ω2 + 6

)
+ `ω2

(
π2
(
ω2 + 4

)
+ 30

)
+ 6ω4

)
+Q0

((
π2 − 6

)
`5 −

(
π2 − 18

)
`4 + 2`3

((
π2 − 18

)
ω2 − 9

)
+`2

((
78− 5π2

)
ω2 + 6

)
+ `ω2

(
π2
(
ω2 + 4

)
− 42

)
+ 6ω4

))
+

1

6`n4

[
P0

(
`6
(
−12ζ(3)− 6 + π2

)
− 4`5

(
π2 − 3(ζ(3) + 2)

)
− `4

(
π2
(
2ω2 − 3

)
+ 12

(
2ω2(ζ(3) + 1) + 3

))
+ 2`3

(
ω2
(
42ζ(3) + 63 + π2

)
+ 12

)
− `2

(
3ω4

(
4ζ(3)− 4 + π2

)
+ ω2

(
120ζ(3) + 150− 7π2

)
+ 6
)

+ 2`ω2
(
2π2

(
ω2 − 2

)
+ 3

(
ω2(4ζ(3)− 5) + 8(ζ(3) + 1)

))
+ 6ω4

)
+Q0

(
−
(
π2 − 6

)
`6 + 2

(
π2 − 12

)
`5 − `4

(
6π2ω2 − 72ω2 + π2 − 36

)
+ 2`3

(
ω2
(
12ζ(3)− 99 + 11π2

)
− 12

)
+`2

((
12− 5π2

)
ω4 + ω2

(
−72ζ(3) + 186− 31π2

)
+ 6
)

+ 2`ω2
(
π2
(
5ω2 + 8

)
+ 3

(
ω2(4ζ(3)− 9) + 8ζ(3)− 10

))
+ 42ω4

)]
. (D.23)

The same conditions are obtained from the regularity of Y and Z.
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The equations a4 = 0 and ã4 = 0 admit a nontrivial solution for P0 and Q0 if and

only if

(2− 2`)ω − i(`− 1)`+ iω2 +
i(`− 1)`2 + i(`− 1)ω2 + 2(`− 1)2ω + 2ω3

n

+
1

n2

(
−1

6
i
(
2
(
6 + π2

)
`2 −

(
24 + 7π2

)
`+ 4

(
3 + π2

))
ω2

−1

6
i(`− 1)`

((
6 + π2

)
`2 − 6`+ 6

)
−

i
(
π2`+ 6

)
ω4

6`

+

(
−6`− 2

`
+
π2

3
+ 8

)
ω3 − 2(`− 1)2(2`− 1)ω

)
+

1

n3

[
iω4

(
`2
(
12(ζ(3)− 1) + 5π2

)
− 3`

(
8ζ(3)− 10 + 3π2

)
− 12

)
6`

+ω3

(
4`2(ζ(3) + 4)− 2

3
`
(
15ζ(3) + 54 + π2

)
− 8

`
+ 8ζ(3) + π2 + 28

)
+

1

3
iω2

(
3`3
(
4ζ(3) + 4 + π2

)
− `2

(
42ζ(3) + 45 + 10π2

)
+ `

(
60ζ(3) + 45 + 9π2

)
− 2

(
12ζ(3) + 6 + π2

))
+

1

3
(`− 1)ω

(
6`3(ζ(3) + 3)−

(
30 + π2

)
`2 + 18`− 6

)
+ ω5

(
2ζ(3)− 2

`

)
+

1

6
i(`− 1)`2

(
`2
(
12ζ(3) + 6 + π2

)
− 12`+ 12

) ]
= 0. (D.24)

From here we obtain (5.30) and (5.31).
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