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1 Introduction

Soft-collinear effective theory (SCET) is a convenient tool to study the factorization prop-

erties of cross sections and scattering or decay amplitudes sensitive to several hierarchical

energy scales [1–5]. Typically, the corresponding factorization theorems contain hard func-

tions, jet functions and soft functions, which receive contributions from different momen-

tum regions in Feynman diagrams. The hard functions correspond to Wilson coefficients

obtained when the full theory is matched onto SCET, whereas the jet or soft functions

are defined in terms of matrix elements of collinear or soft fields in the low-energy effec-

tive theory.

Jet functions — matrix elements of non-local products of collinear fields — play an

important role in these factorization theorems. They often live at an intermediate scale,

which lies between the hard-scattering scale of the process and lowest energy scale it is

sensitive to. The most familiar jet function is defined as the spectral function (i.e., the

discontinuity) of the quark propagator dressed by a light-like Wilson line connecting the

two quark fields [6]. This jet function appears in a large variety of phenomenological
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applications. For example, it enters in the factorization theorems for inclusive B-meson

decays into light final-state particles, such as B̄ → Xsγ and B̄ → Xu `
−ν̄ [7, 8]. It also

appears in the resummation of threshold logarithms in deep inelastic scattering [9, 10].

Recently, there has been a growing interest in understanding factorization at sublead-

ing power in scale ratios. Beyond the leading power a large variety of hard, collinear and

soft functions appear. In particular, while at leading power soft emissions are eikonal and

can be described by soft Wilson lines, at subleading power the emission of soft fermions

and power-suppressed emissions of soft gauge bosons need to be taken into account. Par-

ticularly interesting is the case of soft quark emission, which is absent at leading power.

At subleading order in the SCET expansion, there is a unique interaction that couples a

soft quark to collinear quarks and gauge fields. In the notation of [4], it reads

L(1/2)
q ξn

(x) = q̄s(x−)W †n(x) i /D⊥n ξn(x) + h.c. , (1.1)

where ξn is a collinear quark spinor subject to the constraint /n ξn = 0, Wn is a collinear

Wilson line, Dµ
n is a covariant collinear derivative (containing collinear gauge fields) act-

ing on collinear fields, and qs describes a soft quark. The collinear particles carry large

momentum flow along a light-like direction nµ. The soft quark field must be multipole

expanded for consistency, and we denote xµ− = (n̄ ·x) n
µ

2 , where n̄µ is a conjugate light-like

vector satisfying n · n̄ = 2 (see [11] for a pedagogical introduction to SCET).

New jet functions can be defined in terms of the matrix elements of collinear fields in

the presence of one insertion of this subleading Lagrangian [12–14]. These functions are

called “radiative jet functions” [15–17], since they involve the emission of a soft particle

from inside a jet. The radiative jet functions are of general interest not only because they

appear in the description of power corrections to established factorization theorems. There

exist interesting physical processes that are sensitive to soft quark exchange already at

leading order in the expansion of the relevant decay or scattering amplitude. One of the

first appearances of a radiative jet function J(p2) related to collinear interactions with

a soft quark appeared in the theoretical description of the exclusive, radiative B-meson

decay B− → γ`−ν̄ [18, 19]. In this process the soft spectator quark of the B meson

couples to a collinear photon and an off-shell collinear quark, which then connects to the

weak-interaction vertex, where it annihilates the b-quark and turns into a virtual W−

boson. Interestingly, the same radiative jet function has recently been encountered in

a completely different context: in the theoretical description of the contribution to the

radiative Higgs-boson decay h→ γγ that is induced by light b-quark loops [20, 21]. (This

is not the dominant contribution to the decay amplitude, but it is a particularly interesting

one with regard to its factorization properties.)

Following our recent work [20], we define the radiative jet function J(p2) in terms of

the matrix element∫
ddx eips·x− 〈γ(k)|T

(
W †n i /D⊥n ξn

)
(x)
(
ξ̄nWn

)
(0) |0〉 = eq /ε∗⊥(k)

/n

2

in̄ · k
p2 + i0

J(p2) , (1.2)

where ps is the momentum carried away by the soft quark in (1.1), and p ≡ k + ps+.

We denote by eq the electric charge of the collinear quark. Note that ps · x− = ps+ · x
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with pµs+ = (n · ps) n̄
µ

2 . The jet function J(p2) depends on the only non-trivial kinematic

invariant (note that k2 = 0 and p2
s = 0)

p2 ≡ (k + ps+)2 = n̄ · k n · ps . (1.3)

In section 2 we present a detailed discussion of some general properties of the radiative

jet function J(p2), with a special focus on its behavior under renormalization-group (RG)

evolution. We derive the two-loop anomalous dimension of the jet function and present

exact solutions to its RG evolution equations both in momentum space and in the so-called

dual space. The technique we employ for obtaining these solutions is general and can be

applied to other radiative jet functions, too. Section 3 contains a description of the calcula-

tion of the jet function at two-loop order in QCD. The renormalization of the jet function

is discussed in section 4. In section 5 we briefly comment on phenomenological implications

of our results in the context of B− → γ`−ν̄ decay. We then present our conclusions.

2 General properties the radiative jet function

We begin by reviewing and deriving some general properties the jet function, some of which

are based on insights that were uncovered a long time ago, while several others are new.

2.1 One-loop expressions

At one-loop order, we find that the bare jet function in d = 4 − 2ε spacetime dimen-

sions reads

J (0)(p2) = 1 +
CFαs,0

4π

(
−p2 − i0

)−ε
eεγE

Γ(1 + ε) Γ2(−ε)
Γ(2− 2ε)

(2− 4ε− ε2) +O(α2
s,0) . (2.1)

Renormalizing the bare coupling in the MS scheme,

αs,0 = µ2ε Zα αs(µ) , Zα = 1− β0
αs
4πε

+O(α2
s) , (2.2)

where β0 = 11
3 CA −

4
3 TF nf is the first coefficient of the QCD β-function, one obtains

J (0)(p2) = 1 +
CFαs

4π

(
−p2 − i0

µ2

)−ε[
2

ε2
− 1− π2

6
+O(ε)

]
+O(α2

s) . (2.3)

Here and below αs ≡ αs(µ) always denotes the renormalized coupling. For simplicity, we

will from now on drop the “−i0” prescription, which defines the sign of the imaginary part

of the jet function in the time-like region, where p2 > 0.

While at one-loop order one could renormalize the jet function by means of a local

counterterm, the correct renormalization factor has a more complicated non-local form.1

The proper renormalization condition has been derived from the consistency of the fac-

torization formula for the B− → γ`−ν̄ decay amplitude, requiring that the amplitude be

1It is an embarrassment that there is no known method in SCET to derive the anomalous dimensions

of jet functions directly from their operator definitions.
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independent of the renormalization scale [19]. In this process, the known RG equations

for the B-meson light-cone distribution amplitude (LCDA) [22] and some other quantities

have been used. The jet function depends on a single argument p2, which can be either

time-like or space-like. The time-like (space-like) jet functions belonging to different p2 > 0

(p2 < 0) values mix under renormalization, but there is no mixing between the time-like

and space-like jet functions. For the time-like case, we write the renormalization condition

in the form

J(p2, µ) =
1

p2

∫ ∞
0
dp′ 2 ZJ(p2, p′ 2;µ) J (0)(p′ 2) , (2.4)

with a dimensionless renormalization factor ZJ . For the space-like case an analogous

expression holds, where p′ 2 is integrated over the interval (−∞, 0]. Treating both cases at

the same time, we write the renormalization condition in the form

J(p2, µ) =

∫ ∞
0
dxZJ(p2, xp2;µ) J (0)(xp2) . (2.5)

At one-loop order, one finds (the generalization with y 6= 1 is needed below)

ZJ(yp2, xp2;µ) =

[
1 +

CFαs
4π

(
− 2

ε2
+

2

ε
ln
−p2

µ2

)]
δ(y− x) +

CFαs
2πε

Γ(y, x) +O(α2
s) , (2.6)

where the symmetric distribution

Γ(y, x) =

[
θ(y − x)

y(y − x)
+
θ(x− y)

x(x− y)

]
+

(2.7)

arises in the so-called Lange-Neubert kernel for the B-meson LCDA [22] (see also [23]). The

plus prescription is defined such that, when Γ(y, x) is integrated with a function f(x), one

must replace f(x)→ f(x)−f(y) under the integral. At one-loop order the plus distribution

has no effect when the renormalized jet function is derived from (2.5). One finds

J(p2, µ) = 1 +
CFαs

4π

[
ln2

(
−p2

µ2

)
− 1− π2

6

]
+O(α2

s) . (2.8)

This result was first obtained in [18, 19]. One of the main goals of this paper is to calculate

the two-loop corrections to this formula.

2.2 Renormalization-group evolution

The renormalized jet function obeys the RG evolution equation

d

d lnµ
J(p2, µ) = −

∫ ∞
0
dx γJ(p2, xp2;µ) J(xp2, µ) , (2.9)

where the anomalous dimension is defined as

γJ(p2, xp2;µ) = −
∫ ∞

0
dy

dZJ(p2, yp2;µ)

d lnµ
Z−1
J (yp2, xp2;µ) . (2.10)

As usual, it can be obtained from the coefficient of the single 1/ε pole in ZJ via [24]

γJ(p2, xp2;µ) = 2αs
∂Z

[1]
J (p2, xp2;µ)

∂αs
. (2.11)
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Without loss of generality, we express the result in the form [19]

γJ(p2, xp2;µ) =

[
Γcusp(αs) ln

−p2

µ2
− γ′(αs)

]
δ(1− x) + Γcusp(αs) Γ(1, x) +O(α2

s) , (2.12)

where we have identified the coefficient of the logarithmic term with the light-like cusp

anomalous dimension Γcusp(αs) in the fundamental representation of SU(Nc), a central

quantity in the theory of the renormalization of Wilson loops with cusps [25, 26]. Since the

plus distribution is linked with the logarithmic term, it is multiplied by the same quantity.

The non-logarithmic term γ′(αs) of the local part of the anomalous dimension vanishes at

one-loop order [19]. Its two-loop expression will be derived here for the first time.

The first three terms in the anomalous dimension γJ retain their form to all orders

in perturbation theory. The most general form of the local terms is a linear function of

ln(−p2/µ2), and the cusp anomalous dimension is the coefficient of the logarithmic term.

This is the only term depending on the momentum variable p2 alone. For dimensional

reasons, all remaining terms can only depend on the dimensionless ratio x = p′ 2/p2. The

form of the non-local terms (with x 6= 1) is presently only known at one-loop order. The

O(α2
s) corrections indicated in (2.12) thus refer to higher-order non-local terms, which are

presently unknown. For the more familiar jet function entering inclusive processes such as

the rare inclusive decay B̄ → Xsγ, such higher-order corrections are known to be absent [6],

i.e. the functional form of the one-loop anomalous dimension is preserved in higher orders,

and the non-local terms are determined completely by the cusp anomalous dimension. We

will see, however, that further non-local higher-order terms do exist in the case of the

exclusive jet function in (1.2).

For the remainder of this section, we will ignore the unknown higher-order non-local

terms in (2.12), but we will keep the remaining terms at arbitrary order in perturbation

theory. It is then possible to derive exact solutions to the RG evolution equation (2.9)

using a technique developed in [19, 22]. It is based on the observation that on dimensional

grounds the integral (the variables x and y can carry arbitrary but equal mass dimension)

F(a) ≡
∫ ∞

0
dx y Γ(y, x)

(
x

y

)a
= −

[
ψ(1 + a) + ψ(1− a) + 2γE

]
(2.13)

evaluates to a dimensionless function of the exponent a. Here ψ(z) = Γ′(z)/Γ(z) is the

digamma function. It can then be checked that the ansatz(
−p2

µ2
j

)η+aΓ(µj ,µ)

exp

[
− 2S(µj , µ)− aγ′(µj , µ)−

αs(µ)∫
αs(µj)

dα
Γcusp(α)

β(α)
F
(
η + aΓ(µj , µα)

)]
(2.14)

with αs(µα) ≡ α provides a solution to the RG equation with the initial condition

(−p2/µ2
j )
η at some matching scale µ = µj , at which J(p2, µj) is assumed to be free of

large logarithms. Here β(αs) = dαs(µ)/d lnµ is the QCD β-function, and we have defined

the RG functions

S(µj , µ) = −
αs(µ)∫

αs(µj)

dα
Γcusp(α)

β(α)

α∫
αs(µj)

dα′

β(α′)
, aΓ(µj , µ) = −

αs(µ)∫
αs(µj)

dα
Γcusp(α)

β(α)
, (2.15)
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which are the solutions to the equations

d

d lnµ
S(µj , µ) = −Γcusp(αs) ln

µ

µj
,

d

d lnµ
aΓ(µj , µ) = −Γcusp(αs) . (2.16)

The function aγ′(µj , µ) is defined analogously to aΓ(µj , µ). Note that both S(µj , µ) and

aΓ(µj , µ) take negative (positive) values if µ > µj (µ < µj), since the cusp anomalous

dimension is positive. Explicit expressions for these objects obtained at next-to-next-to-

leading order (NNLO) in perturbation theory can be found in the appendix of [10].

At any fixed order in perturbation theory, the renormalized jet function at the matching

scale depends on p2 only via powers of the logarithm Lp = ln(−p2/µ2
j ). We can generate

these logarithms by taking derivatives with respect to η. Hence, with the definition

J(p2, µj) ≡ J(Lp, µj) (2.17)

the exact solution of the evolution equation can be written in the closed form [19]

J(p2, µ) = J(∂η, µj)

(
−p2

µ2
j

)η+aΓ(µj ,µ)

exp
[
− 2S(µj , µ)− aγ′(µj , µ)

]

× exp

[
−

αs(µ)∫
αs(µj)

dα
Γcusp(α)

β(α)
F
(
η + aΓ(µj , µα)

)]∣∣∣∣∣
η=0

.

(2.18)

Here and below, derivatives with respect to the auxiliary parameter η always act on all

terms standing to the right. We now change integration variables in the exponent of the

last term from α to % = aΓ(µj , µα). This yields

−
αs(µ)∫

αs(µj)

dα
Γcusp(α)

β(α)
F
(
η+aΓ(µj , µα)

)
=

a∫
0

d% F(η+%) = ln
Γ
(
1− η − a

)
Γ(1 + η)

Γ
(
1 + η + a

)
Γ(1− η)

−2γE a ,

(2.19)

where a ≡ aΓ(µj , µ). This leads to the final result [19]

J(p2, µ) = exp
[
− 2S(µj , µ)− aγ′(µj , µ)− 2γE aΓ(µj , µ)

]
× J(∂η, µj)

(
−p2

µ2
j

)η+aΓ(µj ,µ)
Γ
(
1− η − aΓ(µj , µ)

)
Γ(1 + η)

Γ
(
1 + η + aΓ(µj , µ)

)
Γ(1− η)

∣∣∣∣
η=0

.
(2.20)

An alternative solution of the RG equation (2.9), which works for more general initial

conditions (even though this is not needed for the case at hand), can be obtained by taking

a Fourier transform of the jet function with respect to ln(−p2/µ2), i.e.

J(p2, µ) =
1

2π

∫ ∞
−∞

dt J̃(t, µ)

(
−p2

µ2

)it
. (2.21)

Since the right-hand side of this equation exhibits a power-like dependence on (−p2/µ2),

one can use the technique described above (with η replaced by it) to show that for general
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initial condition the evolution equation (2.9) is solved by

J(p2, µ) = exp
[
− 2S(µj , µ)− aγ′(µj , µ)− 2γE aΓ(µj , µ)

]
× 1

2π

∫ ∞
−∞

dt J̃(t, µj)

(
−p2

µ2
j

)it+aΓ(µj ,µ)
Γ
(
1− it− aΓ(µj , µ)

)
Γ(1 + it)

Γ
(
1 + it+ aΓ(µj , µ)

)
Γ(1− it)

.
(2.22)

This solution forms the basis of the construction of the jet function in the so-called dual

space (see below). For the case of downward scale evolution, for which µ < µj , it is possible

to evaluate the integral over t in closed form. This is discussed in appendix A.

2.3 Jet function in the dual space

For the case of the B-meson LCDA, it has been shown in [27] that one can bring an RG

equation with an anomalous dimension of the type shown in (2.12) — in the approximation

where unknown, non-local contributions to the anomalous dimension arising at two-loop

order and higher are neglected — to a much simpler form using a suitably chosen integral

transform. Adapted to our case, the key observation based on (2.22) is that the function

g(t, µ) ≡ Γ(1 + it)

Γ(1− it)
J̃(t, µ)

(
−p2

µ2

)it
(2.23)

has a particulary simple behavior under RG evolution. Shifting the integration variable

in (2.22) from t to t′ = t− iaΓ(µj , µ), one finds that

g(t, µ) =

(
−p2e−2γE

µ2
j

)aΓ(µj ,µ)

exp
[
− 2S(µj , µ)− aγ′(µj , µ)

]
g
(
t+ iaΓ(µj , µ), µj

)
. (2.24)

Defining a dual jet function j(p2, µ) via the Fourier transform

j(p2, µ) =
1

2π

∫ ∞
−∞

dt
Γ(1 + it)

Γ(1− it)
J̃(t, µ)

(
−p2

µ2

)it
, (2.25)

we then obtain

j(p2, µ) =

(
−p2e−2γE

µ2
j

)aΓ(µj ,µ)

exp
[
− 2S(µj , µ)− aγ′(µj , µ)

]
j(p2, µj) . (2.26)

This dual function obeys the local RG equation

d

d lnµ
j(p2, µ) = −

[
Γcusp(αs) ln

−p2e−2γE

µ2
− γ′(αs)

]
j(p2, µ) . (2.27)

We stress again that this equation only holds in the approximation where the unknown

non-local contributions to the anomalous dimension (2.12) are neglected. Equation (2.40)

below shows the generalization required when these terms are included at two-loop order.

The relation between the original function and the dual function can be derived by

combining (2.25) and (A.1). This gives

j(p2, µ) =

∫ ∞
0

dx

x
J(xp2, µ)

1

2π

∫ ∞
−∞

dt
Γ(1 + it)

Γ(1− it)
x−it . (2.28)
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The integrand of the t-integral has poles at values t = in with n ∈ N. Evaluating the

integral using the theorem of residues, one obtains

1

2π

∫ ∞
−∞

dt
Γ(1 + it)

Γ(1− it)
x−it =

√
x J1

(
2
√
x
)
, (2.29)

where J1(x) is a Bessel function. One thus finds the integral transforms [27]

j(p2, µ) =

∫ ∞
0

dx√
x

J1

(
2
√
x
)
J(xp2, µ) ,

J(p2, µ) =

∫ ∞
0

dx√
x

J1

(
2
√
x
)
j(p2/x, µ) ,

(2.30)

where the second relation follows from the orthonormality condition∫ ∞
0
dx J1

(
2
√
xa
)

J1

(
2
√
xb
)

= δ(a− b) . (2.31)

At one-loop order, we find that

j(p2, µ) = 1 +
CFαs

4π

[
ln2

(
−p2e−2γE

µ2

)
− 1− π2

6

]
+O(α2

s) . (2.32)

In the beautiful papers [28, 29] it was shown that the Lange-Neubert kernel for the B-

meson LCDA can be written in a remarkably compact form as a logarithm of the generator

of special conformal transformations along the light-cone. Using tools from conformal field

theory, the above-mentioned transformation of the evolution equation (2.9) to the local

form (2.27) was rederived. In subsequent work by the same authors [30, 31] the evolution

equation was extended to two-loop order. It was found that, starting at O(α2
s), non-

local terms appear in the dual space as well. We will use these results in our two-loop

analysis below.

2.4 Two-loop evolution of the jet function

The two-loop RG equation obeyed by the jet function in the dual space can be derived

from the QCD factorization theorem for the decay B− → γ`−ν̄ valid in the region of large

photon energy (Eγ . mb/2). At leading power in ΛQCD/mb, the corresponding decay

amplitude can be written in the factorized form [18, 19]

M(B− → γ`−ν̄) ∝ FB(µ)H(mb, 2Eγ , µ)

∫ ∞
0

dω

ω
J(−2Eγω, µ)φB+(ω, µ) , (2.33)

where FB is related to the B-meson decay constant in the heavy-quark limit (FB ≈ fB
√
mB

modulo radiative corrections), H is a hard-scattering function depending on the short-

distance scales mb and 2Eγ , and φB+ denotes the leading-twist LCDA of the B meson

depending on a variable ω = O(ΛQCD) [23]. J is the jet function discussed above, with

p2 < 0 in the space-like region. This function depends on an intermediate scale of order

2Eγω ∼ mbΛQCD. In the dual space, the right-hand side of (2.33) takes an identical

form [27], i.e.

M(B− → γ`−ν̄) ∝ FB(µ)H(mb, 2Eγ , µ)

∫ ∞
0

dω

ω
j(−2Eγω, µ) ρ+(ω, µ) , (2.34)
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where the dual function j is related to the original jet function by the first relation in (2.30),

and ρ+ is defined in an analogous way as

ρ+(ω, µ) =

∫ ∞
0

dx√
x

J1

(
2
√
x
)
φB+(xω, µ) . (2.35)

In [31], the RG evolution equation for the function η+(s, µ), which is related to ρ+(ω, µ)

via s η+(s, µ) = ρ+(1/s, µ), was derived at two-loop order. Interestingly, it was observed

that at this order the evolution of the dual function is no longer local. Rather, it was found

that (we present the equation for ρ+ rather than η+)

d

d lnµ
ρ+(ω, µ) =

[
Γcusp(αs) ln

ω e−2γE

µ
− γη(αs)

]
ρ+(ω, µ)

+ CF

(αs
2π

)2
∫ 1

0

dx

1− x
h(x) ρ+(ω/x, µ) +O(α3

s) ,

(2.36)

where

h(x) = lnx

[
β0 + 2CF

(
lnx− 1 + x

x
ln(1− x)− 3

2

)]
(2.37)

arises from conformal symmetry breaking. We can now use the known RG equations for

the B-meson decay constant in heavy-quark effective theory [32]

d

d lnµ
FB(µ) = −γF (αs)FB(µ) (2.38)

and of the hard-scattering function [33–36]

d

d lnµ
H(mb, 2Eγ , µ) =

[
Γcusp(αs) ln

2Eγ
µ

+ γH(αs)

]
H(mb, 2Eγ , µ) (2.39)

to derive the two-loop evolution equation for the jet function in the dual space. We obtain

d

d lnµ
j(p2, µ) = −

[
Γcusp(αs) ln

−p2e−2γE

µ2
− γ′(αs)

]
j(p2, µ)

− CF
(αs

2π

)2
∫ 1

0

dx

1− x
h(x) j(xp2, µ) +O(α3

s) ,

(2.40)

where

γ′(αs) = γη(αs)− γH(αs) + γF (αs) . (2.41)

The two-loop expressions for the anomalous dimensions on the right-hand side of this

relation are listed in appendix C. Using these results, we obtain

γ′(αs) = CF

(αs
4π

)2
[
CA

(
808

27
− 11π2

9
− 28ζ3

)
− TF nf

(
224

27
− 4π2

9

)]
+O(α3

s) . (2.42)

This quantity is genuinely non-abelian; it starts at two-loop order and has no C2
F term.

Interestingly, we find that γ′(αs) = −γW (αs) coincides, up to a sign, with the anomalous

dimension γW of the Drell-Yan soft function derived in [37]. The same quantity is known

to arise in the evolution equations for the thrust [38], beam thrust [39] and hemisphere
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soft functions [40] and for the soft function appearing in transverse-momentum resumma-

tion [41]. It would be interesting to explore the nature of this connection in more detail.

Starting from (2.40), we can apply the second transformation rule in (2.30) to derive

the explicit form of the RG evolution equation (2.9) for the jet function in momentum

space at two-loop order. The relevant anomalous dimension γJ is given by

γJ(p2, xp2, µ) =

∫ ∞
0

dy
√
xy

∫ ∞
0
dz J1

(
2
√
z
)

J1

(
2

√
xz

y

)
γdual
J (p2/z, yp2/z, µ) , (2.43)

where γdual
J denotes the anomalous dimension in the dual space, which according to (2.40)

is given by

γdual
J (p2, xp2;µ) =

[
Γcusp(αs) ln

−p2e−2γE

µ2
− γ′(αs)

]
δ(1− x)

+ CF

(αs
2π

)2 θ(1− x)

1− x
h(x) +O(α3

s) .

(2.44)

Using the orthonormality condition (2.31), we obtain from (2.43)

γJ(p2, xp2;µ) =

[
Γcusp(αs) ln

−p2e−2γE

µ2
− γ′(αs)

]
δ(1− x)

− Γcusp(αs)
1√
x

∫ ∞
0
dz ln z J1

(
2
√
z
)

J1

(
2
√
xz
)

+ CF

(αs
2π

)2 θ(1− x)

1− x
h(x) +O(α3

s) .

(2.45)

The integral in the second line diverges for x → 1 and must be evaluated in the sense of

distributions by studying its action on a smooth test function f(x). We find

1√
x

∫ ∞
0
dz ln z J1

(
2
√
z
)

J1

(
2
√
xz
)

= −
[
θ(1− x)

1− x
+
θ(x− 1)

x(x− 1)

]
+

− 2γE δ(1− x) . (2.46)

Using this result, we obtain

γJ(p2, xp2;µ) =

[
Γcusp(αs) ln

−p2

µ2
− γ′(αs)

]
δ(1− x) + Γcusp(αs) Γ(1, x)

+ CF

(αs
2π

)2 θ(1− x)

1− x
h(x) +O(α3

s) .

(2.47)

This is the desired extension of relation (2.12) to two-loop order.

As an important tangential outcome of our analysis, we now derive the explicit form of

the two-loop RG evolution equation of the B-meson LCDA in momentum space. Because

of the structural similarity of the evolution equations (2.36) and (2.40) in the dual space,

we can apply the same method as above to obtain

d

d lnµ
φB+(ω,µ) =

[
Γcusp(αs) ln

ω

µ
−γη(αs)

]
φB+(ω,µ)+Γcusp(αs)

∫ ∞
0
dxΓ(1,x)φB+(ω/x,µ)

+CF

(αs
2π

)2
∫ 1

0

dx

1−x
h(x)φB+(ω/x,µ)+O(α3

s) . (2.48)

This is the desired extension of the Lange-Neubert kernel to two-loop order.
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2.5 Solutions to the two-loop evolution equations

The evolution equation (2.40) in the dual space can be solved using the same technique

we have adopted in section 2.2. The key observation is that any power
(
−p2

)a
of the

momentum squared is an eigenfunction of the evolution kernel. To see this, note that∫ 1

0

dx

1− x
h(x)xa = β0 H(a) (2.49)

defines a dimensionless function of the exponent a, where

H(a) =

(
3CF
β0
− 1

)
ψ′(1 + a) +

2CF
β0

[
ψ′(1 + a)

a
−
(

1

a2
+ 2ψ′(1 + a)

)(
ψ(1 + a) + γE

)]
.

(2.50)

It follows that the function(
−p2e−2γE

µ2
j

)η+aΓ(µj ,µ)

exp
[
− 2S(µj , µ)− aγ′(µj , µ)

]

× exp

[
−

αs(µ)∫
αs(µj)

dα

β(α)

[
CF

( α
2π

)2
β0 H

(
η + aΓ(µj , µα)

)
+O(α3)

]] (2.51)

provides a solution to (2.40) with the initial condition (−p2e−2γE/µ2
j )
η at the matching

scale µ = µj . We now use the fact that the initial condition j(p2, µj) depends on p2 only

through powers of the logarithm L̂p = ln(−p2e−2γE/µ2). Writing

j(p2, µj) ≡ Ĵ(L̂p, µj) , (2.52)

we find in analogy with (2.20) that the general solution to the evolution equation (2.40) in

the dual space is obtained as

j(p2,µ) = exp
[
−2S(µj ,µ)−aγ′(µj ,µ)

]
(2.53)

×Ĵ(∂η,µj)

(
−p2e−2γE

µ2
j

)η+aΓ(µj ,µ)

exp

[
CF

αs(µ)∫
αs(µj)

dα

2π

[
H
(
η+aΓ(µj ,µα)

)
+O(α)

]]∣∣∣∣∣
η=0

,

where we have used that β(αs) = −β0α
2
s/(2π) + . . . at leading order.

It is not difficult to transform this solution back to momentum space. Using the second

relation in (2.30), we find that

J(p2, µ) = exp
[
− 2S(µj , µ)− aγ′(µj , µ)

]
× Ĵ(∂η, µj)

(
−p2e−2γE

µ2
j

)η+aΓ(µj ,µ)
Γ
(
1− η − aΓ(µj , µ)

)
Γ
(
1 + η + aΓ(µj , µ)

)
× exp

[
CF

αs(µ)∫
αs(µj)

dα

2π

[
H
(
η + aΓ(µj , µα)

)
+O(α)

]]∣∣∣∣∣
η=0

.

(2.54)
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In the final step, we employ the relation

J(∂η, µj) = Ĵ(∂η, µj) e
−2γEη

Γ(1− η)

Γ(1 + η)

∣∣∣∣
η=0

= Ĵ(∂η, µj)

[
1 +

2ζ3

3
η3 +O(η5)

]∣∣∣∣
η=0

(2.55)

between the functions Ĵ(∂η, µj) defined in (2.52) and J(∂η, µj) defined in (2.17), which

follows by setting µ = µj in the above solution. We conclude that the general solution to

the momentum-space RG evolution equation (2.9) is given by

J(p2, µ) = exp

[
− 2S(µj , µ)− aγ′(µj , µ)− 2γE aΓ(µj , µ)

]

× J(∂η, µj)

(
−p2

µ2
j

)η+aΓ(µj ,µ)
Γ
(
1− η − aΓ(µj , µ)

)
Γ(1 + η)

Γ
(
1 + η + aΓ(µj , µ)

)
Γ(1− η)

× exp

[
CF

αs(µ)∫
αs(µj)

dα

2π

[
H
(
η + aΓ(µj , µα)

)
+O(α)

]]∣∣∣∣∣
η=0

.

(2.56)

The explicit expressions for the two-loop anomalous dimensions (2.44) and (2.47), as

well as the explicit solutions of the corresponding evolution equations (2.53) and (2.56),

are among the most important new results obtained in this paper.

3 Two-loop calculation of the bare jet function

The radiative jet function can be directly evaluated from its definition in (1.2). In doing

so, we work to leading order in the electromagnetic coupling e but include higher-order

QCD corrections. It is useful to recast the original definition in terms of so-called “gauge-

invariant collinear building blocks” defined as [3, 42]

Xn(x) = W †n(x) ξn(x) , Aµ
n(x) + Gµn(x) = W †n(x)

[
iDµ

nWn(x)
]
. (3.1)

Note that the effective photon field A
µ
n and the gluon field G

µ
n, which contain the gauge

couplings in their definition, are separately gauge invariant. The definition of the jet

function in (1.2) therefore defines two gauge-invariant objects JA(p2) and JG(p2) via∫
ddx eips·x−〈γ(k)|T

(
/A⊥n (x) + /G⊥n (x)

)
Xn(x) X̄n(0) |0〉

= eq /ε∗⊥(k)
/n

2

in̄ · k
p2 + i0

[
JA(p2) + JG(p2)

]
.

(3.2)

A third contribution involving the derivative /∂⊥ acting on Xn(x) vanishes, because this

field carries vanishing transverse momentum.
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Since we work to leading order in electromagnetic interactions, the function JA is

equivalent to the collinear quark propagator dressed by light-like Wilson lines. This object

was studied in [6], where its discontinuity at two-loop order was presented. The function

JA can be determined from this result in a straightforward way. The two-loop calculation

of the new jet function JG can be performed using similar methods. As shown in [6],

the propogator in (1.2) can be rewritten in terms of standard QCD fields, because the

collinear SCET Lagrangian (without couplings to soft fields) is equivalent to the original

QCD Lagrangian [4]. We therefore use QCD Feynman rules for convenience.

In principle, the matrix element for JG can be calculated in a general covariant gauge.

However, the Feynman rules for vertices derived from the collinear gluon field Gµ(x) are

rather complicated due to the Wilson lines contained in its definition. In light-cone gauge

n · A(x) = 0, on the other hand, the field Gµ(x) = gsA
µ(x) takes on a very simple form,

since the Wilson lines become trivial (Wn = 1). The smaller number of Feynman diagrams

and the absence of ghost contributions result in a more efficient computation of JG in this

gauge. The free gluon propagator with momentum lµ in light-cone gauge is given by

i

l2 + i0

(
−gµν +

n̄µlν + n̄ν lµ

n̄ · l

)
, (3.3)

where we do not adopt the Mandelstam-Leibbrandt prescription to regularize the singu-

larity at n̄ · l = 0 (see [43] for more details).

Figure 1 illustrates the non-vanishing two-loop Feynman diagrams contributing to JG
in light-cone gauge. After performing simplifications of the Dirac, Lorentz and color al-

gebras, these diagrams can be transformed into linear combinations of scalar Feynman

integrals belonging to one of five different integral topologies, each of which contains up to

seven linearly independent squared propagators and up to two linear propagators. Mapping

the Feynman integrals to specific integral topologies requires partial-fraction decomposi-

tions on linear propagators followed by shifts of the loop momenta. The five integral

topologies can be cast into the form

∫
ddl1

∫
ddl2

1

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6 D

a7
7 D

a8
8 D

a9
9 D

a10
10 D

a11
11 D

a12
12

= − πd
(
−p2

)d−A1(n̄ · p)−A2 I~a(d) ,

(3.4)

where A1 =
∑9

i=1 ai and A2 =
∑12

i=10 ai. The denominators Dn are defined as (omitting

the “−i0” terms for brevity)

D1 = −l21 , D2 = −l22 , D3 = −(l1 + l2)2 ,

D4 = −(l1 + p)2 , D5 = −(l2 + p)2 , D6 = −(l1 + l2 + p)2 ,

D7 = −(l1 + p− k)2 , D8 = −(l2 + p− k)2 , D9 = −(l1 + l2 + p− k)2 ,

D10 = −n̄ · l1 , D11 = −n̄ · l2 , D12 = −n̄ · (l1 + l2) .

(3.5)
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Figure 1. Non-vanishing two-loop Feynman diagrams contributing to JG in light-cone gauge.

Graphs with other photon attachments vanish, because they involve scaleless integrals. There are

two contributions from the last diagram with different orientations of fermion-number flow in the

inner loop. Their sum vanishes because of Furry’s theorem.

The five integral topologies are given by restricting the propagator index in (3.4) as follows:

topology 1: a5 = a8 = a12 = 0 , topology 2: a5 = a8 = a11 = 0 ,

topology 3: a5 = a8 = a10 = 0 , topology 4: a3 = a8 = a12 = 0 ,

topology 5: a3 = a6 = a12 = 0 .

(3.6)

We use the public program FIRE5 [44] to perform the integration-by-parts (IBP) re-

duction of the integrals in each of the five topologies. Besides the ten IBP identities in each

topology, obtained by inserting differential operators in front of the integrands, additional

linear algebraic identities can be derived by means of a kinematic constraint. The fact that

the soft momentum ps+ = (p− k) in (1.2) is light-like leads to the relation

pµ − kµ =
p2

n̄ · p
n̄µ

2
. (3.7)
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By contracting both sides of this identity with the loop momenta lµ1 and lµ2 we derive

the identities

a−1 − a−7 +
p2

n̄ · p
a−10 = 0 for topologies 1, 2, 4 and 5 ,

a−1 − a−7 −
p2

n̄ · p
(a−11 − a−12) = 0 for topology 3 ,

(3.8)

and

−a−1 + a−3 + a−7 − a−9 +
p2

n̄ · p
a−11 = 0 for topologies 1 and 3 ,

−a−1 + a−3 + a−7 − a−9 −
p2

n̄ · p
(a−10 − a−12) = 0 for topology 2 ,

a−2 − a−4 − a−5 + a−6 + a−7 − a−9 +
p2

n̄ · p
a−11 = p2 for topology 4 ,

a−2 − a−8 +
p2

n̄ · p
a−11 = 0 for topology 5 .

(3.9)

Here the operator a−n lowers the index an on the nth denominator in (3.4) by one unit.

After implementing the above linear identities in FIRE5, the scalar Feynman integrals are

reduced to ten master integrals (MIs), all of which can be remapped onto topology 4 by

shifting the loop momenta.

To compute the MIs analytically, we use a method inspired by [45–47], which has also

been employed in the recent three-loop calculations of the soft and jet functions arising in

the factorization theorems for the inclusive decays B̄ → Xsγ and B̄ → Xu `
−ν̄ [48, 49].

The basic strategy is to first map each MI in d = 4 − 2ε spacetime dimensions to an

analytically calculable quasi-finite integral in higher dimension d = 6 − 2ε or d = 8 − 2ε,

and then determine the linear relations between the MIs and the corresponding quasi-finite

integrals by dimensional recurrence relations [50–52] and IBP reduction. The quasi-finite

integrals are free of divergences from the Feynman parameter integrations. They can be

found by observing that raising the dimension by an even number decreases the degree of

infrared divergences, while increasing appropriate propagator indices by integer amounts

decreases the degree of ultraviolet divergences. The ε expansions of the quasi-finite integrals

are linearly reducible and can be analytically evaluated by the powerful Maple package

HyperInt [53]. We use the public code LiteRed [54, 55] to determine the dimensional

recurrence relations. After further IBP reduction, we construct the linear relations between

the MIs in d+2 and d dimension in the form ~I(d+2) = A(d) · ~I(d). This allows us to build

linear relations between the MIs in d = 4− 2ε and the corresponding quasi-finite integrals

in higher dimension. Then the analytical results of the MIs are obtained by solving the

linear equations.

With the integrals at hand, the jet function JG is obtained by evaluating the Feynman

diagrams shown in figure 1. Adding to this result the contribution from JA, we obtain for
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the bare jet function at two-loop order

J (0)(p2) = 1 +
Zααs

4π

(
−p2

µ2

)−ε
CF e

εγE
Γ(1 + ε) Γ2(−ε)

Γ(2− 2ε)
(2− 4ε− ε2)

+

(
Zααs

4π

)2(−p2

µ2

)−2ε

CF
(
CFKF + CAKA + TF nfKnf

)
+O(α3

s) ,

(3.10)

where the two-loop coefficients are given by

KF =
2

ε4
+

1

ε2

(
−2−π

2

3

)
+

1

ε

(
−4−π

2

2
− 46ζ3

3

)
− 13

2
−π

2

6
−39ζ3+

π4

5
+O(ε) ,

KA =
11

6ε3
+

1

ε2

(
67

18
−π

2

6

)
+

1

ε

(
103

27
− 11π2

36
−7ζ3

)
− 695

162
− 103π2

108
− 14ζ3

9
− 43π4

180
+O(ε),

Knf =− 2

3ε3
− 10

9ε2
+

1

ε

(
−20

27
+
π2

9

)
+

230

81
+

5π2

27
+

64ζ3

9
+O(ε) . (3.11)

In appendix B we present our results for the two jet functions JA and JG separately,

including terms up to and including O(ε2).

Given the above result for the bare jet function in momentum space, it is straightfor-

ward to derive the corresponding expression for the bare jet function in the dual space.

The first relation in (2.30) implies that this function can be obtained from (3.10) by means

of the replacement (
−p2

µ2

)−nε
→ Γ(1− nε)

Γ(1 + nε)

(
−p2

µ2

)−nε
. (3.12)

4 Renormalization of the jet function

Because of the relative simplicity of the anomalous dimension in (2.44), it is most convenient

to perform the renormalization of the jet function in the dual space. Given the anomalous

dimension, one can construct the renormalization factor Zdual
J in the dual space, defined in

analogy with (2.5), using a general relation derived in [56]. It is based on a formal solution

of relation (2.10) and applies to Sudakov problems, in which the anomalous dimension

contains an explicit dependence on ln µ. We obtain

Zdual
J (p2,xp2;µ)

= exp⊗

[ αs(µ)∫
0

dα

2εα−β(α)

[
γdual
J (yip

2,y′ip
2;µ)−δ(yi−y′i)

α∫
0

dα′
2Γcusp(α′)

2εα′−β(α′)

]]
. (4.1)

This exact solution must be expanded in powers of αs at fixed ε to generate the renormal-

ization factor in the MS scheme. Note that the anomalous dimension γdual
J (yip

2, y′ip
2;µ)

in the exponent must be evaluated with αs(µ) replaced by α. The expression on the right-

hand side of the equation is a generalized matrix exponential. The symbol ⊗ means that,

when the exponential is expanded in a power series, one must integrate over all variables yi
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and y′i except for the first and the last one, which must be set equal to 1 and x, respectively.

This yields

Zdual
J (p2,xp2;µ) = δ(1−x)+

αs(µ)∫
0

dα

2εα−β(α)

[
γdual
J (p2,xp2;µ)−δ(1−x)

α∫
0

dα′
2Γcusp(α′)

2εα′−β(α′)

]

+
1

2

∫ ∞
0
dy

αs(µ)∫
0

dα

2εα−β(α)

[
γdual
J (p2,yp2;µ)−δ(1−y)

α∫
0

dα′
2Γcusp(α′)

2εα′−β(α′)

]

×
αs(µ)∫
0

dα

2εα−β(α)

[
γdual
J (yp2,xp2;µ)−δ(y−x)

α∫
0

dα′
2Γcusp(α′)

2εα′−β(α′)

]
+. . . .

(4.2)

At two-loop order, we obtain in this way

Zdual
J (p2,xp2;µ) =

{
1+

αs
4π

[
− Γ0

2ε2
+

Γ0L̂p−γ′0
2ε

]
+
(αs

4π

)2
[

Γ2
0

8ε4
− Γ0

4ε3

(
Γ0L̂p−γ′0−

3

2
β0

)

+
1

8ε2

(
Γ0L̂p−γ′0

)(
Γ0L̂p−γ′0−2β0

)
− Γ1

8ε2
+

Γ1L̂p−γ′1
4ε

]}
δ(1−x)

+
CF
ε

(αs
4π

)2 θ(1−x)

1−x
h(x)+O(α3

s) , (4.3)

where L̂p = ln(−p2e−2γE/µ2). The relevant expansion coefficients Γn and γ′n of the anoma-

lous dimensions are listed in appendix C. Applying this result to the bare jet function in

the dual space, we find that indeed all 1/ε poles cancel out. This provides a non-trivial

consistency check on the two-loop results for γη(αs) in (2.41) and h(x) in (2.37), which

were obtained in [31]. The result for the renormalized dual jet function reads

j(p2, µ) = 1 +
CFαs

4π

[(
L̂2
p − 1− π2

6

)
+
αs
4π

(
CFk

dual
F + CAk

dual
A + TF nf k

dual
nf

)]
+O(α3

s) ,

(4.4)

where

kdual
F =

L̂4
p

2
−
(

1 +
π2

6

)
L̂2
p +

(
π2 − 4ζ3

)
L̂p +

3

2
− π2

3
− 39ζ3 +

119π4

360
,

kdual
A = −11

9
L̂3
p +

(
67

9
− π2

3

)
L̂2
p −

(
305

27
− 14ζ3

)
L̂p +

493

162
− 103π2

108
+

184ζ3

9
− 43π4

180
,

kdual
nf

=
4

9
L̂3
p −

20

9
L̂2
p +

76

27
L̂p +

14

81
+

5π2

27
− 8ζ3

9
.

(4.5)

Given the above result, we can obtain the jet function in momentum space by applying

the second integral transformation in (2.30). It follows that we must perform the replace-

ments

L̂p → Lp , L̂2
p → L2

p , L̂3
p → L3

p + 4ζ3 , L̂4
p → L4

p + 16ζ3Lp , (4.6)
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where now Lp = ln(−p2/µ2). This gives the final result

J(p2, µ) = 1 +
CFαs

4π

[(
L2
p − 1− π2

6

)
+
αs
4π

(
CFkF + CAkA + TF nf knf

)]
+O(α3

s) , (4.7)

with

kF =
L4
p

2
−
(

1+
π2

6

)
L2
p+
(
π2+4ζ3

)
Lp+

3

2
−π

2

3
−39ζ3+

119π4

360
,

kA =−11

9
L3
p+

(
67

9
−π

2

3

)
L2
p−
(

305

27
−14ζ3

)
Lp+

493

162
− 103π2

108
+

140ζ3

9
− 43π4

180
,

knf =
4

9
L3
p−

20

9
L2
p+

76

27
Lp+

14

81
+

5π2

27
+

8ζ3

9
.

(4.8)

The two-loop expressions (4.4) and (4.7) for the radiative jet functions in the dual space

and in momentum space are important new results obtained in this paper.

We have derived the two-loop result (4.7) for J(p2) in a second, totally independent

way by performing a two-loop calculation of the hard matching coefficients H2(z) and H3

in the factorization formula for the h→ γγ decay amplitude derived in [20]. Further details

about this rather difficult calculation will be presented elsewhere. In the limit where z → 0,

these coefficients were shown to obey the refactorization formula

lim
z→0

H2(z) = −H3

z

[
J(zM2

h) +O(z)
]
. (4.9)

The two-loop result we have obtained for the bare jet function from this relation is in

complete agreement with the expression given above. This not only confirms our result for

the jet function but also provides a non-trivial test of the refactorization formula (4.9).

5 Phenomenological impact of the two-loop corrections

The two-loop jet function we have calculated in this paper is the last missing ingredient

for a calculation of the leading-power contributions to the B− → γ`−ν̄ decay amplitude at

NNLO in RG-improved perturbation theory. This is important, since this process provides

the most direct information about the properties of the B-meson LCDA [57]. The potential

impact of power corrections in ΛQCD/mb has been studied in [58–60].

In order to estimate the potential impact of the two-loop corrections to the jet function,

we recall that, as shown in (2.33), the decay amplitude is proportional to the convolution

J ⊗ φ =

∫ ∞
0

dω

ω
J(−2Eγω, µ)φB+(ω, µ) , (5.1)

where Eγ is the photon energy in the B-meson rest frame. For the purposes of illustration,

we fix the renormalization scale at a value µ = µj ≈ 1.5 GeV, corresponding to a typical

matching scale for the jet function. The LCDA naturally lives at a lower scale µ0 of order

1 GeV, but since in practice there is no large scale hierarchy, we will not resum logarithms

of the ratio µj/µ0. Following [57], we define the hadronic matrix elements

1

λB(µ)
=

∫ ∞
0

dω

ω
φB+(ω, µ) , σn(µ) = λB(µ)

∫ ∞
0

dω

ω
lnn

µ0

ω
φB+(ω, µ) , (5.2)
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where µ0 = 1 GeV is a fixed reference scale, which is part of the definition of the logarithmic

moments. For simplicity, we choose the matching scale µj such that ln(2Eγµ0/µ
2
j ) = 0.

We then obtain at two-loop order (with nf = 4 light quark flavors)

J ⊗ φ =
1

λB

{
1 +

αs(µj)

0.35

(
3.71σ2 − 9.82

)
· 10−2

+

[
αs(µj)

0.35

]2(
0.07σ4 + 0.29σ3 + 0.46σ2 − 4.32σ1 − 5.03

)
· 10−2

}
,

(5.3)

where all hadronic parameters are defined at the scale µj . We have chosen αs(µj) = 0.35

as a reference value for the strong coupling, which corresponds to µj ≈ 1.5 GeV. On

general grounds, one expects the logarithmic moments σn to be of O(1), even though in

concrete models for φB+(ω) such as the simplest exponential model [23] the higher moments

defined with µ0 = 1 GeV tend to take on much larger values. We observe that the two-loop

corrections are not significantly smaller than the corrections arising at one-loop order and

hence should be included in future analyses. For example, using the central values of the

default choices σ1 = 1.5± 1 and σ2 = 3± 2 adopted in [57], one finds

J ⊗ φ ≈ 1

λB

[
1 + 1.3 %

∣∣
αs

+
(
− 10.1 + 0.29σ3 + 0.069σ4

)
%
∣∣
α2
s

]
. (5.4)

Note that the smallness of the one-loop correction term is linked with the particular choice

of σ2. We leave a complete analysis of the B− → γ`−ν̄ decay rate including higher-order

perturbative corrections for future work.

6 Conclusions

We have presented a detailed study of the radiative jet function J(p2) defined in (1.2),

which plays a central role in the theory of factorization at subleading power in scale ratios.

This object appears in factorization theorems for important exclusive processes such as the

rare B-meson decay B− → γ`−ν̄ and the contributions to the radiative Higgs-boson decay

h→ γγ mediated by light-quark loops. In the first case, in particular, a precise knowledge

of the jet function is a prerequisite for extracting accurate information about the B-meson

LCDA from experimental data in the region of high photon energy. The B-meson LCDA

itself is a central quantity in the theory of QCD factorization applied to exclusive decays

of B mesons [61, 62].

We have calculated the radiative jet function at two-loop order both in momentum

space and in a dual space, in which its RG evolution equation takes on a particularly

simple form. We have further derived the anomalous dimensions for the jet functions

in momentum and the dual space, including for the first time the so-far unknown two-

loop contributions not controlled by the cusp anomalous dimension. Our derivation of

these terms has relied on a recent calculation of the corresponding contributions to the

anomalous dimension of the B-meson LCDA in the dual space [31]. We find that the

quantity γ′(αs) in (2.12) obeys an unexpected relation with the anomalous dimension of

the Drell-Yan soft function [37], which deserves further study. Finally, we have obtained
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analytic solutions to the two-loop RG evolution equations of the radiative jet function in

both spaces. The technique we used for obtaining these solutions is general and can be

applied to other radiative jet functions as well.

The results presented in this paper will play an important role in the renormalization

of the factorization theorem for the light-quark induced h → γγ decay amplitude derived

in [20]. Using the evolution equations of the radiative jet function derived here and of

a hard function well known in SCET, we will be able to derive the two-loop evolution

equation satisfied by the soft-quark soft function [63], another central object in the theory

of factorization beyond the leading power.

Acknowledgments

One of us (M.N.) is grateful to Thomas Becher, Guido Bell, Martin Beneke, Volodya Braun

and Thorsten Feldmann for useful discussions. This research has been supported by the

Cluster of Excellence PRISMA+ (project ID 39083149), funded by the German Research

Foundation (DFG), and under grant 05H18UMCA1 of the German Federal Ministry for

Education and Research (BMBF). The research of Z.L.L. is supported by the U.S. De-

partment of Energy under Contract No. DE-AC52-06NA25396, the LANL/LDRD program

and within the framework of the TMD Topical Collaboration.

A Evolution with a general boundary condition

For the case of downward scale evolution, for which µ < µj and hence aΓ(µj , µ) > 0, it is

possible to evaluate the integral over t in (2.22) in closed form using the theorem of residues,

adopting a technique developed in [64] for the case of the B-meson LCDA. The integrand

contains single poles in the complex t-plane located at t = in and t = −i[n − aΓ(µj , µ)],

where n ∈ N is a positive integer. Expressing the Fourier image J̃(t, µj) in terms of the

original jet function using

J̃(t, µ) =

∫ ∞
0

dx

x
J(xp2, µ)

(
−xp2

µ2

)−it
, (A.1)

we see that for x < 1 (x > 1) the contour can be closed in the upper (lower) half plane, and

one then needs to perform the infinite sum over the residues of the poles. Let us assume

that aΓ(µj , µ) < 1, such that all poles in the second series lie in the lower half plane. This

condition is always satisfied in practical calculations. At leading order, it is equivalent to

the statement that αs(µ)/αs(µj) > exp
(2β0

Γ0

)
≈ 23, where the numerical value refers to the

case of four light quark flavors. We then obtain

J(p2, µ) = exp
[
− 2S(µj , µ)− aγ′(µj , µ)

]
e−2γE a

Γ(2− a)

Γ(a)

(
−p2

µ2
j

)a
×
∫ 1

0
dx
[
J(xp2, µj) + x−aJ(p2/x, µj)

]
2F1(1− a, 2− a; 2;x) ,

(A.2)

where a ≡ aΓ(µj , µ). This elegant formula relates the jet function at the scale µ < µj to

the jet function defined at the matching scale µj , irrespective of what the initial condition
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is. We stress that this formula cannot be applied to the case of upward evolution (µ > µj).

In the limit x→ 1 and for a < 1
2 , the hypergeometric function behaves like 2F1(1− a, 2−

a; 2;x) ∼ (1− x)−1+2a, which generates a non-integrable singularity if a < 0.

B Two-loop results for the functions JA and JG

Here we present our results for the jet functions JA and JG defined in (3.2), keeping terms

of higher order in ε. We find

J
(0)
A (p2) = 1 +

Zααs
4π

(
−p2

µ2

)−ε
CF e

εγE
Γ(1 + ε) Γ2(−ε)

Γ(2− 2ε)
(4− 5ε+ ε2)

+

(
Zααs

4π

)2(−p2

µ2

)−2ε

CF
(
CFK

A
F + CAK

A
A + TF nfK

A
nf

)
+O(α3

s) ,

J
(0)
G (p2) = 1 +

Zααs
4π

(
−p2

µ2

)−ε
CF e

εγE
Γ(1 + ε) Γ2(−ε)

Γ(2− 2ε)
(−2 + ε− 2ε2)

+

(
Zααs

4π

)2(−p2

µ2

)−2ε

CF
(
CFK

G
F + CAK

G
A + TF nfK

G
nf

)
+O(α3

s) .

(B.1)

For the two-loop coefficients in these expressions, we obtain up to O(ε2) the following

results:

KA
F =

8

ε4
+

12

ε3
+

65

2ε2
+

1

ε

(
311

4
−π2− 124ζ3

3

)
+

(
1437

8
− 41π2

12
−86ζ3+

17π4

90

)
+

(
6479

16
− 215π2

24
− 878ζ3

3
−π

4

15
− 4π2ζ3

3
+

164ζ5

5

)
ε

+

(
28589

32
− 351π2

16
− 2344ζ3

3
− 95π4

48
+

35π2ζ3

3
− 474ζ5

5
+

491π6

1620
+

1654ζ2
3

9

)
ε2 ,

KA
A =

11

3ε3
+

1

ε2

(
233

18
−π

2

3

)
+

1

ε

(
4541

108
− 11π2

18
−20ζ3

)
+

(
86393

648
− 197π2

108
− 514ζ3

9
− 19π4

60

)
+

(
1605689

3888
− 4109π2

648
− 4646ζ3

27
− 317π4

360
+

59π2ζ3

9
−132ζ5

)
ε

+

(
29451137

23328
− 81209π2

3888
− 43780ζ3

81
− 967π4

432
+

257π2ζ3

27
− 4882ζ5

15
− 421π6

2835
+

403ζ2
3

3

)
ε2 ,

KA
nf

=− 4

3ε3
− 38

9ε2
+

1

ε

(
−373

27
+

2π2

9

)
+

(
−7081

162
+

19π2

27
+

128ζ3

9

)
+

(
−131761

972
+

373π2

162
+

1216ζ3

27
+

19π4

90

)
ε

+

(
−2422201

5832
+

7081π2

972
+

11936ζ3

81
+

361π4

540
− 64π2ζ3

27
+

1088ζ5

15

)
ε2 , (B.2)
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and

KG
F =− 6

ε4
− 12

ε3
+

1

ε2

(
−69

2
−π

2

3

)
+

1

ε

(
−327

4
+
π2

2
+26ζ3

)
+

(
−1489

8
+

13π2

4
+47ζ3+

π4

90

)
+

(
−6611

16
+

77π2

8
+149ζ3−

2π4

3
+

38π2ζ3

9
+

602ζ5

5

)
ε

+

(
−28665

32
+

1201π2

48
+188ζ3−

431π4

720
+

19π2ζ3

6
− 291ζ5

5
+

3977π6

11340
+47ζ2

3

)
ε2 ,

KG
A =− 11

6ε3
+

1

ε2

(
−83

9
+
π2

6

)
+

1

ε

(
−4129

108
+

11π2

36
+13ζ3

)
+

(
−89173

648
+

47π2

54
+

500ζ3

9
+

7π4

90

)
+

(
−1775893

3888
+

3049π2

648
+

5788ζ3

27
+

133π4

144
− 65π2ζ3

18
+ζ5

)
ε

+

(
−33912061

23328
+

74917π2

3888
+

66242ζ3

81
+

643π4

216
− 304π2ζ3

27
+

4466ζ5

15
− 245π6

1296
− 467ζ2

3

3

)
ε2 ,

KG
nf

=
2

3ε3
+

28

9ε2
+

1

ε

(
353

27
−π

2

9

)
+

(
7541

162
− 14π2

27
− 64ζ3

9

)
+

(
150125

972
− 353π2

162
− 896ζ3

27
− 19π4

180

)
ε

+

(
2877653

5832
− 7541π2

972
− 11296ζ3

81
− 133π4

270
+

32π2ζ3

27
− 544ζ5

15

)
ε2 . (B.3)

C Anomalous dimensions

Here we list expressions for the relevant anomalous dimensions up to two-loop order. We

define the perturbative expansion coefficients via

Γcusp(αs) = Γ0
αs
4π

+ Γ1

(αs
4π

)2
+ . . . , (C.1)

and similarly for all other anomalous dimensions. The coefficients needed in (4.3) are

Γ0 = 4CF ,

Γ1 = 4CF

[(
67

9
− π2

3

)
CA −

20

9
TF nf

]
,

γ′0 = 0 ,

γ′1 = CF

[
CA

(
808

27
− 11π2

9
− 28ζ3

)
− TF nf

(
224

27
− 4π2

9

)]
.

(C.2)

The coefficient of the anomalous dimensions in (2.42) are

γη,0 =−2CF ,

γη,1 =CF

[
CF

(
−4+

14π2

3
−24ζ3

)
+CA

(
254

27
− 55π2

18
−6ζ3

)
+TF nf

(
−64

27
+

10π2

9

)]
,

γH,0 =−5CF ,
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γH,1 =CF

[
CF

(
−3

2
+2π2−24ζ3

)
+CA

(
−1549

54
− 7π2

6
+22ζ3

)
+TF nf

(
250

27
+

2π2

3

)]
,

γF,0 =−3CF ,

γF,1 =CF

[
CF

(
5

2
− 8π2

3

)
+CA

(
−49

6
+

2π2

3

)
+

10

3
TF nf

]
. (C.3)
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