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1 Introduction

Three-dimensional gravity has since more than three decades played a very special rôle

in uncovering the nature of the gravitational interaction beyond the classical level. Its

simplicity, its topological nature in the absence of matter and the richness of its spectrum

made it a handy toy model to address fundamental questions, such as the nature of hori-

zon micro-states. The most famous example certainly lies in the observation by Brown and

Henneaux that the phase space of three-dimensional gravity with a negative cosmological
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constant and suitable boundary conditions admits an action of the two-dimensional con-

formal group [1], thereby suggesting a quantum description in terms of a two-dimensional

CFT. This idea was made more precise when it was shown that the Bekenstein-Hawking

entropy of the BTZ black hole solutions [2, 3] belonging to the phase space could be re-

produced by a counting of states in a two-dimensional CFT [4]. The implications of this

result has been pushed in various directions over the years, attempting at identifying the

precise dual field theory [5, 6], hinting at its non-existence in pure gravity [7], and con-

straining the features a two-dimensional CFT dual to a three-dimensional gravity should

exhibit [8, 9]. These results provide insightful information about how holography works in

asymptotically anti-de Sitter (AdS) backgrounds, but cannot in general be translated as

such to more realistic situations. For instance, the importance of the Bondi-Metzner-Sachs

algebra [10–12] — the asymptotic symmetries of four-dimensional flat space — has been

pointed out in various contexts, such as the memory effect and soft theorems (see [13] for

a review of the “infrared triangle”), and the information paradox [14], but its structure is

much more involved than the conformal algebra (non-integrable charges, field dependent

central extensions, Lie algebroid structure (see [15] and references therein).

In 2+1 dimensions, non-conformal infinite-dimensional symmetry algebras have also

appeared both in the asymptotic and near-horizon regions of bulk gravity theories,

with [16–24] or without [25–29] a cosmological constant. In the latter case, the asymptotic

symmetries are the lower-dimensional counterpart of the Bondi-Metzner-Sachs algebra, de-

noted BMS3. A hinderance to make use of the simplicity of pure three-dimensional gravity

in the asymptotically flat case is the absence of black hole solutions [30]. However, cosmo-

logical solutions with non-trivial thermodynamics exist [31] and display features pointing at

the relevance of an underlying BMS3 symmetry [32, 33]. Furthermore, modifying pure grav-

ity by including higher-curvature terms and/or matter widens the spectrum of possible solu-

tions to include certain classes of non-asymptotically AdS black objects. These include for

instance the three-dimensional black string solution of Horne and Horowitz [34] and, more

recently, an asymptotically flat hairy black hole of New Massive Gravity [35, 36]. Now, what

is lacking in these cases is a clear definition of the corresponding phase space, its symme-

tries, and whether these are relevant to understand thermal properties of those objects (see

however [37] for the role of BMS3 in explaining the hairy black hole entropy, and also [38]

where BMS3 symmetries at the horizons have been shown to capture black hole entropy).

In this note, we set the stage for such a study for a three-parameter family of black

string solutions generalizing the Horne-Horowitz black string [34] and Witten’s black

hole [39]. It is worth pointing out that these solutions are obtained as marginal deforma-

tions of a Wess-Zumino-Witten model and as such represent exact string backgrounds [40].

We start be reviewing the solution and describe some of its properties. Then, we present

a consistent set of boundary conditions including these solutions and determine its asymp-

totic symmetry algebra of charges, the detailed derivation of which is relegated to appen-

dices B and C. We show in particular that these boundary conditions can be put on-shell

to derive new exact time-dependent solutions to the equations of motion. We give a CFT

interpretation of these new solutions in terms of a marginal deformation of Witten’s two-

dimensional black hole seed. In the following section, we study thermodynamic aspects of

the zero-mode black string solution, and then conclude.
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2 The charged black string configuration

The black string geometries we will be considering are the ones described in [40], consisting

of a generalization of the Horne-Horowitz black string [34]. The latter can be viewed as

the target space of a SL(2,R)×R

R
gauged WZW model, or equivalently as an exact marginal

deformation of the SL(2,R) WZW model, driven by a left-right SL(2,R) current bilinear.

The black string of [40] is a generalization obtained with an extra deformation using

another available exact current bilinear. As such, these geometries describe exact string

theory models.

The background fields are a three-dimensional metric, a Kalb-Ramond two-form B, an

Abelian electromagnetic gauge potential A, and a dilaton Φ. The dynamics of these fields

is captured by the action [40]

I =
1

16πG3

∫

d3x
√−g

(

R− 4∇µΦ∇µΦ− 1

12
H2e−8Φ − kg

8
F 2e−4Φ +

δc

3α′
e4Φ

)

, (2.1)

where Fµν and Hµνρ are the components of

F = dA, (2.2)

H = dB − kg
4
A ∧ F, (2.3)

and kg is the gauge coupling constant. We set Newton’s constant G3 to 1 throughout.

The action (2.1) is the low-energy effective action for the corresponding massless string

degrees of freedom, written in the Einstein frame. Its extrema provide solutions generically

valid as long as their length scale L is much larger than
√
α′ . In some instances, as those

we will be studying here, the solutions are exact, i.e. valid to all orders in α′, irrespective of

L, possibly after some finite renormalizations. Hence, δc = c− d = c− 3 with c the central

charge of the underlying conformal sigma-model. Celebrated examples include AdS3 with

vanishing gauge field and dilaton, but non-zero three-form. In this case, L is the anti-

de Sitter radius, and δc = 12α′

L2 = 6
k−2 , where k > 0 is the level of the affine SL(2,R)k

algebra in the corresponding sigma model. In the following we will consider δc > 0 and

parameterize it as
δc

α′
=

12

L2
. (2.4)

Whenever an underlying affine algebra exists, its level k will be related to c as δc ≈ 6
k .

As already mentioned, the charged black string of [40] is an exact background, reached

by a double marginal deformation of the SL(2,R) sigma model. In the Bondi gauge, its

background fields read (see appendix A for details):

ds2 = 4

(

−(r − r−)(r − r+)

ζ2
+ ω2

)

du2 − 2
r

ζ2
du dr + 4ω r du dφ+ r2 dφ2 (2.5a)

Φ = −1

2
log

( r

L

)

+
1

2
log ζ (2.5b)

A =
4L

√

kg r

√

−ω2 ζ2 + r−r+ du :=
2α

r
du (2.5c)

B =
2L2ω ζ2

r
du ∧ dφ , (2.5d)

– 3 –
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where u is the retarded time, r the radial coordinate and φ the coordinate along the black

string. For convenience, we take φ 2π-periodic.1 In these expressions, r±, ω and ζ are

arbitrary parameters, subject to conditions ensuring reality of the fields (r+ > r− > 0

and r+r− > ζ2ω2). It should be quoted that (2.5) are formally valid for large k and are

thus subject to finite 1
k corrections. The solution under consideration exhibits a genuine

timelike singularity at r = 0, hidden behind two horizons located at r = r±.

The geometry of the above metric has been studied in [40] where the full Penrose

diagram was obtained. Since we will be interested in determining asymptotic boundary

conditions containing the above family of metrics, we focus for a second on what we will

call the asymptotic region of the above spacetimes. Firstly, the Ricci scalar is given by

R = −8ζ2

r2
− 4ζ2(r+ + r−)

r3
+

2ζ2(ζ2ω2 + 4r+r−)

r4
. (2.6)

It thus behaves like R = O(1/r2) as r → ∞. Secondly, the asymptotic structure shown

in the Penrose diagram [40] is reminiscent of three-dimensional flat space, but is however

slightly different. For the sake of the argument, let us focus on the black string metric in

the original coordinates (A.1), where the relation between the two systems of coordinates is

given in (A.7), for r− = 0 = ω, ζ = 1. Defining u = t/L−r∗ = tanU , v = t/L+r∗ = tanV ,

with tortoise coordinate r∗ = 1/4 ln(4|r − r+|), the large radius behaviour of the metric is

given by

ds2 =
4 r2(U, V )

cos2 U cos2 V

(

− dU dV + cos2 U cos2 V
dx2

L2

)

(2.7)

with |U | ≤ π
2 and |V | ≤ π

2 . One could then define different regions in the Penrose diagram

of the Schwarzschild patch of the black string analogous to those of three-dimensional

Minkowski space: i0 ≡ {U = −π
2 , V = π

2 }, i± ≡ {U = V = ±π
2 }, I+ ≡ {V = π

2 , |U | < π
2 },

I− ≡ {U = −π
2 , |V | < π

2 }, with the difference that the xx component of the unphysical

metric is cos2 U cos2 V instead of sin2(V − U) in the Minkowski case. The metric is thus

not asymptotically flat in the usual sense. Thirdly,2 the study of the geodesics in the

background (A.1) shows that spacelike geodesics end at i0 (for r → ∞, with t and x finite),

while null geodesics reach r → ∞ for infinite values of t and x corresponding to I±.

3 Phase space

In this section, boundary conditions including the black string, are presented and shown

to be consistent. The two first paragraphs stress the key points of the reasoning leading

to our set of boundary conditions. The interested reader is encouraged to read the details

in appendix B and C. The boundary conditions are displayed in section 3.3. Their consis-

tency, asymptotic symmetry algebra and associated conserved charges are worked out in

section 3.4.
1Notice for later use that the coordinate φ may be non-compact. In that case, the black string charges

and entropy have to be taken per unit length, because they would be divergent otherwise [42]. Also, the φ

coordinate becomes the timelike in certain regions of spacetimes (inside the inner horizon), and therefore

strictly speaking cannot be compactified [34].
2Ph. Spindel, private communication.
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3.1 Bondi gauge and equations of motion

In order to gain some insight into the type of boundary conditions that could be imposed

with the action (2.1) at hand, we follow and generalise the strategy outlined in appendix

A of [43], originally inspired by [44], in order to (partially) solve the equations of motion

asymptotically. The details are presented in appendix B. We use coordinates (u, r, φ) and

the gauge fixing ansatz

gµν =







r2U2 + L2eβV −L eβ r2 U

−L eβ 0 0

r2 U 0 r2






, Aµ = (Au Aφ) (3.1)

with U , V , β, Au, Aφ functions of (u, r, φ).

First of all, in three dimensions, the equation of motion for the three-form,

∇µH
µνρ − 8Hµνρ∇µΦ = 0 (3.2)

is automatically solved for

H = Ω e8Φ
√−g du ∧ dr ∧ dφ (3.3)

where Ω is a constant.

The equations of motion for the metric, the electromagnetic field and the dilaton are

Eµν := Gµν − Tµν = 0 (3.4)

with Tµν = 4

(

∇µΦ∇νΦ− 1

2
gµν(∇µΦ)

2

)

+
1

4
e−8Φ

(

HµabH
ab

ν − 1

6
gµνH

2

)

+
kg
4
e−4Φ

(

FµaF
a

ν − 1

4
gµνF

2

)

+
2

L2
e4Φ (3.5)

J ν := ∇µFµν := ∇µ[e
−4ΦFµν − Ω ηµνρAρ] = 0 (3.6)

EΦ := 8∇µ∇µΦ+
1

2
kgF

2e−4Φ +
16

L2
e4Φ − 4Ω2e8Φ = 0 . (3.7)

The upshot of [43, 44] is that one can determine the asymptotic behaviors of the fields given

an ansatz for Aφ and Φ using the so-called main equations of motion (see appendix B).

Then, we partially solve other equations of motion (until we reach equations involving

either sub-leading components or non linear PDEs). Writing

Φ = −1

2
log

r

L
+ f (3.8)

with f a function of (u, r, φ), we take the ansatz to be

Aφ(u, r, φ) = a00(u, φ) + a11(u, φ)
log

(

r
L

)

r
+ a01(u, φ)

1

r
+O

(

log2
(

r
L

)

r2

)

(3.9)

f(u, r, φ) = f00(u, φ) + f11(u, φ)
log

(

r
L

)

r
+ f01(u, φ)

1

r
+O

(

log2
(

r
L

)

r2

)

. (3.10)
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The equations of motion then unambiguously fix the remaining functions:

β = log
( r

L

)

+ β00 + β11
log

(

r
L

)

r
+ β01

1

r
+O

(

log2
(

r
L

)

r2

)

(3.11a)

with β00 =− 4f00 + b0 , β01 = −4f01, β11 = −4f11

U = U00 + U21
log2

(

r
L

)

r
+ U11

log
(

r
L

)

r
+ U01

1

r
+O

(

log3
(

r
L

)

r2

)

(3.11b)

with U00 = U0e
−2f00 + 2eβ00∂φf00 + e−2f00∂uF ,where F =

∫ φ

0
e2f00(u,θ) dθ ,

U21 =− 2eβ00 (2f11∂φf00 − ∂φf11) ,

U11 =− 4eβ00 (2f01∂φf00 − ∂φf01) ,

Au = α00 + α21
log2

(

r
L

)

r
+ α11

log
(

r
L

)

r
+ α01

1

r
+O

(

log3
(

r
L

)

r2

)

(3.11c)

with ∂φα00= ∂ua00 ,

α21 = ∂φ

[1

2
e−4f00+b0a11

]

,

α11 = ∂φ

[

e−4f00+b0a01

]

+ a11U00 ,

V = V̄01 r+V30 log
3
( r

L

)

+V20 log
2
( r

L

)

+V10 log
( r

L

)

+V00+O

(

log4
(

r
L

)

r

)

(3.11d)

with V̄01 =
2

L
∂φU00 −

4

L
eb0(1− 3e−4f00(∂φf00)

2 + e−4f00∂2
φf00)

V30 =
2

3L
e−4f00+b0

(

− 6∂φf00∂φf11 +
(

8(∂φf00)
2 − 2∂2

φf00
)

f11 + ∂2
φf11

)

V20 =
2

L
e−4f00+b0

[

− 6∂φf00∂φf01 + f11(−4(∂φf00)
2 + 2∂2

φf00)

+ ∂2
φf01 + f01(8(∂φf00)

2 − 2∂2
φf00)

]

V10 =
1

L

[

− 8e−4f00+b0f01
(

2(∂φf00)
2 − ∂2

φf00
)

+ ∂φU01

]

,

where b0 and U0 are functions of u, while all other functions depend on (u, φ).

The H-field is known, but it will be useful for the computation of the charges to derive

the asymptotic form of the B-field (2.3). Choosing the gauge for which Bur = Brφ = 0

and taking the arbitrary term of order 1 to be zero, it is

Buφ(u, r, φ) =
1

8
kga00∂φ

(

e−4f00+b0a11

) log2
(

r
L

)

r

+
1

4
kg

(

−a11α00 + a00

(

a11U00 + ∂φ(e
−4f00+b0a01)

)) log
(

r
L

)

r

+
1

4

(

kga00α01 − kga01α00 + 4L4Ωe4f00+b0
) 1

r
+O

(

log3
(

r
L

)

r2

)

. (3.12)

– 6 –
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In short, the field content is as follows: f and Aφ, 3 integration functions b0, U0

and the one obtained when solving the first equation below (3.11c) for α00, the functions

U01, α01, V00 and the constant Ω.

3.2 No BMS3

We will ultimately be interested in determining a consistent set of boundary conditions and

its symmetries. Given any field configuration Ψ = (g,Φ, A,B) included in the boundary

conditions, asymptotic symmetries are the transformations Ξ such that Ψ + δΞΨ remains

included in the boundary conditions and leading to well-defined charges. More precisely,

we have that δΞΨ = (Lξg,LξΦ,LξA+dλ,LξB +dΛ− kg
4 dλ∧A) with ξ a vector field, λ a

scalar and Λ a one-form.

Let us give a first look at the allowed symmetries. By first imposing to preserve the

Bondi gauge (from (3.1)), we get

Lξgrr = 0 ⇒ ξu = ξu(u, φ) (3.13)

Lξgφφ = 0 ⇒ ξr = −r U ∂φξ
u − r ∂φξ

φ (3.14)

Lξgrφ = 0 ⇒ ξφ = ∂φξ
u

∫ r eβ

ρ2
dρ+ Y (u, φ) . (3.15)

Using the results (3.11), we have

ξφ = e−4f00+b0∂φξ
u log

( r

L

)

+ Y (u, φ) + 4e−4f00+b0f11∂φξ
u log

(

r
L

)

r

+ 4e−4f00+b0(f01 + f11)∂φξ
u 1

r
+O

(

log2
(

r
L

)

r

)

. (3.16)

Then, we consider the dilaton transformation

LξΦ =

(

1

2
U − r U ∂rf

)

∂φξ
u + ∂u ξ

u +

(

1

2
− r∂rf

)

∂φξ
φ + ∂φf ξφ .

Using again (3.11), one finds that the leading term of this transformation is of order

log(r/L). This term spoils the ansatz (3.8) and must vanish, which implies that

ξu =

∫ φ

c1(u)e
2f00(u,Θ) dΘ +X(u) . (3.17)

The periodicity of the φ variable forces us to take c1 = 0. The vector field thus takes

the form

ξ = X(u)∂u − r ∂φY (u, φ)∂r + Y (u, φ)∂φ . (3.18)

The preservation of the dilaton ansatz implies that the supertranslation generator of the

BMS3 algebra is not included in the asymptotic symmetries (since this would require a

φ-dependence in ξu, see e.g. eq. (6) of [45]). It would be interesting to relax the periodicity

condition on φ and to allow for a more general ansatz for Φ (3.8), possibly including

non-integer powers of r.

– 7 –
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It is easily checked that the vector field (3.18) preserves the orders of the three other

components of the metric and the dilaton. We now consider the transformation of the

Maxwell field. Preserving its form implies

∂rλ = 0. (3.19)

Finally, the condition on the B-field leads to

Λ = dM + Λφ dφ (3.20)

with Λφ being constant and M an arbitrary function of all coordinates.

After having solved partially the equations of motion and put restrictions on the po-

tential asymptotic symmetries, the next step is to compute the charges and impose them

to be finite and integrable. This has restricted the boundary conditions and has eventually

led to a consistent of set of boundary conditions. For clarity reasons, we have decided to

present in main text the obtained phase space and compute the charges for this set. We

relegate in appendix C this step of the construction of the boundary conditions.

3.3 Phase space and symmetries

In this section we present a consistent set of boundary conditions including the black string

solutions and their symmetries. We spell out in appendix C the details that led us to this

particular set.

The boundary conditions are (all coordinate-dependences are explicit):

Aφ(u, r, φ) = a11(u, φ)
log

(

r
L

)

r
+ a01(u, φ)

1

r
+O

(

log2
(

r
L

)

r2

)

(3.21a)

f(u, r, φ) = f00(φ) +O

(

log2
(

r
L

)

r2

)

(3.21b)

β(u, r, φ) = log
( r

L

)

− 4f00(φ) +O

(

log2
(

r
L

)

r2

)

(3.21c)

U(u, r, φ) = 2e−4f00(φ)∂φf00(φ) + u01
1

r
+O

(

log3
(

r
L

)

r2

)

(3.21d)

Au(u, r, φ) = α21(u, φ)
log2

(

r
L

)

r
+ α11(u, φ)

log
(

r
L

)

r
+ α01(u, φ)

1

r
+O

(

log3
(

r
L

)

r2

)

(3.21e)

with α21(u, φ) = ∂φ

[

1

2
e−4f00(φ)a11(u, φ)

]

,

α11(u, φ) = ∂φ

[

e−4f00(φ)a01(u, φ)
]

+ 2a11(u, φ)e
−4f00(φ)∂φf00(φ) ,

V (u, r, φ) = − 4

L

(

1 + e−4f00(φ)(∂φf00(φ))
2
)

r + V00(u, φ) +O

(

log4
(

r
L

)

r

)

. (3.21f)

– 8 –
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The B-field takes the form

Buφ(u, φ) = e4f00(φ)ΩL4 1

r
+O

(

log3
(

r
L

)

r2

)

. (3.22)

The boundary conditions are labelled by four functions of (u, φ): a11, a01, α01, V00, one

function of φ: f00, and two constants u01,Ω. Translating in terms of metric components,

we have the following fall-offs

guu = −4e−4f00(φ)r2 + e−4f00(φ)(LV00(u, φ) + 4u01∂φf00(φ))r +O
(

log4
( r

L

))

(3.23)

gur = −e−4f00(φ)r +O

(

log2
(

r
L

)

r

)

(3.24)

guφ = 2e−4f00(φ)∂φf00(φ)r
2 + u01r +O

(

log3
( r

L

))

. (3.25)

The black string (2.5) is included in the phase space with

f00 =
1

2
log ζ , V00 =

4

L
(r+ + r−) , u01 = 2ω ,

α01 =
4L
√

kg

√

−ω2 ζ2 + r−r+ , Ω =
2ω

L2
(3.26)

and the other functions and subleadings to zero.

Notice that these boundary conditions are presented in a particular gauge, and by

having partially solved the equations of motion. Transposed in the pure AdS3 context,

this would be somewhere in between the Brown-Henneaux boundary conditions of [1] and

the completely gauged-fixed, on-shell solutions of Bañados [46] though, since the theory at

hand presently does exhibit propagating degrees of freedom, we do not expect to be able

to write down the most general exact solution incarnating our boundary conditions.

The asymptotic symmetry parameters preserving these boundary conditions are in the

form of a triplet (ξ, λ,Λ) with3

ξ = X∂u − r∂φY (φ)∂r + Y (φ)∂φ , λ ∈ R , Λ = Λφ dφ . (3.27)

Indeed, the Maxwell field A has no more terms of order 1, which implies ∂uλ = ∂φλ = 0

in addition to (3.19). The function Y in the AKV (3.18) is restricted to depend on φ.

This can be seen from the transformation of the dilaton, which should be a function of

the coordinate φ (and not of u). Finally, the transformation of u01 forces us to freeze the

u-component of (3.18) to a constant.

3Preserving the boundary conditions still includes the function M in Λ as in (3.20). However, this

function M turns out to be a small gauge parameter, hence its associated charge is zero. Thus, it will not

be part of the asymptotic symmetry group.
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For future computations, it is relevant to write the transformations δ of some fields

under the action of the asymptotic symmetry generator a = (ξ, λ,Λ),

δaf00 =
∂φY

2
+ Y ∂φf00 , δaΩ = 0 , δau01 = 0 (3.28a)

δaV00 = V00∂φY + ∂φV00Y + ∂uV00X − 2
u01
L

∂2
φY (3.28b)

δaa01 = 2a01∂φY − a11∂φY + ∂φa01Y + ∂ua01X (3.28c)

δaa11 = 2a11∂φY + ∂φa11Y + ∂ua11X (3.28d)

δaα01 = α01∂φY + ∂φα01Y + ∂uα01X − 2e−4f00a11∂φf00∂φY − ∂φ(a01e
−4f00)∂φY . (3.28e)

In the following section, we show that the charges associated with these parameters are

finite and integrable on the above phase space. Moreover, we will make a small restriction

of the phase space to obtain conserved charges. Finally, we will determine the asymptotic

symmetry algebra.

3.4 Charge algebra

General expressions of the charges. The explicit expressions of the charges for the

theory (2.1) are partially known. The contributions from the gravitational part [47–49], the

Maxwell part [50], the two-form and dilaton parts [51, 52] are displayed in the literature.

The extra contribution comes from the piece proportional to kg in (2.3). To keep track

of it, we parametrize the factor kg/4 by k in the definition (2.3), H = dB − kA ∧ F . To

determine it, we use the BBC method [53, 54] (see also appendix A of [24] and [55] for a

brief summary, and [56] for a pedagagocial account).

The first ingredient is to consider the weakly vanishing Nœther current, denoted S. It

is defined as the Lagrangian variation with respect to all fields of the theory times their

reducibility parameters R:

S =
δL

δg
Rg +

δL

δA
RA +

δL

δB
RB +

δL

δΦ
RΦ =

(

SEH + STµν

)

+ SA + SB + SΦ . (3.29)

For the theory (2.1), we get

Sµ
Tµν

=

√−g

8π
Tµν
matter ξν with (3.30a)

Tmatter
µν = 4

(

∇µΦ∇νΦ− 1

2
gµν(∇µΦ)

2

)

+
1

4
e−8Φ

(

HµabH
ab

ν − 1

6
gµνH

2

)

+
kg
4
e−4Φ

(

FµaF
a

ν − 1

4
gµνF

2

)

+
2

L2
e4Φgµν (3.30b)

Sµ
A =

√−g

16π

kg
2

(∇σF
σµ − 4(∇σΦ)F

σµ) e−4Φλ̄

+ k

√−g

16π
(HτµρFρτ +Aτ (∇ρH

τµρ − 8∇ρΦH
τµρ)) e−8Φλ̄ (3.30c)

Sµ
B =

√−g

16π
(∇τH

τµσ − 8(∇τΦ)H
τµσ)e−8ΦΛ̄σ (3.30d)

Sµ
Φ = 0, (3.30e)

– 10 –



J
H
E
P
0
6
(
2
0
1
9
)
1
3
1

where λ̄ = Aρξ
ρ+λ and Λ̄σ = Bρσξ

ρ+Λσ−kλAσ. Then, we apply a contracting homotopy

operator to this weakly vanishing Nœther current to obtain a one-form potential k[µν] (in 3

dimensions). For a second order theory, this operation can be written in the following way:

k
[µν]
ξ,λ,Λ =

1

2
δϕi ∂

∂ϕi
,ν

Sµ
ξ,λ,Λ +

(

2

3
∂λδϕ

i − 1

3
δϕi∂λ

)

∂

∂ϕi
,λν

Sµ
ξ,λ,Λ − (µ ↔ ν) , (3.31)

where ϕ are the fields of the theory labelled by the index i and δϕ their variation.

For the present work, it is useful to introduce the following tensor

♦αβγ
τµρ = δατ δ

β
µδ

γ
ρ + δαµδ

β
ρ δ

γ
τ + δαρ δ

β
τ δ

γ
µ , ♦τµρ νσλ = ♦

τµρ
αβγg

ανgβσgγλ . (3.32)

The contributions of the matter fields Φ, A,B to the energy-momentum tensor are (with

aµ := δAµ, bµν := δBµν)

kTµν = 8∂µΦ ξν f + (gµτξσH
σνρ)

(

1

2
bρτ − k a[ρAτ ]

)

e−8Φ

+
kg
4
(−gµρF σν + 2Fµρgσν − gσρFµν)ξσ aρ e

−4Φ − (µ ↔ ν) . (3.33)

The contribution coming from Einstein-Maxwell plus dilaton theory is

kF,Φ = kg

(

∇µΦ aν + Fµν f +
1

2
Fµγhνγ −

1

8
Fµνh

)

λ̄e−4Φ

+ kgg
µκgλν

(

1

2
∂λaκ −

1

4
aκ∂λ

)

(

λ̄e−4Φ
)

− (µ ↔ ν) . (3.34)

In the part coming from H2 in the Lagrangian, we have the pure three-form part, propor-

tional to Λ̄ and the contribution of the Chern-Simons coupling

kH=

(

− 4♦τµσ νβγ∂τΦ bβγ + 4Hµνσ f +
1

4
Hµνσh

)

e−8Φ(Λ̄σ − k λ̄Aσ)

− ♦σµ(ν λ)κω

(

2

3
∂λbκω − 1

3
bκω∂λ

)

(

e−8Φ(Λ̄σ − k λ̄Aσ)
)

+ k

(

F σµaν+
1

2
Fµνaσ + ♦σµτ α[νκ]∂τAα aκ + 8♦στµα[νκ]∂τΦAα aκ

)

e−8Φ(Λ̄σ − k λ̄Aσ)

+ k
(

♦σµλα[νκ] + ♦σµν α[λκ]
)

(

2

3
∂λaκ −

1

3
aκ∂λ

)

(

Aαe
−8Φ(Λ̄σ − k λ̄Aσ)

)

+ k
(

− Fµρb ν
ρ +Hµντaτ + 2k Fµ

τA
[νaτ ]

)

λ̄e−8Φ

− (µ ↔ ν) . (3.35)

Finally, the infinitesimal charge difference between a configuration Ψ and Ψ + δΨ is

obtained by integrating this one-form over a surface at infinity:

δH(ξ,λ,Λ) =

∫

S∞

k(ξ,λ,Λ)(Ψ, δΨ) , (3.36)

with

k(ξ,λ,Λ)[δΨ,Ψ] = kG + kTµν + kF,Φ + kΦ + kH (3.37)
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with kG is the gravitational part [47–49] and the other contributions are given

by (3.33), (3.34) and (3.35). When computing the charges in the next section, we will

restore k to kg/4. The finite charge difference is then obtained by integrating along a path

in configuration space.

Charges. The integrated charges for the boundary conditions (3.21) are given by

H(−rY ′∂r+Y ∂φ,0,0) =
1

16π

∫ 2π

0
dφ e4f00(φ)u01Y (φ) (3.38a)

H(∂u,0,0) =
L

16π

∫ 2π

0
dφV00(u, φ) (3.38b)

H(0,0,Λφ dφ) =
1

16π

∫ 2π

0
dφΩΛφ (3.38c)

H(0,λ,0) =
kg λ

32πL2

∫ 2π

0
dφA(u, φ) , (3.38d)

where

A := α01(u, φ)− 2e−4f00(φ)a01(u, φ)∂φf00(φ) . (3.39)

The charges (3.38b) and (3.38d) are not conserved, as they are explicitly u-dependent.

This u-dependence can be interpreted as gravitational and electromagnetic news, respec-

tively. Notice that, contrary to the more familiar situations of pure gravity in four di-

mensions [57] or Einstein- Maxwell theory in three dimensions [43] where once charges are

made integrable they become automatically conserved, here we can make them integrable

while still non-conserved (compare for instance to eq. (3.1) of [58] for the former case and

to eq. (4.4) of [43] for the latter). However, a further restriction of the phase space leads

to conserved charges as we now explain.

Using the periodicity of φ, we decompose the functions V00 and A in modes. It is

sufficient to demand that their zero modes be constant to have conserved charges

V00(u, φ) = V0 +
∑

n 6=0

Vn(u) e
i n φ , A(u, φ) = A0 +

∑

n 6=0

An(u) e
i n φ . (3.40)

This is only a consistent requirement if the condition is preserved by the asymptotic

symmetries which is indeed the case as we now show. Under the asymptotic group, V00

transforms as (3.28b), where (taking Y (φ) = ei kφ),

δaV00 =

(

∑

n

Vn e
i n φ

)

i k ei k φ +

(

∑

n

Vn i n ei n φ

)

ei k φ +X

(

∑

n

∂uVn e
i n φ

)

+ 2
u01
L

k2ei k φ

=
∑

m

(

Vm−k im+X ∂uVm +
2u01
L

k2δk−m

)

eimφ . (3.41)

Thus,

δaV0 = 0 , δaVn(u) = Vn−k i n+X ∂uVn +
2u01
L

k2δk−n , for n 6= 0 , (3.42)
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and the form of the field V00 is indeed preserved by the asymptotic symmetries. The

variation of A is, using (3.28),

δaA =A ∂φY + ∂φAY + ∂uAX − ∂φ[a01e
−4f00∂φY ]. (3.43)

Decomposing a01e
−4f00 in modes the same way, one has

δaA =
∑

m

(Am−k im+X ∂uAm)eimφ +
∑

n

(a01e
−4f00)n k(n+ k)ei(n+k)φ

=
∑

m

(

Am−k im+X ∂uAm + (a01e
−4f00)m−k km

)

eimφ . (3.44)

Therefore, the zero mode of A stays constant under the action of the asymptotic

symmetries.

The restriction (3.40) on the boundary conditions (3.21) leads to conserved, integrable

and finite charges. In the following, we compute the algebra satisfied by these conserved

charges.

Algebra. In this section, we compute the algebra of the conserved charges (3.38) together

with the condition (3.40). As in [59], we write an element of the algebra as

a = (ξ, λ,Λ) (3.45)

and we use the following bracket

[a, a′]G ≡ ([ξ, ξ′],Lξλ
′ − Lξ′λ,LξΛ

′ − Lξ′Λ) . (3.46)

We define ℓn = (ξn, 0, 0) where ξn = −irneinφ∂r + einφ∂φ and by abuse of notation, we

denote p0 = (∂u, 0, 0), q0 = (0, λ, 0) and r0 = (0, 0,Λφ dφ). The ℓn satisfy a Witt algebra

while the three other symmetries commute with everything.

Now, we consider the algebra of the charges associated with parameters a. It takes

the form

δaHa′ := {Ha′ , Ha} = H[a,a′]G +K(a, a′) (3.47)

where the first equality is the usual definition the Poisson bracket of charges.4

First, we compute δℓmHℓn , we get

H[ℓn,ℓm]G +

∫ 2π

0
dφ∂φ

[

− 1

16π
u01e

i(n+m)φ+4f00

]

(3.48)

so the Witt algebra does not pick up a central extension, the extra term being a bound-

ary term.

The expression δp0Hq0 gives a zero contribution recalling that the zero mode of A is

independant of u,

δp0Hq0 =
kg X λ

32πL2
∂u

∫ 2π

0
dφA = 0 . (3.49)

4Note that this definition needs to be modified in the presence of non-integrable charges [58], but this is

not the case here.
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Similarly δaHp0 gives

δp0Hp0 =
L

16π
∂u

∫ 2π

0
dφV00 = 0 . (3.50)

Finally, δaHr0 gives 0.

The asymptotic symmetry algebra thus consists in a centerless Virasoro algebra sup-

plemented by three exact charges u(1) charges.

4 Solutions in phase space

In the previous section, we have established a phase space including the black string so-

lution. An interesting question is whether there exists other saddle points in the phase

space. We address this question after reviewing other known classical solutions belonging

to the phase space.

4.1 Horne-Horowitz black string

An interesting solution included in the boundary conditions is the Horne-Horowitz black

string, corresponding to solution (2.5a) with a vanishing Maxwell field. In our conventions,5

the Horne-Horowitz black string is

ds2H = 4

(

−r2 + r

(

MH +
Q2

H

MH

))

du2 − 2r du dr + 4QH r du dφ+ r2 dφ2 (4.1)

Φ = −1

2
log

( r

L

)

(4.2)

(Hurφ)H =
L2QH

r2
, (4.3)

and corresponds to the point in the phase space with

f00 = 0 , u01 = 2QH , V00 =
4

L

(

MH +
Q2

H

MH

)

, Ω =
2QH

L2
(4.4)

with the other functions and subleading terms set to zero. It naturally fits the general

black-string solution (2.5) with

α = 0 ⇔ r− =
ζ2ω2

r+
, r+ = MH, ζ = 1 , ω = QH. (4.5)

4.2 Two-dimensional black hole

Switching off the Kalb-Ramond field in the Horne-Horowitz black-string solution, i.e. set-

ting QH = ω = 0, leads to a metric plus dilaton background

ds2 = −2rdudr − 4r(r −MH)du
2 + r2dφ2, (4.6)

and

Φ = −1

2
log

( r

L

)

. (4.7)

5We relegate the details of the transposition of the original expression of [34] to Bondi gauge in ap-

pendix D.
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The metric background in (4.6) together with the dilaton field (4.7) is a remarkable solution,

consisting of a decoupled free (not necessarily compact) direction φ together with the two-

dimensional Lorentzian black hole [39].

4.3 Time-dependent solutions

Returning to the equations of motion, it is possible to find more general explicit solutions to

the equations of motion satisfying our boundary conditions [41]. Indeed, the rr-component

of Einstein’s equation and the u-component of Maxwell’s equation, read as follows:

1

r
∂rβ =

kg
4L2

e−4f00(∂rAφ)
2 +

1

r2
(1− 2r∂rf)

2 (4.8)

− r3∂2
rAu + r2∂rAu(−3 + r∂rβ4r∂rf) + ∂r∂φAφe

βLr + r3∂2
rAφ U

+ ∂rAφ(−eβ+4FΩL3 − 4reβL∂rf + r3∂rU + r2U(−3 + r∂rβ + 4r∂rf)) = 0 . (4.9)

Switching off Aφ turns equation (4.9) into a relation between Au and β. In addition β

is then given only in terms of the function f .

Furthermore, we restrict f to be a function f00(φ), motivated by the fact that only

this component of f appears in the charges. The solutions are

β = log
( r

L

)

+ β00(u, φ) , Au = α00(u, φ) + α01(u, φ)
1

r
. (4.10)

Then, we successively solve Erφ, Eur, Eφφ = 0 and J r = 0, and we choose the integration

constant such that the solution is compatible with the phase space (3.21). We get

β = log
( r

L

)

− 4f00(φ) , Au =
α01(u, φ)

r
,

U = 2e−4f00(φ)∂φf00(φ) +
ΩL2

r
,

V =− 4

L
(1 + e−4f00(φ)(∂φf00(φ))

2)r + V00(u, φ)−
(

kg
4L3

α01(u, φ)
2 + ef00(φ)Ω2L3

)

1

r
,

(4.11)

and also that Euφ = 0 and the dilaton equation of motion are satisfied.

The last unsolved equations are Euu = 0 and J r = 0, being PDEs for V00 and α01

respectively. The latter is

∂2
φα01 + e4f00∂uα01 − 6∂φf00∂φα01 + (8(∂φf00)

2 − 2∂2
φf00)α01 = 0 . (4.12)

We observe that for f00(φ) being a constant, conveniently chosen to be 1/2 log(ζ), the

equation becomes a heat equation whose solution is

α01 =
∑

αn exp

(

n2u

ζ2
+ inφ

)

. (4.13)

Also, Euu turns out to be a heat equation with solution

V00 =
∑

Vn exp

(

n2u

ζ2
+ inφ

)

. (4.14)
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The corresponding time-dependent solution now reads as [41]

ds2 =



− 4

ζ2
r2 +

Vne
n2u

ζ2
+inφ

L

ζ2
r − kgα

2
ne

2n
(

nu

ζ2
+iφ

)

4ζ2L2
+ 2L4Ω2



 du2 − 2
r

ζ2
du dr

+ 2rΩL2 du dφ+ r2 dφ2 (4.15a)

A =
αne

n2u

ζ2
+inφ

r
du (4.15b)

Φ = −1

2
log

( r

L

)

+
1

2
log ζ . (4.15c)

A general solution consists in a superpositions of the above modes, while the black string

corresponds to αn, Vn = 0 for n 6= 0. This family of solutions deserves further study; this

will be addressed elsewhere.

5 CFT interpretation

As already mentioned, the charged black-string solution, eqs. (2.5), was reached as a double

marginal deformation of the SL(2,R) WZW model at level k with δc = 12α′

L2 = 6
k−2 . Alter-

natively, in the coordinates at hand, it appears naturally as a double marginal deformation

of the two-dimensional black hole (section 4.2) driven by parafermion bilinears. Although

this discussion falls outside of our main goal in the present work, it is worth making these

statements more precise, as this will help giving another perspective to the new families of

solutions (4.15).

5.1 The two-dimensional black hole as a seed for deformations

Our starting point is the general black-string solution (2.5), described in terms of fun-

damental parameters ω, r+ and r−. Consider a special locus in the parameter space,

corresponding to

r− =
ζ2ω2

r+
and ω = 0. (5.1)

This configuration has neither gauge field nor Kalb-Ramond. It has dilaton (eq. (2.5b))

and metric (as in (4.6) with general ζ)

ds20 = −2r

ζ2
dudr − 4r

ζ2
(r − r+)du

2 + r2dφ2. (5.2)

It is useful at this stage to move to the string frame (hatted fields) defined by the following

rescaling:

ĝµν = e4Φgµν . (5.3)

The metric (5.2) for the string background subject to (5.1) reads now (we use (2.5b)

in (5.3)):

dŝ20 = −2L2

(

dudr

r
+ 2

r − r+
r

du2
)

+ ζ2L2dφ2. (5.4)
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The metric background in (5.4) together with the dilaton field (2.5b) is a remark-

able string solution, consisting of a decoupled free (not necessarily compact) boson φ

together with the two-dimensional Lorentzian black hole obtained as an SL(2,R)
R

gauged

WZW model [39]. More precisely, eqs. (2.5b) and (5.4), where L2 is traded with6 2kα′,

provides the leading order in large k of the exact conformal sigma model SL(2,R)k
R

×Rφ. The

corresponding exact background fields can be found in a resummed form for all 1
k orders

in refs. [60, 61].7 Observe for further use that the background metric of the charged black

string (2.5a) can be recast in the string frame using explicitly the gauge field A:

dŝ2 = dŝ20 +
4L2

r

(

r−du+ ωζ2dφ
)

du− kg
4
A2

= dŝ20 +
4ωζ2L2

r

(

ω

r+
du+ dφ

)

du+
kgα

2

rr+
du2 − kg

4
A2 (5.5)

with A and α given in (2.5c).

Notice finally that under the assumption (5.1) and using (A.8) it is possible to trade

r for v, while keeping φ, which is identical to ψ:

v − u =
1

2
log

r − r+
r+

. (5.6)

The two-dimensional black-hole plus free-boson metric (5.4) is then recast as

dŝ20 = 2kα′

(

−4
dudv

1 + e2(u−v)
+ ζ2dφ2

)

. (5.7)

The question we would like to discuss is how the charged-black-string solution is con-

nected to the two-dimensional black-hole background in terms of exact marginal deforma-

tions in the space of conformal field theories. As opposed to WZW models, gauged WZW

do not possess left and right weight-one currents that enable to build dimension-two exact

marginal operators. Nevertheless, other remarkable chiral operators do exist in these coset

conformal field theories, known as parafermions [62]. For the SL(2,R)
R

coset, these are the

Abelian non-compact parafermions, obeying

∂Ψ̄± = 0 and ∂̄Ψ± = 0, (5.8)

and generating infinite-dimensional chiral algebras (∂ and ∂̄ refer to the world-sheet holo-

morphic and antiholomorphic coordinates z and z̄). Their semi-classical expressions in

terms of the sigma-model fields v(z, z̄) and u(z, z̄) read:

Ψ+ = 2

√

kr+
r

∂v e2(v−iχ), Ψ− = −2

√

kr+
r

∂u e−2(u−iχ), (5.9)

Ψ̄+ = 2

√

kr+
r

∂̄v e2(v+iχ), Ψ̄− = −2

√

kr+
r

∂̄u e−2(u+iχ). (5.10)

6It is customary to choose algebrized units, where α′ = 1

2
.

7Notice that the free boson part φ is exact per se.
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In these expressions, χ is a non-local phase. Parafermions are thus non-local objects, which

have non-trivial braiding properties. We will ignore this phase in our discussion.

Parafermions appear in the expression of the energy-momentum tensor. The holomor-

phic component of the latter, for example, reads (using (5.4), (5.6) and (5.9)):

T = ĝµν∂x
µ∂xν = 2α′

(

Ψ+Ψ− + k(∂φ)2
)

, (5.11)

and similarly for the antiholomorphic one. This expression receives quantum corrections

because parafermions have anomalous dimensions: their conformal weights are, at leading

(semi-classical) order in 1
k , h = 1 + 1

2k for the holomorphic ones, and h̄ = 1 + 1
2k for the

antiholomorphic ones [63, 64].

Due to the parafermion anomalous dimensions, left-right bilinears such as Ψ+Ψ̄+ or

Ψ−Ψ̄− are not marginal (h, h̄) = (1, 1) operators. However, as it was observed in [65, 66],

conformal composite operators based on various elementary fields make it possible to

promote the parafermion bilinears onto marginal operators, by adjusting their conformal

weights.

To that end we should recall that SL(2,R)
R

operators originate from the SL(2,R)k-WZW

affine primaries and their descendants. These can be constructed as composite operators

of group elements g(z, z̄) ∈ SL(2,R). Following the gauging procedure and performing the

appropriate gauge fixing, one reaches the SL(2,R)
R

fields. As an example, we quote several

such composite operators, corresponding to lowest or highest-level SL(2,R) representations

of lowest spin (the indices refer to the left and right SL(2,R) spin-12 projections — the

interested reader can find details for this construction e.g. in [65]):

g++ = e−2u, g−− = e2v, g+− = g−+ =

√

r

r+
. (5.12)

This set has semiclassical conformal weight 1
4k . Products of these operators provide further

composite fields. At the semiclassical level their weights are additive, but higher-order 1
k

corrections usually appear.

Besides the SL(2,R)
R

conformal operators, the free boson φ(z, z̄) brings its own tower of

conformal states: the left and right currents, ∂φ and ∂̄φ, as well as the vertex operators

Vγ = e2γζφ, (5.13)

of conformal weight −γ2

2k . Notice that γ is either real or imaginary.

Let us now turn to the marginal deformations of the SL(2,R)k
R

× Rφ sigma model de-

scribed in terms of background metric (5.4) and dilaton (2.5b). Remember that the general

sigma-model action reads:

S[x] =
1

4πα′

∫

dz2
(

ĝµν(x) +Bµν(x)
)

∂xµ ∂̄xν − 1

8π

∫

dz2Φ(x)R(2). (5.14)

Any dimension-two operator O(z, z̄), added as 1
4πα′

∫

dz2 O(z, z̄), produces a deformation

δgµν(x) and δBµν(x). Often O(z, z̄) is factorized in holomorphic/antiholomorphic pieces,

but this needs not be the case, as we will see here, along the lines of [65, 66]. It is appropriate
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to stress here that gauge fields are introduced as marginal deformations induced by Kaluza-

Klein reductions.8 Such a reduction brings an extra term to the world-sheet action S[x]:

1

4πα′

∫

dz2
(

AJ̄g + ĀJg +
kg
4
JgJ̄g

)

, (5.15)

where A = Aµ∂x
µ is the gauge-field operator and Jg = ∂y the gauge current realized at

level kg in some internal algebra after the reduction of the fourth dimension along the

coordinate y. The extra term (5.15) creates a gauge field A = Aµdx
µ and deforms the

metric as

ĝµν(x) → ĝµν(x)−
kg
4
AµAν . (5.16)

Deformations may or may not be integrable. In the former case, the operator survives

its own perturbation and a continuous line of conformal sigma models is produced. The

investigation of this property lies beyond our scope, and we will limit our presentation

to exhibiting the operators which generate the black string and the charged black string

starting from the free boson plus two-dimensional black-hole background.

The deformed backgrounds have vanishing beta functions, even at lowest order in α′.

This is an argument — although not a proof — in favour of the corresponding marginal

operators being exact (integrable). Since the black string and the charged black string are

exact conformal backgrounds (by construction [34, 40]), this argument is very strong. In

the following, we will build a new family of backgrounds by exhibiting a marginal operator

generating a deformation of the free boson plus two-dimensional black-hole. We will not

prove the conformal exactness of the operator, but the finite deformation reached in this

way turns out to be an extremum of (2.1).

Two operators play a role in the investigation of the black string, both marginal in the

semi-classical approximation:

OΨΨ =
Ψ−Ψ̄−

g2++

, (5.17)

OΨφ = − Ψ−

g++g+−

√
k ∂̄φ. (5.18)

With these operators, we can generate three marginal deformations. The starting point is

the two-dimensional black hole with metric and dilaton background (2.5b) and (5.4) (in

the string frame).

1. Adding

2α′ δr+
r+

OΨΨ (5.19)

to the world-sheet Lagrangian9 deforms only the metric, by shifting the horizon r+
to r+ + δr+.

8This important issue was originally discussed in [67] and further adapted to this general context

in [68–70].
9Remember that L2 ≈ 2α′k.
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2. Adding instead

2α′ζ2
ω

r+

(

ω

r+
OΨΨ + 2OΨφ

)

(5.20)

deforms both the metric and the Kalb-Ramond field B, and allows to recover the

neutral black string (in string frame) (5.5) with dilaton (2.5b) and Kalb-Ramond

field (2.5d). The gauge field (2.5c) vanishes so that r− takes the value displayed

in (5.1) — with non-zero ω though.

3. Finally the deformation10

kgα
2

4kr2+
OΨΨ +AΨ∂̄y + ĀΨ∂y +

kg
4
∂y∂̄y (5.21)

with

AΨ = − α

r+
√
k

Ψ−

g++g+−
, (5.22)

applied to the neutral black string, switches on the gauge field

A =
2α

r
du, (5.23)

and the string background is given in (5.5) (in string frame) with (2.5b), (2.5c)

and (2.5d). Hence the parameters α and r− are related through the identification of

r− =
α2kg
4L2r+

+
ζ2ω2

r+
. (5.24)

5.2 New deformations beyond the charged black string

Generic case. We will now propose new deformations of the charged black string. These

correspond to the patterns 1. and 3. met above, with the marginal operator OΨΨ in (5.19)

traded for

Oγ = Vγ g
2γ2

++

Ψ−Ψ̄−

g2++

, (5.25)

and the operator AΨ in (5.21) replaced with

Aγ = − β

r+
√
k
Vγ g

2γ2

++

Ψ−

g++g+−
, (5.26)

where β is an arbitrary constant. The composite operator Vγ g
2γ2

++ has indeed dimension zero

for any real or imaginary γ (see the weights in (5.12) and (5.13)). We have no proof that

the γ-deformations are exactly marginal for γ 6= 0. It turns out that the corresponding

deformed configurations solve the low-energy string equations of motion (as we will see

soon) and this suggests that the operators at hand might be exactly marginal, possibly

after correcting them with higher order 1
k corrections.

10The first term is unnecessary for the purpose of switching on the electric field. It is meant to keep r+
unaltered, which would have been affected otherwise.
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When acting on the charged black string, the operator (5.25) induces a metric defor-

mation only, given in the string frame by

δdŝ2 ∝ 1

r
e2γ(ζφ−2γu)du2. (5.27)

The operator (5.26), within the combination (5.15) acting on the neutral black string

deforms both the metric and the gauge field as follows:

A =
2β

r
e2γ(ζφ−2γu)du, (5.28)

δdŝ2 = −kgβ
2

r2
e4γ(ζφ−2γu)du2. (5.29)

where β is an arbitrary constant deformation parameter.

Putting the above transformations together, we finally find the following exact ex-

tremum of (2.1), expressed in the Einstein frame:

ds2 = −2r

ζ2
dudr − 4r

ζ2

(

r − r+ − ζ2ω2

r+

)

du2 − kgβ
2

ζ2L2
e4γ(ζφ−2γu)du2 + 4ωrdφdu+ r2dφ2

(5.30)

with dilaton, Kalb-Ramond field and gauge field given in (2.5b), (2.5c) and (5.28). The

scalar curvature of the background at hand reads:

R = −2ζ2

r2

(

4 +
2r+
r

+
2ζ2ω2

rr+
− 5ζ2ω2

r2
− kgβ

2

r2L2
e4γ(ζφ−2γu)

)

. (5.31)

As a closing remark, we would like to stress that the success in generating new families

of exact lowest-order string solutions suggests that the parafermionic operators introduced

so far are indeed exact, up to higher-order 1
k corrections. We should also notice that all of

our deformations can be repeated by trading u for −v. This will provide a kind of mirror

set of solutions. Combining deformations is not allowed, unless the corresponding operators

commute. This is usually not the case and checking it would require to determine operator

product expansions, which is far beyond our motivations here.

Periodic φ. This is the framework discussed all over the present work, and for that we

need γ = iγ̃. The deformed fields read now:

A =
2β

r
e4γ̃

2u cos(2γ̃ζφ)du, (5.32)

ds2 = −2r

ζ2
dudr − 4r

ζ2

(

r − r+ − ζ2ω2

r+

)

du2

−kgβ
2

ζ2L2
e8γ̃

2u cos2(2γ̃ζφ)du2 + 4ωrdφdu+ r2dφ2, (5.33)

together with (2.5b) and (2.5c). The scalar curvature reads:

R = −2ζ2

r2

(

4 +
2r+
r

+
2ζ2ω2

rr+
− 5ζ2ω2

r2
− kgβ

2

r2L2
e8γ̃

2u cos2(2γ̃ζφ)

)

. (5.34)

Solution (5.33) is precisely the saddle point (4.15) found in our general phase-space anal-

ysis, with the identification 2γ̃ζ = n, and after trading the imaginary exponentials for

trigonometric functions.
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6 Thermodynamics

In this section, we focus on the thermodynamic properties of the black string solution (2.5).

This solution has two horizons, at r±, with Bekenstein-Hawking entropies

S± =
π

2
r± (6.1)

and four exact symmetries, ∂u, ∂φ, λ and dφ, with four corresponding conserved charges.

First of all, we derive geometrically the thermodynamic potentials. The angular ve-

locity and Hawking temperature at the outer horizon can be easily determined:

Ω+ =
2ω

L r+
, T+ =

(r+ − r−)

Lπ r+
. (6.2)

The electric potential is defined by [71]

Φ+
A = (χ ·A)|r+ =

4
√

r−r+ − ζ2ω2

√

kg r+
, (6.3)

where χ is the generator of the horizon, namely 1
L∂u−Ω+∂φ. For the B-field, the potential

is given by [72] (the general expression for a p-form can be found in [51])

Φ+
B =

2ω L2 ζ2

r+
. (6.4)

The exact conserved gravitational charges (mass and angular momentum) associated

to the black string solution can readily be obtained from the general expression (3.36) as

δM = δH1/L∂u =
(δr+ + δr−)

2L
, −δJ = δH∂φ = −ζ

4
(ζ δω + 2δζ ω) , (6.5)

where the variation of a given solution is taken with respect to its four parameters

(r+, r−, ω, ζ). The finite expressions for the charges are thus given by

M =
(r+ + r−)

2L
, J =

ω ζ2

4
. (6.6)

The variation of the electric charge (i.e. the charge associated to the gauge parameter

λ = 1) is given by

δQA := δHλ=1 =

√

kg

8L

−2ω ζ(ω δζ + ζ δω) + (r+δr− + r−δr+)
√

−ω2 ζ2 + r−r+
(6.7)

and can easily be integrated to get the electric charge

QA =

√

kg

4L

√

−ω2 ζ2 + r−r+ . (6.8)

Similarly, the variation of the B-field charge is defined as

δQB := δHΛ=1/Ldφ =
δω

4L3
, (6.9)
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yielding

QB =
ω

4L3
. (6.10)

The first law of thermodynamics is a direct consequence of the vanishing divergence

of k(χ,0,0)(Ψ, δΨ) [47, 51, 73, 74], implying in particular that

∫

S∞

k(χ,0,0)(Ψ, δΨ) =

∫

Σ+

k(χ,0,0)(Ψ, δΨ), (6.11)

where S∞ is the circle at infinity, Σ+ the outer horizon and χ its generator. The l.h.s.

accounts for the terms

δM − Ω+δJ , (6.12)

while the r.h.s. decomposes into various contributions:

∫

Σ+

kgrav =
(r+ − r−)δr+

4r+
= T+δS+ ,

∫

Σ+

kB =
ωδω

4r+
= Φ+

BδQB , (6.13)

∫

Σ+

kA =
r+δr− + r−δr+ − 2ωδω

4r+
= Φ+

AδQA ,

∫

Σ+

kΦ = 0 . (6.14)

The first contribution turns into the variation of the entropy times the Hawking tem-

perature, while the second and third ones give the A,B-potential times the A,B-charges.

Equation (6.11) then turns into the the first law of thermodynamics at the outer horizon,

δM = T+δS+ +Ω+δJ +Φ+
AδHA +Φ+

BδHB . (6.15)

An interesting observation is that the Smarr formula for the black string reads as

M = T S +Ω J +ΦAQA +ΦB QB . (6.16)

This leads to a vanishing Gibbs free energy, defined by Legendre transformations of the

mass for all variables,

G(T,Ω,ΦA,ΦB) = 0 . (6.17)

Thus, it enforces a relation among the four potentials. Indeed, they are related as

ΦB =
4L

Ω

(

1− Lπ T − kgΦ
2
A

16

)

. (6.18)

This is also realized in the fact that the potentials only depend on the following combina-

tions of black string parameters r−
r+

, ω
r+

, ζ.

The property (6.16) is satisfied for systems with a homogeneous scaling in their ex-

tensive variables, which is usually not the case for black objects, see for example the table

p5 of [75]. BTZ black holes satisfy M = 1
2T S + Ω J and therefore have a non-vanishing

Gibbs free energy. More general black holes have more complicated Smarr-type relations

(see for instance section IV of [76] for the counterpart in Kerr-Newman-AdS black holes)

and generically non-vanishing free energies as well. This feature clearly deserves more at-

tention and it is left for future works. In particular, it would be interesting to confirm
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the vanishing of the free energy by an direct evaluation of the (appropriately regularized)

on-shell action.

We also note that the variation of M , seen as a function of M(S, J,QA, QB), can be

written as

δM =

(

1

π L
− 4π L Q̃

S2

)

δS +
4π L

S
δQ̃ (6.19)

with the effective charge

Q̃ = LJ QB +
Q2

A

kg
. (6.20)

Finally, the entropy can be written in terms of the charges as

S =
π L

2

(

M +

√

M2 − 16 Q̃

)

. (6.21)

This bears some interesting similarities with the entropy of a generic Kerr black hole.

Reproducing this entropy from the symmetries suggested by the asymptotic symmetry

analysis is also left as an open question.

We close this section with a short comment on properties of the inner horizon of the

black string solution. It has been observed over the years that inner horizons seemingly

enjoy thermodynamic properties similar to the ones at the outer horizon [77–80]. On the

one hand, the product of outer and inner horizon entropies appears to depend only on the

quantized charges of the theory and is independent of the mass. On the other hand, inner

horizons satisfy their own first law. These two observations can easily be verified to hold

for the black string solution. Indeed, from (6.1), one gets

S+S− = 4π2 L2 Q̃ . (6.22)

Then, it can easily be verified that

δM = −T−δS− +Ω−δJ +Φ−
AδQA +Φ−

BδQB (6.23)

with

S− =
π r−
2

, Φ−
A =

4
√

r−r+ − ζ2ω2

√

kg r−
, Φ−

B =
2ω L2 ζ2

r+
. (6.24)

Note that (6.19), (6.21) and (6.22) seem to suggest that while QA and QB can be

varied independently, only a particular combination of them (in the form of Q̃) appears to

be physical and is reflected in the thermodynamical properties of the system.

7 Outlook

The original objective of our work was to determine a consistent phase space containing

three-dimensional black string solutions, determine its asymptotic symmetries, and explore

whether the latter could provide a preliminary explanation of their thermodynamics, in the

spirit of [4] for BTZ black holes. One hope one might have had was to find a BMS3 algebra,

and reproduce, for a black-hole-like object, their entropy through a BMS-Cardy counting
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in three-dimensional-asymptotically flat spaces as has been done for cosmological space-

times [32, 33]. Our results are captured in eqs. (3.21), (3.17) and (3.38): the asymptotic

symmetry group consists in a centerless chiral Virasoro algebra, supplemented by three

commuting u(1) charges. We furthermore identified in our boundary conditions various

solutions, both old (Horne-Horowitz black string and its generalization, two-dimensional

Witten black hole) and new (time-dependent), which we interpreted as marginal defor-

mation of the two-dimensional black-hole worldsheet theory. We finally discussed various

thermodynamical properties of the general black string.

We close by listing various questions raised in the course of our analysis, and possible

future directions.

• Phase space content

We have not systematically explored the content of our set of boundary condi-

tions (3.21). In particular, our black string solutions (2.5) have functionally de-

pendent chemical potentials, see (6.18). Do more general black string solutions, with

4 independent potentials, exist?

• More general boundary conditions and symmetries

Determining boundary conditions encompassing a given set of “zero-mode” solutions

is a notoriously difficult task, especially when not knowing what the answer should

be. Also, once a solution to the problem is found, it is not guaranteed to be unique.

This is illustrated in the classic AdS3 setup by the discovery, 25 years after the Brown-

Henneaux boundary conditions [1] of a whole zoo of alternative boundary conditions

(see [19] for a summary). The entropy formula (6.21) is reminiscent of that of a

Warped CFT [81, 82], appearing namely in gravity with boundary conditions with

asymptotic symmetries consisting in the semi-direct product of a Virasoro and an

affine u(1) algebra. Do boundary conditions allowing for these symmetries exist?

• Frames

We have here mostly taken a relativists’ point of view by working with the metric in

Einstein frame (except in section 5). In most contexts, this does not make a difference

because the dilaton is constant. The situation is different here. In [34], the global

structure of the string frame Horne-Horowitz black string was described, and shown

to share similarities with the Reissner-Nordstrøm black hole, where it was dubbed

“asymptotically flat”. It would therefore be interesting to reproduce our analysis in

the string frame. The recent work [83] could be interesting in this regard, also in

relation with T-duality (see below).

• Near-horizon symmetries

The study of near-horizon symmetries as a handle to understand black-hole entropy

underwent recently a renewed interest with the soft hair proposal of Hawking, Perry

and Strominger [14]. It would be interesting to study these for the black string

solution along the lines of [21–23]. Preliminary results (in string frame) have appeared

for the extremal black string in [42].
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• α′-corrections

The solutions presented in this work have the interesting feature of being the target

space of exact string theory backgrounds. The background fields extracted from the

string worldsheet action are however, generically, only valid to lowest orders in α′

and need to be corrected. For Witten’s two-dimensional black hole and the Horne-

Horowitz black string, this was done in [61, 84, 85]. Do these corrections modify the

asymptotic behaviour of the solutions and the corresponding boundary conditions?

• Asymptotic T-duality

Horne and Horowitz showed that the three-dimensional black string and BTZ black

holes can be mapped on each other using a duality transformation [86] (see also [87]

for a recent generalization). As such, they might correspond to equivalent world-

sheet CFTs, and a string propagating on either of the backgrounds might not be

able to distinguish between them. This might sound a bit puzzling as the solutions

have rather different asymptotic behaviors. How to reconcile the fact that “equiva-

lent” solutions from the string theory viewpoint could possibly have rather different

asymptotic symmetry groups? How do Brown-Henneaux boundary conditions map

under duality?

We hope that this work has allowed to set the stage for returning to these questions

in a near future.
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A The original solution in original coordinates

The charged black string of [40] is an exact background, reached by a double marginal

deformation of the SL(2,R) sigma model. Its background fields read:

ds2 =
r2dr2

4ζ2L2∆(r)
− 4

(

∆(r)

ζ2
− ω2

L2

)

dt2 + 4
ωr

L2
dtdx+

r2

L2
dx2, (A.1)

and

Φ = −1

2
log

r

ζL
, (A.2)

A =
4

r

√

r+r− − ζ2ω2

kg
dt, (A.3)

B =
2ωζ2

r
dt ∧ dx, (A.4)

where

∆(r) =
(r − r+)(r − r−)

L2
. (A.5)

The solution under consideration exhibits a genuine timelike singularity at r = 0,

hidden behind two horizons located at r = r±. In the asymptotic, large-r region, the

metric behaves like

ds2 ≈ r2

L2

(

− 4

ζ2
dt2 + dx2

)

+
1

4ζ2
dr2. (A.6)

In order to get more insight and ensure regularity at the horizons, it is useful to move to

Bondi coordinates. We define

dt

L
= du+

rdr

4L2∆(r)
and

dx

L
= dφ− ωdr

2L2∆(r)
(A.7)

so that the metric (A.1) becomes11 (2.5a), whereas the background fields (A.3) and (A.4)

give (2.5c) and (2.5d). One can also trade advanced for retarded time, introducing new

coordinates v and ψ as:

v − u =

∫

rdr

2L2∆(r)
, φ− ψ =

∫

ωdr

L2∆(r)
. (A.8)

On obtains thus

ds2 =
2r

ζ2
dvdr + 4

(

ω2 − L2

ζ2
∆(r)

)

dv2 + 4ωrdvdψ + r2dψ2, (A.9)

whereas

A =
4L

r

√

r+r− − ζ2ω2

kg
dv, (A.10)

B =
2ωζ2L2

r
dv ∧ dψ. (A.11)

11This resembles the metric considered in ref. [88], with slightly different fall-off though.
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B Equations of motion in Bondi gauge

As shown in appendix A.3 of [43] based on [44], the electromagnetic and gravitational

Bianchi identities imply a hierarchy in the equations of motion to be solved, suggesting to

first solve the four “main” equations Err = 0, J u = 0, Erφ = 0 and Eru = 0. Indeed, from

an ansatz for f and Aφ, it is possible to determine Au, U, V .

We take the following ansatz for Aφ and f

Aφ(u, r, φ) = a00(u, φ) + a11(u, φ)
log

(

r
L

)

r
+ a01(u, φ)

1

r
+O

(

log2
(

r
L

)

r2

)

(B.1)

f(u, r, φ) = f00(u, φ) + f11(u, φ)
log

(

r
L

)

r
+ f01(u, φ)

1

r
+O

(

log2
(

r
L

)

r2

)

, (B.2)

and we derive the following asymptotic behaviors solving the main equation of motion

β = log
( r

L

)

+ β00 + β11
log

(

r
L

)

r
+ β01

1

r
+O

(

log2
(

r
L

)

r2

)

(B.3a)

U = U10 log
( r

L

)

+ U00 + U21
log2

(

r
L

)

r
+ U11

log
(

r
L

)

r
+ U01

1

r
+O

(

log3
(

r
L

)

r2

)

(B.3b)

Au = α00 + α21
log2

(

r
L

)

r
+ α11

log
(

r
L

)

r
+ α01

1

r
+O

(

log3
(

r
L

)

r2

)

(B.3c)

V = V̄11 r log
( r

L

)

+ V̄01 r + V30 log
3
( r

L

)

+ V20 log
2
( r

L

)

+ V10 log
( r

L

)

+ V00 +O

(

log4
(

r
L

)

r

)

(B.3d)

where all symbols βij , Uij , αij and Vij are functions of (u, φ), expressed in terms of aij , fij
and the arbitrary functions n00 and m00, except β00, U00, α00 and V00 which are arbitrary

so far. For instance:

β01 = −4f01, β11 = −4f11 , (B.4a)

U10 = eβ00∂φ(4f00 + β00)

U11 = −4Leβ00 (2f01∂φf00 − ∂φf01 − f11∂φ(4f00 + β00))

U21 = −2eβ00 (2f11∂φf00 − ∂φf11) (B.4b)

α21 =
1

2
eβ00 (∂φa11 + 2a11∂φ(2f00 + β00))

α11 = eβ00 (∂φa01 + a01∂φβ00) + a11

(

U00 + eβ00∂φ(4f00 + β00)
)

(B.4c)
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V̄11 =
2

L
eβ00

(

∂φβ00(∂φ(4f00 + β00)) + ∂2
φ(4f00 + β00))

)

V̄01 =
2

L
∂φU00 −

4

L
eβ00(e4f00 − 3(∂φf00)

2 + ∂2
φf00)

V30 =
2

3L
eβ00

(

− 6∂φf00∂φf11 +
(

8∂φ(f00)
2 − 2∂2

φf00
)

f11 + ∂2
φf11

)

V20 =
2

L
eβ00

[

− 6∂φf00∂φf01 + 8∂φf00∂φf11 + 2∂φf11∂φβ00 + f01(8(∂φf00)
2 − 2∂2

φf00)
]

V10 = − 4

L
eβ00

[

− (4∂φf00 + ∂φβ00) (∂φf01 + ∂φf11) + f01
(

(4∂φf00)
2 + 2∂2

φf00 + ∂2
φβ00

)

− f11
(

2 (2∂φf00 + ∂φβ00) (4∂φf00 + ∂φβ00) + 4∂2
φf00 + ∂2

φβ00
)

]

− U01 (4∂φf00 + ∂φβ00) + ∂φU01

+ f11(−20 (∂φf00)
2 − 4∂φf00∂φβ00 + 2∂2

φf00) + ∂2
φf01. (B.4d)

So far, we only took into account the main equations of motion. At this stage, we can

start exploring the remaining ones. The equation for the dilaton at leading, O(log r/r2),

order is

∂φT + T 2 − 2T ∂φf00 = 0 with T := ∂φ(4f00 + β00) . (B.5)

This equation does not have a φ-periodic solution12 expect for T = 0. This leads to

β00 = −4f00 + b0(u). (B.6)

This in particular kills the most leading components of V and U . Using the expressions

for β, the next leading non-vanishing term of EΦ = 0 (order 1/r2) yields

∂φU00 + 2U00∂φf00 − 2∂uf00 + 2eβ00(2(∂φf00)
2 − ∂2

φf00) = 0 . (B.7)

This is solved by

U00 = U0(u)e
−2f00 + 2eβ00∂φf00 + e−2f00∂uF , where F =

∫ φ

0
e2f00(u,θ)dθ . (B.8)

In order for U00 to be periodic, the function f00 is required to satisfy ∂u
∫ 2π
0 e2f00(u,θ)dθ = 0.

Next, J φ = 0 implies at leading order O(1/r4) that the leading component of the gauge

field is pure gauge:

∂ua00 = ∂φα00 . (B.9)

We have reached the expansion presented in the main part (3.11). We didn’t go

further in the resolution of the equation of motions as the remaining equations involve

either subleading components or non linear partial derivative equations.

12For T 6= 0, the solution is of the form T = e2f00/(K(u) −
∫ φ

e2f00). The φ-periodicity requires∫
0
e2f00 =

∫
2π

e2f00 which is impossible as the exponential is always positive.
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C Constraints from the computation of charges

In this appendix, we compute the charges of (3.11) for the residual symmetries (3.18), (3.19)

and (3.20). The on-shell constraints do not directly lead to finite and integrable charges.

The strategy we follow is to compute the variation of the charges and demand first that

they are finite, and then integrable.

We also know that we would like to keep the φ-dependence of Y in (3.18). It implies

that the black string (2.5), and the black string plus finite diffeomorphisms generated by

ξ(Y (u, φ) = F (φ)) have to be included in the phase space. The latter is given by, in terms

of the asymptotic ansatz,

f00(φ) =
1

2
log(ζ F ′(φ)) , U00 =

F ′′(φ)

ζ F ′(φ)3
, U01 = 2ω , Ω =

2ω

L2
(C.1a)

β00(φ) = −2 log(ζ F ′(φ)) , α01 =
4LF ′(φ)
√

kg

√

−ω2 ζ2 + r−r+ (C.1b)

V00(u, φ) =
4

LF ′(φ)

(

(r+ + r−)F
′(φ)2 − ω

F ′′(φ)

F ′(φ)

)

, V̄01 = − 4

L
− F ′′(φ)2

Lζ2 F ′(φ)4
(C.1c)

and all the other functions are put to zero.

We decide to start by examining the constraints coming from the Killing and Maxwell

gauge parameters, i.e.

k(ξ,λ,0)(Ψ, δΨ) , (C.2)

where ξ is given by (3.18), λ by (3.19), Ψ the asymptotically on-shell field configuration

and δΨ its variation.

As we will ultimately integrate over the surface at infinity, we only compute the com-

ponent ur of k (3.33). The highest order we get is in r. However, using the EOM for U00,

it turns out to be a total derivative with respect to φ and thus will give a zero contribution

to the charge,

1

16π
∂φ

[(

∂pb0(−U00) + 4 (2∂pf00∂φf00 − ∂φ∂pf00) e
b0−4f00 + ∂pU00

)

X − Y ∂pb0

]

, (C.3)

where the derivative with respect to p represents the variation δ of the field content.

The next order is in log(r/L)3 which is again a total derivative,

1

24π
∂φ

[

X eβ00 (2∂φf00∂pf11 + 4∂pf00∂φf11 + (2∂φ∂pf00 − 8∂pf00∂φf00) f11 − ∂φ∂pf11)
]

.

(C.4)

The next order goes like log(r/L)2. The treatment of this term is tedious but we have

noticed that only the function Y is present and not its derivative. It means that it is not

rearrangeable as a total derivative, as we chose to discard the case where Y is independent

of φ. The term proportional to Y is

−
δp k2g e

−8f00

512πL4

[

∂pa00 (∂φa11 − 4a11∂φf00) a
2
00

+
(

− 4∂pa11∂φf00 + ∂pb0 (∂φa11 − 4a11∂φf00)− 4∂pf00 (∂φa11 − 4a11∂φf00)

+ ∂p∂φa11 − 4a11∂p∂φf00

)

a300

]

+
δp

32π L2
∂p

[

e−b0
(

kg α21a00 + 2e4f00U21 L
2
)]

.
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One choice to cancel this term is to take

a00 = 0 , U21 = 0 (C.5)

However, U21 is given by (3.11b) and so we have that f11 = F11(u)e
2f00 . Moreover, (3.11c)

implies that

α00 = α0(u) (C.6)

and therefore

λ = λ(u) . (C.7)

Now we consider the rest of the log(r/L)2 term. It is

δp

32π L2

[

∂p

(

kg e
−b0α21 λ

)

+ ∂p

(

X(u) kg e
−b0α0 α21

)

(C.8)

+X(−2V20∂pb0 + 2∂pV20)L
3
]

(C.9)

The function α21, given by (3.11c), is a total derivative with respect to φ, as it is the case

for V20, given by (3.11d), once the conditions (C.5) are imposed. So, the divergence in

log(r/L)2 is a total derivative with respect to φ.

Now we consider the divergent term in log(r/L). The λ sector is a total derivative with

respect to φ once we use the explicit form of α21 and α11. We consider the Y -sector and

we realize that we can only recast one part of the Y -contribution into a total derivative.

The remaining is

− δp Y

4π

(

∂p(−2f01∂φf00 + ∂φf01) + F11∂p∂φe
2f00

)

, (C.10)

and the X-sector is

δp

2π
X∂pf00

[

e−2f00+b0
(

12(∂φf00)
2−4∂2

φf00
)

+e2f00
(

4∂φf00U00−4∂uf00+3∂φU00−4eb0
) ]

F11

+
δp

4π
X∂pf00

[

e2f00 (2∂φf00U00 − 2∂uf00 + ∂φU00) ∂pF11 − 2e2f00∂pf00∂uF11

]

+
δp kg
16πL2

Xα0

(

2∂φ(−e−4f00a01) + ∂p(e
−b0α21)

)

+
δp

16π
X

(

e4f00−b0U00 (∂pb0 − 4∂pf00) + 8∂pf00∂φf00

)

U11

+
δp

16π
X
[

∂pb0V10 L− U00∂pU11e
4f00−b0 + 4∂pf00∂φU11 − ∂pV10 L+ ∂φ∂pU11 − ∂pb0∂φU11

]

.

The choice

F11 = 0 , f01 = F01(u)e
2f00 (C.11)

makes the Y and X-sectors finite (recalling that U11 is given by (3.11b) and V10 is now a

total derivative with respect to φ).

We have restricted our ansatz to ensure that the variation of the charges are finite.

Before tackling the integrability question, we go back to the equations of motions. The

dilaton equation at order 1/r3 now reads

8∂uF01e
6f00−b0 = 0 (C.12)

and forces us to take F01 constant.
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With these new inputs, we consider the integrability of charges. The Maxwell part is

integrable,

δH(0,λ,0) =
kg

32π L2
λ

∫

dφ∂p

(

e−b0(α01 − a01e
4f00U00)

)

. (C.13)

However, only a part of the Virasoro sector is integrable,

δH(Y,0,0) =
1

16π

∫

dφ∂p

(

e−b0+4f00U01 Y
)

, (C.14)

and the remaining term − 1
2π e

2f00F01∂pf00∂φY is in general not integrable with respect to

p neither a total derivative with respect to φ. To make it a total derivative, we take F01

independent of p. Thus it has to be the same for any point in the phase space, in particular

for the black string, which has F01 = 0. So the total Virasoro charge is given by (C.14).

Now, we turn to the X-sector. First, we extract obvious total derivatives and directly

integrable terms,
1

16π
[∂pV00 L+ ∂φ (∂pb0 U01 − ∂pU01)] . (C.15)

Also, there is only one other term involving V00, namely −∂pb0 V00. As V00 is non zero for

the solution (C.1), we have to take b0 independent of p and so b0 = 0, which is consistent

with the black string. The terms involving α0 function are

kg δp

32π L2

[

∂φ∂p

(

−e−4f00a01α0

)

+ ∂p (−a01U00 + α01)α0

]

. (C.16)

The first term is a total derivative with respect to φ while the second requires α0 to be

independent of p and thus is put to zero. Therefore, the gauge parameter of the Maxwell

field becomes a constant λ. The last terms of the X-sector are

δp

16π

[

U00e
4f00 (∂pU01 + 4U01∂pf00)− 4∂pf00 (2∂φf00U01 + ∂φU01)

]

, (C.17)

which is equivalent to

δp

16π

[

− U01(e
4f00∂pU00 + 8∂φf00∂pf00 − 4∂p∂φf00) + ∂φ(−4∂pf00U01) + ∂p(e

4f00U00U01)
]

.

(C.18)

We need to make the first term a total derivative or to cancel it. Because of the solu-

tion (C.1), U01 cannot be zero and has to depend on p. Thus the braket in the first term

is either zero or it is a total derivative with respect to φ along with U01 being independent

of φ. Moreover, the function U00 takes the form (3.11b)

U00 = e−2f00G(u, φ) + e−4f00∂φf00 with G(u, φ) =

∫ φ

∂ue
2f00 + U0 . (C.19)

So the first braket in (C.18) becomes

e2f00(−2G∂pf00 + ∂pG)− 2∂p∂φf00 . (C.20)
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The first term is neither a total derivative with respect to φ neither can compensate the

second term so it has to vanish, G = 0. Thus, U0 = 0 and

f00 = f00(φ) . (C.21)

The second term is a total derivative with respect to φ, which requires U01 to be independent

of φ. Moreover, with the new constraints, the equation of motion for U01 becomes ∂uU01 =

0. Thus, U01 is a constant which is still consistent with (C.1).

Also, the equation (C.21) implies that the Y function is now only a function of φ, to

still preserve the asymptotic fall-off of the dilaton. Moreover, studying the preservation of

the φ-dependence of the uu-component of the metric forces us to take the function X(u)

to be constant X.

Finally, the charge associated to X is integrable and given by

H(X,0,0) =
X L

16π

∫ 2π

0
dφV00 . (C.22)

We have restrained our set of boundary conditions such that the charges associated

to ξ and λ are finite and integrable. Now, we consider the last charge associated to Λ. It

turns out that the charge is finite and integrable and that only the Λ = Λφ dφ leads to a

non zero charge,

δH(0,0,Λφ dφ) =
1

16π

∫ 2π

0
dφ

∂pΩ

L2
Λφ . (C.23)

In conclusion, by making choices on some of the arbitrary functions in (3.11), we have

managed to reach a phase space with finite and integrable charges.

D The Horne-Horowitz black string

In this appendix, we explicit the coordinates transformation to reach Bondi gauge for the

Horne-Horowitz black string [34] consisting in the neutral black string (2.5), obtained by

setting α = 0.

In the Einstein frame, the action considered by Horne-Horowitz is

I =
1

16πG3

∫

d3x
√−g

(

R+ (∇ΦH)
2 − 1

12
H2e4ΦH +

8

k
e−2ΦH

)

. (D.1)

To adapt to our conventions, we take

ΦH := −2Φ ,
8

k
=

4

L2
. (D.2)

The non-extremal Horne-Horowitz black string takes the form

ds2H = r(MH − r) dt2 − MHr
2

4(MH − r)
(

MHr −Q2
H

) dr2 +

(

r2 − Q2
H

MH
r

)

dx2 (D.3)

ΦH = log
( r

L

)

(D.4)

(Htrx)H = −L2QH

r2
, (D.5)

where |Q| < M .
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We reach Bondi gauge with the following coordinate transformation

u = −1

4
log











(r −MH)

M2
H

M2
H
−Q2

H

(

r − Q2
H

MH

)

Q2
H

M2
H
−Q2

H











− 1

2

MHt−QHx
√

M2
H −Q2

H

φ =

MHQH log

(

r−MH

r−
Q2
H

MH

)

2
(

M2
H −Q2

H

) +
QHt−MHx
√

M2
H −Q2

H

, (D.6)

in which the Horne-Horowitz black string takes the form

ds2H = 4

(

−r2 + r

(

MH +
Q2

H

MH

))

du2 − 2r du dr + 4QH r du dφ+ r2 dφ2 (D.7)

ΦH = log
( r

L

)

(D.8)

(Hurφ)H =
L2QH

r2
. (D.9)

It is included in our phase space (3.21) and corresponds to the case:

f00 = 0 , u01 = 2QH , V00 =
4

L

(

MH +
Q2

H

MH

)

, Ω =
2QH

L2
(D.10)

with the other functions and subleadings put to zero. It is an extremal case from the point

of view of the black string obtained by taking

ζ = 1 , ω = QH , r+ = MH , r− =
Q2

H

MH
. (D.11)

Thus, the thermodynamic considerations also hold for the Horne-Horowitz black string in

Bondi gauge. However, an important remark is that the change of coordinates (D.6) is

Horne-Horowitz parameters dependant and so we cannot pretend to describe the thermo-

dynamic properties in the original system of coordinates.
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