PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: May 18, 2020
ACCEPTED: June 1, 2020
PUBLISHED: June 17, 2020

n-th parafermion Wy characters from U(NV)
instanton counting on C2/7Z,

Masahide Manabe

School of Mathematics and Statistics, University of Melbourne,
Royal Parade, Parkville, Victoria 3010, Australia

E-mail: masahidemanabe@gmail.com

ABSTRACT: We propose, following the AGT correspondence, how the W]%aia (n-th
parafermion Wy ) minimal model characters are obtained from the U(N) instanton counting
on C?/Z, with Q-deformation by imposing specific conditions which remove the minimal
model null states.

KEYWORDS: Supersymmetric Gauge Theory, Conformal and W Symmetry, Conformal
Field Theory

ARrRX1v EPRINT: 2004.13960

Dedicated to the memory of Professor Omar Foda

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP06(2020)112


mailto:masahidemanabe@gmail.com
https://arxiv.org/abs/2004.13960
https://doi.org/10.1007/JHEP06(2020)112

Contents

Introduction

1.1 AGT correspondence

1.2 AGT correspondence for minimal models
1.3 Plan of the paper

1.4 Notation

AGT correspondence for U(IN) instanton counting on C2?/Z,

2.1 U(N) instanton counting on C?/Z,
2.2 Algebra A(N,n;p)
2.3 Burge conditions

2.4 Burge-reduced generating functions

W}i,a;a minimal model characters from the instanton counting
9

3.1 WR® minimal model characters
3.2 Dual dominant integral weights

3.3 Conjecture

Examples of Burge-reduced generating functions
4.1 (N,n) = (2,2) and minimal super-Virasoro characters

4.2 (N,n) = (3,3) and minimal super-Wj characters
Summary and outlook

Some string functions
Al si(2)
A2 si(3)

Examples of dual dominant integral weights

More examples of Burge-reduced generating functions
C.1 (N,n,p)=1(2,3,3)

C.2 (N,n,p)=1(2,4,4)

C.3 (N,n,p)=(3,2,4)

C4 (N,n)=(4,2,5)

NCT O S

S Ot e W W

\]

10
12

14
14
15

17

17
18
18

19

20
20
20
22
22




1 Introduction

1.1 AGT correspondence

The AGT correspondence [1] with various generalizations makes the connection between
4D supersymmetric gauge theory with Q-deformation [2] and 2D conformal field theory
(CFT) with a generic central charge. In this paper we will focus on the correspondence
between a 4D N = 2 U(N) supersymmetric gauge theory on C2?/Z, and a 2D CFT with
the symmetry algebra

SN )nip N

.A(N,n;p):H@;[(n)N@ ,
which acts on the equivariant cohomology of instanton moduli space [3-5] (see also [6]).
Here H is the affine Heisenberg algebra, and p, which parametrizes the central charge in
the 2D CFT, is related to the ratio €; /ez of the Q-deformation parameters €1, e3 on C2?/7Z,,
(see egs. (2.7) and (2.8)). The 2D CFT, in particular, has the W]I:fj;a (n-th parafermion
W) symmetry [7, 8] described by the third (coset) factor [9-11] in the algebra A(N,n;p).
When n = 1, it gives the Wy algebra in [12-14] which contains higher spin currents.

For the gauge theory with an adjoint hypermultiplet, the AGT-corresponding CFT
lives on a torus T2. In the case of €; + e = 0 (corresponding to p — o), the U(N)
instanton partition function on C2?/Z,, for the massless adjoint hypermultiplet yields the
partition function of an NV = 4 twisted Yang-Mills theory enumerating torus fixed points on
the moduli space of instantons, which is labelled by N-tuples of n-coloured Young diagrams
(Y7, ..., YY) with Z, charges o7 € {0,1,...,n —1}, 1 < T < N (see e.g. [15, 16]). The
twisted partition function is well-known to give a character of the 2D CFT [17-19], where
a string theory interpretation is given in [20)].

1.2 AGT correspondence for minimal models

The AGT correspondence for minimal models was proposed in [21-23] (see also [24, 25] for
early works) when n = 1, and it was generalized to n > 2 in [26]. When p in the algebra
A(N,n;p) is an integer with p > N, one finds that the U(/NN) instanton partition function
on C2?/7Z,, has non-physical poles which need to be removed and supposed to correspond to
Wy, minimal model null states. The poles are parametrized by positive integers r; and
s, 0 < I < N, with Zﬁ\f:_ol rr = p and Zévz_ol s; = p + n, and shown to be removed by
imposing Burge conditions

Y >V, —sr+1 for i>1,0<T<N,
on N-tuples of n-coloured Young diagrams (Y;7*,...,Yy"), where Y7° = YV, and the Z,
charges oy satisfy the Z,, charge conditions o — o741 = —ry + sy (mod n), 0 < I < N,

with og = on.

Following the algebra A(N,n;p), the generating functions of the coloured Young di-
agrams with the Burge conditions and the Z, charge conditions, that we will refer as
Burge-reduced generating functions, are expected to be decomposed into f/s\[(n) N WZIW



(Wess-Zumino-Witten model) characters [27] and Wy" (p,p + n)-minimal model char-
acters (branching functions of the coset factor in A(N,n;p) [10, 28]) up to a Heisenberg
factor. In [26] we discussed the special case p = N in which the coset factor in A(N,n;p)
is trivialized and, using the results in the crystal graph theory of [29], showed that the
Burge-reduced generating functions indeed give the g[(n) ~N WZW characters. The aim of
this paper is to generalize it to integral p > N and propose how the W]r\’;’};a (p, p+n)-minimal
model characters are obtained from the Burge-reduced generating functions.

1.3 Plan of the paper

In section 2, we summarize the minimal ingredients about the AGT correspondence for
minimal models and introduce SU(N) Burge-reduced generating functions of n-coloured
Young diagrams by subtracting the overall U(1) factor corresponding to H. We then recall
that the Burge-reduced generating functions in the special case p = N agree with the
;[(n) ~N WZW characters. In section 3 we generalize it to p > N and propose Conjecture 3.5
which states a decomposition of the Burge-reduced generating functions into the ;[(n) N
WZW characters and the Wﬁ,?;a (p,p + n)-minimal model characters. The conjectural
decomposition formula is considered to be a generalization of a character decomposition
formula in [30, 31] for p — oo established in the context of the level-rank duality [32-34].
We check the conjecture, by extracting the Wﬁf (p,p + n)-minimal model characters
from the Burge-reduced generating functions, for (N,n,p) = (2,2,4), (3, 3,4) in section 4
and for (N,n,p) = (2,3,3),(2,4,4),(3,2,4), (4,2,5) in appendix C. Section 5 is devoted
to summary and outlook. In appendix A we summarize some string functions, and in
appendix B we give some examples of the dominant integral weights of ;[(n) ~ which are
dual to the dominant integral weights of faA[(N )n defined in section 3.2.

1.4 Notation

We use the following notation of affine Lie algebras (see [26, appendix A]).

Consider the affine Lie algebra f/:\[(M), and define the index sets Z)y = {0,1,...,M —1}
and Zp; = {1,2,...,M —1}. Let o; and A; for i € Zj; be the simple roots and fundamental
weights of 5A[(M ). For the standard inner product (-,-) they satisfy

. i
(g, 05) = Agj,  (ay, Aj) =055,  (Ai, Aj) = min{i, j} — i (1.1)

for i,j € Ipr, where A is the Cartan matrix of fsA[(M) For the inner product we use a
notation |[A|? = (A, A). The Weyl vector p is defined by p = > iezy, Ni- The level-m weight
lattice Pprm,, the level-m dominant weight lattice PAJij, the level-m regular dominant
weight lattice PJJ\Z;n and the root lattice Q,,; are defined by

A= Zdi/\i, Zdi:m )

Pym=S Ae @z

i€Tn i€ i€Tn
P =Pum N D Zoohi, Pt =Pumn @ Zoo A, (1.2)
€L i€\
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Figure 1. The partition par(A) for a dominant weight A = [dg,d,...,dyp-1] € PAJZ,m.

We often use the notation [do, d1, ..., dy—1] of Dynkin labels to denote A = >, di A;.
A partition A = (A, Ag,...) for A = [do,d1,...,dp—1] € P]\J/er is introduced by
M-1 . .
Cood, i 1<i< M,
A = 2y dj 1< (1.3)
0 if > M,

and denoted by par(A) (see figure 1). The transposed partition of par(A) is denoted by
par(A)T = (AT, )T, ...), and one can write A = par~!()\) when m is specified.

2 AGT correspondence for U(NN) instanton counting on C?/Z,

In this section, we recall some contents in sections 2, 3, 4 and 5 of [26] about the
U(N) instanton counting on C2?/Z,, the AGT correspondence for minimal models and
the Burge conditions.

2.1 U(N) instanton counting on C2/Z,

The instanton moduli space My, of U(N) instantons on C?/Z,, is characterized by the
fixed point set of U(1)2 x U(1)" torus action on My ,, where the U(1)? torus is generated
by the Q-deformation parameters €1, €2, through (z1,22) € C2 — (ef1z1,e%2;), and the

U(l)N torus is generated by the Coulomb parameters ay, I = 1,2, ..., N, which parametrize
the Cartan subalgebra of U(IV). The fixed point set has the colour coding induced by the
Zy, orbifold of C? as (z1,22) — (e% "zl,ef%"z@), c=0,1,...,n— 1, and is described

by N-tuples of n-coloured Young diagrams Y7 = (Y{*,...,Y") as follows [35, 36].

A coloured Young diagram Y7, with Z,, charge o € {0,1,...,n—1}, is a Young diagram
whose box at position (i,7) € Y7 has a colour o — i+ j (mod n). The length of the i-row
in Y7 is denoted by Y7, and the total number of boxes in Y7 is |[Y7| =), Y,7.

Let k;, 0 < i < n, be the total number of boxes with colour ¢ in Y7, and Pg.s5 be the set
of N-tuples of n-coloured Young diagrams Y7 labelled by the Z,, charges o = (01,...,0n)
and 0k = (0ki,...,0kn—1), where dk; = k; — kg. The charges o define the non-negative



integers IN; as the number of coloured Young diagrams with charge ¢, and we have

N n—1 n—1
Yo=Y [/ =k, N=> N. (2.1)
I=1 =0 =0

As a characterization of the U(N) instantons on C2/Z,, consider the first Chern class
c = Z?:_ol ¢; ¢1(7;) of the gauge bundle. Here ¢;(7;) is the first Chern class of an individual
vector bundle 7; associated with the Z, orbifold, where ¢;(7y) = 0, and
n—1
¢ = N; +6k;—1 — 20k; + 5ki+1 =N; — Z Aij (5kj, (2.2)
j=0

for 0 <i < n, where k, = ko, k_1 = kn_1, and A denotes the Cartan matrix of g[(n)

Now, it is useful to identify the non-negative integers N;, 0 < i < n, with the Dynkin
labels of sl(n) in the level-N dominant weight lattice as N = [No, Ny, ..., Np_1] € P;:N.
We then introduce a generating function which enumerates the fixed points of U(1)2xU(1)V
torus action on the instanton moduli space My .

Definition 2.1. For N = [Ny, Ny,...,N,_1] € PJN, the SU(N) t-refined generating
function of n-coloured Young diagrams is defined by

n—1
XN(qa t) = Z Xa;5k(q) H tic ( )7 (2'3)
Skezn—1 =1

where ¢;(0k) = N; + dk;—1 — 20k; + 0ki+1 are the Chern classes (2.2), and

Xoon@) = (@a), Y. qn¥7l. (2.4)

YGE'PO';Sk

Here Xa;&k("«l) does not depend on the ordering of the Zy charges o and (2.3) is well-
defined,' and the prefactor (q;9),, = [[oeq (1 — q") subtracts the U(1) factor in U(N)
gauge theory.

As mentioned in the introduction, the generating function (2.4) originates with the
U(N) instanton partition function on C?/Z, with a massless adjoint hypermultiplet in the
case of €] + €2 = 0 and pertains to the partition function of an N = 4 twisted Yang-Mills
theory on C2?/Z,, [19] (see [20] for a string theory interpretation).

2.2  Algebra A(N,n;p)
For a U(N) gauge theory on C2?/Z,, with Q-deformation, the relevant AGT-corresponding

CF'T possesses symmetry algebra

~ s((N),, ® sI(N),_
AN, n:p) = H o di(n)y @ S n @8Ny (2.5)
[(N>n+p—N

Mf the ordering o1 > 02 > ... > on is assumed, the Z, charges are described by the partition (1.3) as
(0’1,0’2,. .. ,O'N,0,0, .. ) = par(N)T.




which acts on the equivariant cohomology of My, [3-5] (see also [17, 18] for the early
notable works by Nakajima), where H is the affine Heisenberg algebra. This implies that the
AGT-corresponding CFT is a combined system of faA[(n) ~N WZW model with the additional
H symmetry and a 2D CFT with the W{'" (n-th parafermion Wy) symmetry described
by the coset [9-11]

SI(N)y @ sU(N)p-

= (2.6)
SI(N)nip-n
The parameter p is related to the Q-deformation parameters €71, €5 by
€1 n
= =_1-— 2.7
€2 p 27)
and controls the central charge of the 2D CFT with W"® symmetry by
N2 1) N (N +n)
c Wpara)zn(i [1 . 2.8
( Nn N+n p(p+n) (28)

Here, if we take the limit p — oo corresponding to €; + €2 = 0, the algebra A(N,n;p) is
formally reduced to H@sl(n)y ®sl(N)y. Since the central charge of sl(n)y WZW model is

~ N(n?—1)
[ = 7 2.
cel(n)n) =~y (2.9)
the AGT-corresponding CFT with this symmetry algebra has the central charge
N(n? -1 NZ -1
Py NeT =) ) _ Nn, (2.10)

N+n N+n
and is considered to be described by Nn free fermions (see below (3.22) and e.g. [20]).

2.3 Burge conditions

When
peN with p> N, (2.11)

the ratio of the Q-deformation parameters (2.7) becomes rational, and then the instan-
ton partition function in 4D N = 2 U(N) Yang-Mills theory on C2?/Z,, has non-physical
poles [26] (see also [21-23] for early works in the case of n = 1). By the AGT correspon-
dence, these poles should correspond to the null states in Wﬁ;?;a (p, p+n)-minimal models,
which are described by the coset (2.6), and are parametrized by positive integers r; and

s;, 0 < I < N, with

N—

—_

N—1
rr=mp, ZS[ZP—‘FTL. (2.12)
=0 =0

Similarly to N = [No,Ni,...,N,_1] € P;N, in what follows, we identify the positive
integers r7 and sy, 0 < I < N, with the Dynkin labels of sA[(N ) in the level-n regular



dominant weight lattices as r = [rg,r1,...,7N-1] € P]J\;; and s = [sp,51,...,5N-1] €

++
PN,ern‘

One finds that the poles can be removed by imposing the Burge conditions [21-23, 26]
(see also [37-41] for Burge conditions),

Y7 = Yfﬁhnfl —sr+ 1 fori>1, 0<I<N, (213)

on N-tuples of n-coloured Young diagrams Y7 = (Y{',...,Y"), where Yj° = Yy~. The
Z,, charges o are related to r and s by the Z,, charge conditions [26]

or—or+1 =-rr+s; (modn), 0<I<N, (2.14)
where we set g9 = oy.

2.4 Burge-reduced generating functions

Let C;’:;k be the subset of Py.sk,
Clist © Posk (2.15)

whose elements satisfy the Burge conditions (2.13) and the Z,, charge conditions (2.14).
We now introduce Burge-reduced generating functions of coloured Young diagrams by
subtracting the overall U(1) factor corresponding to H.

Definition 2.2. For N = [No, Ni,...,N,_1] € P:N, the SU(N) t-refined Burge-reduced
generating function of n-coloured Young diagrams, which is reduced by the Burge condi-

tions (2.13) for r = [ro,r1,...,7N-1] € P]J\;; and 8 = [s0,81,...,SN—1] € P]'\?;rn, 18
defined by
n—1 5
~ ~ ok
X o= > Xrga [T (2.16)
Skezn—1 =1

where ¢;(0k) = N; + dk;—1 — 20k; + 0ki+1 are the Chern classes (2.2), and

~ 1 o
Xoge@) =(@a)y, >, an¥7L (2.17)

r,s
Yaeccr;tsk

Here, for fized v and s the Z,, charge conditions (2.14) fix the charges o up to the shifts
or — oy —k modulo n by k € Z,, and the cyclic permutations o1 — o7_g by 6 € Zy, where
or+N = oy and the latter ambiguities exist only if s —rg =51 —rM =... = SN-1 —TN—1
(mod n). Once we fix N, the former ambiguities are fixred. As seen from the Burge
conditions (2.13), )?:’gk(q) is invariant under the cyclic permutations o — oj_g, r1 —
ri—_g and S — Sy_g, where ri+N =77 and S;oN = S1, and so (2.16) is well-defined. This
also implies

@0 =X7"" @1, 0ezy, (2.18)
where 7@ = [7“(()0), . ,r](g)_l] with r§9) =r;_g and s = [sée), R 85\6;)_1] with 559) =s7_g.



Consider the special case p = N in which the algebra A(N,n;p) is reduced to
A(N,n; N) = Hasl(n)y, and then r = 1 = pis fixed by (2.12). In [26, Corollary 5.5], using
the results of [29], it was shown that the t-refined Burge-reduced generating function (2.16)
for N = [No, N1,...,Np_1] € P N agrees with the 5[( )N WZW character as?

where
n—1
. i) i(n—1) (N,N +2p)
SpRT Ul hy =S (20
q wN N+ N) (2.20)

=1

Here the sl(n)y WZW character is defined by (an overall normalization factor g — 31 <Gl
is further introduced in the literature),

TN (g, 8) = Trp (v LoHt (2.21)

where L(IN) is the level-N irreducible highest-weight module of f?[(n), and the Virasoro
generator Ly and the Chevalley elements H; in the Cartan subalgebra of s?[(n) act on the
modules in the representation of a highest-weight state with the eigenvalues hpn and N;,
respectively. As in (2.16), we now expand the f?[(n)N WZW character (2.21) as

n—1

n i(0k ~ i(6k

AN (g ) =gt S a H F= Y Al [T 22
=1

Skezn—1 i=1 Skezn—1

where al¥(q) is known as a (normalized) ;[(n) string function of level-N (see also (3.1))

and
al (q) = q"V " al(q), (2.23)

is also introduced, where ¢ = ¢(dk). From (2.19), by comparing (2.16) with (2.22) one
obtains [26]

S n—1
Xal-’gk(q) = q 2 ok (5k)(¢l)7 (2.24)

where wn — We(sk) = 1 ) 11 0k; was used.

3 WR ., minimal model characters from the instanton counting

In this section, we first recall a formula of Wpara (p,p + n)-minimal model characters
(branching functions), and then propose ConJecture 3.5 about how the t-refined Burge-
reduced generating functions of coloured Young diagrams are decomposed into the charac-
ters following the algebra A(N,n;p).

2When N is fixed, by the Z,, charge conditions o7 — 41 = 57— 1 (mod n) with Z;V:_Ol (s1—1) =n and
s —1 >0, the generating function )?If,’s(q, t) is ambiguous only for the cyclic permutations s; — sr_g by
0 € Zn. By (2.18), this is not the actual ambiguity of )?13,8 (g,¢), and one can assume 01 > 02 > ... > oN
and s; = o7 — ory1+1 +n5170.



3.1 W}(,a;a minimal model characters
9

¥4

v (q) of level-n for a dominant highest-

We introduce a normalized sl(V) string function é
weight £ = [lg, l1,...,{n—1] € P]'\,Fn and a maximal-weight m = [mg, m1,...,my_1] € Pny,

by normalizing the ;[(N ) string function af,(q) of level-n in (2.22) with the exchange

m

N < n as?
N 2
Em(a) = a2 ™ ag (q). (3.1)
Here ¢%,(q) is related to the string function c%,(q) in [27, 42] by cb,(q) =
¢ N ) 04
q_ic(ﬁ[(m”) ¢t (q), where c(sl(N),) = % is the central charge of sl(N), WZW

model. Note that, for non-zero string functions, the highest-weight £ and the maximal-
weight m should satisfy

N-1 N-1
Z (E[-W‘L[)A]E@N, i.e. ZI(K]-TTL])EO (mod N), (32)
I=1 I=1

where Q is the root lattice in (1.2). Note also that, under the outer automorphisms
of 5A[(N ) which cyclically permutes the Dynkin labels as {; — ¢;_g and m; — mj_gy for
all I =0,1,...,N — 1 by 6 € Zy, the string functions (3.1) are invariant, where we set
lron = £ and my.n = my. Here, by &fn(q) = qﬁ“"‘z_wm éf;z(q), and %|Tn|2 — Wy, =
g Soo<i<g<n—1(I—J)(N+1I—J)mrmy, the normalized string functions aJ, (q) in (2.23)
with the excﬁange N < n are also invariant under the outer automorphisms. Some string
functions are summarized in appendix A.

Let us now recall the branching functions of the coset (2.6) that we refer as the W]%‘r’j;a
characters when p is taken to be infinity (or a generic value) and the WRZZ& (p, p+n)-minimal
model characters when p is an integer with p > N. Up to a normalization factor, the W'
characters are given by the sI(N) string functions (3.1) of level-n (see [43] for N = 2), and
the W]‘z,aia (p, p+n)-minimal model characters, labelled by £ = [€g, {1, ...,¢Nn_1] € Pj\?n, r=

[0, 71y . TN_1] € P]J\;; and s = [sg, 81,...,SN-1] € P]’\;;rn with the non-zero condition
N-1 N-1 N-1
Ur+rr—sp)Ar€Qpy, e 10 = ZI(S[—T‘I) (mod N), (3.3)
=1 =1 =1

are given by [10, 28],

07°(a) = > @) Y D (~)lgBrerae e (3.4)
weW ke

mePJj\t,n K&’s(m)
Zév:_ll I (myr—£7)=0 (mod N)
Here
K %(m) = U {k €Qy ‘pk +7 —w(3) +w'(m) =0 (mod nQy) } (3.5)

w' €W

3 A maximal-weight m in Py, is obtained from a dominant maximal-weight in P;n by an action of the

affine Weyl group of ;[(N), and the string function is invariant under the action (see Proposition 2.12 (a)
and eq. (2.17) in [42]).



with m = Z?f:_ll miA;, T = Z;V:_ll riAr, 5 = Z;V:_ll stA7, and W is the finite part of the
affine Weyl group of sI(N),? |w]| is the length of w, and

\(p+n)r — ps|?
2np (p+n)

Note that the formula in [10, 28] corresponding to (3.4) has the summation over m €

Br,s = (36)

Py /nQy instead of m € P]'\,Fn and the set corresponding to (3.5) does have the union
over w' € W. Here to rewrite it’we used the invariance of the string functions in footnote 3.
We also used the fact that the simple affine Weyl reflection sgp on A = Z?;fol diAr € Py
given by sg: dy — df — Agrdy = dj — JK IA[JdK (mod nQy) is also written as
S1S9 - SN_1SN_2---S25] € W, i.e. sg =51S2---SN_1SN_2 - - - 5251 on A modulo n@N.
Remark 3.1. Up to a normalization factor, the branching function C';°(q) in (3.4) is
defined by

ol n - (N P [Nn Pl
GO @D g~ Y Pt d N (0., (3.7)

++
SEPN in

where 1 = p.

Example 3.2. When n =1, Wpara = Wy [12-14]. The string functions (3.1) for n =1
(i.e. Wy characters) do not depend on the dominant highest-weight £ € P]J\;l and are
given by

1
&)= —x=- (3.8)
(@)%
Similarly, the Wy (p,p + 1)-minimal model characters (3.4) for n = 1 do not depend on
the dominant highest-weight £ € P+1 and are given by [44, 45],

") = —x—7 Z Z 1)l g Pomsro=Bre. (3.9)
(q q) wEWkEQN

Example 3.3. When N = 2, the Wpara (p, p + n)-minimal model characters, labelled by

L=[n—L0 el r=[p—rr]€ P;;rands:[pjtn—s,s] P;’;:_nwith€+r—562Z,

are computed by [46-48],
Cy(a) =

n
—Byrs Aln—£,0] B B _
U S G () > qPowkens — > qPowkers |
m=0 keZ kEZ

m={(mod2) pk— "5 =+ (modn) pk—”z'—szzt%(modn)

(3.10)

where B, s = ((p+ n)r — ps)?/(4np(p + n)) and the string functions é{Z:ﬁ’f}m](q) are given
n (A.5).

4The Weyl group W is generated by the simple Weyl reflections sy, 1 < I < N, acting on A = > _11 drAr
as s;(A) = A — {ar,A) oz, ie. s;: dj — dj — Aryds, where the simple Weyl reflections have the relations
s=1for 1 <T <N, (srsi11)> =1for 1 <T < N —1,srsy =sys for |[I —J| > 2, and A is the Cartan
matrix of s[(N).




3.2 Dual dominant integral weights

For proposing our conjecture, let us define a dominant integral weight
Ny = [No,Ni,...,Nooi] € Pf (3.11)

of ;[(TL) N which is dual to or associated with the dominant integral weight £ =
[Co, 01, ..., 0n—1] € P]J\Zn of sI(N)p. Here a non—negative integer f < max{N,n}, which
classifies the dominant weights in P / @y and P N /Q,,, respectively, as the Zy orbits
and the Z,, orbits, is introduced by®

N-1 n—1
Zlflzf (mod N), ZiNiEf (mod n). (3.12)
=1 i=1

Let par(£) = (A1, A2, ...) be the partition for £ in (1.3), and then the first relation in (3.12)
is written as Z?Sl Ar = f (mod N). We define the Dynkin labels NN; in (3.11) as the
multiplicity of i = o} in {o],...,08}, where 07 € {0,1,...,n—1},1 < I < N, correspond
to the Z,, charges (on the gauge side) defined by

o =A+oy (modn), 1<I<N, oy=-— [Z)\I—f] (mod n).  (3.13)

Here the shifted transposed partition par(€)” = (AT — AL AT — AT ) by Al naturally
defines a ‘transposed’ (dual) dominant integral weight £ T = [ef e, . e ] € PFy by
inverting (1.3). Then the first relations in (3.13) imply that the dual dominant integral
weight N = [N, N1, ..., N, 1] is defined by

=¢T .

1— 0’ ?

0<i<n, (3.14)

where we set ¢ = ¢T. Note that, by (3.13) we see that the Z, charges o} have the

relations
of —ofy =l —ndn_g, 1SI<N, Y oj=f (modn), (3.15)

and are ordered as Jf_g > 05‘_9 > > 0’}%\779, where ULFN = o7, biyn = {1, and
ge{0,1,....N —1} is®

1 N 1 n—1
n [ZUF_f] =0 [Z”Vz‘—f] (mod N). (3.16)

I=1 i=1

g

Here the second relation in (3.15) gives the second relation in (3.12) by ZJ[V:1 o} =
Z?:_ll 1 N;. Some examples of N gf ) are provided in appendix B.

®The numbers of the dominant integral weights |PJ'\‘,'n\ = (ENCDLin 6I(N),, and |Pl ] = (nt N LI

(N—D)in! (n—1)IN! in
sl(n)n are related by [Py /N = \P+N|/n
5Tn terms of the Z, charges o7 = o}_ 4 with the ordering o1 > 02 > ... > oy, the first relations in (3.15)
are written as oy — o741 =¥fr—g —ndro, 0 < I < N.

~10 -



f
N, (%

N, N
-~ 2L= R—g

Figure 2. The finite sequence (3.20), where we follow the notation in footnote 6.

Remark 3.4. Consider the dual dominant integral weight IN éf ), Then, the normalization
factors of string functions in (2.23) for ¢ = N&f) and in (3.1) for m = £ are related by

w h

1
- = he — —|£]?. 1
N e =51t (3.17)

N
Proof. The left and right hand sides are, respectively, obtained as

1

—h = — | — 1 —j+i)N;N; 1
NG AN = S 0<§<n(.7 i) (n—j+1) Ni Nj (3.18)
and
1 1
he — — ) = ————— (J—D)(N—J+1)t¢;. (3.19)
2n 2n(n+ N) OSI;<N

We now take all the non-zero components (Ni, Na, ..., Np) = (Ni,, Nig, ..., N;, ) with
i < ipr from N, and (0,6, 00) = (¢],,€},,...,¢} ) with I, > [14; from £, where
l;=1V{i_4,0 <1< N, in footnote 6. Then consider the finite sequence

Nlazla]v2az2;"'aNLazLa (320)

which is described as in figure 2. For Na = N;,, Nb = N;, with a < b, we see that
ib —ia = Y gcacpla and n —ip +iq = 34, €a + D45, €a. This shows that (3.18) is
equal to

1 -~
— balp Ny Ny. 3.21
2n(n+ N) Z + Z AtB Ng Ny (3.21)
1<A<a<B<b<L 1<a<A<b<B<L
Similarly, (3.19) is also shown to be equal to (3.21), and thus (3.17) is proved. O

When we consider the special case €; + €2 = 0 (p — 00), the central charge (2.10) of
the AGT-corresponding CFT is reminiscent of a conformal embedding

H @ sl(n)y @ sl(N), C gl(Nn)y, (3.22)
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which preserves the central charge Nn and is utilized to explain the level-rank duality
between sl(n)y and s{(N),, where gl(Nn); = HEN @ g[(n)?N is described by Nn free
fermions [30-34] (see also [20] for an elegant string theory interpretation by intersecting
D4 and D6-branes). Actually, the generating function (2.4) of coloured Young diagrams
for general N and n is obtained by [49, 50]

N
~ 1 ~
Xowor(0) = —x— Z H X(o):ok;(a) 5 (3.23)
(9:9) Sk1+-+0k =6k I=1
where
~ 1 no (o2 + ——szZ 0ki—00i Ok;
X(J);ék(q) = W cIZ ( ' )7 (3.24)

is the generating function for N = 1 which gives the ;[(n)l WZW character. Let a%) =

(01,...,0n) be the Z, charges with the ordering o1 > 09 > ... > oy which follow from
the dual dominant integral weight N 5,];) in (3.11). Following the algebra A(N,n;p) for
p — oo, we find that the generating function (3.23) is decomposed into the s[(N) string

functions (3.1) of level-n and the sl(n) string functions (2.23) of level-N as

~ (£
X0 5@ = 3 ¢4.(a) X g g (a)
Lc P;Vrm
SN Ier=f (mod N) (3.25)
= e —m|)+ 1 0 ok N '
= Z q 2 (CI) X ac((;k)(q) )
Le Pfg,n

SN Ier=f (mod N)

where, in the second equality the relation (3.17) was used. The same decomposition was
shown for the conformal embedding (3.22) in [31] (see also [20, appendix A]). In terms of
the SU(N) t-refined generating functions (2.3) of n-coloured Young diagrams, the above
decomposition boils down to the decomposition into the EAI(N ) string functions (3.1) of
level-n (Wg'," characters) and the sl(n)y WZW characters (2.21) as

~ ) iln .
XNﬁ,’?(q’ t) = Z Cfn(q) X Xj\ﬁ(f))N (q7 t) ) (326)
Lepy ¢
SN 14=F (mod N)

~ _i(n—1)
where t; = q~ 2 ;.

3.3 Conjecture

Based on the symmetry algebra A(N,n;p) in (2.5), we now propose the following conjecture
for integers p > N that generalizes the decomposition formula (3.26) for p — oo.

- 12 —



Conjecture 3.5. The SU(N) t-refined Burge-reduced generating functions (2.16) of n-
coloured Young diagrams can be decomposed into the Wi* (p, p+n)-minimal model char-
acters (3.4) and the sl(n)y WZW characters (2.21) as

~ a .

Xt = > Cr (@) x XA (@),

Lepy ¢
SN 1e=F (mod N)

e@ = (6§06, 0] € P, with

(3.27)

where t;, = q_i(g;i) t;. The dominant weight N1
0 =4y, by =0, 0 < T < N, is shifted by
1 n—1 1 N-—1
== N, — - I[ - ) d N), 3.98
w - [;z f] —i—n ; Sy —Tr—or+ o741 (mo ) ( )

where a%) = (01,...,0nN) are the Z,, charges associated with N%) = [No,N1,...,Np_1] €
N and the ordering of a%) depends on r and s by the Z,, charge conditions (2.14).

P,

Here the non-zero condition (3.3) for the characters C;gi>(q) is shown to be satisfied as
N-1 N-1 N-—1
ZIZ}M)EZI&—{—wnEZI(sI—m) (mod N), (3.29)
I=1 I=1 I=1

where in the second equality we used Z?[;ll If; = f and Zﬁ\;l I(o; —o141) = Z?;ll i N;
(mod N). By the expansions (2.16) and (2.22), the conjectural formula (3.27) is equiva-
lent to
- N
T @= S @ xalh@. (3.30)

a%);ék ‘
Le Py,

SN 1er=F (mod N)

We make some remarks to support Conjecture 3.5.

Remark 3.6. From the invariance (2.18) of the t-refined Burge-reduced generating func-
0) = S1-65

tions under the cyclic permutations oy — o7_g, r7 — r®) = ri_g and sy — s(
0 € Zn, one finds that the conjectural formula (3.27) gives a relation

> (cre@—cpla” @) XL @b =o. (3.31)
LepPy, ¢
SNt Ier=F (mod N)
Here w is defined by (3.28) and
L V-1 o © =
- 2 I (51 — Ty —01—9+01_9+1] = 1221 I [81 —ry —01+0'I+1] +6 (mod N),
(3.32)

is used. The relation (3.31) then implies the invariance
© 50

Cy®(a)=Cle° (a), 0€Zy, (3.33)

of the minimal model characters (branching functions).
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Remark 3.7. In the special case p = N, let us show that the conjectural formula (3.27)
yields the formula (2.19). In this special case, by

he—5- €% =/ +1 0<I<N
Co®la) = {q e (3:34)

0 otherwise,

which follows from the definition (3.7) with taking into account of the normalization factor,
the conjectural formula (3.27) is

X i@ = > gl 2l Xﬂf) H by (3:35)
LepPy,
SN Ier=F (mod N)
Following footnote 2, by taking oy > 09 > ... > on and o7 — 0741 = s1 — 1 —ndr, the
shift parameter w is now given by w = ¢ in (3.16) and then mgg) = s; — 1 by footnote 6,
where note that the Z, charges o; are associated with N %). As a result, (3.35) yields

s m(9)|2 n 1
Xl(/)(q, t) = q/'m@ " 2 m| XN((f))N(Cl,f)- (3.36)

Therefore, by h,,) — ﬁ]m(g)lz = hm — 5-|m|? following from (3.19), and by the rela-
tion (3.17) we obtain the formula (2.19).

Remark 3.8. When n = 1, the conjectural formula (3.27) yields

X = Cm%(a), (3.37)

which gives the Wy (p,p + 1)-minimal model characters in Example 3.2.7

4 Examples of Burge-reduced generating functions

In this section, we test Conjecture 3.5 by extracting the W]If]?;a (p, p + n)-minimal model
characters from the SU(IN) Burge-reduced generating functions of n-coloured Young dia-
grams in the cases of (N, n,p) = (2,2,4) and (3, 3,4). By assuming the formula (3.30) with
the use of the ;[(n) string functions in appendix A we will check that the minimal model
characters in (3.4) are obtained.

4.1 (N,n) = (2,2) and minimal super-Virasoro characters

When (N,n) = (2,2), the W35 ™ algebra is the super-Virasoro algebra [52] and studied in
the context of the AGT correspondence in [3, 53-57]. Here we consider the (4, 6)-minimal
model (p = 4) which has central charge ¢ (Wpara) =1 by (2.8). The SU(2) Burge-reduced
generating functions X " (M)( q) in (2.17) of 2-coloured Young diagrams are labelled by

o = (01,09) with 0 < 01,09 <1, 0k € Z, and 7 = [rg,71] € P;er, s =[so,81] € PzJ,erSrz with

"See [51, section 3.4], where note our normalization of string functions as below (3.1) by 55 c(s[(N) )=
1
= (N —1).

24
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s1 —r1 = o1 — oz (mod 2), where o and 0k define ¢ = [cg, ¢1] = [No + 20k, N1 — 20k] € Ps
n (2.2).
The Burge-reduced generating functions for N = [2,0] and ¢ = [2,0], [0, 2] are ob-

tained as
X[g’(ﬂ i 1](Cl)—1+l1+5q +10¢°+25q* +48q°+101q°+185¢7 +3509% +615q° +
31 [5 1] (q)= 2—|—3q§—|—7q§+16q§—|—35q§+70q7+137q7+256q7+465q7_|_...7 1)
4.1
%g; [(%)2](502 +3q+10¢%+25¢° +57q +121g°4243q° —|—465q +862¢5+--
X202 (q) =297 +6q3+1695 +38q% +8493 +172q 133897 +636q% +-

and using the s[(2) string functions (A.5) of level-2 with a {ivoc]\]fl](q) = qsa(©-2) é%g?c’f\]ﬁ](q),

from the formula (3.30) we obtain

C[[S’éf Bl(g) = 1+q2+q3+3q4+3q5+7q6+8q7+14q8+17q9+27q10 o

C[[S’Qlf Bl gy =q2 +q% +292 +3q2 +5q2 +792 +11q2 +15q2 +22q2 +-- )
ng]} 2 (q) = 1+ q+292 + 4% +6q* + 10g° + 15¢° + 2247 + 325 + 46¢° + - - (42)
C[[§22]] [4’2](CI) =q5+2q5+3q5 +5q5 +8q5+12q7+18q7 +27q7 —|—38q7—|—---

We see that they agree with the Wy ™ (4, 6)-minimal model characters in (3.10). Similarly,
from a Burge-reduced generating function for N = [1,1] and ¢ = [1, 1],

X([f’ (ﬂ E4)2] (9) = 1+3q+8q% +20q° + 44q* +92q° + 183q° 4 348q" + 640q° + 11444° +

(4.3)

we obtain

C M (q) = a7 (14 g+ 20% + 49° + 69° + 100° + 15¢° + 2297 + 32¢° +46° + ).
(4.4)

4.2 (N,n) = (3,3) and minimal super-Wj characters

When (N,n) = (3,3), the Wy3™ algebra is supposed to be the super-Ws algebra, and

here we consider the (4,7)-minimal model (p = 4) with the central charge ¢ (Wp ara)
10/7 by (2.8) which ensures the associativity of the WE3™ algebra and has a unitary
representation [58-61].58 The SU(3) Burge-reduced generating functions X ouk(@) of 3-
coloured Young diagrams are labelled by o = (01,09,03) with 0 < 01,092,053 < 2, k =
(8k1,6ke) € Z2, and r = [ro,71,72] € ng, s = [so, $1,83] € P3+7+ with s1 —r1 = 01 — 09,
Sy — 19 = 03 — 03 (mod 3), where o and dk define ¢ = [cg, ¢1, 2] € P33 in (2.2).

8See [62, 63] for the generalization to the minimal super-Wy algebra corresponding to (N,n,p) =
(N,N,N +1).
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The Burge-reduced generating functions for N = [3,0,0] and ¢ = [3,0,0], [1,1,1],
[0,3,0], [0,0,3] are obtained as

X([gﬁ’é] o (q)—1+2q+11q +42¢% + 144q* + 4484° + 130345 +35109" + - -
X([g’é’é) [5’1’1 (q): 3+5q§—|-24q§+89q?+299q?+896q?+2503q?+...7 s
X(%’3’3)7[5’1’1 (4) = q+8q¢° +35q° + 132q* +4264° + 1261q° + 3443q" + (45)
REoalEb ) (@) = a-+8a% + 3507 + 132 + 42607 + 1261¢° + 3443q7 + -

and using the ;[(3) string functions (A.7) of level-3 with alN(q) =

qoliratac)—5(a+e) aN(q) from the formula (3.30) we find the WE%™ (4,7)-minimal
model characters

Clhon ™M @) =1+ 0> +2¢° + 3" + 40° +8¢° + 1097 + -,

C’[[12:11:11] By = g2 + 293 + 3q2 + 692 + 1092 + 1692 + - y
C[[g’é’gl] Bg) = gt + 6% +3¢° +5¢7 + (4.6)
Clol ™ @) = a* +a° +3¢° + 507 +

Similarly, the Burge-reduced generating functions for N = [1,1, 1] and ¢ = [3,0,0], [1,1, 1],
[0,3,0], [0,0,3],°

X([02711’21) Eﬁg (9) = 3q3+18q3 +84q3 +312q3 5 +1028q3 5 +3052q3 3 +8425q3 5 +een
X([g’ll’; Eé?ég(q)=1+10q+50q +203¢° +693q" +21364° +6031q° +15967¢" +- - -,
2L [133] 2 5 8 1 14 17 20 (4.7)
(0,1,2 (—1 (Q): 243 +16q3 +79q3 +302q3 +1009q3 +3018q3 +8364q3 +---,
> 12,1,1], [133] L2 5 8 1 1 17 20
X012 0- (q)—3q3+18q3 +84q5 +312q3 +1028q3 4+3052q3 +8425q5 +- -,
give
C[[?é’ol] 133](q): §+ ?1+5q3 —|—8q3 +15q3 4.
Clr ¥ q) = qF + 295 + 497 + 840 + 1597 +269° +43q7 +- (4.8)
C[%é;] 1331 (q) = qF + 3 + 395 +4q3 +8q% + 1297 +21q7 + - '
C[%%é] 133](CI)= 5+ s+3q3+4q5 +8C|5 +12q3 +21qs +-

The Burge-reduced generating functions for N = [2,1,0] and ¢ = [2,1,0], [0,2,1], [1,0, 2],
2,1,1],[4,2,1
X([1 ; 0} Eo 5 J(q) =14 5q+26¢2 + 10443 + 367q* + 11514° + 3329¢° + 896947 + - - - ,

Xt (q) =q5 +8q7 +39q5 +156q% +53247 +1638q% +4631q5 +-+,  (4.9)

XU () 948 113¢5 +62q5 +234q5 +777q5 +23225 +6435q 5
(1,0,0);(0,_1)(50— q3 +13q3 +62q3 +234q3 +777q3 + q3 + qs +---,

9Note the ordering o1 < 03 < o3 for (o1,02,03) = (0,1, 2).
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give

C[[f,’lljé]}’[ﬁ"z’”(q) = q9 (14q+39% +5¢° + 9% + 14¢° + 2495 + 37¢" + ),
C[[i’éé]},[zl,Q,ﬂ(CI) =9 (q% +2q3 +4q% +7q3 + 1393 +21q% +---), (4.10)
C[[g,’zlfll]}’[zlg’u(q) =9 (q% +2q5 +4q3 +8q3 + 143 +24q3 +---).

5 Summary and outlook

Following the AGT correspondence for U(N) gauge theory on C2/Z,, we conjectured the
decomposition formula (3.27) of the Burge-reduced generating functions of N-tuples of
n-coloured Young diagrams with the Burge conditions and the Z,, charge conditions for in-
tegral p > N. This conjectural decomposition generalizes the decomposition formula (3.26)
of the generating functions of N-tuples of n-coloured Young diagrams for p — oo (or for a
generic central charge), and gives the WJI\’,E’? (p, p+mn)-minimal model characters (branching
functions of the coset factor in A(N,n;p)). When p = N, the central charge of the WK,??
(N, N +n)-minimal model is vanished, and in Remark 3.7 the conjectural formula is indeed
shown to yield the formula (2.19) which gives the sl(n)y WZW characters.

In [26] we also introduced the SU(N) Burge-reduced instanton partition functions on
C2/Z,, with 2N (anti-)fundamental hypermultiplets, where the Burge conditions and the
Zy, charge conditions for p = N were imposed. We then conjectured that they give the spe-
cific integrable s?[(n) N WZW 4-point conformal blocks in [64]. Similarly to the conjectural
decomposition (3.27) of the Burge-reduced generating functions, the Burge-reduced instan-

ton partition functions for integral p > N are also expected to be decomposed into W ®

(p, p + n)-minimal model conformal blocks and sl(n)y WZW conformal blocks (see [57] in
the case of (N, n) = (2,2) with a generic central charge). It would be interesting to pursue
this direction as was discussed in [23] when n = 1.
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A Some string functions

In this appendix we summarize some normalized 5A[(M ) string functions of level-m.

The normalized string function éfv\(e)(q), for a dominant highest-weight A =
[do,dy,...,dy—1] € PAJ}’m and a maximal-weight v(£) = [y0,71,--.,Ym-1] € Prm, 18
obtained from the s{(M),, WZW character in (2.21) as (see egs. (2.22) and (3.1) with the
normalization by the central charge),

N M-1
[(M)m 2 1 2 N ~v; (€
M (a0, 1) = gz O N et ) T 60, (A1)
eezM—l =1
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where v; = 'yz(f) =d; +li_1 — 20; + €i+1 with fpy = €9 =0, f_1 = ¢py—1. The WZW
characters can be computed by the Weyl-Kac character formula [27] (see also [51, appendix
B.2] and [26, appendix A.8]),

M), 2 Na (a,8) g M_lAdi

X (9,8) = = VAt - i,
A (@ a)oe " Theicjenr Giabi/tta) (et /tiatia) o)
(A.2)
with
M@= > der | (G ](MW]’“"”“” 5 (3rem) k2 (3=4) b
’ 1<i,j<M i/ -l q :
(klz 7kM)€Z1w
ki+4-+kp=0
(A.3)

where (q;q), = [[22,(1 —q"), to = tas = 1 and (A1, A2,...) = par(A) in (1.3). Note that
the string functions are invariant under the outer automorphisms of sl(M) as

Ay (@) = o (@), 0 € Zar, (A1)
where A® = [d© 4? . d9 | with d? = dig, diyy = di, and y(£)® =
héa)wie), S ](\4)_1] with 7 = % g, it = %

Al sl((2)
When M = 2, the ;[(2) string functions c% ifly]]( ) of level-m, with d — v € 2Z, for

[m —d,d] € P;fm and [m —v,v] € Pa,, are given by [65],

d(d+2) A2 o
A{Z:?ﬂ]( _ q 4(m.+2)3 im Z (_1)k1+k2 q2’“(k1+1)+ ko(ko+1)+(m~+1)ki ks
(@D 4 %m0 (A.5)
(q% (d—)k1+3 (d+7)ke _ qm+1—d+%(2m+2—d+’y)k1+%(2m+2—d—’y)k2) ,
and satisfy ¢ A[m d.d] ( ) = {i:; fly]( ).

A2 sl((3)

A(q) of level-2 and 3 given in [42].

Here we summarize the sl(3) string functions ¢ 5

The 5A[(3) string functions of level-2 are

11 3 5 5

(qz;q2> (q,qZ,q2;q2)
0 x
q

~[2,0,0] ~[2,0,0] o
6[270,0}(51) - 0[0,1’1}(q) -

(4 95 ’
+[2,0,0] 1 (qQan)oo (q2aq87q107q10)00
“oan(® =4 (a;9) ’
% (A.6)

(@) = %

¢l (@) = ¢35 (@) = 1o
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where (at, az, ., ar; @)oo = [1 (@i 0)o = TTi [T (1 — aig™ ).
The s((3) string functions of level-3 are

3 2
6[3,0,0](q) _6[3,0,0]( )= 1 6[1,1,1}(0') _ q% (CIQ;CIQ)OO (q35q3)oo
[3,0,0] [0,3,0] (q7 q)oo (q3’ q3)oo [1,1,1} (q, q)go (qﬁ, qG)OO

1

~[2,1,0 ~[2,1,0 ~[2,1,0 qo
6%2,1,0}@ . 6%0,2,1}@ + 6%1,0,2}@') = T
(GH:) (qS;qB)OO

(e1) (sh0))
~[3,0,0] . [3,0,0] . [3,0,0] A [1,1,1] A [1,1,1] . ’ ’ 0o
0[3’070](C|) - 30[1,171](q) + 20[07370](50 + 0[17171](q) - 0[3,070](q) - (

~ 1 A 4 ~ T N 2
where &>y 0l(a) € a9 Z[[a]l, ¢35 (a) € a8 Z[[al], & 7ol (a) € a5 Z{[all, ¢ (a) € aF Z[q]

A[1,1,1
and 0{3,0’0%(@ €

B Examples of dual dominant integral weights

Here we provide some examples of the dominant integral weights IN éf ) =
[No, N1,...,Np_1] € P;N of ;[(n)N in (3.11), which are labelled by a non-negative integer
f < max{N,n} and dominant integral weights £ = [{o,1,...,{N_1] € P]J\?’n of s?[(N)n.
For (N,n) = (2,2),
Ny =[2,0, Ny =102, NP =[1]. (B.1)
For (N,n) = (2,3),

NE???()] = [27070]’ NE107)2] = [07 17 1]’ NE;?Q] = [072>0]’ NE12,)2] = [1707 1]a

(B.2)
1 _ O
N[2,1] - [17 17 0]; N[0’3] = [O, 0, 2]
For (N,n) = (274)1
0) _ (0) (0)
Niyg = [2,0,0,0], Ny =1[0,1,0,1], Ny = [0,0,2,0],
@ _ (@ _ @ _
Ny =1[0,2,0,0], Njyo =[1,0,1,0], Ny =1[0,0,0,2], (B.3)
Ny =[1,1,0,0], N{y =[0,0,1,1], Ni3}, =1(0,1,1,0], N} =[1,0,0,1].
For (N7 TL) - (37 2)a
O _ @ _ 0 a2 _ 1y
Niyog=Nigag =30l Ny =Nioy=[L2, Npyjg=[21, Nygy=[0,3].
(B.4)
For (N,n) = (3,3),
0] = o 0 o _
N[3’070] N [3,0,0]’ N[l’lzl] B [1’ 1’ 1]’ N[O,O,S] - [07370]7 N[07370] - [07073],
1 _ O (1)
N[2’1’0} - [27 ]-7 0]7 N[LOJ] — [0, 2, 1]7 N[072’1] = [17 07 2]? (B 5)
(

N[(12,)2,0} = [2,0,1], NEQQ,)OJ] =[1,2,0], N[§7)172] =1[0,1,2].
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For (N,n) = (4,2),

Ni5.000=Noz00 =40 Nigio=Nio10 =22 Niggag= N[O 0,02 = (0,4,
(1) _ (3) (1) N (3)
Nioo =Npaie = [3:1], Nio=Nioo = [1,3].
(B.6)

C More examples of Burge-reduced generating functions

In this appendix, in addition to the examples in section 4, we give some more examples of
the SU(N') Burge-reduced generating functions of n-coloured Young diagrams in the cases
of (N,n,p) =(2,3,3),(2,4,4),(3,2,4) and (4,2,5) and check Conjecture 3.5.

C.1 (N,n,p)=(2,3,3)

Consider the case of (N,n) = (2,3) and p = 3. The W53™ (3, 6)-minimal model has central

charge ¢ (Wpara) = 4/5. The Burge-reduced generating functions for N = [2,0,0] and
¢ =12,0,0], [0,1,1] are obtained as

X([jol)] gg é})(q) =1+2q+11q% + 32q° + 97q* + 2464° + 610q° + 1388¢7 + 3067¢° + - - - |,

< [2,1],[5,1] 1 4 7 10 13 16 19 22
X(070);(71771)(q) =q3 +5q3 + 18q3 + 56q3 + 15493 + 389q3 + 92293 + 2072q3 +-- -,
(C.1)

string functions (A.6) of level-2 with alN(q) =

[

and using the sl(3)
)¢N(q), from the formula (3.30) we obtain the Wy3™ (3,6)-minimal

q (2 +3+erca)— 3 (c1te2

model characters

Clho® @) =140+ q*+ 20" + 20° +4° + 497 +7¢° + -, 3
, 2
2.1

Uiz

0
2B() = g5 497 4297 +295 +495 +5q95 +8q45 4.
Similarly, the Burge-reduced generating functions for N = [0, 1, 1] and ¢ = [2,0, 0], [0, 1, 1],

5 [2,1],[4,2] 2 5 8 1 14 17 20 23
X5y () =293 +10g3 43693 +110q 3 +300q 3 +752q% +1770q ¢ +3956q 3 +--- ,
)?(E’ﬂzﬁ‘é%])m) =1+5q+20q%+65q° + 185q* +481q¢° +1165q° + 2665q" +5822¢% + - - -,
(C.3)
give
2,1].[4,2] \ _ L 2 3 4 5 6 7 8
Cion’ (@) =91 (L+q+29"+3q° + 49" +69° + 99" + 129" + 179" + -+ ) |
2,1],/4,2] 5 s 1 1 17 20 2 (C.4)
0[07’3]’ “(q) =q3 +q3 +293 +3q93 +4q93 +6q3 +993 +---
C.2 (N,n,p)=(2,4,4)

When (N,n) = (2,4), the Wy3™ is known as the S3 parafermion algebra [66] and also
discussed in the context of the AGT correspondence in [67, 68]. Here we consider the
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case of p = 4, and the Wgzra (4,8)-minimal model has central charge ¢ (W;Ta) = 5/4.
The Burge-reduced generating functions for N = [2,0,0,0] and ¢ = [2,0,0,0],[0,1,0, 1],
[0,0,2,0] are obtained as
S 13,1],[7,1
X([(),O)];Eoﬁo}’o)(q) = 1+43q+19q%+72q% + 272q* 4+ 877¢° +2680q° + 7546¢" +- - - ,
S>3 1 5 9 13 17 21 25
X([QO;;(_L_L_l)(q) —qi+7q4+34q1 +137q7 +481q7 +1528q 7 +4490q 7 +---, (C.5)
S[3,1),[7,1
X([O70;;E71]772771)(q) = 2q+ 14q% + 660> + 252q* +852¢° + 2614¢° + 7460q" + - - - |

and by the formula (3.30) with a2V (q) = q1/¢* %< ¢ N (q) we obtain the Wy™ (4,8)-minimal
model characters

C[[Z',’S]]’W’”(q) =14+ +¢®+3¢* +3¢° +74° + 8¢ + - - -,
C'[[g:;]]’[?’l](q) = q% + q% + Sq% + 4q§ + 8q% + 11q% + (C.G)
C[[g,’i]]’w’l](Q) =P+ +3¢° +44°+7¢"+ - .

The Burge-reduced generating functions for N = [0,1,0,1] and ¢ = [2,0,0,0],[0,1,0,1],
[0,0,2,0],

RIABI (o) a0t 4 o1t 4 1050 +4194 + 14690 +46360% +135440 T+
X311 (0) =301 +21g1+105q°¢ +4199°¢ +1469q 1 +4636q°* +135449% +---,
XEUEA | (a) =1+9q-+50q7 +217¢° +803q" +26519° +8019q° +22618¢7 +--,  (C.7)
S 3,1),[5,3] 3 7 u 15 19 23 27
XEUEA (@) =497 2297 +110q" +4269 7 +1490q"F +4666q% + 1361697 +- -
give

C[E),ﬁ]}’[s’?'](q) — i +q7 +397 +4q7 +8q7 +11g7 + 1997 +---

C[[S’jgl]]’[f”?’](q) = qi2 (1 +q+3q% + 5¢° + 10g* + 15¢° + 2695 + - --), (C.8)
[3,1],[5,3] 7 11 15 19 23 27
Cloy (@) =0q+297% +3q4 +6q¢ +1097 + 1697 +--- .

The Burge-reduced generating functions for N = [1,1,0,0] and ¢ = [1,1,0,0],[0,0, 1, 1],

REB (@) =1+ 7q+ 3702 + 157¢° + 575¢" + 1889q° + 57040° + 160817 + - |
X )(CI) = 2q2 + 1592 + 74q2 4+ 29792 + 1039q2 + 3284q2 4 9598q2 + --- ,

(1,0);(0,—1,—1
(C.9)
give
Cat % (a) = a1 (1+q+20% +4¢° + 7q* + 110" +18° + ), (€10
k) -].O

C[[fé]]’[G’z](CI) = q% +2q% 4—46&g + 7q% + 12q% + 19q%5 4o
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C.3 (N,n,p)=(3,2,4)
Consider the case of (N,n) = (3,2) and p = 4. The W55™ (4, 6)-minimal model for p = 4

has central charge ¢ (Wpara) = 6/5. The Burge-reduced generating functions for N = [3, 0]
and ¢ = [3,0],[1, 2] are obtained as

S [2,1,1],[2,3,1
X([O@,O)};EO) @) =1+ 3q+ 11¢2 + 30q% + 779" + 176q° + 385q° + 79247 + 1575¢° + - - - ,
X2 @) = 202 + 797 +229% + 567 + 135q% +207q % +627q2 +1255¢% + -+,
(C.11)
and using the s[(2) string functions (A.5) of level-3 with @ {ivoc’]\]]l] (9)=q a3 s %gocf\]fl] (q),

from the formula (3.30) we obtain the WY5™ (4, 6)-minimal model characters

O q) = 1 1 q 4207+ 39° + 6a* + 907 + 150° + 2297 +350° + -
Clront @) = a5 + 205 +4q% +79% +1297 + 19975 +31q5 +4695 + -+
(C.12)

The Burge-reduced generating functions for N = [1,2] and ¢ = [3,0], [1, 2],

gRLuBLA ] S L 15ad 14945 + 101a% + 23105 + 4900% 4 1002¢%
(top(1) (@) =a2 +5q92 + 1592 + 429> + 101q> + 231q2 +490q> +10029> + -,
X oo @) =1+ 3q+ 112 + 309 + 779" + 1764° + 385¢° + 79247 + 1575¢" +
(C.13)
give
Cly B (a) = a7 + 207 + 497 + 693 + 119 + 1697 + 2607 + -, o

C ot @) = a1 (1+ 9+ 30% +5¢° + 99" + 140” + 230° + 3507 + -+ +).
The Burge-reduced generating functions for N = [2,1] and ¢ = [2, 1], [0, 3],

X222 0y ) 4 5q 4+ 172 + 4843 + 120q + 2774 + 600q° + 12377 + 2448¢° +

[
(1,0,0);(0)
[1,1,2],[2,2,2] \ _ o 1 3 5 7 9 1 13 15
X(1oo)( 1) (q9) =292 + 892 + 24q2 + 66q2 + 160q2 + 36092 + 768q2 + 1560q2 + - - -,
(C.15)
give
c{}iﬁ}”“%q)=q%(1+2q+4q2+8q3+13q4+22q5+35q6+54q7+...)7 o
1 .16

C[%Szz]} 222 (q) = g7 + 2% + 3q% + 692 + 10q7 + 169> +26q2 + 4092 + - --

C4 (N,n)=(4,2,5)
Consider the case of (N,n) = (4,2) for p = 5. The Wy5™ (5, 7)-minimal model for p = 5 has
central charge c (Wpam) = 11/7. The Burge-reduced generating functions for N = [4, 0]
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and ¢ = [4,0],[2,2], [0, 4] are obtained as

Xoooohey @) =1+ 3q + 11g% + 349° + 93q* + 234q° + 5524° + -+ ,

REBLLDEOL ) — 9q 4 7q} 12595 +70q7 + 18543 + 4414% 4., (C7)

X anilot @) = 2+ 997 + 310° + 88q* + 227¢° + 541¢° + - -+,

and using the s[(2) string functions (A.5) of level-4 with @ [No, ] (9)=q 16c1(1=4) 5 [No. ] (q),

[co,¢1] [co,c1]
from the formula (3.30) we obtain the W)'5™ (5, 7)-minimal model characters

0{377;773753]]7[273,171](q) =1+ q + 2q2 + 4q3 + 7q4 + 12q5 + 21q6 o

Clorad () = % + 205 + 597 + 9% + 1847 +3097% +--+, (C.18)
2,1,1,1],12,3,1,1

C[[o,o,o,z]] [ ](CI) =q?+2¢° + 504" +9¢° + 17¢° + - - .

The Burge-reduced generating functions for N = [2,2] and ¢ = [4,0], [2, 2], [0, 4],

XL () = g} 4 503 + 18q7 + 5507 + 1499 +371gF + -

X0 2 @) = 1+ 30+ 1497 + 417 + 119" +295¢° + T066° + -, (C.19)

S2,1,1,11,3,1,2,1 1 3 5 7 9 u
XEorl it @) = a2 +5q2 + 183 +55q% +149q + 3712 + -,

give
C[[gle,’é,’é]]’[?)’l’m(Q) = g2 +2q% +5q2 +8q2 +16q2 + -,
Clronol 22 (@) = a5 (14 q+ 497 + 7¢° + 150" + 250 + ), (C.20)
C[[g,’é,’é,’zl]]’[g’l’Q’”(q) = q2 +2q° +5q% +8q2 + 1692 +-- - .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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