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Abstract: We study the inner horizons of rotating and charged black holes in anti-de Sit-

ter space. These black holes have a classical analytic extension through the inner horizon

to additional asymptotic regions. If this extension survives in the quantum theory, it re-

quires particular analytic properties in a dual CFT, which give a prescription for calculating

correlation functions for operators placed on any asymptotic boundary of the maximally

extended spacetime. We show that for charged black holes in three or greater dimensions,

and rotating black holes in four or greater dimensions, these analytic properties are in-

consistent in the dual CFT, implying the absence of an analytic extension for quantum

fields past the inner horizon. Thus, we find that strong cosmic censorship holds for all

AdS black holes except rotating BTZ. To further study the latter case, we insert classical

perturbations near the boundary at late times, producing shockwaves traveling along the

inner horizon. We holographically compute CFT correlators in this background that probe

a high energy scattering process near the inner horizon and argue that the shockwave does

not destabilize the inner horizon violently enough to prevent signaling between different

asymptotic regions of the Penrose diagram. This provides evidence that the rotating BTZ

black hole does violate the strong cosmic censorship conjecture.
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1 Introduction

The inner horizon of a rotating or charged black hole presents several conceptual problems.

Perhaps the most disturbing of these is already apparent at the level of the Penrose diagram
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Figure 1. The Penrose diagram of a non-extremal rotating or charged black hole in anti-de Sitter

space. The diagram repeats infinitely in the vertical direction. Blue lines are outer horizons, red

lines are inner horizons, and jagged lines are the timelike singularity.

(figure 1).1 The maximal analytic extension of the spacetime continues infinitely in the

past and future directions, and includes an infinite number of asymptotic regions. This

is in sharp contrast to the static case, where the Penrose diagram is finite and has only

two asymptotic regions. In principle, an observer could leave one asymptotic region, travel

through the outer and inner horizons, view the timelike singularity, exit the black hole,

and then arrive at another asymptotic region to report his or her observations. As this

thought experiment suggests, the inner horizon represents a breakdown of predictability in

general relativity. The evolution of fields is not unique beyond the inner horizon, as there

is a choice of boundary conditions to be made at the singularity. Even the metric suffers

from this non-uniqueness, if we only require a finite degree of differentiability. The strong

cosmic censorship conjecture [1] was created to save the determinism of general relativity,

and effectively states that performing the described experiment is impossible.

1We will refer to diagrams like figure 1 as Penrose diagrams throughout this paper, though they are

more properly called projection diagrams since rotating spacetimes break spherical symmetry explicitly.
This causes confusions if one interprets these pictures as proper Penrose diagrams, which are supposed to

obey certain conditions related to causal structure; we will return to this point in section 3.
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Much has been said about the strong cosmic censorship conjecture in the context of

rotating and charged black holes in de Sitter, flat, and anti-de Sitter (AdS) backgrounds

from the standpoint of classical gravity. In many examples, the conjecture is enforced by an

instability to perturbations [2–6]; the slightest perturbation (even a single particle) causes

the inner horizon to collapse into a true spacelike curvature singularity. Classically, these

analyses usually attempt to analytically extend perturbed initial data across the inner

horizon, and discover that derivatives of the metric diverge in a more severe way than

is usually allowed [7–9]. Semiclassical analyses employ quantum field theory on curved

backgrounds to understand the stress tensor sourced by a point particle as it approaches

the inner horizon [10–15]. These approaches have yielded interesting insights, and several

recent works have suggested that strong cosmic censorship can in fact be violated [13, 16].2

Nevertheless, it is safe to say that the validity of strong cosmic censorship is still an open

question, and may not be fully resolved until a complete theory of quantum gravity is

understood nonperturbatively.

In asymptotically AdS backgrounds, such a nonperturbative ultraviolet completion of

classical gravity is famously given by a conformal field theory (CFT) [28, 29]. In this case

the infinite number of asymptotic regions in figure 1 näıvely suggests that the maximally

extended spacetime should be dual to an infinite product of field theories, one on each

asymptotic boundary. But this picture must be wrong for two reasons. First, the various

asymptotic regions are timelike separated, and so are not independent. Secondly, we know

that eternal black holes in AdS space are described by thermofield double states [30] in

a product of just two Hilbert spaces even in the charged and rotating cases. From this

perspective also the additional asymptotic regions must not be independent of the first two,

again suggesting some version of cosmic censorship (see [31] for a related discussion). The

physics of the interiors of AdS black holes and horizon stability have been perturbatively

studied using the AdS/CFT correspondence [12, 32–37]. In this context, some of the most

intriguing results have been extracted by studying the analytic behavior of CFT correlation

functions. The authors of [35, 38] observed that the bulk geometry predicts the existence of

a spurious lightcone singularity in the CFT two-point function, but that such a singularity

is only present on the second sheet of the analytically continued correlator. Later, analytic

properties of wave equations in rotating black hole spacetimes were used to explain how

information about the inner horizon appears in CFT correlators [39].

We develop these ideas further to study the implications of extending the black hole

metric beyond the inner horizon on CFT correlation functions. The potential ambigui-

ties in this extension of spacetime (see above) are fixed if we require analyticity; thus the

maximal analytic extension of is unique. As discussed above, is clear that if this extended

spacetime means anything from the CFT point of view, a prescription to compute correla-

tors of operators between any asymptotic boundary from correlators of a single CFT should

exist.3 The analytic structure of the bulk allows us to deduce how to do this via analytic

2For just a small collection of older work on strong cosmic censorship, see [7, 17–19]. For the recent

resurgence of interest, see [9, 20–27] and particularly the introductions of [13, 16] and references therein.
3There should be a prescription to compute the correlations in a two-sided thermofield double state as

we discussed above, but, as is well known, such correlators can be obtained by analytic continuation from

a one-sided correlator.
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continuation of correlators on a single boundary.4 We use this prescription to conduct two

tests of inner horizon stability in AdS black holes. First, we examine conditions for the

procedure to be well defined, by requiring Lorentzian bulk correlators to be single valued

when we move AdS operators around Lorentzian loops that do not cross light cones of

other insertions (see [39] for a closely related discussion). For loops enclosing the outer

bifurcate horizon, we find that single valuedness of boundary correlators is equivalent to

the well-known KMS condition, satisfied by any thermal correlation function. We find

a similar, but inequivalent, periodicity condition coming from loops enclosing the inner

bifurcate horizon.5 We find that the KMS condition coming from the inner horizon is in

clash with unitarity and causality in the boundary CFT for charged, and in higher than

three bulk dimensions, also rotating black holes. However, for rotating BTZ black holes,

the two conditions are satisfied simultaneously and correspond to having a separate KMS

periodicity condition for leftmovers and rightmovers in the dual CFT. We will examine

the implications of these results and interpret them as saying that in quantum gravity the

black hole spacetime cannot be extended beyond the inner horizon for charged black holes

in any dimension, and for rotating black holes in more than three dimensions.6

Clearly, the rotating BTZ black hole [40–42] is special, since we find no obstructions to

define correlation functions between boundaries separated by the inner horizon via analytic

continuation. We therefore move on to study such correlation functions with the aim to

look for signatures of an instability under perturbations. The idea is to study a two point

function between two sides of the inner horizon in a state that is slightly perturbed away

from the rotating thermal ensemble. We realize this perturbation via the insertion of

another local operator, and therefore the problem reduces to studying a certain analytic

continuation of a CFT four point function. We will determine this four point function

in two ways. First, in the high temperature limit, in which case one can map the four

point function to the plane via the exponential map. We show that the relevant analytic

continuation probes the second sheet of the vacuum correlator, which is the same that is

relevant for out of time ordered correlators (OTOC) and the butterfly effect [43].7 One

can then give an expression for holographic theories using large c Virasoro vacuum block

approximation [43, 53]. Second, we perform a bulk high energy scattering experiment near

the inner horizon using the elastic eikonal approximation along the lines of [54–56]. In this

setup, the perturbing operator produces an exact shockwave solution at the inner horizon.8

With such a four point function in hand, we can ask what kind of effects of instability

we are looking for. In generic situations, four point functions in the CFT factorize to

leading order in GN . Having an instability implies that we cannot neglect backreaction

and therefore we are looking for a kinematical enhancement of GN corrections (i.e., secular

effects). This is precisely something that we expect from OTO-like correlation functions,

4See [33] for a similar prescription for scattering through the singularity in static BTZ.
5We will argue that these periodicity conditions are sensitive to the structure of the vacuum state of the

bulk fields, analogously to those probed in the smoothness test of [16].
6We focus on the non-extremal case; extremal black holes have very different Penrose diagrams.
7OTOCs have been computed in many different backgrounds and theories [44–50], and studying OTOCs

has led to bounds on chaos and the butterfly effect in quantum field theory [51, 52].
8See [46, 49] for OTOC calculations involving the outer horizon of rotating BTZ.
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which manifest such effects associated with Lyapunov growth in the context of dynamical

chaos. Three possible scenarios are:

1. They are limited to certain special configurations of points between the two sides of

the Cauchy horizon: in this case we would say cosmic censorship is violated because,

for most pairs of points on opposite sides of the horizon, the correlator remains

unchanged, suggesting that bulk probes are able to pass through largely undisturbed.

2. They affect all configurations of points between the two sides of the Cauchy horizon,

but the resummed correlator is non-trivial: in this case, some form of cosmic censor-

ship occurs, but a careful study of the endpoint of the instability will be required to

decide what happens in the end.

3. The resummed effect of the perturbation causes correlators between two sides of

the inner horizon factorize 〈WupWdown〉 ≈ 〈Wup〉〈Wdown〉. We would interpret this

as saying that the spacetime breaks into two disconnected pieces along the inner

horizon.

We will find scenario 1 for the four point function in the rotating BTZ black hole. As further

evidence for stability, we will explore the structure of null geodesics in the presence of the

shockwave at the inner horizon and find that the shockwave makes it easier to send signals

between boundaries separated by the Cauchy horizon. Thus, the rotating BTZ black hole

appears to violate cosmic censorship in agreement with other recent work [13, 16].

The paper is organized as follows. In section 2, we present a general CFT argument

against a smooth, unique spacetime beyond the inner horizon for any AdS black hole

(excluding rotating BTZ) using monodromy ideas similar to [39]. We also present a proposal

for analytic continuation of CFT correlators which places operators in different boundaries

of the Penrose diagram for a rotating or charged thermal ensemble. In section 3, we review

the embedding space construction of the rotating BTZ black hole and introduce various

useful coordinate patches. In section 4, we analyze boundary-anchored null geodesics in

rotating BTZ with a shockwave on the inner horizon.9 In section 5, we explain the relevance

of OTOC methods for inner horizon stability, and calculate these quantities in the boosted

black brane and rotating BTZ backgrounds. We conclude with a discussion in section 6.

2 Monodromy, no-go theorems, and multiboundary correlators

In this section, we exploit the analytic structure of the black hole geometry to infer con-

traints on the analytic structure of correlation functions in the holographically dual CFT.

Specifically, we will move probe operators from a boundary of the geometry, through the

bulk, and back again to the boundary, and analyze the structure of two-point functions

obtained in this way at leading order in GN .10 In this way, we derive two monodromy rela-

tions for the two-point function on an asymptotic boundary by demanding single-valuedness

9Similar shockwaves were studied for flat space 4d black holes in [57].
10Higher point correlators factorize at this order.
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of the correlator when we move an operator around a bifurcate horizon. For charged black

holes, and rotating black holes in dimensions greater than 3, this constraint (which probes

how local operators sense the quantum gravity vacuum for these CFT ensembles) will al-

ready be enough to see signatures of the breakdown of smoothness at the inner horizon:

we present two no-go theorems based on these constraints, one for charged and another for

rotating black holes, showing that the bulk spacetime does not have a consistent analytic

extension beyond the inner horizon.

These no-go theorems leave open the possibility that, uniquely, the rotating BTZ

black hole in three dimensions has a maximal analytic extension of the standard form

which is well-behaved in quantum gravity. The classical extension has an infinite series of

timelike separated boundaries past the inner horizon (figure 1). We propose a definition

for the correlation function of operators placed on multiple boundaries of this extended

geometry. Our prescription can be thought of as a fractional combination of the monodromy

relations around the bifurcate horizons, and extends the standard method of calculating the

correlation function of operators on the spacelike separated boundaries of the non-rotating

black hole. We apply our prescription to the rotating BTZ geometry in section 5.

2.1 Outer KMS conditions

Consider the eternal AdS-Schwarzschild wormhole. This geometry is understood as the

dual to the thermofield double state (TFD) on two copies of the boundary CFT [30]. The

TFD state is created by slicing up the path integral that calculates the thermal partition

function. In this interpretation, the partition function is the norm of the TFD state. The

Euclidean geometry has a thermal circle that is cut at two locations, giving two spatial

slices. This leads to two copies of the CFT. In this Euclidean set up, it is easy to see

that two sided correlators (i.e. correlators of operators placed in the two CFT copies) are

obtained from one sided correlators in the thermal theory by sending operators halfway

around the thermal circle. That is

〈VR(t, x)VL(0, 0)〉β = 〈VL(t− iβ/2, x)VL(0, 0)〉β , (2.1)

where β is the inverse temperature, and we require the operators to be spacelike separated

so that the correlator is on the Euclidean sheet, that is |t| < |x|. On the other hand, if

we send an operator all the way around the thermal circle, we recover a condition on the

one-sided correlator

〈V (x, t− iβ)V (0, 0)〉β = 〈V (x, t)V (0, 0)〉β , |x| > |t|. (2.2)

This is the well known KMS condition that is true for any thermal correlation function and

follows simply from the cyclicity of the thermal trace and the fact that the logarithm of the

thermal density matrix is the Hamiltonian.11 In terms of Euclidean correlation functions,

it is simply the statement that the Euclidean manifold has a compact thermal circle of

length β.

11When the ensemble is charged, neutral operators satisfy the same condition because they commute

with the charge.
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We propose an alternative understanding of this prescription that comes directly from

the Lorentzian holographic geometry. The AdS-Schwarzschild metric has the general form

ds2 = −F (r)dt2 +
1

F (r)
dr2 + hij(r, x)dxidxj , (2.3)

where F (r) is the “blackening factor”. Here we allow for a general F so that we can also

treat charged black holes.12 The outer horizon is the largest simple zero of F (r) at r+.

The standard way of obtaining the maximal analytic extension is to introduce a tortoise

coordinate via dr∗ = dr/F (r) as a step towards changing to Kruskal coordinates13

U = −e−κ+(t−r∗), V = eκ+(t+r∗), κ+ = F ′(r+)/2. (2.4)

Here κ+ = 2π/β is the surface gravity, and β ≡ β> is the inverse temperature of the outer

horizon, which is also the physical inverse temperature of the dual state. We will later refer

to the outer and inner horizon temperatures as β> and β<, respectively, though for now we

only need the outer temperature which we refer to as β. In these coordinates, the horizon

is at UV = 0 and we obtain four wedges which are labeled by the four different signs that

U and V can take. Approaching this horizon from the right outer tortoise coordinates

we have t → ∞ and r∗ → −∞, so U = 0 and V finite. It is apparent from (2.4) that

we can understand the change of sign in U and therefore crossing to the interior in these

coordinates in terms of an imaginary shift at this infinity

t→ t− iβ/4, r∗ → r∗ + iβ/4, (2.5)

since this flips the sign of U but keeps the sign of V . Crossing to the left exterior happens

at t = −∞ and r∗ = −∞ and here we need to perform the shift

t→ t− iβ/4, r∗ → r∗ − iβ/4, (2.6)

so that we flip the sign of V at crossing V = 0 but keep the sign of the finite U . The

shifts in r∗ cancel and we end up with the shift t → t− iβ/2 between right and left AdS-

Schwarzschild coordinates. We propose that we can understand the prescription (2.1) in

the Lorentzian spacetime, by thinking about boundary correlators as the boundary limit of

bulk correlators, and then picking an operator that is space-like separated from the others

and sending it to the other side of the wormhole via the Lorentzian bulk, while keeping

track of the trajectory of its complexified coordinates. We do not cross any lightcones in

the process and the result of this procedure is clearly (2.1). This is illustrated in figure 2.

To be consistent and important condition must be satisfied: as long as we do not cross

light cones of other insertions, the result should not depend on the bulk path through which

we carry the operator. In other words, correlation functions should be single valued in the

bulk, up to operator ordering. Since the Killing time coordinate in a four wedge gluing, as

12See [58] for the explicit form of F in case of charged black holes in AdS. We will discuss rotating black

holes later, in section 2.4.
13See [59] for a thorough review.
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Figure 2. Moving an operator between spacelike separated boundaries in the analytically extended

spacetime. First, we start on the Euclidean sheet of the correlator, such that the operator we want

to move (orange dot) is spacelike separated from the rest of the insertions (gray dot). Then we

move the operator from one side to the other in the analytically extended Lorentzian spacetime,

and we can do this without crossing light cones. In terms of Killing time coordinate t, this amounts

to sending t 7→ ±iβ>/2 in the position of the operator (wile keeping a co-rotating coordinate fixed,

if this is a rotating black hole).

in figure 2, picks up imaginary shifts in going around the wedges, non-trivial constraints

arise from moving operators around such bifurcate horizons.

In fact, we have already met an example of such a constraint. Consider the boundary

two point function of a neutral operator in a (possibly charged) black hole background,

where the operators are spacelike separated, and carry an operator around the outer bifur-

cate horizon (left panel of figure 3). This gives rise to the periodicity condition14

〈V (x, t− iβ)V (0, 0)〉β = 〈V (x, t)V (0, 0)〉β , |x| > |t|. (2.7)

which is precisely the KMS condition (2.2) in the CFT. This requirement is equivalent to

the usual way of determining the temperature by requiring absence of a conical singularity

in the Euclidean bulk geometry, and therefore single valued correlation functions in the

Euclidean bulk. However, the Euclidean geometry does not explicitly represent the interior

of the black hole, so it is more difficult to relate properties of the inner horizon to Euclidean

boundary correlators. This is why we find the above Lorentzian single valuedness condition

convenient: it can be directly applied to the inner bifurcate horizon.

2.2 Inner KMS conditions and consequences of its violation

Let us consider a boundary two point function15 where the operators are time-like sepa-

rated, and we move the futuremost operator around a loop encircling the inner bifurcate

horizon, where the loop is such that it stays in the future of the other insertion. Such a

loop is illustrated on the right of figure 3. We can extract the monodromy directly from the

Kruskal coordinates. However, the Kruskal patch (2.4) does not cover the inner horizon.

14Here we are being a bit schematic, since the boundary manifold might not be flat space. By |x| > |t|
we mean that the real parts of the separation is spacelike. By choosing |x| much smaller than the curvature

radius of the boundary manifold, the flat space formulas do apply.
15To leading order in GN , the condition follows for higher point functions from large N factorization.

Here we restrict attention to this situation.

– 8 –



J
H
E
P
0
6
(
2
0
2
0
)
0
5
4

Figure 3. Left: carrying an operator around the outer bifurcate horizon gives rise to the KMS

condition. Right: carrying an operator around the inner horizon gives rise to a new periodicity

condition.

There is an analogous Kruskal transformation which covers four wedges of the Penrose

diagram around the inner horizon, given for charged black holes by

U = −e−κ−(t−r∗), V = eκ−(t+r∗), κ− = −F ′(r−)/2, (2.8)

where the inner horizon temperature β< is defined via κ− ≡ 2π/β<. Notice that both the

outer (2.4) and inner (2.8) Kruskal transformations have an invariance under shifting the

exponent by 2πi, which can be achieved by

t→ t+
2πi

κ+
, t→ t+

2πi

κ−
, (2.9)

in the outer and inner horizon cases, respectively. The inner shift then gives the condition

〈V (x, t− iβ<)V (0, 0)〉β>β< = 〈V (x, t)V (0, 0)〉β>β< , |x| < |t|. (2.10)

We will call this the “inner KMS condition”. Also, we now denote expectation values

in rotating or charged ensembles with two temperatures. These two temperatures can be

either the outer and inner horizon temperatures β> and β<, or the chiral CFT temperatures

β+ and β−. Of course, these quantities are related via

β> =
1

2
(β+ + β−),

β< =
1

2
(β+ − β−).

(2.11)

– 9 –
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To infer the inner KMS condition (2.10), we are moving the bulk operator past the

Cauchy horizon; thus we are testing the conditions imposed by the existence of a CFT dual

on the evolution of bulk fields past this horizon. So let us spell out what it means for this

evolution if we find that (2.10) fails in the CFT. The infinite N two point function in the

bulk is determined by solving a linear wave equation in the analytically extended spacetime.

This solution is unique and unaffected by the singularity in the diamond that is between

the outer and inner horizons. This diamond is part of the inner Kruskal patch (2.8), and we

can ask if we can analytically continue this solution past the inner horizon. If an analytic

continuation exists to some regions beyond the initial diamond Re U,Re V > 0, it is of

course unique because of the identity theorem, though possibly multi-valued. There are

then three possibilities for this extension:

1. It is analytic in a small neighborhood of U = V = 0 in which case it must be single

valued and obey the inner condition (2.10).

2. It has a branch point at U = V = 0 in which case there is a discrete label on the

possible continuations for real U, V < 0 past the inner horizon. This evolution is then

not single valued and we would find a violation of (2.10) in the boundary CFT.

3. There is an essential singularity on the lines Re U = 0, Re V = 0 and no continuation

exists past the diamond.

Now let us examine the dependence of the solutions to the wave equation on the

boundary conditions on the timelike singularities. These boundary conditions can only

change the solution past the Cauchy horizon. Therefore, also taking into account the

linearity of the equation, the generic solution of the wave equation must have the form

φ = φanalytic + φnon−analytic, (2.12)

where φanalytic is the analytic extension (if it exists) discussed in the previous paragraph,

and φnon−analytic is a solution that is identically zero in the diamond between the inner and

outer horizons (and therefore nowhere analytic in inner Kruskal coordinates on the inner

horizon). All the dependence on the timelike singularities is in φnon−analytic, and it is by

definition single valued around the bifurcate horizon, since it starts from zero and goes to

zero. It follows that the monodromy of the solution around U = V = 0 is determined only

by φanalytic.

We conclude that if we find that (2.10) is violated in the CFT, we can rule out possi-

bility 1, i.e. either the bulk is not unique around the inner bifurcate horizon, or the bulk

two point function has an essential singularity everywhere on the inner horizon. Both of

these scenarios are in some sense worse than just having say some bombs thrown in from

the timelike singularity along the inner horizon: neither of them allows for a sensible defi-

nition of spacetime past the inner horizon. In scenario 3, we would in fact see a complete

decoupling between the two sides of the horizon, since in that case the two independent

pieces of the solution are localized on different sides.

This test is similar to the one proposed in [16], as it probes smoothness of the bulk

quantum vacuum on a fixed background. The argument in [16] is that a finite energy state

– 10 –
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of effective field theory in the bulk requires the bulk two point function to have a short

distance singularity that is identical with what one finds in the flat space vacuum state, and

having this preferred short distance singularity near both the inner and outer horizons at the

same time is a constraint on the bulk evolution of the modes that is difficult to satisfy. We

will comment further on the relationship with the smoothness condition of [16] in section 6.

2.3 Charged operators

Once again, for both (2.2) and (2.10) we restrict to charged black holes and we assume

the operator V to be neutral. For a charged operator, we use the fact that the correlation

function in the boundary is written in the form Tr[e−β>H+µQV (t)V †(0)] and assume that

[Q,V ] = qV . From this, we obtain the charged KMS condition

〈V (x, t− iβ>)V †(0, 0)〉β>β< = e−µq〈V (x, t)V (0, 0)†〉β>β< , |x| > t. (2.13)

The extra factor of e−µq can be eliminated by making the state dependent redefinition

V (t)→ e
−i µq

β>
t
V (t). (2.14)

One can understand this from the Lorentzian bulk, by representing the bulk two point

function in the first quantized formalism16

〈ΦV (x)ΦV (y)†〉 ∼
∫
Xi=x,Xf=y

DXe−imV
∫ √

Ẋ2−iq
∫
AµẊµ

. (2.15)

Here, ΦV is the bulk field dual to V and mV its mass, q its charge, and A the vector

potential of the black hole background [58]

A =

(
− C

rd−2
+ Φ

)
dt, (2.16)

where C is a constant proportional to the charge of the black hole [58] and Φ is a free

parameter. We expect (2.15) again to give a single valued function in the bulk, apart from

a possible monodromy around bifurcate horizons. This monodromy is fixed by the value

of the constant Φ, which we can change by a gauge transformation A 7→ A+ dχ, χ = χ0t,

but it is important that χ is not single valued in the Euclidean bulk, since Euclidean

time is periodic. Different choice of χ0 correspond to different dressings of the operator

as in (2.14). However, once we have fixed this dressing, it is not possible to remove it for

the monodromy around the inner bifurcate horizon. So in a gauge where we remove the

exponential factor for the outer KMS condition, we expect to obtain conditions of the form

〈V (x, t− iβ>)V †(0, 0)〉β>β< = 〈V (x, t)V (0, 0)†〉β>β< , |x| > t, (outer)

〈V (x, t− iβ<)V †(0, 0)〉β>β< = e−µ̃q〈V (x, t)V (0, 0)†〉β>β< , |x| < t, (inner),
(2.17)

where µ̃ is a function of µ and possibly β. We refrain from determining its explicit form,

because we will not need it in the following.

16Strickly speaking, one would have to look at the monodromies of the bulk Green’s function, follow-

ing [39], as before, we bypass this with a heuristic argument.
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2.4 KMS conditions in rotating black holes

We now turn to the rotating AdS black hole. When we have rotation, the metric is not of the

form (2.3), but an analogous construction of Kruskal coordinates exists. The important new

feature in this case is that we need to keep co-rotating coordinates fixed as we analytically

continue between different wedges in the Penrose diagram. These are related to boundary

spatial coordinates by shifts in time, therefore we end up with a prescription that is similar

to (2.2), except that it also involves complex shifts in spatial coordinates. We will work

this out explicitly in the case of the rotating BTZ black hole below. Subsequently, we will

show how it works for all dimensions D ≥ 4.

Our strategy for dealing with the rotating black hole begins with Schwarzschild coordi-

nates which cover a single wedge on the Penrose diagram. We will uncover the appropriate

Kruskal transformation to analytically extend around the bifurcate point.17 The form of

this transformation will yield the appropriate analytic continuation of boundary coordi-

nates, just as it did for the charged black hole. In the 3-dimensional case, the Kruskal

transformation for the (co-rotating) asymptotic region is well known and is given by [42]

U = −e−κ+(t−r∗), V = eκ+(t+r∗), (2.18)

where r∗ is a tortoise coordinate and we can express the surface gravities for rotating BTZ

in terms of the inner and outer horizon radii via

κ± ≡
r2

+ − r2
−

r±
. (2.19)

Just as in the charged case, there is an invariance of these coordinates in the complex t

plane corresponding to a shift by 2πi of the exponential argument, and this shift in the

bulk sends us around the bifurcate horizon once. The necessary shift is simply

t→ t+
2πi

κ+
, (2.20)

and since we are keeping the co-rotating angle ϕ − r−
r+
t fixed, this induces a shift in the

boundary angle

ϕ→ ϕ+
r−
r+

2πi

κ+
= ϕ+

2πi

κ−
. (2.21)

For the interior region (next to the singularity), the Kruskal transformation is instead

U = −e−κ−(t−r∗), V = eκ−(t+r∗), (2.22)

and so correspondingly we have for the inner shift (note the inner co-rotating angle ϕ− r+
r−
t

differs from the outer one)

t→ t+
2πi

κ−
, ϕ→ ϕ+

2πi

κ+
. (2.23)

17The naming of coordinate systems for the rotating black hole is confusing. The analog of Schwarzschild

coordinates is usually referred to as Boyer-Lindquist coordinates, despite the fact that this system is only

a small modification of Kerr’s own [60]. The major novel contribution of Boyer and Lindquist [61] was

actually, among other things, to construct the analog of Kruskal coordinates for the Kerr black hole. We

will keep the Schwarzschild and Kruskal nomenclature even for the rotating black hole.
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The monodromy prescriptions for the correlator are therefore

〈V (t, ϕ)V (0, 0)〉β>β< = 〈V
(
t+

2πi

κ±
, ϕ+

2πi

κ∓

)
V (0, 0)〉β>β< . (2.24)

These are the two KMS conditions for rotating BTZ. We will also be interested in the static

limit of these formulas, and the monodromies at r− → 0 are

t→ t+
2πi

r+
, ϕ→ ϕ (outer) ,

t→ t, ϕ→ ϕ+
2πi

r+
(inner) .

(2.25)

For the D ≥ 4-dimensional generalizations, we employ the results and formalism of [62],

and the metric of an AdS black hole with rotation parameters is given in appendix E of [62].

We reproduce this metric here:

ds2 = −W (r2 + 1)dτ2 +
2M

SF

(
Wdτ −

N∑
k=1

akµ
2
kdϕk

1− a2
k

)2

+

N∑
k=1

r2 + a2
k

1− a2
k

µ2
kdϕ

2
k

+
SFdr2

S − 2M
+

N+ε∑
k=1

r2 + a2
k

1− a2
k

dµ2
k −

1

W (r2 + 1)

(
N+ε∑
k=1

r2 + a2
k

1− a2
k

µkdµk

)2

,

(2.26)

where we have defined N implicitly by D = 2N + ε+ 1, and

W ≡
N+ε∑
k=1

µ2
k

1− a2
k

, F ≡ 1

r2 + 1

N+ε∑
k=1

r2µ2
k

r2 + a2
k

,

S ≡ rε−2(r2 + 1)
N∏
k=1

(r2 + a2
k), ε ≡ D − 1 mod 2.

(2.27)

The µk are latitudinal coordinates obeying the constraint
∑N+ε

k=1 µ
2
k = 1, while the ak,

k = 1, . . . , N are rotation parameters of the solution, with aN+1 = 0 in the even dimensional

case. Before proceeding to the monodromy, we discuss a subtle point. As is well known,

in dimension 5 and above, there are rotating extended black objects with non-spherical

horizon topologies. The simplest of these are black rings [63]. In AdS/CFT, if there are

multiple Euclidean geometries which 1) are saddle points of the Euclidean Einstein-Hilbert

action and 2) obey the boundary conditions set by the CFT thermal ensemble, then the

bulk dual geometry is the one with the lowest free energy. The question of which geometry

is the true thermodynamic saddle for a given temperature or chemical potential is, to our

knowledge, still unresolved in general for D ≥ 5. This is in part because the full set of

solutions has not even been classified, and constraints from quantum gravity appear to

play a role [64]. However, much has been said about black rings and black holes [65, 66],

and these results suggest that the rotating AdS black hole dominates the thermodynamics

at large temperature and equal rotation rates.18

18The usual Hawking-Page transition also occurs in higher dimensions, and for equal rotation rates the

Kerr-AdS solution is dominant over thermal AdS [67].
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Thus, our higher dimensional statements should be understood with the caveat that we

assume that the rotating black hole with an inner horizon dominates the thermodynamics

on a line in moduli space that passes through the static black hole. We take this line to be

the equal rotation rate line, where all rotation parameters in higher dimensions are equal,

and we therefore set

ak ≡ a. (2.28)

There is evidence that our assumption is true, at least in D = 5, 6 [66, 68]. The reason we

did not address this point in our discussion of charged black holes is because, in that case,

the full spherical symmetry constrains the possible solutions [69]. Therefore, we are more

confident Reissner-Nordström-AdS is the true dual geometry for large enough temperature

since there are no rings or other extended objects with which it must compete.19

Rotating black holes can be understood in the framework of Kerr-Schild theory [72],

where the full geometry g is understood as a perturbation of a background ḡ (in our case,

AdS) by a particular null vector field k, so the metric is

gµν = ḡµν +
2M

U
kµkν , (2.29)

where M is the mass of the black hole and U is some function of the coordinates. By

construction, the vector k has the interesting property that k2 = 0 in both the background

metric ḡ and the full metric g. What this means is that if we interpret the kµkν term as

a perturbation and ensure it solves the linearized Einstein equations around the ḡ back-

ground, the perturbed metric g actually becomes a solution to the full nonlinear Einstein

equations. This is in part because the exact inverse metric is gµν = ḡµν − 2M
U kµkν .

The strategy to determine Kruskal coordinates, following [61], is to un-twist the null

vector k at the horizon in question and then to effect a transformation which makes the

integral curves of k lie on constant coordinate hypersurfaces. The special null vector in our

case is

kµ∂µ = ∂r −
S

S − 2M

(
1

r2 + 1
∂τ +

N∑
i=1

a

r2 + a2
∂ϕi

)
. (2.30)

The equation which determines horizon locations plays a crucial role. It is

S − 2M = 0. (2.31)

There are two positive real roots r± > 0 which we define implicitly as20

S(r±(M,a)) = 2M. (2.32)

19In [69] Birkhoff’s theorem is proved for 4d AdS black holes, but not for charged AdS black holes in

general dimension. In flat space there are results for black holes in any dimension [70] and charged black

holes in 4 dimensions [71].
20An oddity in D ≥ 5 is that, if one of the rotation parameters vanishes, there is only one positive real

root in (2.31). The second root is a direct consequence of the diverging piece rε−2 in S, and if this is

cancelled by a bare r2, the inner horizon disappears. We have nothing to say about black holes that lack

inner horizons, so we will not discuss this further beyond noting that there are brief comments related to

this issue at the end of [68].
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To untwist k at r±, we make the angular shift21

φ±i ≡ ϕi −
a(r2
± + 1)

r2
± + a2

τ. (2.33)

This transformation leaves the τ and r directions unchanged, and the integral curves of k

therefore obey

dτ =
S

2M − S
dr

r2 + 1
, (2.34)

and we wish to integrate both sides. Let us write

r2−ε(2M − S)(r2 + 1) = (r − r+)(r − r−)H(r), (2.35)

where H(r) is a polynomial in r that does not vanish at r+ or r−. The r integral can be

computed via (for the Kruskal patch around r = r+)

τ + const. =

∫
dr

r2−εS

r2−ε(2M − S)(r2 + 1)

=

∫
dr

[
−1 +

2Mr2−ε
+

(r+ − r−)(r − r+)H(r+)
+

2Mr2−ε
−

(r− − r+)(r − r−)H(r−)
+ . . .

]

= −r +
2Mr2−ε

+

(r+ − r−)H(r+)

[
log(r − r+)−

r2−ε
− H(r+)

r2−ε
+ H(r−)

log(r − r−) + . . .

]
.

On the second line we have employed a partial fraction decomposition, which we are free

to do since both the numerator and denominator are polynomials in r. For the terms

associated with r+ and r− in this decomposition, which we have written explicitly, the

numerator is simplified with (2.32), and it will turn out that none of the other terms matter

for our analysis so we have neglected to write them. In order to obtain regular coordinates

around a given horizon, we must ensure that the logarithm associated with that horizon in

the square brackets above comes with unit coefficient, as this will exponentiate to a linear

function which is regular everywhere. In the above, we have written the outer horizon

logarithm with a unit coefficient, but we can easily obtain the analogous expression for

the inner horizon by rearranging some constants. Multiplying through by the coefficient

outside the square brackets and exponentiating both sides, we find(
r − r+

2M

)(
r − r−

2M

)−ν
(. . . ) exp

[
−r − τ
σ+

]
= const., (2.36)

where we have defined

ν ≡
r2−ε
− H(r+)

r2−ε
+ H(r−)

, σ± ≡
2Mr2−ε

±
(r+ − r−)H(r±)

, (2.37)

21The coefficient of the shift is, as usual, equal to the angular potential. It does not match the angu-

lar potential quoted in [62] because we are using a coordinate system which differs at infinity from that

which [62] used to extract the potential; see [67] for the angular potential in our coordinates.
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and the corresponding expression for the inner Kruskal patch is(
r+ − r

2M

)−1/ν (r− − r
2M

)
(. . . ) exp

[
r + τ

σ−

]
= const. (2.38)

Within the dots in the above expressions we have suppressed various extra terms associated

with the integrals ∫
dr

r2−ε
k S(rk)

(rk − r+)(rk − r−)Hk(rk)(r − rk)
, (2.39)

where by Hk(rk) we mean to replace r = rk in H(r) except for the factor (r − rk), which

we drop. Since rk is not necessarily real, we cannot conclude S(rk) = 2M . These terms do

contribute functions of r contained in the (. . . ) above, but since H(r) has no real positive

roots, it is strictly positive for all r > 0 and thus these functions must all be well-behaved

in this region, i.e. they have no divergences and are analytic in r. Therefore, the outer

Kruskal transformation obtained by setting (2.36) equal to U2 and the τ → −τ version

of (2.36) equal to V 2 gives a metric with analytic components in all four patches around

r = r+, and similarly for the inner Kruskal transformation constants (2.38) and the patches

around r = r−.

In terms of boundary coordinates, the outer and inner monodromies around the bifur-

cate horizons are therefore given by

τ → τ + 4πiσ±, ϕk → ϕk +
4πiσ±a(r2

± + 1)

r2
± + a2

. (2.40)

The corresponding correlator monodromy relations are

〈V (t, ϕk)V (0, 0)〉β>β< = 〈V
(
t+ 4πiσ±, ϕk +

4πiσ±a(r2
± + 1)

r2
± + a2

)
V (0, 0)〉β>β< (2.41)

In the static limit a→ 0, which implicitly sends r− → 0. The outer horizon monodromy is

simply

τ → τ +
8πiMr1−ε

+

H(r+)
, ϕk → ϕk. (2.42)

For the inner horizon monodromy, the calculation is more subtle, since we must deal with

H(r−).

To begin, we want to understand the vanishing of r− with a. We make a perturbative

ansatz

r−(a) =

∞∑
n=1

rna
n. (2.43)

We see there is a sort of mismatch between the two sides of the horizon equation (2.32),

where the left hand side has a very high power of a no matter what we choose for rn, and

the right hand side has a very small power. To match the polynomials, we must produce

at minimum a term of order 2N on the right hand side, since there will always be a term

like a2N on the left. The lowest nonzero term must therefore be r2N/(2−ε). By matching

constants, we have

r2N/(2−ε) =
1

2M
. (2.44)
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So, the root r− vanishes like

r−(a) ∼ 1

2M
a

2N
2−ε . (2.45)

We now turn to the function H(r), defined in (2.35). We want to understand the behavior

of H(r−) as a→ 0. Let us write

H(r) =

2N+2∑
n=0

hnr
n. (2.46)

The degree of vanishing of this function is a subtle question because the coefficients hn can

scale with a also. Let us begin with the lowest order term. The smallest power appearing

on the left hand side of (2.35) comes from r2−εS, which actually contributes a constant (in

r) piece a2N . Since the constant terms on the left and right must match, we conclude that

the constant piece of the polynomial H (which is simply its value at r = 0) obeys

a2N = r+r−h0. (2.47)

We have seen that r− vanishes with a particular power, and we conclude that h0 must

vanish like

h0 =
a2N

r+r−
∼ 2M

r+
a2N 1−ε

2−ε . (2.48)

It is actually sufficient to stop our analysis of H(r−) at this order to understand the

qualitative behavior of the remnant monodromy. This is because even if higher order

terms contribute faster or more slowly vanishing terms, the monodromy behavior will be

unchanged. To see this, first note that H(r−) cannot diverge in the limit a → 0 because

H(r) is a perfectly well defined polynomial in that limit.

We now consider two cases: 1) H(r−) contains terms which vanish faster than the h0

term we have found and 2) H(r−) vanishes more slowly than the h0 term we have found

(possibly not vanishing at all, as with ε = 1). In the first case, the vanishing of σ− is

unaffected since H(r−) appears in the denominator so only its most slowly vanishing term

will contribute. In the second case, the vanishing of σ− will be strengthened compared to

our result, but this only forces the remnant monodromy to vanish faster. We find that the

inner monodromy shifts in the static limit are vanishing in both cases with a→ 0 at least

as fast as:
σ− ∼ a2N ,

σ−a

r2
− + a2

∼ a2N−1, (ε = 1),

σ− ∼ aN ,
σ−a

r2
− + a2

∼ aN−1, (ε = 0).
(2.49)

Since we have N > 0 for even D and N > 1 for odd D, the inner monodromy remnant

becomes degenerate in higher dimensions. Notice that for D = 4 (N = 1, ε = 1) and D = 5

(N = 2, ε = 0) we have that the monodromies vanish linearly with a, which is as slowly

as possible. Thus the contribution of h0 is actually marginal in these cases, and we can

guarantee that the monodromies vanish precisely like this and no faster.

We will now present, using the various KMS-type conditions derived above for CFT

two-point functions, a boundary argument for the instability of the inner horizon. We first
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address charged black holes in D ≥ 3 and then address rotating black holes in D ≥ 4. We

then explain why our arguments fail for rotating BTZ.

2.5 No-go for charged black holes

We will restrict to neutral fields probing the charged black hole. This will be sufficient

for our purposes since in the boundary we always have a stress tensor that is neutral,

and we will find that the two KMS conditions are not compatible with each other already

for neutral operators. Let us first assume that we find a point in the boundary that is

space-like separated from a point on the inner bifurcate horizon. If this is the case, we

would be required to have (2.2) and (2.10) in the same regions, that is, as a function of

Euclidean time, the two point function would need to have two real periodicities. This

is not possible unless β< divides β>, a condition that is not needed in the microscopic

definition 〈V (x, t)V (0, 0)†〉 ∼ Tr[e−βH+µQV (t)V †(0)].

Alternatively assume that there is no pair of points on the boundary and the inner

horizon that are space-like separated. In this case (2.2) and (2.10) are enforced on different

regions of complexified time. However, a standard result22 in a causal, unitary relativistic

field theory is that the correlator is analytic in t except for branch point singularities at

t = ±|x|+ikβ, k ∈ Z (see left of figure 4). Then, the inner KMS condition (2.2) implies that

g(t) = 〈V (x, t− iβ<)V (0, 0)†〉β>β< − 〈V (x, t)V (0, 0)†〉β>β< , (2.50)

is an analytic function (apart from the aformentioned branch points and their images) that

is identically zero when |Re t| > |x|. By the identity theorem, g(t) = 0 everywhere, except

possibly its branch points. This shows that we also have (2.2) for t < |x|, and the argument

from the previous paragraph about the double periodicity applies here too. Therefore, the

evolution of a neutral field past the inner Cauchy horizon (as dictated by the CFT) cannot

be single valued.

Now let us briefly discuss charged operators, in which case the conditions look

like (2.17). We can again use the identity theorem to extend the inner KMS condition

to the region Re t < |x|. We then get that imposing both of these conditions gives a quan-

tization condition on the charge q of the operator in terms of the inner and outer horizon

temperatures.23 This seems unnatural in a generic situation, but could arise when the

charge comes from a KK reduction; in that case we think of the relations (2.17) as coming

from Fourier transforming non-degenerate double periodicity conditions, such as (2.24).

2.6 No-go for rotating black holes in D ≥ 4

Let us first focus on the case D = d + 1 = 4, where we have a single rotation parameter.

To ease the formulas, we can take a large M limit with a fixed, so that we have a kind of

22This is derived by examining where the trace converges, and analytically extending the correlator into

a periodic function using the KMS relation and the edge of the wedge theorem. It also applies to the

case when a chemical potential is turned on, provided the insertions cannot connect states with arbitrarily

different charge, which is the case for neutral operators.

23This comes from requiring both 〈V (x, t)V (0, 0)†〉 and e
−i µ̃q

βinner
t〈V (x, t)V (0, 0)†〉 to have the appropriate

discrete Matsubara frequencies in Euclidean time.
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Figure 4. Left: analytic structure of the two point function imposed by unitarity and causality. The

function is analytic in the strip, has light cone singularities at the red points, which are also branch

points, and periodically extended using the KMS relation. Right: the inner KMS condition would

give rise to a copy of the light cone singularity inside the region where the function must be analytic.

1/M expansion. In this case the two roots of S = 2M (see (2.27), (2.32)) are

r+ = (2M)
1
3 − 1 + a2

3
(2M)−

1
3 − a2

6M
+ · · · ,

r− =
a2

2M
+ · · · ,

(2.51)

the inverse surface gravities are

2π

κ+
=

2π

3
(4/M)

1
3 +

2a2π

3M
+ · · · ,

2π

κ−
=

2πa2

M
+ · · · ,

(2.52)

while the ratios relevant for the angular part of the identification are

Ω+
2π

κ+
=

2πa(1− a2)

3M
+ · · · ,

Ω−
2π

κ−
=

2πa(1− a2)

M
+ · · · .

(2.53)

The largest in magnitude of these numbers is 2π
κ+

, i.e. the physical inverse temperature in

this large M limit. We see that the angular identification degenerates for a→ 0. However,

the identification associated to the inner horizon is not decompactifying as a→ 0, it is the

opposite, the identification spacing becomes very small. This forces the correlation function

to be constant in that particular direction, which seems pathological. More precisely, since

1/κ− vanishes as a2, while Ω−/κ− vanishes as a, in the static limit, the inner KMS condition

turns into a∂ϕGstatic + O(a2) = 0, i.e. the static correlator should be independent of the

polar angle ϕ. This is impossible since due to spherical symmetry in the static case, the

correlator should depend only on the geodesic distance on the spatial sphere.

It is clear how to generalize this argument for higher dimensions: we have shown

in (2.49) that the inner horizon monodromies have a parametrically small period when the

rotation parameters are small, and since the angular identification vanishes slower than the
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temporal one, this small identification points in the angular directions. Therefore the inner

KMS condition (2.41) enforces the correlator to be independent of the combination
∑

i ϕi
of the azimuthal angles in the static limit which breaks spherical symmetry and hence is

a contradiction. Let us give a simple argument in D = 4 for a direct contradiction with

boundary unitarity. We write the boundary correlation function as

Tr[e−β(H+ΩJ)V (t, ϕ)V (0, 0)] = Tr[e−β−H−−β+H+V (t, ϕ)V (0, 0)] (2.54)

(we imagine J acts by translating the angle ϕ and we suppress dependence on other angular

coordinates), where H± = H±J
2 are positive operators due to the spinning unitarity bound

∆− |j| ≥ d− 2 that we are applying now in radial quantization. The β± here are defined

by the equation, β± = β(1 ± Ω). We can deduce that under the analytic continuation

t 7→ t− iτ , ϕ 7→ ϕ− iψ, the correlator is analytic when

0 ≤ τ ± ψ ≤ β±. (2.55)

Note that there is an obvious OPE singularity at τ = ψ = 0 and |t| = |ϕ| = 0. The outer

horizon identification enforces an image of this singularity at a particular other value of

τ and ψ determined by the respective first lines of (2.52) and (2.53), and therefore these

should correspond to the β± in (2.55) that determine the region of analyticity (and the

real KMS periodicity). Therefore we must have

β± =
2π

κ+
(1± Ω+) =

2π

3
(4/M)

1
3 +

2a2π

3M
± 2πa(1− a2)

3M
+ · · · (2.56)

In the 1/M expansion, β± = β + O(a/M). On the other hand, the inner horizon identifi-

cations (second lines of (2.52) and (2.53)) will translate to

β<± =
2π

κ−
(1± Ω−) =

2πa2

M
± 2πa(1− a2)

M
· · · (2.57)

that is, β<± = O(a/M). The inner horizon periodicities are therefore parametrically smaller

in M than the outer horizon ones: β<± � β±. When
√

5−1 < 2a <
√

5+1, β<+ and β<− have

the same sign, so they induce a copy of the OPE singularity at τ = ψ = 0 and |t| = |ϕ| = 0

that is inside the region of analyticity (2.55) that is enforced by boundary unitarity. Note

that we could have run this argument in the charged case too; see the right of figure 4 for

an illustration.

A possible problem with this argument is of course large N . One might argue that these

forbidden singularities could develop in the infinite N limit in otherwise healthy boundary

correlators.24 This scenario still seems pathological: notice that as a → 0, the correlator

must develop a line of singularities coming from the copies of the light cone singularity.25

This line of singularities is not compatible with the large N thermal correlator without

rotation.

24An example of this is the bulk point singularity [73].
25We imagine first taking N →∞ and a→ 0. A way to escape this argument is to have a situation when

these to limits do not commute, but this also seems a bit pathological.
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We have discussed the D = 4 case explicitly in this subsection, and outlined two

separate arguments which appear to lead to contradictions in the boundary theory. For

the second argument, dealing with boundary unitarity, it would be interesting to check

the D > 4 cases explicitly, to find the precise range for the rotation parameter a which is

excluded. Our arguments above excluded certain ranges of rotation parameters; so it is in

principle, possible for black holes outside this range (like rapidly rotating objects) to be

consistent with all of our conditions.

2.7 Yes-go for the rotating BTZ black hole

We have seen that the inner and outer KMS conditions are inconsistent with each other

in the boundary for neutral operators in a charged black hole and rotating black holes in

d + 1 > 3. However, now we show that they are consistent for rotating BTZ black holes.

The conditions are given in (2.20), (2.21) for the outer and (2.23) for the inner horizon. In

terms of light cone coordinates x± = ϕ± t and chiral temperatures

2π

κ+
≡ β> =

1

2
(β+ + β−),

2π

κ−
≡ β< =

1

2
(β+ − β−), (2.58)

where we are assuming β+ > β−, these identifications are equivalent with invariance of the

two point function under

(x− 7→ x− − 2iβ−, x
+ 7→ x+) and (x− 7→ x−, x+ 7→ x+ − 2iβ+), (2.59)

i.e. one has independent KMS conditions for left and right movers. In particular, both con-

ditions have a non-degenerate static limit, as opposed to the higher dimensional situation

in (2.49). The boundary correlation function in rotating BTZ is given by the method of

images correlation function

〈V (x−, x+)V (0, 0)〉β+β− ∼
∑
n

1(
sinh π(x−+2πn)

β−
sinh π(x++2πn)

β+

)∆V
, (2.60)

which indeed satisfies these two independent KMS conditions. Note that in the limit

of β± � x±, these correlation functions are universal in any 2d CFT, but the finite size

correlator is theory dependent. One can check in 2d CFTs that are not holographic but the

torus correlator is known, (such as minimal models) that the inner horizon KMS condition

is not satisfied. It is then possible for 1/c corrections to the method of images propagator to

break this extra symmetry. In the bulk 1/c corrections would correspond to backreaction

effects of probes.

2.8 A prescription for multiboundary correlation functions

Next we explain our proposal for computing multiboundary correlation functions. We have

already reviewed, in our discussion of the KMS condition, how a half-KMS shift places an

operator on the opposite asymptotic region of the eternal AdS wormhole. We now wish to

generalize this procedure to time-like separated boundaries that arise in charged or rotating

black holes. Note that when we say “time-like separated boundaries”, we mean that there
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are parts of the boundaries that are time-like separated. In fact there are can also be points

that are null separated between these boundaries. This may seem counter-intuitive from the

structure of the Penrose diagrams, as in figure 5, but lightrays with angular momentum can

make it through from a lower boundary to an upper boundary. In fact, in a charged black

hole in AdS, the only light ray that falls into the singularity is the one with zero impact

parameter [74], although it is not clear whether these null curves are prompt paths between

the endpoints, which would make them null-separated.26 We will see that for rotating BTZ

there are indeed points on boundaries of the upper and lower level parts of the Penrose

diagram that are null-separated, and others that are actually spacelike separated.27

The procedure is illustrated on figure 5. Suppose that we wish to move an operator

from the lower left boundary to a point on the upper right boundary that is time-like

separated from it.28 First we need to make sure that the operator we wish to move is to

the future of all other operators in the correlator in order to avoid light-cone singularities.

This is done by choosing the appropriate Lorentzian sheet of the complexified correlator

when we pass around the branch point corresponding to the light cone. Once this is done,

we can follow the orange path on figure 5 without crossing light cones in the bulk. The

inner horizon is reached from the interior at a second (smaller) simple zero of F of (2.3),

F (r−) = 0. Here we have r∗ → +∞ for the tortoise coordinate. Around the inner bifurcate

horizon, it is also possible to pick Kruskal coordinates in a similar way to (2.4), but now the

temperature of the inner horizon appears. It is then easy to track the required imaginary

shifts in the coordinates as in (2.5). In general, there could be an ambiguity in the signs of

the shifts around different bifurcate horizons, but we can fix this by requiring that at the

end of the path in figure 5, there is no net shift in the tortoise coordinate. The upshot is

that the orange path in figure 5 corresponds to sending

t 7→ t− iβ> + β<
2

. (2.61)

In other words, the analogue of (2.1) would be

〈VR,top(t, x)VL,bottom(0, 0)〉 = 〈VL,bottom

(
t− iβ> + β<

2
, x

)
VL,bottom(0, 0)〉. (2.62)

Note again that the consistency of this prescriptions requires both the inner and outer

KMS conditions to be satisfied by the boundary correlation functions. In practice, this

means that we will only apply it (more precisely the rotating generalization of it) to the

rotating BTZ black hole.

26A null path is considered “prompt” if there is no causal path between the endpoints that intersects the

interior of the past light cone of the final point; see [75] for a detailed exposition.
27It might seem confusing that some points that appear time-like separated on the Penrose diagram are in

fact space-like separated, but it is just a consequence of the need to project the diagram to two dimensions.

For a simpler example, note that a space-like geodesic that stays on a single boundary, but connects points

with slightly different Killing time will appear as a vertical line on these diagrams.
28There is an analogous procedure for space-like separated points.
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Figure 5. Moving an operator between time-like separated boundary points in the analytically

extended spacetime. First, we send the operator we want to move (orange dot) to the future of

all the other insertions (gray dot). Now we can move in the bulk along the orange curve without

crossing light cones. In terms of the Killing time, this amounts to sending t 7→ +iβ>/2 + iβ</2.

When we deal with a rotating black hole, we need to be careful that we need to fix different co-

rotating coordinates at the outer and inner horizons, which leads to a continuation that affects

other coordinates besides t.

3 Embedding space and the hyperboloid

To prepare for our discussion of rotating BTZ inner horizon stability, we review the embed-

ding space quotient construction. Our discussion closely follows the seminal work of [40, 41].

We begin with a review of AdS3 before progressing to rotating BTZ, and conclude with a

brief discussion of some unintuitive aspects of the causal structure of rotating BTZ which

may not be obvious from the Penrose diagram.

3.1 AdS3

The construction of global AdS3 begins by studying a hyperboloid in the embedding space

R2,2, with metric

ds2 = −dT 2
1 − dT 2

2 + dX2
1 + dX2

2 . (3.1)
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The hyperboloid embedding equation is

− T 2
1 − T 2

2 +X2
1 +X2

2 = −`2AdS, (3.2)

and from now on we will set `AdS = 1. The induced metric on the hyperboloid (3.2) is

obtained by pulling back (3.1). A set of coordinates which covers all of AdS3 is (t, r, θ)

with t, θ ∈ [0, 2π) and r ∈ [0,∞), with the embedding space coordinate maps given by

T1 =
√
r2 + 1 cos t, T2 =

√
r2 + 1 sin t,

X1 = r cos θ, X2 = r sin θ.
(3.3)

These coordinates naturally satisfy (3.2), and the pullback of (3.1) via (3.3) is

ds2 = −(r2 + 1)dt2 +
dr2

r2 + 1
+ r2dθ2. (3.4)

This is almost the metric we are familiar with, but the time coordinate is periodic. This

periodicity implies the existence of closed timelike curves, for example γ(s) = (s, r0, θ0) has

both γ(s+ 2π) = γ(s) and tangent vector γ̇ = (1, 0, 0), which in (3.4) has strictly negative

constant norm γ̇2 = −(r2
0 +1). To avoid this issue, we usually pass to the universal covering

space ÂdS3 where we unwrap t ∈ S1 to t ∈ R. In what follows, by AdS3 we will always

mean the universal covering space, and we will refer to (3.2) simply as the hyperboloid.

Before proceeding, we discuss the isometries of (3.4). The hyperboloid (3.2) is invariant

under the rotation and boost symmetries of (3.1), so its isometry group is SO(2, 2). In the

embedding coordinates XA ≡ (T1, T2, X1, X2)A, the 6 Killing vectors VAB of (3.4) are

VAB = XB∂A −XA∂B. (3.5)

Note that XA = (−T1,−T2, X1, X2)A since we must apply (3.1) to XA. These can be

pulled back to the hyperboloid using (3.3) to obtain Killing vectors of (3.4).

3.2 Rotating BTZ

The rotating BTZ spacetime is famously obtained from AdS3 by a discrete identification of

the geometry. This identification can be formulated entirely in embedding space. A one-

parameter subgroup of isometries (associated with some Killing vector ξ) acts on embedding

space points as X → esξX. A discrete subgroup is then a choice of both a Killing vector

ξ along with a set of equally spaced values of s, say s = 2πn for n ∈ Z. Quotienting AdS3

by a discrete subgroup of this form compactifies (with period 2π) the integral curves of the

Killing vector ξ, so one must ensure the resulting closed curves are neither timelike nor null.

The metric is still well-defined since flows along integral curves of a Killing vector preserve

the metric by definition. A necessary condition for preventing closed timelike curves is for

ξ to be everywhere spacelike, ξ2 > 0.29 The appropriate Killing vector to choose to pass

29For the identification which gives the rotating BTZ black hole, this condition turns out to be sufficient.

It is not sufficient in general since we can take a one-parameter subgroup generated by, for example, a

Killing vector which generates spacelike but not achronal curves. One encounters a similar consideration

in properly defining the notion of a Cauchy hypersurface.
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from AdS3 to the rotating BTZ black hole is, in a particular embedding frame,

ξ ≡ r+VT2X2 − r−VT1X1

= −r−X1∂T1 + r+X2∂T2 − r−T1∂X1 + r+T2∂X2 .
(3.6)

We will not prove that the identification X ∼ e2πnξX does what we claim, and instead

refer the interested reader to [40].30 Notice that, despite the previous discussion, the norm

of ξ in (3.1) is

ξ2 = r2
+(T 2

2 −X2
2 ) + r2

−(T 2
1 −X2

1 ), (3.7)

so there are indeed regions of the hyperboloid where ξ2 ≤ 0. In particular, if we use (3.2)

to simplify, we find ξ2 ≤ 0 is equivalent to

T 2
2 −X2

2 ≤
−r2
−

r2
+ − r2

−
. (3.8)

Since we have chosen to quotient by a discrete subgroup generated by a Killing vector with

ξ2 ≤ 0 in some areas, the correct thing to do is to truncate the global AdS3 spacetime at

the hypersurface ξ2 = 0. We will call this hypersurface the excision surface; it is defined on

the hyperboloid as well as its universal cover AdS3. We now define three types of regions

in AdS3:

I: 1 < T 2
2 −X2

2 ,

II: 0 < T 2
2 −X2

2 < 1,

III: −
r2
−

r2
+ − r2

−
< T 2

2 −X2
2 < 0.

(3.9)

These regions are separated by null hypersurfaces T 2
2 − X2

2 = 1 and T 2
2 − X2

2 = 0 which

will become the outer and inner horizons at r = r+ and r = r−, respectively. Notice the

norm of ξ is precisely ξ2 = r2
+ and ξ2 = r2

− at these surfaces. Having excised the region

ξ2 ≤ 0 from AdS3, we now define three coordinate patches to cover regions of type I, II,

and III. These three types of regions can be infinitely tiled to cover the portion of AdS3

which obeys ξ2 > 0. Before passing to the universal cover, the portion of the hyperboloid

obeying ξ2 > 0 can be covered by four patches of each type of region, for a total of twelve

patches. A set of connected patches (one of each type) is given by

I.A: r+ < r

T1 =

√
r2 − r2

+

r2
+ − r2

−
sinh (r+t− r−ϕ) , T2 =

√
r2 − r2

−
r2

+ − r2
−

cosh (r+ϕ− r−t) ,

X1 =

√
r2 − r2

+

r2
+ − r2

−
cosh (r+t− r−ϕ) , X2 =

√
r2 − r2

−
r2

+ − r2
−

sinh (r+ϕ− r−t) .

(3.10)

30The choice of Killing vector in [40] differs from our (3.6) by exchanging the pairs (T1, X1)↔ (T2, X2).

Notice that, up to this point, all expressions were symmetric under such interchange. The choice of Killing

vector breaks the symmetry between these pairs of coordinates, and this manifests in the asymmetric form

of the Schwarzschild embedding patches which we give in (3.10)–(3.12).
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II.A: r− < r < r+

T1 =−

√
r2

+−r2

r2
+−r2

−
cosh(r+t−r−ϕ) , T2 =

√
r2−r2

−
r2

+−r2
−

cosh(r+ϕ−r−t) ,

X1 =−

√
r2

+−r2

r2
+−r2

−
sinh(r+t−r−ϕ) , X2 =

√
r2−r2

−
r2

+−r2
−

sinh(r+ϕ−r−t) .

(3.11)

III.A: 0 < r < r−

T1 =−

√
r2

+−r2

r2
+−r2

−
cosh(r+t−r−ϕ) , T2 =

√
r2
−−r2

r2
+−r2

−
sinh(r+ϕ−r−t) ,

X1 =−

√
r2

+−r2

r2
+−r2

−
sinh(r+t−r−ϕ) , X2 =

√
r2
−−r2

r2
+−r2

−
cosh(r+ϕ−r−t) .

(3.12)

These patches have t, ϕ ∈ (−∞,∞) and are particularly convenient for imposing the dis-

crete identification generated by (3.6), because the pullback of (3.6) to the hyperboloid via

any of (3.10)–(3.12) is simply

ξ = ∂ϕ. (3.13)

Therefore, the effect of the identification is to compactify ϕ ∈ [0, 2π). Notice that the only

differences between (3.10)–(3.12) are in the overall sign of a coordinate and whether the

coordinate involves hyperbolic sine or cosine; the radial prefactors are fixed by the region

type and the hyperbolic function arguments are fixed regardless of region. This information

can be stored in a single set of signs, the signs of the lightcone coordinates

X±1 ≡ X1 ± T1, X±2 ≡ X2 ± T2, (3.14)

which are fixed in each patch. The induced metric in any of the three patch types is

ds2 =
−(r2 − r2

+)(r2 − r2
−)

r2
dt2 +

r2dr2

(r2 − r2
+)(r2 − r2

−)
+ r2

(
dϕ− r+r−

r2
dt
)2
. (3.15)

The mass M , angular momentum J , and inverse chiral temperatures β± are given by

M =
r2

+ + r2
−

8
, J =

r+r−
4

, β± =
2π

r+ ∓ r−
, (3.16)

where β± couples to x± = ϕ±t and we picked the direction of rotation so that β+ > β−. As

emphasized previously, β± are not the inverse horizon temperatures, but rather correspond

to the chiral temperatures in the dual CFT state. The Penrose diagram for the rotating

BTZ spacetime (and the hyperboloid) is given in figure 6. We also define the following

co-rotating angle

φ ≡ ϕ− r−
r+
t. (3.17)

For all regions of type I in the rotating BTZ spacetime, the co-rotating embedding coordi-

nates are given by
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II.B

II.C

II.D

I.AI.B

I.CI.D

III.CIII.B

III.A

III.D

V U

Patch X+
1 X−1 X+

2 X−2

I.A + + + −
II.A − + + −
III.A − + + +

I.B − − + −
II.B + − + −
III.B + − − −
I.C + + − +

II.C + − − +

III.C + − + +

I.D − − − +

II.D − + − +

III.D − + − −

Figure 6. Left: a Penrose diagram. If the top and bottom of the diagram are identified, it

represents the hyperboloid after excising the region ξ2 < 0 and compactifying the angle φ. If

instead the diagram is repeated infinitely in either direction, it represents the rotating BTZ black

hole spacetime, the universal cover of the excised and compactified hyperboloid. Blue edges are

outer horizons and red edges are inner horizons. Right: the signs of the lightcone coordinates in each

patch. An embedding coordinate map for any region can be constructed by putting appropriate

signs on and swapping hyperbolic functions in the maps for regions I.A, II.A, or III.A which are

given in (3.10)–(3.12).
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I.A:

T1 =

√
r2 − r2

+

r2
+ − r2

−
sinh (κt− r−φ) , T2 =

√
r2 − r2

−
r2

+ − r2
−

cosh (r+φ) ,

X1 =

√
r2 − r2

+

r2
+ − r2

−
cosh (κt− r−φ) , X2 =

√
r2 − r2

−
r2

+ − r2
−

sinh (r+φ) .

(3.18)

I.B:

T1 = −

√
r2 − r2

+

r2
+ − r2

−
sinh (κt− r−φ) , T2 =

√
r2 − r2

−
r2

+ − r2
−

cosh (r+φ) ,

X1 = −

√
r2 − r2

+

r2
+ − r2

−
cosh (κt− r−φ) , X2 =

√
r2 − r2

−
r2

+ − r2
−

sinh (r+φ) .

(3.19)

I.C:

T1 =

√
r2 − r2

+

r2
+ − r2

−
sinh (κt− r−φ) , T2 = −

√
r2 − r2

−
r2

+ − r2
−

cosh (r+φ) ,

X1 =

√
r2 − r2

+

r2
+ − r2

−
cosh (κt− r−φ) , X2 = −

√
r2 − r2

−
r2

+ − r2
−

sinh (r+φ) .

(3.20)

I.D:

T1 = −

√
r2 − r2

+

r2
+ − r2

−
sinh (κt− r−φ) , T2 = −

√
r2 − r2

−
r2

+ − r2
−

cosh (r+φ) ,

X1 = −

√
r2 − r2

+

r2
+ − r2

−
cosh (κt− r−φ) , X2 = −

√
r2 − r2

−
r2

+ − r2
−

sinh (r+φ) .

(3.21)

In all of these patches we have t ∈ (−∞,∞), r ∈ (r+,∞), and φ ∈ [0, 2π), and we have

defined the outer surface gravity

κ ≡ κ+ =
r2

+ − r2
−

r+
. (3.22)

The metric in co-rotating coordinates is

ds2 =
−(r2 − r2

+)(r2 − r2
−)

r2
dt2 +

r2dr2

(r2 − r2
+)(r2 − r2

−)
+ r2

(
dφ+

r−(r2 − r2
+)

r+r2
dt

)2

. (3.23)

We will also need a Kruskal patch, though not the usual one which covers two asymptotic

boundary regions. The usual “outer” Kruskal patch is given in embedding space by

T1 =
V + U

1 + UV
cosh(r−φ)− V − U

1 + UV
sinh(r−φ), T2 =

1− UV
1 + UV

cosh(r+φ),

X1 =
V − U
1 + UV

cosh(r−φ)− V + U

1 + UV
sinh(r−φ), X2 =

1− UV
1 + UV

sinh(r+φ).

(3.24)
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This patch covers four wedges of the Penrose diagram, including regions I.A and I.B.

However, in this paper we will be concerned with the inner horizon, and it is more useful

to have an “inner” Kruskal patch which includes a set of four wedges that touch the timelike

singularity. This inner Kruskal patch is given in embedding space by

T1 =
1− UV
1 + UV

cosh(r−φ), T2 =
V + U

1 + UV
cosh(r+φ)− V − U

1 + UV
sinh(r+φ),

X1 =
UV − 1

1 + UV
sinh(r−φ), X2 =

V + U

1 + UV
sinh(r+φ)− V − U

1 + UV
cosh(r+φ).

(3.25)

Notice that the inner Kruskal patch is constructed by simply exchanging the 1 and 2

subscripts, along with some minus signs to orient the patch correctly. The only other

necessary change is switching r+ ↔ r−; the need for this will become clear shortly. This

patch covers regions II.B, II.C, III.B, and III.C, and the positive U-V axes are oriented as

shown in figure 6. The inner Kruskal patch metric is31

ds2 =
1

(1 + UV )2

[
−4dUdV + 4r+(V dU −UdV )dφ+ (4r2

+UV + r2
−(1−UV )2)dφ2

]
. (3.26)

It is now clear why we needed to exchange r+ ↔ r− with respect to the outer Kruskal

patch; the radius of the fibered circle should be r− on the horizon at UV = 0 in this

patch, and r+ at the boundaries UV = 1. The UV coordinate range is also more restricted

compared to the outer Kruskal patch; we have

1 > UV > 1 +
2r2

+

r2
−

(√
1−

r2
−
r2

+

− 1

)
. (3.27)

At the lower end of the coordinate range for UV we encounter the excision surface ξ2 = 0.

This is a causal singularity of the geometry; the metric is regular, the curvature does not

diverge, and there is no conical singularity either.

3.3 Causal structure

Before proceeding, we will demonstrate that there exist both timelike and spacelike sep-

arated points on different levels of the Penrose diagram for rotating BTZ. This may be

counterintuitive because the Penrose diagram in figure 6 seems to imply that all points

beyond the inner bifurcate horizon are timelike separated from the asymptotic boundaries

below it. The resolution is related to the fact that we have really been drawing projection

diagrams. To gain some intuition, consider the simpler case of a Lorentzian cylinder with

flat metric −dt2 + dφ2; we can imagine this cylinder as essentially the conformal bound-

ary which appears in AdS3. The points (0, 0) and (ε, π) are spacelike separated for small

enough ε, but if we project out the fibered circle then (ε, π) is projected to (ε, 0) which is

timelike separated from the origin. A more sophisticated version of this effect occurs in

the full rotating BTZ geometry, as we will now show.

31Note that the inner co-rotating angle, which appears in the inner Kruskal metric, differs from the outer

one by the same r+ ↔ r− interchange.
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We will have two warmups, involving boundaries on the same level and then bound-

aries on different levels but the same side of the diagram, before moving to the interesting

case of different levels and opposite sides. For all examples we consider the inner prod-

uct in embedding space between points (t1, r∞, φ1) and (t2, r∞, φ2) at large r∞ and drop

subleading pieces. This amounts to computing a distance between boundary points P .

Consider regions I.A and I.B. We do not expect any timelike separated points, as these

boundaries are on the same level. The inner product is

− PI.API.B =
r2
∞

r2
+ − r2

−
(cosh(κ∆t− r−∆φ) + cosh(r+∆φ)) , (3.28)

where we have defined ∆t ≡ t1 − t2 and ∆φ ≡ φ1 − φ2. Since region I.C is related to I.B

by an overall minus sign in embedding coordinates, the result for I.A and I.C is simply

negative of our previous result.

− PI.API.C = − r2
∞

r2
+ − r2

−
(cosh(κ∆t− r−∆φ) + cosh(r+∆φ)) . (3.29)

Clearly the first result is strictly positive and greater than zero, as a sum of hyperbolic

cosines. The second result is similarly purely negative.32 One can probably guess what the

result will be for the mixed case. It is

− PI.BPI.C =
r2
∞

r2
+ − r2

−
(cosh(κ∆t− r−∆φ)− cosh(r+∆φ)) . (3.30)

This implies points on the boundaries of I.B and I.C are null separated when33

∆φ =

(
1− r−

r+

)
∆t. (3.31)

Notice that there is only a small range of ∆t for which this is possible, since the angular

coordinate is bounded. However, it is clearly possible to obtain timelike separated points

by taking (say) ∆t = 0 and ∆φ 6= 0. Likewise, examples of spacelike separated points can

be obtained with ∆φ = 0 and ∆t 6= 0. This is essentially the negation of how points on

the same boundary are related. If we consider two points on the boundary of I.B which

are timelike (spacelike) separated, and then send one of the points to its “image” point on

I.C (by image point we mean the point with the same coordinate values), the separation

becomes spacelike (timelike). This behavior is related to the fact that the forward lightcone

of a point on the boundary of I.B becomes the backward lightcone of its image point on I.C.

We can visualize the casual structure better by plotting various features of the rotating

geometry in global AdS coordinates of (3.3), see figure 7. On this figure, the radial coordi-

nate is compactified with the tanh function. The yellow light sheet goes from the projective

boundary coordinate Q = (1, 0, 0, 1) in I.B to its image −Q in I.C. It is given by the equa-

tion X · Q = 0 where X is an embedding space vector parametrized as (3.3). In terms of

32One might wonder whether we can trust the embedding space distance after all the modifications

(excision, quotient) we have made to global AdS. In fact, we can, as demonstrated in figure 7.
33We are in co-rotating coordinates, which is why this expression looks different from the usual null

relation ∆t = ∆ϕ.
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Figure 7. Left: features of the rotating BTZ geometry represented in global AdS coordinates

of (3.3). A point in I.B and its “image” on I.C are shown with red dots. The bulk lightcone

connecting them is the yellow surface. The excision surface is shown in black, the outer horizons

in blue, the inner horizons in red. One may recognize the Penrose diagram, but as we proceed

upwards, we need to twist it. Right: various features as they intersect the light sheet from the left

figure. The purple lines are the actual null geodesics that make up the light sheet and one sees that

many of them do not fall behind the excision surface.

light cone embedding coordinates (3.14), the singularity is given by X+
1 X

−
1 = r2

−/(r
2
+−r2

−),

the outer horizon is X−2 = 0 and the inner horizon is X−1 = 0. We can recognize on the

left of figure 7 the structure of the Penrose diagram from figure 6, but we need to twist it

as we proceed upwards.

4 Geodesics in the shockwave background

As discussed in the introduction, there have been many classical analyses of inner horizon

stability. In particular, a phenomenon called mass inflation occurs, where even a mildly

perturbed black hole mass function diverges at the inner horizon [5]. Here we will focus on a

more coarse measure of stability to gain intuition about whether an impassable singularity

forms due to highly blueshifted infalling matter. As a precursor to our quantum gravity

analysis of stability in section 5, we wish to study whether one can send signals between

levels of the Penrose diagram after a perturbation has been applied to the state. A small
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perturbation applied from one boundary at late times will be blueshifted, and we model

this blueshift effect as a backreacting shockwave traveling along the inner horizon. In this

section we analyze boundary-anchored null geodesics in rotating BTZ and demonstrate

that there are null geodesics which travel between levels of the Penrose diagram even in

the presence of such a shockwave. Of course, these techniques will not prove or disprove

singularity formation, but one signature of such physics is whether any null geodesics at

all can traverse the inner horizon region. If none can make it through, we may expect that

the perturbing shockwave effectively “closes up” the inner horizon region to all observers,

and this effect manifests as a redirecting of null geodesics into the singularity [57]. We will

see, however, that this does not happen for rotating BTZ.

We can compute null geodesics which run from region I.A to region I.D through the

inner Kruskal region (3.25). Within the outer horizon, the metric can be written as a gluing

of two rotating BTZ black holes with a shift in the V coordinate across the shockwave,

which we take to lie on the U = 0 surface. We imagine this shockwave is sourced by some

highly boosted local object, so we include a transverse profile function α(φ) which we do

not specify.34

ds2 =
1

[1+u(v+α(φ)Θ(u))]2

(
−4du(dv+α′(φ)Θ(u)dφ)+4r+(v+α(φ)Θ(u))dudφ (4.1)

−4r+u(dv+α′(φ)Θ(u)dφ)dφ+(4r2
+u(v+α(φ)Θ(u))+r2

−[1−u(v+α(φ)Θ(u))]2)dφ2

)
,

where Θ is the Heaviside step function. We have made the null coordinates lowercase as we

will reserve the capital versions for perturbed metrics of the form ds2 → ds2+4α(φ)δ(U)dU2

whose coordinates are continuous across the shockwave. We address metrics of this type

in section 5; these are equivalent to metrics like (4.1) by a coordinate change U = u,

V = v + α(φ)Θ(u).

The metric (4.1) is simply the inner Kruskal metric (3.26) where we understand the

coordinate v jumps to v + α(φ) when crossing the u = 0 surface. The relevant portion

of the Penrose diagram is shown in figure 8. Null geodesics can be understood directly in

embedding space by extremizing the constrained functional

L = Ẋ2 + λ(X2 + 1), (4.2)

where λ is a Lagrange multiplier. In this language, null geodesics are given by solutions to

the Euler-Lagrange equations with λ = 0, which are

X(s) = Qs+ P. (4.3)

The coefficients are constrained to obey Q2 = 0, P 2 = −1, and QP = 0.35 We want to start

the null geodesic in region I.A and follow it across the shock to see if it reaches region I.D

34We will specify this function, along with the stress tensor for the solution, in our calculation of the

eikonal phase in section 5.
35Q2 = 0 arises because null geodesics obey Ẋ2 = 0, P 2 = −1 because we must have X(0)2 = −1 on the

hyperboloid at s = 0, and QP = 0 since we must actually have X(s)2 = −1 for any s.
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I.AI.B

I.CI.D

-α(ϕ)

Figure 8. The thick red line on u = 0 in the inner Kruskal region is a shockwave. The black line

from region I.A is a null geodesic which encounters the shockwave at an angle φ, receives a kick of

size α(φ), and continues through to region I.D. If α is negative, the kick is directed upward on the

diagram due to the orientation of the Kruskal axes.

or falls into the timelike singularity. As boundary conditions, we take s = 0 at the shock

to make sure that the geodesic crosses the shock somewhere. As usual, the conformal

boundary of asymptotic AdS3 (sometimes called the projective null cone) is reached by

going to large radial distance and then removing the diverging factor. In our language, the

magnitude of the affine parameter |s| itself is a proxy for radial distance, and indeed in type

I regions we have |s| ≈ r at large r � r+. So, the past boundary point is determined by

lims→−∞X(s)/|s| and the future boundary point is similarly lims→∞X(s)/|s|. Therefore

these points are −Q and Q respectively. A boundary point is therefore parametrized by

evaluating (3.18) at large radius and then removing the diverging radial prefactor:

−Q(t, φ′) =

(
sinh(κt− r−φ′), cosh(r+φ

′), cosh(κt− r−φ′), sinh(r+φ
′)

)
. (4.4)

As required, we see Q2(t, φ′) = 0. Points on the shockwave are parametrized by the inner

Kruskal embedding coordinates at u = 0, which gives

P (v, φ) =
(

cosh(r−φ), e−r+φv, − sinh(r−φ), −e−r+φv
)
. (4.5)
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Again as required, we find P 2(v, φ) = −1. Finally we must enforce Q(t, φ′)P (v, φ) = 0

before the shockwave (in regions II.B and III.C). This yields one parameter in terms of the

other three, namely

vB(t, φ′, φ) = −er+(φ−φ′) sinh(κt+ r−(φ− φ′)). (4.6)

We can plug this back into the expression for P (v, φ) and find a reduced form

PB(t, φ′, φ) = P (vB(t, φ′, φ), φ). (4.7)

Since the metric (4.1) is identical on both sides of u = 0 except for a shift in v, the total

effect of the shockwave on the geodesic is a kick, or a shift in the v coordinate. The

prescription in embedding space is therefore to send P (v, φ)→ P (v−α(φ), φ). This means

that above the shockwave, we must require P (v − α(φ), φ)Q(t, φ′) = 0, which yields a

different relation for v:

vA(t, φ′, φ) = vB(t, φ′, φ) + α(φ). (4.8)

The reduced form for P above the shock is therefore

PA(t, φ′, φ) = P (vA(t, φ′, φ), φ). (4.9)

In summary, the total piecewise null geodesic with initial conditions t, φ′, φ is given by36

Xt,φ′,φ(s) = Q(t, φ′)s+
[
Θ(−s)PB(t, φ′, φ) + Θ(s)PA(t, φ′, φ)

]
, (4.10)

where the affine parameter takes values s ∈ R.

Now, question we wish to answer is whether there exists a finite s0 > 0 such that

Xt,φ′,φ(s0) is on the excision surface. If there does not exist such an s0, the geodesic

must avoid the singularity and make it through unscathed to region I.D. The singularity

is given in embedding space by the vanishing of the norm (3.7) of ξ. This vanishing

norm defines the singularity hypersurface in embedding space, and we can check whether a

geodesic intersects this hypersurface by computing the particular combination (3.7) of its

components. This combination can be computed by contracting the geodesic path with a

tensor EMN whose entries are

E = diag(r2
−, r

2
+,−r2

−,−r2
+). (4.11)

Therefore, the equation that we must solve is

EABX
A
t,φ′,φ(s0)XB

t,φ′,φ(s0) = 0, (4.12)

for any s0 > 0. This reduces to

(r2
+−r2

−)s2
0 +
(

2(r2
+ − r2

−) sinh(κt+ r−(φ− φ′))− 2r2
+α(φ)e−r+(φ−φ′)

)
s0 +r2

− = 0. (4.13)

36The conditions are simply the initial boundary point (t, φ′) and the angle φ at which the geodesic

intersects the u = 0 surface.
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By understanding the roots of this quadratic equation we can determine whether or not

there is a positive real solution.

In order to have at least one positive real root, we can simply require the larger root

to be positive and real. Since the quadratic and constant coefficients are both strictly

positive, the only way for this to occur is

(r2
+ − r2

−) sinh(κt+ r−(φ− φ′))− r2
+α(φ)e−r+(φ−φ′) ≤ −r−

√
r2

+ − r2
−. (4.14)

This is the necessary and sufficient condition on the parameters t, φ′, φ which, if true, says

the geodesic Xt,φ′,φ falls into the timelike singularity after getting kicked by the shockwave.

Notice that for late times t in (4.14) it will be almost impossible to satisfy this condition

because the sinh becomes very large on the left hand side. Therefore, there will always be

at least some null geodesics which are able to travel between different levels of the Penrose

diagram. In other words, the shock wave does not redirect all geodesics into the singularity,

meaning that cosmic censorship is violated at this level. In addition, for very slow rotation

r− � r+, there is a wider range of t which satisfies the condition since the right hand side

is becoming very slightly negative and the left hand side remains dominated by r2
+ sinhκt.

So, more geodesics are falling into the singularity, which is in accord with our intuitions

about the singularity closing up and becoming spacelike in the static case.

Note that, the shock profile must be negative, α(φ) < 0, in order for the kick to

send the geodesic away from the singularity and not toward it. Indeed, such an effect is

necessary to for the shockwave to not violate causality, and it shouldn’t if we assume the

matter sourcing the shockwave obeys the null energy condition. Of course, the form of

α(φ) must be determined by Einstein’s equation for the metric (4.1). It can be shown that

such a metric implies a delta function stress energy tensor, and α(φ) is then determined

by a differential equation with delta function source. In the static and outer horizon

cases [49, 56], α(φ) was found to be a positive function. In our analysis of the eikonal

phase in section 5, we will see that the opposite is true for inner horizon shockwaves, where

α(φ) is in fact negative. These sign differences just come from the fact that the inner

Kruskal coordinates point downwards on the Penrose diagram in figure 6.

5 Stability and inner horizon shockwaves

In this section we explain why the OTOC is relevant for probing stability of the inner

horizon of a rotating BTZ black hole. We then calculate a four sided correlator in the

boosted black brane using CFT methods, and our prescription from section 2.8. This

correlator turns out to be a second sheet correlator from a single sided point of view,

that is the same as the one used to compute the OTOC in [43]. This result suggests

that the inner horizon region remains stable to perturbations even when one includes the

backreaction as a shockwave.37 We repeat this calculation in the rotating BTZ bulk to

study finite size effects, employing the elastic eikonal approximation of [56], and using the

37In some sense this is not surprising for the boosted black brane, since it is just empty AdS written in

different coordinates.
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method of images propagator to move particles into the scattering region. This corresponds

to a particular choice of boundary condition at the singularity that obeys the inner KMS

condition.38 We find similar results as for the boosted black brane. Finally, we show the

finite size OTOC obtained from the bulk calculation reduces to our boosted black brane

OTOC upon taking a decompactification limit.

5.1 Chaos, stability, and the boosted black brane

In this subsection, we will restrict to the case when both the horizon and the boundary

are planar; so bulk geometry will describe the boosted black brane. This is because in this

case the boundary calculation is tractable. We can think about the boosted black brane

as the high temperature limit of the rotating black hole.

The rough intuition for why chaos and stability are related is as follows. Let us consider

a two point function between different levels of the Penrose diagram, obtained via the

procedure outlined in figure 5. To leading order in GN , this two point function just probes

the background geometry. We can then ask what happens with this two point function when

we slightly perturb the background. To this end, let us consider the four-point function

tr
[
e−β−L0−β+L̄0W †V (x+, x−)V (0)W

]
. (5.1)

We interpret this correlator as a two-point function of probe operators V in a boosted ther-

mal background perturbed by W operators. The positions of the perturbing W operators

are not so important; only the final Lorentzian operator ordering will be crucial, namely,

we begin with a time ordered correlator on a single boundary. In a two-sided purification

|β+β−〉 (the boosted thermofield double), we can write the four point function (5.1) as

〈β+β−|W †V (x+, x−)V (0)W |β+β−〉. (5.2)

The state |β+β−〉 in HCFT⊗HCFT is dual to a two-sided boosted black brane geometry in

the bulk, the planar version of the two-sided rotating BTZ black hole studied in section 3

and 4. Unlike the one-sided case, the two-sided boosted black brane has a relative boost be-

tween the two sides, and so has both an outer and inner temperature scale just like the finite-

size geometry. We interpret (5.2) as a two point function in the perturbed state W |β+β−〉.
By a conformal transformation, correlators such as (5.2) map to vacuum expectation

values on the plane

z = e
2π
β−

x−
, z̄ = e

2π
β+

x+

, (5.3)

where x± = x ± t. We pick imaginary parts for times ti → ti − iεi such that we have the

ordering in (5.2), that is, the correlator is time ordered. Then we follow the prescription

of section 2.8 and move one of the V operator into the bulk, via the path illustrated on

figure 5. Now we do expect to cross a light cone in the bulk, and we wish keep track of this

by just following the boundary coordinates of the operator.39 On figure 5, we first cross the

38For heavy enough operators, we expect that the result is the same for any boundary condition that

preserves the property that the two point function localizes to the geodesic.
39We can imagine representing the bulk operator via an HKLL smearing kernel, which would correspond

to “thickening” the lines on certain parts of the boundary trajectory of the operator. This should be possible

without issues for the black brane since it is just AdS in disguise.
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Figure 9. We map the boundary coordinates to the plane and follow the trajectory of the red

operator (red contour) as we send it along the orange path in figure 5. The large arcs represent

infinity, the small circle arcs represent zero, while the dashed circle is the unit circle. Left is the z

and right is the z̄ coordinate. The former encircles a blue operator, the latter does not.

outer horizon at t→ −∞. Here, z goes to infinity while z̄ goes to zero. When we cross this

horizon, we shift x± → x±∓ iβ±/4, as explained before. Therefore, we make quarter turns

in opposite directions in the z and z̄ plane. Then we go to the inner horizon at t → ∞.

Now z goes to the origin and z̄ goes to infinity, and the direction of the turns is the same

for z and z̄ because crossing the inner horizon requires x± → x±−iβ±/4. We go on to cross

the inner horizon again, but at t→ −∞, and then the outer horizon at t→ −∞ again.

It is important during this to keep track of the vorticity of the KMS monodromies, and

the fact that they flip between the two outer horizons as in figure 5. On the particular choice

of orange curve in figure 5, we always cross the horizons such that we are going against

the vorticities. The contour that the V operator follows on the z, z̄ plane is illustrated on

figure 9. The initial configuration is time ordered, with the blue dots representing W and

the red dots representing V operators. Whenever the perturbing blue operators are inserted

in a Euclidean reflection symmetric configuration (such that the interpretation of (5.2) as a

two point function in a perturbed state is valid), the V operator (red dot) encircles one blue

operator for exactly one of the two cross ratios z and z̄. This amounts to crossing to the

second sheet of the plane correlator, and the continuation is the same as the one required

to compute the OTOC [43]. We can therefore interpret this second sheet as a correlation

function between two different levels as on figure 5 in a perturbed black brane geometry.

Before discussing the possible implications of this observation for the stability of the

BTZ inner horizon, let us first briefly describe how to turn (5.2) into a four sided correlator,

that can be interpreted in the bulk as a high energy scattering experiment near the inner

horizon. There could be different ways to continue into a four sided correlator, but in order

to describe the same physics as above, we use the following precription. We first move the

last insertion (i.e. W † in (5.2)) from the bottom left boundary to the top right one. We can

do this without crossing light cones, and we just need to follow the contours in figure 5, but

now for the blue operators. It is clear that in this procedure, none of the red operators get
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encircled in either z or z̄ so we end up with a trivial operation. After this, we do a half outer

KMS shift on both W operators that send them to the opposite side on the same level. This

amounts to rotating the blue dots to the other half of the unit circle compared to figure 9.

Now we have a three sided correlator with two V operators on the bottom left and no opera-

tors on the top right. We then send one V operator to the top right using the contour on fig-

ure 9 to reach a four sided configuration similar to the one on figure 10. Now theW insertion

gets encircled in z̄ instead of z, but the net effect is the same, we end up with the OTOC.

Now let us examine the possible implications for the stability of the inner horizon under

perturbations. First note that time ordered correlators factorize to leading order in GN .

The effect we are looking for in a four sided correlator probing stability is a kinematical

enhancement of GN corrections, suggesting that backreaction is becoming important. This

is precisely what the second sheet correlator gives us; in the OTOC language, the GN
corrections undergo a Lyapunov growth, and we need to start resumming them around the

scrambling time. More precisely, in terms of the plane cross ratios

χ =
z12z34

z13z24
, χ̄ =

z̄12z̄34

z̄13z̄24
, (5.4)

the OTOC continuation corresponds to 1−χ→ e−2πi(1−χ) while keeping χ̄ fixed (or vice

versa). On this second sheet, 1/c corrections get enhanced in the OPE-like limit χ → 0,

χ/χ̄ = fixed.40 In a vacuum block approximation, the normalized correlator in this limit

looks like [43]

〈W (z2, z̄2)V (z1, z̄1)V (z3, z̄3)W (z4, z̄4)〉
〈W (z2, z̄2)W (z4, z̄4)〉〈V (z1, z̄1)V (z3, z̄3)〉

∼

(
1

1− 12πi∆W
cχ

)∆V

, (5.5)

and we see that large c factorization fails when χ ∼ 1/c. For our black brane setup,

this kinematic regime corresponds to either sending the perturbing operators to late times

with fixed co-rotating coordinates (such that they create a shockwave localized on the inner

horizon) or sending the probe V operator on the upper level to the location where bulk light

rays coming from the lower left V operator go, i.e. when they approach the configuration

of red dots in figure 7.41 Away from these limits, the geometry as seen by the probe V

operators seems unaffected by the perturbation in the large c limit.

5.2 Bulk eikonal scattering

Having obtained the black brane answer, we now turn to the question of finite-size effects.

The global rotating BTZ geometry is dual to a CFT state on the circle, but direct CFT

calculations are not under control there. So, we employ the elastic eikonal bulk scattering

interpretation of the OTOC developed in [56]. This calculation was generalized for the

outer horizon of rotating BTZ in [49] and here we present a version of this for the inner

horizon. The CFT correlator that we are interested in is

〈VI.D(t1, φ1)WI.C(t2, φ2)VI.A(t3, φ1)WI.B(t4, φ2)〉β+β−

〈V (t1, φ1)V (t3, φ1)〉β+β−〈W (t2, φ2)W (t4, φ2)〉β+β−

, (5.6)

40This is called the Regge limit of the flat space four point function.
41This corresponds to the pair of points ∆φ = 0 and ∆t = 0 in (3.30), (3.31), or the “image point”.
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where we have labeled the numerator operators with the asymptotic region on figure 6

that we wish to place them on. We will compute this quantity in the bulk by interpreting

pairs of operators as creating 2-particle in and out states on a background state |β+β−〉.
Recall that we defined |β+β−〉 as the two-sided purification of the thermal charged ensemble

e−β−L0−β+L̄0 . Since the particles created by the V and W operators are highly boosted by

the time they reach the inner bifurcation surface, a convenient basis for the states is one of

definite momentum in the respective null directions and definite position in the transverse

directions. Thus the 2-particle states are given in a tensor product Hilbert space, with

individual basis element |p, φ〉, with normalization

〈p, φ|q, φ′〉 ∝ p δ(p− q)δ(φ− φ′). (5.7)

The in and out states are

V (t3, φ1)W (t4, φ2)|β+β−〉 =

∫
dφ′3dφ

′
4dp

U
3 dp

V
4 ψ3(pU3 , φ

′
3)ψ4(pV4 , φ

′
4)|pU3 , φ′3〉 ⊗ |pV4 , φ′4〉,

W (t2, φ2)†V (t1, φ1)†|β+β−〉 =

∫
dφ′1dφ

′
2dp

U
1 dp

V
2 ψ1(pU1 , φ

′
1)ψ2(pV2 , φ

′
2)|pU1 , φ′1〉 ⊗ |pV2 , φ′2〉,

(5.8)

where we have labeled the null momenta with their direction. The wavefunctions ψ can be

thought of as an LSZ reduction for the bulk scattering process. The crucial approximation

we must make is that the full matrix element in the basis (5.7) is a simple phase

|p, φ〉 ⊗ |p′, φ′〉out ≈ eiδ(s,φ−φ
′)|p, φ〉 ⊗ |p′, φ′〉in, (5.9)

where s is the relevant Mandelstam variable. This is the eikonal approximation, and thus

the scattering element is

〈VWVW 〉β+β−=

∫
dφdφ′dpU1 dp

V
2 e

iδ(s,φ−φ′)[pU1 ψ∗1(pU1 ,φ)ψ3(pU1 ,φ)
][
pV2 ψ

∗
2(pV2 ,φ

′)ψ4(pV2 ,φ
′)
]
.

(5.10)

The disconnected correlator 〈V V 〉〈WW 〉 can be obtained by setting δ = 0.

The calculation proceeds in three steps:

1. Define bulk-to-boundary propagators using embedding coordinates and compute their

Fourier transforms to obtain wavefunctions of 2-particle in and out states.

2. Compute the eikonal phase, the second-order on-shell Einstein-Hilbert action for a

two-shockwave perturbed background.

3. Perform the integrals over momentum and angular variables which enter in the defi-

nition of the scattering matrix element.

5.2.1 Propagators and wavefunctions

Let us start by commenting on the dependence of the bulk prescription (5.10) on the

boundary conditions imposed on the singularities. The dependence can come from two
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places: the eikonal scattering phase and the wavefunctions that we use to propagate the

particles to the scattering region. For the eikonal phase, we will assume that our particles

are the only objects scattering on top of the analytically extended spacetime, that is, there

is no additional shockwave coming from the excision surface. For the wave functions, we will

use the method of images propagator obtained from empty AdS. This choice of propagator

amounts to a choice of transparent boundary conditions on the singularity. There is no

guarantee that this is the boundary condition that the CFT imposes, but it is a choice that

satisfies both the inner and outer KMS conditions, which is required for the interpretation

of the four sided correlator in terms of a single CFT, as discussed in section 2.8. It is also

the (unique) maximal analytic extension of the two point function between the outer and

inner horizons, when written in terms of inner Kruskal coordinates. So our strategy is to

assume the “mildest possible” effect from the singularity and see if we run into trouble.

These assumptions are also partially justified by the fact that we are able to recover the

vacuum block result (5.5) in the high temperature limit.

Bulk-to-boundary propagators can be computed by writing the embedding space dis-

tance d,

cosh(d) = −P1P2, (5.11)

and then the propagator 〈O∆(P1)Φ(P2)〉 is given by removing the decaying mode from

(−P1P2)−∆. From the asymptotic regions (t, r∞, φ
′) to the inner horizon region (U, V, φ)

we use (3.18)–(3.21) and (3.25) to find (defining ∆φ ≡ φ− φ′)

cosh(dI.A) =
r∞(r2

+−r2
−)−1/2

1+UV

[
Uer+∆φ+V e−r+∆φ+(1−UV )sinh(κt+r−∆φ)

]
,

cosh(dI.B) =
r∞(r2

+−r2
−)−1/2

1+UV

[
Uer+∆φ+V e−r+∆φ−(1−UV )sinh(κt+r−∆φ)

]
, (5.12)

cosh(dI.C) =
r∞(r2

+−r2
−)−1/2

1+UV

[
−Uer+∆φ−V e−r+∆φ+(1−UV )sinh(κt+r−∆φ)

]
,

cosh(dI.D) =
r∞(r2

+−r2
−)−1/2

1+UV

[
−Uer+∆φ−V e−r+∆φ−(1−UV )sinh(κt+r−∆φ)

]
.

We take the W particles to be in regions I.B and I.C, and the V particles to be in regions

I.A and I.D. This four-sided configuration is shown in figure 10. The bulk-to-boundary

propagators 〈O∆Φ〉 are then given by cosh(d)−∆, where ∆ is the conformal dimension of

the boundary operator O and Φ is the dual bulk field sourced by O. We will use the

method of images to enforce periodicity in the angular variable. The relevant propagators

– 40 –



J
H
E
P
0
6
(
2
0
2
0
)
0
5
4

I.AI.B

I.CI.D

V(t3,ϕ3)

V(t1,ϕ1)

W(t4,ϕ4)

W(t2,ϕ2)

Figure 10. The configuration of V and W operators in the rotating BTZ black hole spacetime.

The arrows represent the direction of increasing Killing time t. To place the W operators in the

shockwave limit, we must take t2 = t4 ≈ −t for t large.

are evaluated on the inner horizon UV = 0, so their simplified form is

〈V (t1,φ1)†ΦV (U,V,φ)〉= cV

∞∑
n1=−∞

[
−Uer+∆φ1−V e−r+∆φ1−sinh(κt∗1 +r−∆φ1)

]−∆V

,

〈W (t2,φ2)†ΦW (U,V,φ′)〉= cW

∞∑
n2=−∞

[
−Uer+∆φ′2−V e−r+∆φ′2 +sinh(κt∗2 +r−∆φ′2)

]−∆W

,

〈V (t3,φ3)ΦV (U,V,φ)〉= cV

∞∑
n3=−∞

[
Uer+∆φ3 +V e−r+∆φ3 +sinh(κt3 +r−∆φ3)

]−∆V

,

〈W (t4,φ4)ΦW (U,V,φ′)〉= cW

∞∑
n4=−∞

[
Uer+∆φ′4 +V e−r+∆φ′4−sinh(κt4 +r−∆φ′4)

]−∆W

,

(5.13)

where ∆φ1 ≡ φ − φ1 + 2πn1, ∆φ3 ≡ φ − φ3 + 2πn3, ∆φ′2 ≡ φ′ − φ2 + 2πn2, and ∆φ′4 ≡
φ′ − φ4 + 2πn4. The wavefunctions are simply Fourier transforms of these propagators
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along the opposite lightcone coordinate axis.

ψ1(pU , φ) =

∫ ∞
−∞

dV e2iV pU 〈V (t1, φ1)†ΦV (0, V, φ)〉,

ψ2(pV , φ′) =

∫ ∞
−∞

dU e2iUpV 〈W (t2, φ2)†ΦW (U, 0, φ′)〉,

ψ3(pU , φ) =

∫ ∞
−∞

dV e2iV pU 〈V (t3, φ3)ΦV (0, V, φ)〉,

ψ4(pV , φ′) =

∫ ∞
−∞

dU e2iUpV 〈W (t4, φ4)ΦW (U, 0, φ′)〉,

(5.14)

where the exponentials are e−igUV V p
U

or e−igV UUp
V

, g being the unperturbed inner Kruskal

metric (3.26), and we have evaluated each expression at either U = 0 or V = 0, depending

on whether the particles travel along the U or V axis respectively. The general formula for

this type of Fourier transform is [56]42∫ ∞
−∞

dx eipx[ax+ b]−∆ = sign

(
Im

(
b

a

))
Θ

[
−p sign

(
Im

(
b

a

))]
2πi

a∆Γ(∆)
(ip)∆−1e−ipb/a.

(5.15)

The wavefunctions are therefore

ψ1(pU ,φ) =
∞∑

n1=−∞
Θ(−pU )

−2πicV e
r+∆φ1

Γ(∆V )

(
−2ipUer+∆φ1

)∆V −1
e−2ipUer+∆φ1 sinh(κt∗1+r−∆φ1),

ψ2(pV ,φ′) =

∞∑
n2=−∞

Θ(−pV )
−2πicW e

−r+∆φ′2

Γ(∆W )

(
−2ipV e−r+∆φ′2

)∆W−1
e2ipV e−r+∆φ′2 sinh(κt∗2+r−∆φ′2),

ψ3(pU ,φ) =

∞∑
n3=−∞

Θ(−pU )
2πicV e

r+∆φ3

Γ(∆V )

(
2ipUer+∆φ3

)∆V −1
e−2ipUer+∆φ3 sinh(κt3+r−∆φ3), (5.16)

ψ4(pV ,φ′) =

∞∑
n4=−∞

Θ(−pV )
2πicW e

−r+∆φ′4

Γ(∆W )

(
2ipV e−r+∆φ′4

)∆W−1
e2ipV e−r+∆φ′4 sinh(κt4+r−∆φ′4).

Notice that we want Θ(−p) for forward propagation, since the U-V axes are oriented

downward on the Penrose diagram (figure 6).

Before moving on, we address a subtle point about the Fourier transform (5.15). At

the end of the OTOC calculation, our plan is to set the times t1,2,3,4 to real values plus

small imaginary parameters iε1,2,3,4. These imaginary parameters control the operator

ordering in the Lorentzian correlator, if we were to compute it by analytic continuation

from Euclidean signature. Though the overall sign of the wavefunctions will cancel from

the normalized correlator, the sign inside the step function has the potential to change

depending on several things like the sign of ε1,2,3,4 or the relative sign between the sinh

and exponential functions. In writing the above wavefunctions we have taken

ε2 > ε3 > 0 > ε1 > ε4. (5.17)

42For ∆ > 2 ∈ Z, this result can be derived by changing variables u = x + b
a

and then applying the

residue theorem. Notice the right hand side is analytic in ∆.

– 42 –



J
H
E
P
0
6
(
2
0
2
0
)
0
5
4

This may seem confusing from the perspective of a one-sided correlator, since this choice

leads to a time-ordered correlator there. However, as we saw in section 5.1, we cross a

single branch cut when we continue the one-sided correlator to the four-sided correlator.

Unlike in [56], we have set large (of order β+, β−) imaginary values for t1,2,3,4 already to

place the operators on the appropriate boundaries, and we consider the ε parameters to

be very small. As such, we do not touch them during the continuation, and therefore this

choice leads to a four-sided correlator that we expect to be related to inner horizon stability

as discussed above.43

5.2.2 Eikonal phase

We now turn to the eikonal phase δ(s, φ− φ′) which is given by the classical saddle-point

action Scl on the shockwave-plus-black-hole background.

δ(s, φ− φ′) = Scl. (5.18)

We will construct a solution of the linearized Einstein equations44 that takes the form of

a shockwave propagating on the inner horizon. The perturbation ansatz for a W -particle

with pV2 is

hUU = 32πGNr−p
V
2 δ(U)fU (φ− φ′′). (5.19)

For the V -particles we have

hV V = 32πGNr−p
U
1 δ(V )fV (φ− φ′). (5.20)

The stress tensors are

TUU =
2

r−
pV2 δ(U)δ(φ− φ′′),

TV V =
2

r−
pU1 δ(V )δ(φ− φ′).

(5.21)

Note that the up-index stress tensors, which will appear in the on-shell action, are (for

example) T V V = gV UgV UTUU .45

T V V =
1

2r−
pV2 δ(U)δ(φ− φ′′),

TUU =
1

2r−
pU1 δ(V )δ(φ− φ′).

(5.22)

Adding such a perturbation to the metric46 (3.26) and plugging into Rµν− 1
2Rgµν +Λgµν =

8πGNTµν (with Λ = −1 since we have set `AdS = 1 in AdS3), we find the equation governing

43Recall that in the two-sided case discussed in [56], no branch cut was crossed when moving two operators

to the other side of the thermal circle, so the OTO two-sided ordering coincided with the OTO one-sided

ordering. In that discussion, the branch cut was crossed during continuation to positive Lorentzian times.

In our discussion, the branch cut is crossed when continuing across the inner horizon.
44In three bulk dimensions, these are actually solutions to the full nonlinear Einstein equations.
45We have discarded the gV V gV V TV V term since it goes like V 2δ(V ) = 0. Similarly for TUU .
46The hUU -perturbed metric can be put into the form (4.1) by a coordinate transformation u = U ,

v = V − α(φ)Θ(U) where α(φ) is hUU/4 without the delta function δ(U).
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the hUU shock profile47

− f ′′U (φ) + 2r+f
′
U (φ)− (r2

+ − r2
−)fU (φ) = δ(φ). (5.23)

We caution that in the case of the rotating black hole, the shock profile for hV V is actually

different than that of hUU due to the cross-terms in the Kruskal metric (3.26), which break

the U ↔ V symmetry of the non-rotating case. This is the reason we have defined separate

profile functions fU and fV in the perturbations. The hV V shock profile is determined by

− f ′′V (φ)− 2r+f
′
V (φ)− (r2

+ − r2
−)fV (φ) = δ(φ). (5.24)

These equations can be solved with linear combinations of exponentials, and we must

remember to impose f(0) = f(2π) which fixes the relative constant, so we have48

fU (φ) = αU

(
(e2π(r+−r−) − 1)e(r++r−)φ − (e2π(r++r−) − 1)e(r+−r−)φ

)
, φ mod 2π,

fV (φ) = αV

(
(1− e−2π(r+−r−))e−(r++r−)φ − (1− e−2π(r++r−))e−(r+−r−)φ

)
, φ mod 2π.

(5.25)

Notice that the overall constant is set by the coefficient which appears in the shock stress

tensor ansatz; omitting this extra parameter (as we have done) is equivalent to setting the

overall constant to 1, as otherwise the Einstein equations are not obeyed. To fix αU and

αV then, we integrate the shock equations over an epsilon window of φ = 0 which instructs

us to equate f ′(2π) − f ′(0) = 1. (The 1 can be modified by scaling up the shock stress

tensor, but we will not do this.) This gives

α−1
U = 2r−(e2π(r++r−) − 1)(e2π(r+−r−) − 1),

α−1
V = 4r−e

−2πr+(cosh(2πr+)− cosh(2πr−)).
(5.26)

Observe that these values of the overall coefficient will exactly cause fU (φ) = fV (−φ)

where this equation is understood with φ mod 2π. A plot of both shock profiles is shown

in figure 11. While this profile appears qualitatively different from the outer horizon case

discussed in [49, 52], it can be formally obtained from that by exchanging r+ and r−.

Solutions of this type have a divergent stress tensor, and are perfectly consistent with

results stating that perturbations on the inner horizon develop an infinite stress-energy.

However, this divergence need not indicate a gravitational catastrophe. Indeed, all shock

solutions have infinite stress-energy on the shock but do not signal the formation of a

singularity of the same sort as the spacelike black hole singularity.

The eikonal phase is given by the classical action

Scl =
1

2

∫
d3x
√
−g
[

1

16πGN
hUUD2hV V + hUUT

UU + hV V T
V V

]
. (5.27)

The first term is the quadratic contribution of h to the Ricci scalar; there is no linear

contribution since h solves the linearized equations of motion. The last two terms are in

47It is necessary to use delta function identities such as δ′(U) = − δ(U)
U

and U2δ(U)2 = 0.
48These functions contain all angular dependence of the abstract shock profile α(φ) discussed in section 4.
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-0.20

-0.15

-0.10

-0.05

fU

fV

Figure 11. Profiles for the U and V shocks for r+ = 2, r− = 1. The asymmetry between the two

results from enhancement due to the rotation direction. The overall scale of either profile could be

changed by including a scaling factor in the appropriate stress tensor.

fact equal, since we have fU (φ′−φ′′) = fV (φ′′−φ′). Varying the quadratic action by hUU ,

we see that in this form the linearized equation is D2hV V + TUU = 0, thus the first two

terms in the action will cancel each other. We are left with

δ(s, φ′ − φ′′) = 16πGNr−p
U
1 p

V
2 fU (φ′ − φ′′) = 4πGNr−sfU (φ′ − φ′′), s = 4pU1 p

V
2 . (5.28)

5.2.3 Momentum and angular integrals

The correlator is given by the overlap

F =

∫
dφdφ′dpU1 dp

V
2 eiδ(s,φ−φ

′)
[
pU1 ψ

∗
1(pU1 , φ)ψ3(pU1 , φ)

] [
pV2 ψ

∗
2(pV2 , φ

′)ψ4(pV2 , φ
′)
]
, (5.29)

Throughout this subsection, we will drop various overall constants with the understanding

that we are interested in F divided by the factorized correlator, which arises if we set δ = 0.

We also drop the momentum subscripts and set φ1 = φ3 and φ2 = φ4 to ease the calculation

(though we will continue to use the notation e.g. ∆φ3, which is now φ − φ1 + 2πn3 since

the images stay separate). After various reductions, we find

F =
∑

n1,...,n4

∫ 0

−∞
dpUdpV

∫ 2π

0
dφdφ′ eiδ(pU )2∆V −1(pV )2∆W−1 e

∆V r+(2φ−2φ1+2π(n1+n3))

e∆W r+(2φ′−φ2+2π(n2+n4))

×
exp

[
2ipU (er+∆φ1 sinh(κt1 + r−∆φ1)− er+∆φ3 sinh(κt3 + r−∆φ3))

]
exp

[
2ipV (e−r+∆φ′2 sinh(κt2 + r−∆φ′2)− e−r+∆φ′4 sinh(κt4 + r−∆φ′4))

] (5.30)

If we do not have n1 = n3 and n2 = n4, the integrand oscillates wildly and the contribution

of the image will be suppressed. So we set these variables to be equal, and then perform

the following shifts in the angular variables to disentangle the time coordinates.49

φ→ θ ≡ φ− φ1 +
κ

2r−
(t1 + t3), φ′ → θ′ ≡ φ′ − φ2 +

κ

2r−
(t2 + t4). (5.31)

49We might worry that this shift is adding a small imaginary piece to our angles, since we will eventually

include iε’s in the times. But since we imagine these parameters to be truly small and our expression is

only a function of exponentials of φ and φ′, this shift should not affect the integral beyond some overall

prefactors which we can drop.
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Due to the method of images sum, the integration region can remain fixed under this shift,

and the Jacobian is trivial. Dropping overall prefactors, we have

F =
∑
n1,n2

∫ 0

−∞
dpUdpV

∫ 2π

0
dθdθ′ eiδ(pU )2∆V −1(pV )2∆W−1 e

∆V r+(2θ+4πn1)

e∆W r+(2θ′+4πn2)

×
exp

[
−4ipUe

−κr+
2r−

(t1+t3)
sinh

(
κ t3−t12

)
er+(θ+2πn1) cosh(r−(θ + 2πn1))

]
exp

[
4ipV e

κr+
2r−

(t2+t4)
sinh

(
κ t2−t42

)
e−r+(θ′+2πn2) cosh(r−(θ′ + 2πn2))

] (5.32)

We can now define two new momentum variables

pU → p ≡ ipUe−
κr+
2r−

(t1+t3)
sinh

(
κ
t3 − t1

2

)
, pV → q ≡ ipV e

κr+
2r−

(t2+t4)
sinh

(
κ
t2 − t4

2

)
.

(5.33)

This shift leads to a change in sign of the momenta, but this change is just the right one

to keep the integral convergent. After this change of variables, our expression reduces to

F =
∑
n1,n2

∫ ∞
0

dpdq

∫ 2π

0
dθdθ′ eiδp2∆V −1q2∆W−1 e

∆V r+(2θ+4πn1)

e∆W r+(2θ′+4πn2)

×
exp

[
−4per+(θ+2πn1) cosh(r−(θ + 2πn1))

]
exp

[
4qe−r+(θ′+2πn2) cosh(r−(θ′ + 2πn2))

] (5.34)

We now must find a saddle point in the (q, θ′) integral. The function to understand is

A(q, θ′) = (2∆W − 1) log q − 2∆W r+θ
′ − 4qe−r+(θ′+2πn2) cosh(r−(θ′ + 2πn2)). (5.35)

Solving ∂qA = ∂θ′A = 0 gives a real saddle point at

q =
2∆W − 1

4
exp

[
r+

r−
arctanh

(
r+

r−(1− 2∆W )

)]√
1−

r2
+

r2
−(1− 2∆W )2

≈ ∆W

2
− 1

4

(
1 +

r2
+

r2
−

)
+O(1/∆W ),

θ′ =
1

r−
arctanh

(
r+

r−(1− 2∆W )

)
− 2πn2 ≈ −2πn2 −

r+

2r2
−∆W

+O(1/∆2
W ).

(5.36)

Notice that the region of integration for θ′ contains the saddle only when n2 = −1, so this

is the only relevant piece of the n2 images sum.50 At large ∆W we find a saddle point for

the q and θ′ integrals q = ∆W /2 and θ′ = 2π (with n2 = −1 the contributing image).

F =
∑
n1

∫ ∞
0

dp

∫ 2π

0
dθ eiδp2∆V −1e∆V r+(2θ+4πn1)e−4per+(θ+2πn1) cosh(r−(θ+2πn1)) (5.37)

50We do not expect a nice static limit for this calculation since it is constructed using the inner horizon

geometry. There is a signal of this effect in the O(1) term of the saddle; for small enough r− � r+ this

term competes with the leading ∆W term.
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The eikonal phase at this point looks quite different than its original form, due to the

various changes of variables and redefinitions. Using f(φ) = f(φ + 2πm) to eliminate

θ′ = 2π and dropping p with foresight, we define the quantity

δ = − 8πGNr−∆W

sin
(
κ ε3−ε12

)
sin
(
κ ε2−ε42

)eκr+2r−
(t1+t3−t2−t4)

fU

(
θ + φ1 − φ2 +

κ

2r−
(t2 + t4 − t1 − t3)

)
.

(5.38)

We have now specified our times as (t1, t2, t3, t4) = (iε1,−t + iε2, iε3,−t + iε4). The p

integral can now be done exactly, and we drop an overall factor of 4 for normalization

purposes.

F =
∑
n1

∫ 2π

0
dθ

[
− iδ

4
e−r+(θ+2πn1) + cosh(r−(θ + 2πn1))

]−2∆V

. (5.39)

Now let us implicitly define γ (which is linear in GN ) via

− iδ

4
≡ iγfU , (5.40)

and also define the following quantity

ζ ≡ φ1 − φ2 +
κ

2r−
(t2 + t4 − t1 − t3) mod 2π. (5.41)

We can rewrite the argument of fU since it is defined to be a periodic function.

fU

(
θ + φ1 − φ2 +

κ

2r−
(t2 + t4 − t1 − t3)

)
= fU (θ + ζ). (5.42)

We will analyze the integrals in (5.39) in two ways: we give an exact expression and then

we study it with saddle-point approximation in various limits.

We will perform the integrals exactly, keeping the image dependence. Due to the sum

over images, the integral in F is invariant under translations of the region of integration,

so we can translate to the region where fU can be faithfully represented as a sum of

exponentials.

F =
∑
n

∫ 2π−ζ

−ζ

[
iγfU (θ + ζ)e−r+(θ+2πn) + cosh(r−(θ + 2πn))

]−2∆V

. (5.43)

We have changed the image label to n in this expression because translation by an amount

which is not a multiple of 2π (and ζ, in our case, is not) causes what we mean by the

image to change. That is to say, the n = 0 integral in (5.43) is not equal to the n1 = 0

integral in (5.39). Instead, the n = 0 integral contains contributions from several n1 images

including n1 = 0. Since we have an expression for fU in terms of exponentials which is

valid in our integration range, we substitute (5.25) and find the exact indefinite result∫
dθ
[
ane

r−θ + bne
−r−θ

]−2∆V

=
(ane

r−θ + bne
−r−θ)−2∆V

2r−bn∆V
(ane

2r−θ + bn)2F1

(
1, 1−∆V , 1 + ∆V ,

−e2r−θan
bn

)
.

(5.44)
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The constants an and bn are

an =
1

2
e2πnr− + iγαU (e2π(r+−r−) − 1)e(r++r−)ζe−2πnr+ ,

bn =
1

2
e−2πnr− + iγαU (1− e2π(r++r−))e(r+−r−)ζe−2πnr+ .

(5.45)

We can then construct F as a difference of two evaluations of the indefinite result, as

usual, and then a sum over images. Unfortunately, this form of the correlator is not very

enlightening since we cannot perform the sum over images and it is unclear how to pick

a dominant one. The ratio an/bn is growing with n, and the corresponding growth of

the hypergeometric function competes with the suppression from the prefactor which is

vanishing roughly like a−2∆V
n .

We can analyse the original expression (5.39) in some simplifying limits. We will

consider the leading GN correction in the remainder of this section and consider the high

temperature limit in the next subsection. When the time t is much smaller than the

scrambling time ∼ − logGN , we can treat δ in (5.39) as a perturbation. In that case, the

saddle point is approximately on the real axis θ = −2πn1 + O(δ), and we see that only

the n1 = 0 image has the saddle inside the range of integration, and the rest of the images

are highly suppressed by the cosh factor. Evaluating the n1 = 0 image at this saddle and

expanding in GN gives

F ≈ 1 +
i∆V

2
δ + · · ·

= 1− 4πiGN∆V ∆W r−
sin31 sin24

e
κr+
r−

t
fU

(
φ1 − φ2 −

κ

r−
t

)
+ · · · .

(5.46)

Notice in particular that the GN corrections only become important when the perturbing

operator is inserted at late times t ∼ − logGN . Therefore, as far as stability of the inner

horizon goes, this result realizes scenario 1 from the introduction, namely while there are

quantum gravity corrections to the correlator of operators placed on opposite side of the

BTZ inner horizon, the corrections are only important in certain configurations. This

suggests that most probes will pass largely undisturbed through the inner horizon.

5.2.4 Black brane limit

In this section, we perform the decompactification limit of (5.39) (for the related outer

horizon discussion, see [52]). This is useful, because it can be compared to the boundary

calculation of section 5.1. Of course, since the heavy-heavy-light-light Virasoro vacuum

block in general calculates geodesics lengths, we are not expecting disagreement, however,

since for the bulk calculation we needed to make a choice of boundary condition on the

singularity in our wave function factors, it is at least a basic consistency check that the

bulk and boundary calculations agree in this limit.

To decompactify (5.39) we reintroduce the AdS length ` by the following replacements

t 7→ 1

`
t, r 7→ `r. (5.47)
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Making these replacements in the BTZ metric, (3.15), we see that the boundary metric on

the cutoff surface r = rc is ds2 = r2
c/`

2(−dt2 + `2dϕ2), therefore in the conformal frame

where we drop the prefactor, the proper length of the boundary circle is 2π`. We may then

perform the decompactification by holding t and x ≡ `ϕ fixed and sending ` → ∞. The

co-rotating coordinate φ in (3.17) becomes a boosted boundary coordinate

x̂ ≡ `φ = x− β+ − β−
β− + β+

t, (5.48)

where we have also used (3.16). Now we can go ahead and take this limit in the shock

profiles (5.25)

fU (φ) ≈ 1

2r−
e−(r++r−)x̂ x̂ > 0,

fU (φ) ≈ − 1

2r−
e−(r+−r−)x̂ x̂ < 0.

(5.49)

We are interested a setup with |t| � |x|, therefore the argument of the shock profile in (5.39)

is negative, θ + φ12 − κ
2r−

t < 0. The `→∞ limit also kills all the n1 6= 0 images in (5.39)

and we end up with an integral formally identical to the one occuring in the planar non-

rotating case [56]. We can then evaluate this by saddle point approximation. Translated

to boundary variables via (3.16) this gives

F =

 1

1 + 4πiGN∆W
sin13 sin24

e
2π
β

(t+iε1234)+ 2π
β+

x̂

∆V

, (5.50)

where β = (β+ + β−)/2. As we will now explain, this agrees with the vacuum block

result (5.5). For this, we map to the plane by z = e
2π
β−

(x−t)
, z̄ = e

2π
β+

(x+t)
, we exchange x

to the boosted x̂ via (5.48) (here it is important that our bulk convention has β+ > β−).

The cross ratios are defined via (see (5.5))

χ =
z12z34

z13z24
, χ̄ =

z̄12z̄34

z̄13z̄24
, (5.51)

which both become small for large t and read as (picking operator positions as we did

after (5.38))

χ = −4 sin13 sin24 e
− 2π
β

(t+iε1234)+ 2π
β−

x̂
, χ̄ = −4 sin13 sin24 e

− 2π
β

(t+iε1234)− 2π
β+

x̂
, (5.52)

where sinij = sin 4π
β (εi − εj) as before.51

We are interested in the CFT correlator on the second sheet in this limit. Plugging

either χ or χ̄ in the second sheet vacuum block (5.5), we get agreement with (5.50) up

to a choice of β± and a sign in the exponent for x̂. The right choice can be understood

51Note that in the context of OTOCs, we only access the part of the second sheet where the correla-

tor (5.50) is smaller in magnitude than one. In the present context, we can freely adjust the phase of χ.

This is because formally our cross ratio is the same as in [43], but the εi are now chosen to correspond to

a time ordered configuration and therefore the sign of ε1234 is not fixed. See [76] for more general bounds

that the correlator must satisfy on the second sheet.
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the following way. When we apply the vacuum block approximation, we need to take

the vacuum block in the dominant channel, as explained e.g. in [77]. This amounts to

continuing the vacuum block across the branch cut either via (1 − χ) 7→ e−2πi(1 − χ) or

(1 − χ̄) 7→ e−2πi(1 − χ̄) and picking the larger result. These two operations give different

results for the vacuum block, even though they have to give the same for the full correlator,

simply because the full correlator has to be single valued on the Euclidean sheet χ̄ = χ∗.

Then, the two different continuations correspond to the vacuum block in two different OPE

channels. In the vacuum block approximation, we are supposed to take the larger one.52

This translates to picking the larger cross ratio from χ and χ̄ and substituting that into

the vacuum block formula (5.5). Since our bulk calculation assumes x̂ < 0, we need to use

χ̄ and then the result agrees with (5.50).

6 Discussion

The Penrose diagram of black holes with inner horizons extends indefinitely, and includes

an infinite number of asymptotic regions. However, in holography, the purified thermal

charged ensemble is a state in a two-sided Hilbert space HCFT ⊗ HCFT, so by the usual

mechanisms of AdS/CFT there should only be two asymptotic boundaries. It is clear then

that the infinite set of asymptotic boundaries cannot be independent from each other. In-

deed, there are time-like separated points between the infinite copies, so they cannot be

independent in the sense in which they would contribute more HCFT factors to the total

Hilbert space. Our proposal for sending operators through the inner horizon with cer-

tain analytic continuations gives an explanation of how the additional time-like separated

boundaries are related to the physical ones.

In general relativity, there is no prescribed way to deal with singularities. Even solving

the classical wave equation in the presence of an inner horizon requires one to have a

boundary condition on the timelike singularity. Since AdS/CFT is a UV-complete theory

of quantum gravity, it should tell us (in the classical large N limit) what boundary condition

we need. We have argued that our inner horizon monodromy condition is largely insensitive

to this boundary condition and therefore its violation signals a deeper problem with the

extension of spacetime beyond the Cauchy horizon than the boundary condition. We note

that our argument does not specify what actually goes wrong at the inner horizon from the

bulk perspective; it would be very interesting to understand the possibilities. For example,

we cannot use our results to conclude that a true spacelike singularity forms, but we can

say that quantum gravity predicts at least a non-analytic branch-point locus at the inner

horizon for any field propagating on such a background. This does not necessarily mean

a breakdown of smoothness, since the solution to the wave equation could be of the form√
UV e−1/U2

e−1/V 2
in inner Kruskal coordinates, where the inner horizon locus is smooth

but branched non-analytic. However, it does imply the breakdown of predictability if any

spacetime exists beyond the inner horizon. In rotating BTZ, however, we have found that

the analytic extension seems consistent from the quantum gravitational point of view.

52Another instance when this is important for the OTOC vacuum block is the discussion in [78].
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6.1 Charge and rotation

Our techniques for dealing with charged black holes differed greatly from those which ap-

plied to the rotating cases. This is a bit odd from the string theoretic perspective, since it

is a basic principle of Kaluza-Klein (KK) reductions that angular momentum in higher di-

mensions can be exchanged for charge in one fewer dimensions. So, we might have expected

angular momentum and charge to be treated on a more equal footing. Indeed, in famous

AdS/CFT instances like N = 4 super Yang-Mills, the Kaluza-Klein perspective on charge

looms large since the harmonics coming from S5 reduction to AdS5 actually correspond to

BPS multiplets of the gauge theory. We will leave further investigation for future work.

We have also not addressed the case when both rotational and gauge charges are turned

on at the same time. Rotating, charged AdS black holes certainly exist, and have a similar

Penrose diagram to the ones we have encountered in this work. We expect that arguments

similar to the ones we have made will apply in those cases, but it would be good to check this

explicitly. Along the same lines, we have not considered extremal black holes. In this case,

the Penrose diagram looks quite different, and it is not clear how our techniques will fare in

those cases. The main issue is that extremality is quite unstable, in the sense that if we send

a probe operator into the interior then extremality is lost unless this probe is quite special.

6.2 Strong cosmic censorship

We have argued that strong cosmic censorship is violated for rotating BTZ. Are there other

cases where it can be violated? The key feature in rotating BTZ which evaded our mon-

odromy arguments was the non-degeneracy of the inner KMS condition in the static limit.

Of course the uncharged BTZ black hole is topological in nature because it is constructed

via a global identification, and this may have had something to do with the apparent sta-

bility of its inner horizon. Note that the 3d charged black hole does not have a topological

construction since it requires a U(1) gauge field to exist, and the inner KMS condition

cannot be satisfied in this case consistently with boundary causality and unitarity. We

might therefore be tempted to conjecture that the inner KMS condition can be topologi-

cally “protected”. In higher dimensions, there are topological black holes which have exotic

features like high genus horizon topology and no Hawking-Page transition. Nevertheless,

they can be studied holographically [79]. It would be interesting to understand if they

show the same signatures of strong cosmic censorship violation.

It would also be interesting to extend our discussion to lower dimensions. There is

really only one lower dimension to go, the 2d case, but there are nontrivial black hole

geometries even here, like coset black holes [80].

6.3 Lightcone singularities

A peculiar feature of the rotating BTZ geometry is that there exist light rays between

boundaries separated by the inner horizons that do not fall behind the singularity, see

figure 7. These light rays go between a boundary point (x−, x+) and its “image” (x− +

iβ−, x
+), and the corresponding light cone singularities are present in the boundary two

point function (2.60). In the static limit, the time-like singularities touch, closing up the
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spacetime so that there is only one null geodesic that marginally makes it through. If we

identify the upper boundary which is reached by this marginal light ray with a second

sheet of the lower boundary, this looks like a bouncing null ray, as discussed in [35].53 It

is interesting to ask about the fate of this lightcone singularity if 1/c corrections are taken

into account. While we do not have an answer to this question in holographic CFTs, it

is interesting to note that for e.g. the Ising CFT, one can check54 that this chiral copy of

the lightcone singularity does survive in the analytically continued torus correlator (even

though the inner KMS condition does not).

6.4 Entanglement and KMS conditions

Our work is closely related to the recently proposed criterion for smoothness of the inner

horizon [16] which involved essentially testing for vacuum-like entanglement across the inner

horizon at small enough distance scales. The basic reasoning was that if the inner horizon

is smooth, then on small enough length scales the state looks like the vacuum (as all states

do in quantum field theory), and so the entanglement structure should simply be that of the

vacuum. Our inner KMS condition is sensitive to similar physics; if the inner horizon region

is analytic, our inner KMS collapse argument goes through and we find a contradiction in

the CFT. One of the explicit conditions of [16] was that Rindler-like free field modes aω, a
†
ω

that are sufficiently localized near the horizon should have a thermal two point function

〈a†ωaω〉 =
1

e
2π
β<

ω − 1
. (6.1)

It is easy to see that this two point function follows from the KMS condition for a near

(inner) horizon Rindler Hamiltonian H̃ and that we have a free field [H̃, aω] = −ωaω,

[aω, a
†
ω] = 1.
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