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1 Introduction

One of the most well-known examples of Airy function in physics appears in the WKB

approximation in which the Airy function bridges the wavefunctions across “classical” and

“quantum” regimes of the potential. It also makes universal appearances in random matrix

theory at the edge of eigenvalue distributions [1–4]. This is known as the Tracy-Widom

distribution, and it sits at a crossover from the weak to strong coupling phase of some

system and becomes a point of a 3rd order phase transition in the limit of large degrees

of freedom. It thus seems that Airy functions tend to emerge at the boundary of two

regimes. More recently, the Airy function made a surprising appearance in AdS/CFT

correspondence [5]. In the case of the duality between N = 6 U(N)k × U(N)−k Chern-

Simons-matter theory (ABJM theory) and type IIA string theory on AdS4 × CP 3 or M-

theory on AdS4 × S7/Zk [6, 7], the S3 partition function of ABJM theory turned out to

be an Airy function [8, 9]

ZABJM(S3) ∝ Ai

[

(

πN2

√
2λ

)

2

3
(

1− 1

24λ
− λ

3N2

)

]

(1.1)

where λ = N/k is the ’t Hooft coupling. This is the perturbative part of the full par-

tition function in 1/N expansions and is supplemented by the two classes of nonpertur-

bative tails [9–13], somewhat similar to the Tracy-Widom distribution.1 Importantly, via

AdS/CFT, the Airy function (1.1) corresponds to the all-loop perturbative quantum grav-

ity partition function. In some sense this occurrence of the Airy function is similar to WKB

and Tracy-Widom in that it is the bridge between “classical” and nonperturbative tails.

1In the case of k = 1, 2 when SUSY enhances to N = 8, the fully nonperturbative exact partition

function has been found [14].
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Our focus in this paper is to understand (1.1) from the viewpoint of four-dimensional

quantum gravity. Although it has been demonstrated that (1.1) can be reproduced by

the supergravity localization [15], we wish, in particular, to show that the emergence of

the Airy function is not all due to the sophistications of supergravity and extra dimen-

sions but rather lies at the core of 4d quantum gravity. Motivated by the appearance of

Airy functions in quantum cosmology [16, 17], we study 4d quantum gravity with negative

cosmological constant in the minisuperspace approximation to see if pure Einstein gravity

suffices to reproduce the S3 partition function of ABJM theory. A mental image behind

this idea is that stripping down gravity to the minisuperspace is likened to zooming into

the edge of eigenvalue distributions in Tracy-Widom or to the turning points in WKB. In

this approximation scheme the path integrals become dominated by a class of asymptot-

ically AdS “microstate geometries” and not only does the minisuperspace approximation

reproduce the S3 partition function but also the vev of half-BPS Wilson loops of ABJM

theory corresponding to a string probe added to the Einstein gravity. These results may

suggest that the supergravity path integrals localize to the minisuperspace in certain cases

and the use of the minisuperspace approximation in AdS/CFT may be a viable approach

to study 1/N corrections to large N CFTs.2

The organization of our paper is as follows: in section 2 we lay out the scheme of

minisuperspace approximation adapted to the holographic setup. In section 3 we compute

the partition function of 4d quantum gravity by explicitly performing path integrals in

the minisuperspace approximation and show that it indeed reproduces the Airy function

in the S3 partition function of ABJM theory. In section 4, in order to demonstrate that

the agreement extends beyond the S3 partition function, we calculate the gravity partition

function with a string probe and show that it indeed agrees with the vev of half-BPS Wilson

loops in ABJM theory. In section 5 we clarify how the S3 partition function is related to the

“wavefunction of the universe” which solves the Wheeler-DeWitt equation and discuss the

holographic RG interpretation of the wavefunction. In section 6, besides summarizing our

results, we discuss further generalizations of our calculations. In particular, as an example,

we present our result for the two point function of heavy operators. We also make brief

comments on the positive cosmological constant case in light of our analysis performed for

negative cosmological constant.

2 Path integrals in minisuperspace approximation

In what follows, we are going to be interested in the partition function of 4d quantum

gravity [19] dual to the CFT3 sphere partition function at strong couplings in the duality

between ABJM theory and type IIA string theory on AdS4×CP 3. In principle, we should

aim to perform the Euclidean path integral computation with the fully-fledged supergravity

including higher curvature corrections. As we will show, however, the Airy function can be

reproduced only from semiclassical path integrals of pure Einstein gravity with negative

cosmological constant in the minisuperspace approximation. In this section we set up the

Euclidean path integrals of pure Einstein gravity.

2It should be mentioned that our idea has a strong resemblance to that of [18].
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In the path integral approach to quantum gravity, we are to integrate over all hyperbolic

Euclidean metrics with the S3 boundary condition. In the ADM decomposition the general

metrics can be parametrized as

ds2 = N2dr2 + γµν (dx
µ +Nµdr) (dxν +Nνdr) , (2.1)

where r is the radial direction and xµ are the coordinates of the 3d Euclidean space. Note

that this is not the standard ADM decomposition in that the (Euclidean) time is replaced

by the radial coordinate r. In other words, it is adapted to the holographic study in which

Cauchy surfaces are timelike. Now, we decide for ourselves to work in the mimisuperspace

approximation, and this will prove to be the crucial step for our analysis. Namely, we

restrict the space to be spherically symmetric:

ds2 = N2(r)dr2 + a2(r)dΩ2
3, (2.2)

where N(r) is the laps function, a(r) the scale factor and dΩ2
3 is the metric on S3. For

simplicity we will often omit the arguments of N(r) and a(r).

The path integrals require a very careful treatment that involves introducing ghosts

(see e.g. [16]) even in the minisuperspace approximation. Fortunately, it is well-known

that after these subtle steps one is left with path integrals over the laps N(r) and the scale

factor a(r),

Z =

∫

DN

∫

Dae−SE [N,a] (2.3)

where

SE [N, a] = SEH + SGH + Sct (2.4)

is the regularized finite action on Euclidean metrics which we elaborate on below.

The Euclidean action with negative cosmological constant is the standard 4d Einstein-

Hilbert action with the Gibbons-Hawking-York boundary term [19, 20] (see appendix A for

details and conventions). For the metrics (2.2), after we integrate over the S3 coordinates,

the action can be written as

SEH + SGH = − V3

8πGN

∫

drN

[

3a

(

1 +
a′2

N2

)

− Λa3
]

, (2.5)

where V3 is the area of the unit 3-sphere and the cosmological constant Λ = −3/ℓ2 with

the AdS radius ℓ.

The next important step is to transform the “kinetic term” of the scale factor into

the canonical form. This is a well-known step in the Lorentzian de Sitter approach to the

Hartle-Hawking wave function [17, 21], and it proves to be crucial in our discussion too.

This transformation is done in two steps: first, we rescale the laps function N → N/a and

then introduce a new variable q = a2 so that the action becomes

SEH + SGH = − 3V3

8πGNℓ2

∫

dr

[

ℓ2q′2

4N
+N

(

q + ℓ2
)

]

. (2.6)
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This is our main object in the following analysis and the gravitational path integrals are

over the laps N and q.3

Finally, in the computation of the partition function, we need to regularize the diver-

gent terms by adding the counter-term action [22–24]. In four dimensions it is enough to

add the local action with the scalar curvature of the induced metric and the cosmological

constant term on the boundary as in (A.14). In the minisuperspace approximation it reads

Sct =
V3

8πGNℓ

(

2q3/2∞ + 3ℓ2q1/2∞

)

, (2.7)

where q∞ ≫ ℓ2 is the cutoff near the asymptotic boundary of the space. With (2.6)

and (2.7), we can now proceed to perform the path integrals over the laps N and the

redefined scale factor q.

3 The S
3 partition function

The S3 partition function of CFT in the large N and strong coupling limits corresponds to

the classical partition function of gravity on H4, i.e. Euclidean AdS4 with the S3 boundary

(times internal manifolds) [25, 26]:

lim
N→∞
λ→∞

ZCFT(S
3) = exp (−SE)

∣

∣

∣

∣

on−shell

(3.1)

where λ is the ’t Hooft coupling and the on-shell indicates that the action is evaluated on

the Euclidean AdS4 (times internal manifolds) with suitable regularization and renormal-

ization [22–24]. In the case of the duality between ABJM theory and type IIA string theory

on AdS4×CP 3 this has been explicitly checked by Drukker, Mariño and Putrov [10, 28]. In

contrast toN = 4 SYM on S4, the S3 partition function of ABJM theory receives nontrivial

1/N corrections dual to quantum gravity all loop perturbative effects and, remarkably, it

sums up to an Airy function [8, 9]. Furthermore, the Airy function has been reproduced as

the quantum gravity partition function of M-theory on AdS4 times Sasaki-Einstein seven

manifolds by the supergravity localization computation [15].

The goal of this section is to go beyond the large N/classical limit of (3.1). In par-

ticular, we wish to show that the appearance of the Airy function is not all due to the

sophistications of supergravity and extra dimensions but rather lies at the core of 4d quan-

tum gravity. As we will see, the path integrals of minimal 4d Einstein gravity in the

minisuperspace approximation suffice to reproduce the Airy function in the S3 partition

function of ABJM theory at strong couplings.

As we discussed in section 2, the gravity partition function in the minisuperspace

approximation takes the form

ZG(S
3) =

∫

DN

∫

Dq exp

[

3V3

8πGNℓ2

∫

dr

(

ℓ2q′2

4N
+N

(

q + ℓ2
)

)

− Sct

]

. (3.2)

3There is a subtlety in the choice of path integral measures. We will justify our choice of the measures

a posteriori by requiring consistency with the Wheeler- DeWitt equation, as will be discussed in section 5.

– 4 –



J
H
E
P
0
6
(
2
0
1
8
)
1
0
6

where we used Λ = −3/ℓ2 and Sct is the counter terms at the boundary cutoff (2.7). We

now choose the gauge in which the lapse N is constant. Our strategy is first to perform

the q-integral in the saddle point approximation. Since the Lagrangian does not explicitly

depend on “time” r, the saddle point equation is given by the “energy” conservation:

E =
ℓ2

4N2
q′2 − q − ℓ2 . (3.3)

It is most convenient to parametrize E = q0 − ℓ2, and the saddle point equation becomes

±2Ndr

ℓ
=

dq√
q + q0

=⇒ q = −q0 +

(

N(r − r0)

ℓ

)2

, (3.4)

where r0 is an unphysical constant, corresponding to the origin of “time”, which can be

shifted away, whereas q0 is a parameter which characterizes each saddle point. In other

words, we have a series of saddle points labeled by q0. To find the partition function we

sum over all the saddle points by integrating over q0. Put differently, we are summing over

a class of asymptotically AdS “microstate geometries” specified by q0, as we now elaborate.

A few remarks are in order: (1) The space at the saddle point of any q0 is asymptotically

Euclidean AdS4 of radius ℓ

ds2 =
N2

q(r)
dr2 + q(r)dΩ2

3
q≫ℓ2−→ ℓ2dη2 +N2e2ηdΩ2

3 , (3.5)

where η = log
[

r
ℓ

]

≫ 1 and q ≃ (Nr/ℓ)2. However, the space deviates from AdS4 in the

bulk in contrast to the classical limit. (2) The range of q is taken to be q ∈ [0, q∞] so

that the entire space (within the boundary cutoff q∞) is covered. The metric near q = 0

is of the form ds2 ≃ L
(

du2 + au2dΩ2
3

)

with L = 2Nℓ/
√
q0 and a = 2Nℓ−1√q0. Except for

q0 = ℓ2, the constant a differs from 1 and thus there is a curvature singularity R ∼ 1/u2

at q = 0. However, this singularity is harmless and admissible in the sense that
√
gR ∼ u

and the minisuperspace action is finite. Moreover, as we will see shortly, the special value

q0 = ℓ2 is the saddle point of the q0-integral and we will deform the integration contour

away from the real axis to a curve passing through q0 = ℓ2. Thus, along the complexified

q0-integration path, the curvature singularity is avoided altogether. (3) It is also worth

noting that the “microstate geometries” (3.5) are actually off-shell due to the gauge choice,

the lapse N = const. Thus, these “microstate geometries” are similar to localization loci

of supersymmetric gauge theories.

As we will discuss in section 5, when the space is terminated at some finite q, the

partition function is the “wavefunction of the universe” Ψ(q) which solves the Wheeler-

DeWitt equation and can conceivably be interpreted as an IR cutoff of the dual CFT.

Using the equation (3.4) with the upper sign, (minus) the saddle point action yields

−S0=
3V3

8πGNℓ

∫ q∞

0
dq

[√
q+q0−

q0−ℓ2

2
√
q+q0

]

=
3V3

8πGNℓ

[

2

3
q

3

2∞+ℓ2q
1

2∞+
1

3
q

3

2

0 −ℓ2q
1

2

0

]

. (3.6)

The divergent pieces are precisely cancelled by the counter terms Sct(q∞) in (2.7). We thus

find within our approximations that

ZG(S
3)≃

∫

dN

∫

DQ

∫

[dq0] exp

[

3V3

8πGNℓ

(

1

3
q

3

2

0 −ℓ2q
1

2

0

)

+
3V3

32πGN

∫

dr
Q′(r)2

N

]

, (3.7)
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where Q(r) is the fluctuation of q(r) about the saddle point. The integration measure [dq0]

of the saddle point parameter q0 will be determined shortly. It is more illuminating to

introduce a new variable by a simple reparametrization

q0 = ℓ2a20 . (3.8)

We now choose the measure [dq0] ∝ da0 whose justification we will argue momentarily.

Converting 4d Newton’s constant GN and the AdS4 radius ℓ into the parameters of ABJM

theory, N and λ = N/k, by
3V3ℓ

2

8πGN
=

πN2

√
2λ

, (3.9)

the Einstein gravity partition function yields

ZG(S
3) ∝ 1

2πi

∫

C
da0 exp

[

πN2

√
2λ

(

1

3
a30 − a0

)]

∝ Ai

[

(

πN2

√
2λ

)

2

3

]

. (3.10)

This is precisely the Airy function that appears in the S3 partition function of ABJM theory

at large λ!4 It should be noted that the choice of the contour C may not be unique [17]. We

have chosen a contour for which the exponentially growing component of the Airy function

Bi(z) is absent. However, for example, in the de Sitter case both the Hartle-Hawking [21]

and Vilenkin [29] wavefunctions have the Bi(z) component. In our case the AdS/CFT

lends strong support for this particular choice.

A few remarks are in order: (1) As we will see in section 5, this Airy function coincides

with the “wavefunction of the universe” Ψ(q) at q = 0. This may lend further support

on the choice of the measure [dq0] = da0 and the integration contour C in (3.10). (2) The

saddle point parameter a0 is identified with the chemical potential µ of the grand partition

function of ABJM theory [9]. (3) The integrations over Q(r) and the laps N are yet to

be performed. Although they may yield additional factors of N2/
√
λ, they are secondary

to our main point and may well be cancelled in supersymmetric cases.5 (4) The shift by

−1/(24λ) − λ/(3N2) in the Airy function of ABJM theory (1.1) cannot be accounted for

in our approximations, since they originate from higher curvature corrections [30, 31].

This result may suggest that the supergravity path integrals localize to the minisuper-

space in certain cases. However, it is not clear how exactly this can be related to the work

of Dabholkar, Drukker and Gomes [15].

4 A string probe and Wilson loops

One might wonder if the above agreement of the S3 partition function is a mere coincidence.

In order to argue that this may be more than a luck and to see how useful our approach

might be, we shall show that the agreement extends beyond the partition function to

half-BPS Wilson loops which have been calculated in ABJM theory [32].

4The N in this equation is the rank N of the gauge group of the dual CFT and should not be confused

with the laps N in (3.7).
5We stress again that the N of N2/

√
λ is the rank N of the gauge group of the dual CFT and should

not be confused with the laps N in (3.7).
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The BPS Wilson loops are also given in terms of Airy functions. In particular, the

half-BPS Wilson loops of winding number n take a simple form

〈W 1/2
n 〉 ∝ Ai

[

(

πN2

√
2λ

)

2

3
(

1− 2nλ

N2
− 1

24λ
− λ

3N2

)

]

, (4.1)

where the piece − 1
24λ − λ

3N2 is the aforementioned shift originating from higher curvature

corrections and cannot be captured by our approach. However, the contribution propor-

tional to the winding number n is dual to an n-wound string [33–36] and corresponds to a

simple shift in the coefficient of a0 in (3.10). As we will show, a string probe of winding

number n precisely yields the right amount of shift to the coefficient.

In the gravity partition function with a string probe, the Nambu-Goto action is added

to the saddle point action (3.6):

S0(q0) → S0(q0) + SNG(q0) (4.2)

where the NG action is the minimal surface bounded by a circular Wilson loop wrapping

the great circle of the boundary S3 embedded in the space

ds2 =
N2

q(r)
dr2 + q(r)dΩ2

3 (4.3)

at the saddle point (3.4). Choosing the worldsheet coordinates to be (r, φ) with φ

parametrizing the great circle of S3, the induced metric on the string yields

ds2ws =
N2

q(r)
dr2 + q(r)dφ2 =⇒ det gws = N2 . (4.4)

Here N is the laps not to be confused with the rank N of the CFT. This is trivially

a minimal surface. In other words, our choice of the worldsheet coordinates happens to

be the one naturally parametrizing the minimal surface. Note that this minimal surface

corresponds to the AdS2 in the classical case [35].

The NG action for the n-wound string is then given by

SNG(q0) = nT

∫

dr

∫ 2π

0
dφ

√

det gws = πnTℓ

∫ q∞

0

dq√
q + q0

= 2πnTℓ

[√
q∞ + q0 − q

1

2

0

]

(4.5)

where T is the string tension and we used the saddle point equation (3.4). Subtracting the

divergent part, the total saddle point action is found to be

Stot(q0) = − 3V3

8πGNℓ

[

1

3
q

3

2

0 −
(

1− 16π2GNnT

3V3

)

ℓ2q
1

2

0

]

. (4.6)

Using the relation among parameters Tℓ2 =
√

λ
2 [35], this becomes

Stot(a0) = −πN2

√
2λ

[

1

3
a30 −

(

1− 2nλ

N2

)

a0

]

. (4.7)
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As advertized, we thus find that the gravity partition function with an n-wound string

probe precisely agrees with the half-BPS Wilson loops in ABJM theory:

ZG+string(S
3) ∝ 1

2πi

∫

C
da0e

πN2
√
2λ

[

1

3
a30−

(

1− 2nλ

N2

)

a0
]

∝ Ai

[

(

πN2

√
2λ

)

2

3
(

1− 2nλ

N2

)

]

. (4.8)

This agreement may bolster our claim that the supergravity path integrals may localize to

the minisuperspace in certain cases and the use of the minisuperspace approximation in

AdS/CFT may be a viable approach to study 1/N corrections to large N CFTs.

5 The Wheeler-DeWitt equation and RG flow

It is expected that the partition function is a solution to theWheeler-DeWitt equation. This

is actually an alternative and much simpler way to find the partition function. However,

it is not as obvious as it may seem how exactly the “wavefunction of the universe” can be

identified with the S3 partition function of the CFT.

The Hamiltonian constraint of (2.6) yields the Wheeler-DeWittt equation (see (A.18))

[

d2

dq2
− 9π2

16G2
Nℓ2

(

q + ℓ2
)

]

Ψ(q) = 0 , (5.1)

where we used the canonical momentum πq = ~
d
dq with ~ = 1. Note that since the “time”

is the spatial radial coordinate r and can be regarded as a Euclidean time, the imaginary

i is absent in πq = ~
d
dq . This is the Airy equation and can be solved to

Ψ(q) = C1Ai

[

(

3πℓ2

4GN

)

2

3
(

ℓ−2q + 1
)

]

+ C2Bi

[

(

3πℓ2

4GN

)

2

3
(

ℓ−2q + 1
)

]

. (5.2)

By using (3.9) we have 3πℓ2

4GN
= πN2

√
2λ

and observe that

ZG(S
3) ∝ Ψ(0) (5.3)

with the choice C2 = 0. Thus this provides a concrete realization of the idea that the CFT

partition function is a solution to the WDW equation as advocated in the holographic

renormalization group [37, 38].

In order to understand the relation between Ψ(q) and the partition function for generic

q, we go back to the saddle point action (3.6) and terminate the space at a finite q instead

of going all the way down to q = 0:

−S0 → −S0(q) =
3V3

8πGNℓ

∫ q∞

q
dq′

[

√

q′ + q0 −
q0 − ℓ2

2
√
q′ + q0

]

=
3V3

8πGNℓ

[

2

3
q

3

2∞ + ℓ2q
1

2∞ +
1

3
Q

3

2

0 − (q + ℓ2)Q
1

2

0

]

, (5.4)
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where we introduced the shifted parameter Q0 = q0+q. Integrating over Q0 in the partition

function, we find that

ZG(S
3; q) ∝ Ai

[

(

πN2

√
2λ

)

2

3
(

ℓ−2q + 1
)

]

∝ Ψ(q) . (5.5)

Since the radial scale q corresponds to the energy scale of the CFT, it is most natural to

interpret q as the IR cutoff in the CFT and Ψ(q) as the IR cutoff S3 partition function in

which only the modes above the energy scale q are integrated out. It is curious to observe

that at large N the “free energy” F = − ln |Ψ(q)| monotonically decreases as the IR scale

q decreases in accordance with the F-theorem proposed in [39].6

We note that this discussion may also lend support on the justification of the choice

of path integral measures assumed in preceding sections.

6 Discussions and conclusions

We studied 4d quantum gravity with negative cosmological constant in the minisuperspace

approximation and computed the partition function with or without a string probe. In this

approximation scheme the path integrals become dominated by a class of asymptotically

AdS “microstate geometries.” Despite the fact that the theory is pure Einstein gravity

without supersymmetry, the results precisely reproduce, up to higher curvature corrections,

the Airy functions in the S3 partition function and vev of half-BPS Wilson loops of ABJM

theory, which sums up all 1/N corrections and corresponds, via AdS/CFT, to the all-loop

perturbative quantum gravity result.

We would like to see how viable this approach actually is for studying 1/N corrections

and how far it can be pushed. As an immediate application, for example, it is straightfor-

ward to generalize our computation to two point functions of heavy operators for which the

geodesic approximation of a heavy particle probe suffices. We only quote the final result:

〈OJ(∆θ/2)OJ(−∆θ/2)〉S3 ∝ 1

2πi

∫

C
da0

(

ℓa0

sin ∆θa0
2

)2J

exp

[

πN2

√
2λ

(

1

3
a30 − a0

)]

, (6.1)

where ∆θ is the latitude distance between the two operators on S3 and J is the dimension of

the operators OJ and related to the mass m of the particle by ℓm = J ≫ 1. At large N the

leading correction to the 2pt function normalization can be found as exp(−
√
2λJ2/(πN2))

which corresponds to the correction from one-loop Witten diagrams. To our knowledge,

however, we currently lack the data on the 3d CFT side to make comparisons. Instead, we

might regard the minisuperspace two point function (6.1) as a prediction.

In the case of four-dimensional gravity the Ryu-Takayanagi (RT) minimal surface for

the entanglement entropy [42] is two-dimensional and technically coincides with the mini-

mal surface of Wilson loops apart from the overall constant. When our Wilson loop result

6The RG flow here is not driven by some relevant operators but rather ad hoc and induced by a hard

wall at the IR cutoff q as in [40, 41]. We thank Tadashi Takayagi for his comment concerning this point.
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is translated to the holographic entanglement entropy, its finite part reads

SHEE(equator) =
1

4GN
ln

[

Ai

[

(

3πℓ2

4GN

)

2

3

]

/Ai

[

(

3πℓ2

4GN

)

2

3
(

1− 8GN

3ℓ2

)

]]

. (6.2)

This is purportedly a RT minimal surface area (divided by 4GN ) corrected by quantum

gravity effects and our approach might provide a tool to test the proposed interpretation

of quantum corrections given in [43]. It would be interesting to gereralize this result to the

entanglement between the hemi-spheres divided at a generic latitude line.

One of the most interesting applications is to the case with the S1 × S2 boundary

geometry and study 1/N corrections to the black hole entropy. In the large N limit the

precise agreement was found between the gravity and ABJM theory computations [44].

It would be very interesting to see whether our minisuperspace approach can correctly

reproduce 1/N corrections of the ABJM index result. Another interesting application is

to study geodesic Witten diagrams [45] and find general structures of 1/N corrections to

conformal blocks.

We also discussed how exactly the S3 partition function is related to the “wavefunction

of the universe” Ψ(q) which solves the Wheeler-DeWitt equation and showed that it is in

fact the wavefunction Ψ(q) at q = 0. This can then be interpreted as a concrete realization

of the idea that the CFT partition function is a solution to the Wheeler-DeWitt equation

as advocated in the holographic renormalization group [37, 38]. Given the relation of q to

the IR cutoff of the CFT, we proposed how the wavefunction Ψ(q) for generic q can be

interpreted in the CFT.

We also note that since the Airy function was found by solving the holomorphic

anomaly equation (HAE) [46] in the original derivation of [8], it is natural to ask whether

the WDW equation can possibly be identified with the HAE in any way. However, since

the two equations are rather different in concepts and technical details, it is not obvious if

and how they can be identified. Nevertheless, it is worth pointing out that a speculation

was made in [47] that the HAE might have an interpretation as the WDW equation.

Finally, we would like to make comments on the de Sitter case and Maldacena’s pro-

posal on the relation between the S3 partition function and the Hartle-Hawking mea-

sure [48, 49]. A similar calculation yields the partition/wave function for the dS case

ZdS(S
3; q) ∝ 1

2πi

∫

CdS
da0 exp

[

3πℓ2dS
4GN

(

1

3
a30 − (1− ℓ−2

dS q)a0

)]

(6.3)

which is an Airy function and a solution to the WDW equation. For the HH measure [21]

the integration contour CdS must be chosen such that the partition function has the expo-

nentially growing component, Bi[(3πℓ2dS/(4GN ))2/3(1− ℓ−2
dS q)]. In the classical limit or the

saddle point approximation to the a0 integration with the HH boundary, the dS and AdS

results are related by the simple analytic continuation ℓ2dS → −ℓ2AdS [48, 49]. However, in

the quantum case, since the continuation crosses a Stokes and an anti-Stokes line, care is

needed to pick up the subdominant contribution.
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A Details and conventions

For completeness, we present a detailed derivation of the gravity action in the minisuper-

space approximation as well as the WDW equation used in the main text for arbitrary

dimensions d+ 1.

The Euclidean gravity action is defined as

SEH + SGH = − 1

16πGN

∫

M
dd+1x

√
g (R− 2Λ) +

1

8πGN

∫

∂M
ddx

√
γΘ (A.1)

with the negative the cosmological constant

Λ = −d(d− 1)

2ℓ2
. (A.2)

The minisuperspace ansatz for the metric is given by

ds2 = gµνdx
µdxν = N2(r)dr2 + a2(r)dΩ2

d , (A.3)

where dΩ2
d is a metric on the d-dimensional sphere with the volume

Vd =

∫

dΩd =
2π

d+1

2

Γ
(

d+1
2

) . (A.4)

The Ricci scalar can be expressed in terms of the laps and the scale factor as

R = d(d− 1)

[

1

a2(r)
− a′(r)2

a2(r)N2(r)

]

+ 2d

[

a′(r)N ′(r)

a(r)N(r)3
− a′′(r)

a(r)N2(r)

]

. (A.5)

Meanwhile, the extrinsic curvature is defined by

Θµν = −1

2
(∇µn̂ν +∇ν n̂µ) , (A.6)

and for the boundary at constant r we have the normal vectors

n̂µ = N−1(r)δµ,r , gµν n̂
µn̂ν = 1 (A.7)
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so that

Θ = −gµν∇µn̂ν =
N ′(r)

N2(r)
− Γµ

µrN
−1(r) = − d a′(r)

N(r)a(r)
, (A.8)

where we used the nonvanishing components of the Christoffel symbols

Γr
rr =

N ′(r)

N(r)
, Γθi

θir
=

a′(r)

a(r)
. (A.9)

The Einstein-Hilbert action then becomes

− 1

16πGN

∫

M
dd+1x

√
g(R−2Λ)=− Vd

16πGN

∫

drN(r)

[

d(d−1)ad−2(r)

(

1+
a′(r)2

N2(r)

)]

+
Vd

8πGN

∫

drN(r)Λad(r)+
Vdd

8πGN

∫

dr∂r

(

ad−1(r)
a′(r)

N(r)

)

.

(A.10)

On the other hand, the Gibbons-Hawking-York boundary term [19, 20]

1

8πGN

∫

∂M
ddx

√
γΘ = − Vdd

8πGN

[

ad−1(r)a′(r)

N(r)

]

bdr

(A.11)

precisely cancels the boundary contribution from the bulk action and we have

SEH + SGH = − Vd

8πGN

∫

drN

[

d(d− 1)

2
ad−2

(

1 +
a′2

N2

)

− Λad
]

. (A.12)

Next, for the canonical kinetic term, we first redefine the laps function N → Nad−4 and

the introduce a new variable q = a2 that brings us to

SEH + SGH = − Vd

8πGN

∫

dr

[

d(d− 1)

2

q′2

4N
+N

(

d(d− 1)

2
qd−3 − Λqd−2

)]

. (A.13)

For d = 3 this reproduces the action used in the main text.

To subtract the divergences we use the standard counter-term action [22–24]7

Sct =
1

8πGN

∫

∂M

√
γ

(

d− 1

ℓ
+

ℓ

2(d− 2)
Rc(r)

)

(A.14)

where
√
γ = ad(r)dΩd and the Ricci scalar of the induced metric at constant r is

Rc(r) =
d(d− 1)

a2(r)
. (A.15)

Finally, we derive the Wheeler-DeWitt equation from (A.13): we first define the canon-

ical “momentum” conjugate to q(r)

p ≡ ∂L

∂q′
= − Vd

8πGN

d(d− 1)

4N
q′ . (A.16)

7This counter-term action is valid for d = 2, 3, 4 i.e. AdS3,4,5 and for d = 2 i.e. AdS3 we only take the

first term.
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By the Legendre transformation H = q′p− L, we find the “Hamiltonian”

H = NĤ = − 16πGN

Vdd(d− 1)
N

[

p2 −
(

d(d− 1)Vd

16πGNℓ

)2
(

ℓ2qd−3 + qd−2
)

]

. (A.17)

By using the differential form of the momentum, p = ~
d
dq , we arrive at the Hamiltonian

constraint, or the Wheeler-DeWitt equation, for the wavefunction

ĤΨ(q) =

[

~
2 d2

dq2
−
(

d(d− 1)Vd

16πGNℓ

)2
(

ℓ2qd−3 + qd−2
)

]

Ψ(q) = 0 . (A.18)

In four dimensions (d = 3), this becomes the Airy equation. It is also intriguing to note that

in 5 dimensions (d = 4) the equation can be written in the form of the Schrödinger equation

for a simple harmonic oscillator whose solution is given in terms of Hermite polynomials.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C.A. Tracy and H. Widom, Level spacing distributions and the Airy kernel,

Commun. Math. Phys. 159 (1994) 151 [hep-th/9211141] [INSPIRE].

[2] P.J. Forrester, The spectrum edge of random matrix ensembles,

Nucl. Phys. B 402 (1993) 709 [INSPIRE].

[3] C. Nadal and S.N. Majumdar, A simple derivation of the Tracy-Widom distribution of the

maximal eigenvalue of a Gaussian unitary random matrix, J. Stat. Mech. 04 (2011) P04001

[arXiv:1102.0738].

[4] S.N. Majumdar and G. Schehr, Top eigenvalue of a random matrix: large deviations and

third order phase transition, J. Stat. Mech. 01 (2014) P01012 [arXiv:1311.0580].

[5] J.M. Maldacena, The large N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[6] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[7] O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043

[arXiv:0807.4924] [INSPIRE].

[8] H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix

Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].

[9] M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 03 (2012) P03001

[arXiv:1110.4066] [INSPIRE].

[10] N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory,

JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].

[11] Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Effects in ABJM Theory from Fermi

Gas Approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].

– 13 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF02100489
https://arxiv.org/abs/hep-th/9211141
https://inspirehep.net/search?p=find+EPRINT+hep-th/9211141
https://doi.org/10.1016/0550-3213(93)90126-A
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B402,709%22
https://doi.org/10.1088/1742-5468/2011/04/P04001
https://arxiv.org/abs/1102.0738
https://doi.org/10.1088/1742-5468/2014/01/P01012
https://arxiv.org/abs/1311.0580
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
https://doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
https://doi.org/10.1088/1126-6708/2008/11/043
https://arxiv.org/abs/0807.4924
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4924
https://doi.org/10.1007/JHEP08(2011)001
https://arxiv.org/abs/1106.4631
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4631
https://doi.org/10.1088/1742-5468/2012/03/P03001
https://arxiv.org/abs/1110.4066
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4066
https://doi.org/10.1007/JHEP11(2011)141
https://arxiv.org/abs/1103.4844
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.4844
https://doi.org/10.1007/JHEP01(2013)158
https://arxiv.org/abs/1211.1251
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1251


J
H
E
P
0
6
(
2
0
1
8
)
1
0
6

[12] Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Bound States in ABJM Theory,

JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].

[13] Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the

refined topological string, JHEP 09 (2014) 168 [arXiv:1306.1734] [INSPIRE].

[14] S. Codesido, A. Grassi and M. Mariño, Exact results in N = 8 Chern-Simons-matter theories

and quantum geometry, JHEP 07 (2015) 011 [arXiv:1409.1799] [INSPIRE].

[15] A. Dabholkar, N. Drukker and J. Gomes, Localization in supergravity and quantum

AdS4/CFT3 holography, JHEP 10 (2014) 90 [arXiv:1406.0505] [INSPIRE].

[16] J.J. Halliwell, Derivation of the Wheeler-De Witt Equation from a Path Integral for

Minisuperspace Models, Phys. Rev. D 38 (1988) 2468 [INSPIRE].

[17] J.J. Halliwell and J. Louko, Steepest Descent Contours in the Path Integral Approach to

Quantum Cosmology. 1. The de Sitter Minisuperspace Model, Phys. Rev. D 39 (1989) 2206

[INSPIRE].

[18] H. Ooguri, C. Vafa and E.P. Verlinde, Hartle-Hawking wave-function for flux

compactifications, Lett. Math. Phys. 74 (2005) 311 [hep-th/0502211] [INSPIRE].

[19] G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum

Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

[20] J.W. York Jr., Role of conformal three geometry in the dynamics of gravitation,

Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].

[21] J.B. Hartle and S.W. Hawking, Wave Function of the Universe,

Phys. Rev. D 28 (1983) 2960 [INSPIRE].

[22] V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity,

Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[23] R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT

correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

[24] S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and

renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595

[hep-th/0002230] [INSPIRE].

[25] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[26] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[27] N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory,

Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

[28] M. Mariño, Lectures on localization and matrix models in supersymmetric

Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].

[29] A. Vilenkin, Boundary Conditions in Quantum Cosmology, Phys. Rev. D 33 (1986) 3560

[INSPIRE].

[30] O. Bergman and S. Hirano, Anomalous radius shift in AdS4/CFT3, JHEP 07 (2009) 016

[arXiv:0902.1743] [INSPIRE].

– 14 –

https://doi.org/10.1007/JHEP05(2013)054
https://arxiv.org/abs/1301.5184
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.5184
https://doi.org/10.1007/JHEP09(2014)168
https://arxiv.org/abs/1306.1734
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1734
https://doi.org/10.1007/JHEP07(2015)011
https://arxiv.org/abs/1409.1799
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1799
https://doi.org/10.1007/JHEP10(2014)090
https://arxiv.org/abs/1406.0505
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0505
https://doi.org/10.1103/PhysRevD.38.2468
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D38,2468%22
https://doi.org/10.1103/PhysRevD.39.2206
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D39,2206%22
https://doi.org/10.1007/s11005-005-0022-x
https://arxiv.org/abs/hep-th/0502211
https://inspirehep.net/search?p=find+EPRINT+hep-th/0502211
https://doi.org/10.1103/PhysRevD.15.2752
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D15,2752%22
https://doi.org/10.1103/PhysRevLett.28.1082
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,28,1082%22
https://doi.org/10.1103/PhysRevD.28.2960
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D28,2960%22
https://doi.org/10.1007/s002200050764
https://arxiv.org/abs/hep-th/9902121
https://inspirehep.net/search?p=find+EPRINT+hep-th/9902121
https://doi.org/10.1103/PhysRevD.60.104001
https://arxiv.org/abs/hep-th/9903238
https://inspirehep.net/search?p=find+EPRINT+hep-th/9903238
https://doi.org/10.1007/s002200100381
https://arxiv.org/abs/hep-th/0002230
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002230
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
https://doi.org/10.1007/s00220-011-1253-6
https://arxiv.org/abs/1007.3837
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3837
https://doi.org/10.1088/1751-8113/44/46/463001
https://arxiv.org/abs/1104.0783
https://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0783
https://doi.org/10.1103/PhysRevD.33.3560
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D33,3560%22
https://doi.org/10.1088/1126-6708/2009/07/016
https://arxiv.org/abs/0902.1743
https://inspirehep.net/search?p=find+EPRINT+arXiv:0902.1743


J
H
E
P
0
6
(
2
0
1
8
)
1
0
6

[31] O. Aharony, A. Hashimoto, S. Hirano and P. Ouyang, D-brane Charges in Gravitational

Duals of 2+1 Dimensional Gauge Theories and Duality Cascades, JHEP 01 (2010) 072

[arXiv:0906.2390] [INSPIRE].

[32] A. Klemm, M. Mariño, M. Schiereck and M. Soroush, Aharony-Bergman-Jafferis-Maldacena

Wilson loops in the Fermi gas approach, Z. Naturforsch. A 68 (2013) 178

[arXiv:1207.0611] [INSPIRE].

[33] J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859

[hep-th/9803002] [INSPIRE].

[34] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and

anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

[35] N. Drukker, J. Plefka and D. Young, Wilson loops in 3-dimensional N = 6 supersymmetric

Chern-Simons Theory and their string theory duals, JHEP 11 (2008) 019

[arXiv:0809.2787] [INSPIRE].

[36] B. Chen and J.-B. Wu, Supersymmetric Wilson Loops in N = 6 Super Chern-Simons-matter

theory, Nucl. Phys. B 825 (2010) 38 [arXiv:0809.2863] [INSPIRE].

[37] J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group,

JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

[38] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with TT ,

JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].

[39] D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field

Theories on the Three-Sphere, JHEP 06 (2011) 102 [arXiv:1103.1181] [INSPIRE].

[40] J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality,

Phys. Rev. Lett. 88 (2002) 031601 [hep-th/0109174] [INSPIRE].

[41] J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons,

Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

[42] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[43] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic

entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[44] F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS4 from supersymmetric

localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].

[45] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten Diagrams Revisited: The AdS

Geometry of Conformal Blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].

[46] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological

field theories, Nucl. Phys. B 405 (1993) 279 [hep-th/9302103] [INSPIRE].

[47] E. Witten, Quantum background independence in string theory, in Conference on Highlights

of Particle and Condensed Matter Physics (SalamFEST), Trieste, Italy, March 8–12, 1993,

pp. 0257–275 [hep-th/9306122] [INSPIRE].

[48] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary

models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

[49] J. Maldacena, Einstein Gravity from Conformal Gravity, arXiv:1105.5632 [INSPIRE].

– 15 –

https://doi.org/10.1007/JHEP01(2010)072
https://arxiv.org/abs/0906.2390
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.2390
https://doi.org/10.5560/ZNA.2012-0118
https://arxiv.org/abs/1207.0611
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0611
https://doi.org/10.1103/PhysRevLett.80.4859
https://arxiv.org/abs/hep-th/9803002
https://inspirehep.net/search?p=find+EPRINT+hep-th/9803002
https://doi.org/10.1007/s100520100799
https://arxiv.org/abs/hep-th/9803001
https://inspirehep.net/search?p=find+EPRINT+hep-th/9803001
https://doi.org/10.1088/1126-6708/2008/11/019
https://arxiv.org/abs/0809.2787
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.2787
https://doi.org/10.1016/j.nuclphysb.2009.09.015
https://arxiv.org/abs/0809.2863
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.2863
https://doi.org/10.1088/1126-6708/2000/08/003
https://arxiv.org/abs/hep-th/9912012
https://inspirehep.net/search?p=find+EPRINT+hep-th/9912012
https://doi.org/10.1007/JHEP04(2018)010
https://arxiv.org/abs/1611.03470
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.03470
https://doi.org/10.1007/JHEP06(2011)102
https://arxiv.org/abs/1103.1181
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.1181
https://doi.org/10.1103/PhysRevLett.88.031601
https://arxiv.org/abs/hep-th/0109174
https://inspirehep.net/search?p=find+EPRINT+hep-th/0109174
https://doi.org/10.1103/PhysRevLett.95.261602
https://arxiv.org/abs/hep-ph/0501128
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0501128
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
https://doi.org/10.1007/JHEP11(2013)074
https://arxiv.org/abs/1307.2892
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2892
https://doi.org/10.1007/JHEP05(2016)054
https://arxiv.org/abs/1511.04085
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.04085
https://doi.org/10.1007/JHEP01(2016)146
https://arxiv.org/abs/1508.00501
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00501
https://doi.org/10.1016/0550-3213(93)90548-4
https://arxiv.org/abs/hep-th/9302103
https://inspirehep.net/search?p=find+EPRINT+hep-th/9302103
https://arxiv.org/abs/hep-th/9306122
https://inspirehep.net/search?p=find+EPRINT+hep-th/9306122
https://doi.org/10.1088/1126-6708/2003/05/013
https://arxiv.org/abs/astro-ph/0210603
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0210603
https://arxiv.org/abs/1105.5632
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5632

	Introduction
	Path integrals in minisuperspace approximation
	The S**(3) partition function
	A string probe and Wilson loops
	The Wheeler-DeWitt equation and RG flow
	Discussions and conclusions
	Details and conventions

