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1 Introduction and summary

String theory duals of gauge theories that possess a mass gap are also expected to exhibit

confinement in the sense of an asymptotically linear potential between an external quark-

antiquark pair. Geometrically, the reason is simple, as illustrated in figure 1. The mass

gap arises because the geometry ends smoothly at a non-zero value of the holographic

coordinate. The linear potential comes from the fact that a string hanging from a well-

separated quark-antiquark pair finds it energetically advantageous to place most of its

length near the regular end of the geometry, where it attains a constant, minimum energy

per unit length. A crucial ingredient in this argument is that the string configuration

cannot consist of two disconnected pieces. The reason is charge conservation since, in a

regular background, each piece would have no place to end. Put differently, an isolated

quark or antiquark is not an allowed configuration.

In this paper we will provide a counterexample to this expectation. The crucial point

is that the gauge theories in question possess a regular supergravity description in eleven-

dimensional M-theory but not in ten-dimensional string theory. Hence the existence of

a mass gap or the presence of confinement can only be reliably addressed in eleven di-

mensions. The eleven-dimensional geometries end smoothly at a non-zero value of the

holographic coordinate, thus leading to a mass gap. However, no confinement arises. The

reason is that, in M-theory, the quark-antiquark potential is calculated from the action of

a membrane wrapped on the M-theory circle, which is just the uplift of the corresponding

string calculation in ten dimensions. This is illustrated in figure 2. In the geometries in

question this circle shrinks smoothly to zero size in the infrared, leading to a cigar-like

topology. A membrane wrapped on this cigar has no boundary and is thus compatible

with charge conservation. In other words, an isolated quark or antiquark is an allowed

configuration. As a consequence, a configuration consisting of two cigar-like membranes

hanging from the quark and the antiquark at the boundary competes with the connected

configuration and is in fact energetically preferred for a sufficiently large separation. It fol-

lows that there is a phase transition from the connected to the disconnected configuration

at a critical quark-antiquark separation that cuts-off the linear growth of the potential.

The geometries that realize the physics above consist of a one-parameter family of

supergravity solutions dual to a one-parameter family of three-dimensional gauge theories.

We emphasize that these supergravity solutions themselves are not new [1], but we present

them in what we hope is a user-friendly, comprehensive treatment. Throughout the paper

we will find it useful to switch back and forth between the descriptions in ten and eleven

dimensions. All solutions preserve two supercharges, corresponding to N = 1 supersym-

metry in three dimensions. Because of the small amount of supersymmetry it is difficult to

determine the precise details of the dual gauge theories. Nevertheless, they are presumably

quiver-like, super Yang-Mills (SYM) gauge theories with a product gauge group of the form

U(N +M)×U(N) and possible additional Chern-Simons-Matter terms (CSM) [2, 3]. For

brevity, we will refer to these as SYM-CSM theories.
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Figure 1. (Left) Connected string configuration (thick red curve) in the calculation of the quark-

antiquark potential in string theory. The top, continuous, black, horizontal line represents the

boundary on which the gauge theory resides. The bottom, dashed, black, horizontal line is the

place where the geometry ends smoothly. (Right) Disconnected configuration that is not allowed

due to charge conservation, since the endpoints of the strings have no place to end.

Figure 2. (Left) Connected membrane configuration in the calculation of the quark-antiquark po-

tential in M-theory. The projection of the membrane onto the non-compact directions is represented

by the thick, red curve. The M-theory circle at each point is represented next to it by the black

circles. The top, continuous, black, horizontal line represents the boundary on which the gauge

theory resides. The bottom, dashed, black, horizontal line is the place where the geometry ends

smoothly. (Right) Disconnected membrane configuration allowed by charge conservation, since the

membrane closes off smoothly at the bottom of the geometry and hence it has a cigar-like topology

with no boundary.

Each of the eleven-dimensional solutions is based on an eight-dimensional transverse

geometry of Spin(7) holonomy,1 as we will review in section 4. Given the transverse geom-

etry, the two additional ingredients needed to obtain the corresponding eleven-dimensional

solution are appropriate fluxes through the transverse geometry and a warp factor. If the

ranks of the two gauge groups are the same, i.e. if M = 0, then the resulting warp factor is

singular, and so is the eleven-dimensional solution, as we explain in section 4. In order to

have M 6= 0 one must add fractional branes to the system, as we review in section 5, which

results in additional fluxes. Under these circumstances it is then possible to construct com-

pletely regular eleven-dimensional solutions, as we show in section 6. This configuration is

reminiscent of the Klebanov-Strassler solution [4] but with a three-dimensional gauge dual

and a better behaved UV.

The set of solutions is pictorially summarized in figure 3. Each curve or straight line

running downwards represents an eleven-dimensional solution labelled by its corresponding

eight-dimensional transverse geometry. The arrows indicate the direction of the Renormal-

ization Group (RG) flow from the ultraviolet (UV) to the infrared (IR). In the UV all

solutions1 are dual to a SYM-CSM theory, as described above. Asymptotically, the cor-

responding ten-dimensional geometries are those of D2-branes placed at a cone over CP3,

1Except for the one labelled Bconf
8 , see below.
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Figure 3. Pictorial representation of the different solutions (see main text).

hence the label at the top vertex of the figure. These geometries are accompanied by

two types of fluxes. First,1 an ABJM-like [5] flux of the Ramond-Ramond (RR) two-form

proportional to the Kähler form on CP3. As in ABJM, we expect this to indicate the

presence of CSM interactions and to determine the CS level. Second, fluxes associated to

the presence of fractional branes that render the IR metrics regular and shift the rank of

one of the two gauge groups.

The family of supergravity solutions is parametrized by a constant that we call y0

and that takes values between −1 and ∞. We expect this parameter to be related to the

difference between the couplings of the two factors in the gauge group, as we will comment

further in section 6. All the transverse eight-dimensional geometries can be foliated by

squashed seven-spheres viewed as an S1 fibration over an S2 base that is itself fibered over

an S4. Thus one can also view these geometries as a squashed S3 fibered over S4, or as

an S1 fibered over a squashed CP3. Following the original references, we refer to solutions

with y0 ∈ (−1, 1) as the B+
8 family [1], to the solution with y0 = 1 as B8 [6], and to

solutions with y0 ∈ (1,∞) as the B−8 family [1]. Despite this technical distinction, the

physics is continuous as a function of y0 for y0 ∈ (−1,∞). In this set of solutions the S3

shrinks smoothly to zero size in the IR, whereas the size of the S4 remains non-zero. The

IR transverse geometry is thus R4 × S4. We will see that this leads to a mass gap but no

confinement.

For y0 = −1 the IR physics is radically different. The transverse geometry was found

and dubbed B∞8 in [3]. In this case the entire S7 shrinks to zero size in the IR, but once

the warp factor is taken into account the resulting geometry is AdS4 times a squashed

seven-sphere of non-zero size. This fixed point is dual to the so-called Ooguri-Park (OP)

conformal field theory (CFT) [7], which is an N = 1 deformation of the ABJM theory [5].

– 4 –



J
H
E
P
0
6
(
2
0
1
7
)
1
5
3

Remarkably, the OP fixed point admits a relevant deformation that drives it to an IR

theory with a mass gap but no confinement. The eleven-dimensional solution describing

this flow is based on a transverse geometry found in [8, 9] that we call BOP
8 . As we will

explain in section 7.2, solutions with y0 close to −1 describe RG flows that approach the

concatenation of the B∞8 and the BOP
8 flows. These solutions exhibit “walking” or quasi-

conformal behavior in a certain range of energies, as we will confirm in section 8 with a

calculation of the potential between an external quark-antiquark pair.

If the RR two-form is set to zero, one obtains a solution based on an internal geometry

found in [8, 9] that we call Bconf
8 . The eleven-dimensional solution flows to an IR theory

that exhibits both a mass gap and confinement. The geometric reason is that, in this case,

the S1 is trivially fibered over the rest of the geometry and it remains non-contractible along

the entire flow; in particular, the IR transverse geometry is R3×S1×S4. This implies that

a membrane wrapped on this S1 cannot end anywhere in the bulk since it would have a

cylinder-like geometry and hence a boundary, which is not allowed by charge conservation.

On the gauge theory side, the existence of confinement seems to be a consequence of

the absence of CSM interactions (we will come back to this point in section 9). We will

confirm the presence of an asymptotic linear potential for an external quark-antiquark pair

in section 8. We will also show in section 7.1 that the Bconf
8 can be obtained as the y0 →∞

limit of the B−8 solutions.

2 Preliminaries

As explained in section 1, the type IIA solutions of interest in this paper describe RG

flows that start from a D2-brane-like asymptotic geometry in the UV. Some of these flows

end at AdS4 geometries in the IR. Moreover, throughout the paper we will be switching

between the type IIA description of these solutions in ten dimensions and their M-theory

description in eleven dimensions. We therefore begin by reviewing a few facts about the

simplest examples of these kinds of solutions.

The metric and dilaton of the type IIA solution describing N D2-branes at the tip of

a manifold of G2 holonomy take the form

ds2
st = h−

1
2 dx2

1,2 + h
1
2 ds2(M7) ,

eΦ = h
1
4 . (2.1)

The requirement of G2 holonomy guarantees that the solution preserves N = 1 supersym-

metry in three dimensions, i.e. two supercharges. If the transverse seven-dimensional space

is a cone then the base must be a nearly-Kähler six-dimensional manifold (NK6):

ds2(M7) = dr2 + r2 ds2 (NK6) . (2.2)

In terms of the radial coordinate on the cone, the warp factor in (2.1) behaves as

h ∼ N

r5
. (2.3)
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In the particular case that the NK manifold is S6 the supersymmetry is enhanced to N = 8

(i.e. sixteen supercharges) and the gauge theory dual is maximally supersymmetric YM in

three dimensions [10]. In the present paper the NK manifold of interest is CP3, in which

case the gauge theory dual is expected to be a quiver YM-type theory with gauge group

U(N)×U(N) [2].

The uplift of the D2-brane solution to eleven dimensions is straightforwardly obtained

via the usual ansatz

ds2
11 = e−

2
3

Φ ds2
s + e

4
3

Φ `2p (dψ + C1)2 , (2.4)

where ψ parameterizes the M-theory circle, `p is the eleven-dimensional Planck length and

C1 is the RR one-form potential of type IIA. Since the D2-brane solution has C1 = 0, the

result is the M2-brane-type metric

ds2
11 = H−2/3 dx2

1,2 +H1/3 ds2
8 , (2.5)

with

H = eΦ h3/4 = h , ds2
8 = dr2 + r2ds2 (NK6) + `2p dψ2 . (2.6)

We see that the fact that in the D2-brane solution the RR two-form vanishes implies

that the M-theory circle is trivially fibered over the rest of the directions, and that it has

constant size in the eight-dimensional transverse metric.

Let us contrast this with the uplift of the AdS4×CP3 solution of type IIA supergravity,

whose gauge theory dual is the ABJM CSM theory [5]. In this case we view CP3 as a Kähler

manifold instead of as a NK manifold (see below for more details on this distinction). The

RR two-form is proportional to the Kähler form, the dilaton is constant and the warp

factor scales as h ∼ r−4, which results in the uplift

H = h3/4 ∼ r−3 , ds2
8 = dr2 + r2ds2(CP3) + r2 (dψ + C1)2 . (2.7)

It can be checked that the metric in eleven dimensions contains again an AdS4 factor. We

see how the M-theory circle is non-trivially fibered over, and that its size grows as that of

the other directions.

The solutions of interest in the rest of the paper are based on the eight-dimensional

Spin(7)-holonomy metrics of [1], which combine ingredients of the two cases above. On

the one hand, the M-theory circle is non-trivially fibered over the rest of the coordinates.

On the other hand, its size does not grow asymptotically with the other directions but

approaches a constant. In the type IIA description this means that the metric and the

dilaton behave asymptotically as in the D2-brane solution (2.1) but, unlike in the pure

D2-brane solution, the RR two-form does not vanish. For these reasons we expect the dual

gauge theory in the UV to be a quiver SYM theory with gauge group U(N) × U(N) and

additional CSM terms.

3 Geometry of CP3

Since this manifold will play a crucial role in our solutions, we will discuss some of its

properties in this section. For our purposes, a useful way to describe CP3 is as the twistor

– 6 –
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space over the four sphere, or in other words, as an S2 fibration over S4:

S2 ↪→ CP3 = Tw
(
S4
)

↓
S4

(3.1)

This non-trivial fibration allows us to consider deformations in which we squash the fiber

with respect to the base. A convenient set of coordinates was introduced in [11], and we

follow their notation with slight differences. In terms of the vielbeins Ei to be defined

below, the metric can be written as

ds2
6 = α2

[(
E1
)2

+
(
E2
)2]

+ dΩ2
4 , (3.2)

where the metric in brackets is the metric on a round S2 and E1, E2 describe the non-trivial

fibration (i.e. they contain coordinates of S4). We have included the squashing parameter

α that controls the size of the fiber with respect to the base. There are two special values

of this parameter for which the metric becomes Einstein: α2 = 1 and α2 = 1/2. If α2 = 1

we recover the unsquashed CP3 with the Fubini-Study metric, which is Kähler. This is the

metric appearing in the ABJM construction [5]. If α2 = 1/2, the metric admits instead a

nearly Kähler structure, as in (2.2). This is the metric that was used in the construction

of [12], where unquenched flavor was added to three-dimensional SYM.

There is another special point, α2 = 1/5, for which the metric, despite it not being

Einstein, supports a minimally supersymmetric AdS solution. Its uplift to M-theory corre-

sponds to the squashed seven-sphere, and the dual gauge theory is an N = 1 deformation

of ABJM [7].

Two more important facts about this geometry are the following. First, the isometry

group of the metric (3.2) is generically Sp(2) ∼ SO(5), which is enhanced to SU(4) ∼ SO(6)

at the special point α2 = 1. This means that it will be convenient to describe CP3 as the

coset Sp(2)/U(2), since we are interested in solutions preserving these isometries. Second,

the non-vanishing Betti numbers are

b0 = b2 = b4 = b6 = 1 , (3.3)

meaning that CP3 possesses non-trivial two- and four-cycles.

In constructing the solutions, an important ingredient is the set of Sp(2)-left-invariant

forms on the coset Sp(2)/U(2). We will be using the coordinate system in [11] to facilitate

the comparison, although a coordinate system is not indispensable. Given the SU(2)-left-

invariant forms ωi, verifying

dωi =
1

2
εijkω

j ∧ ωk , (3.4)

the metric of the four-sphere can be written as

dΩ2
4 =

4

(1 + ξ2)2

[
dξ2 +

ξ2

4
ωiωi

]
, (3.5)

– 7 –
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with ξ a non-compact coordinate. If the S2 fiber is parameterized by the usual angles θ

and ϕ, then the non-trivial fibration is described by the vielbeins

E1 = dθ +
ξ2

1 + ξ2

(
sinϕω1 − cosϕω2

)
,

E2 = sin θ

(
dϕ− ξ2

1 + ξ2
ω3

)
+

ξ2

1 + ξ2
cos θ

(
cosϕω1 + sinϕω2

)
. (3.6)

For our purposes, it is convenient to consider a rotated version of the vielbeins on the

four-sphere that read2

S1 =
ξ

1 + ξ2

[
sinϕω1 − cosϕω2

]
,

S2 =
ξ

1 + ξ2

[
sin θ ω3 − cos θ

(
cosϕω1 + sinϕω2

)]
,

S3 =
ξ

1 + ξ2

[
cos θ ω3 + sin θ

(
cosϕω1 + sinϕω2

)]
,

S4 =
2

1 + ξ2
dξ . (3.7)

Despite the fact that these forms depend on the S2 angles, it is easily checked that

SnSn = dΩ2
4 . (3.8)

In terms of these, the left-invariant two-forms on the coset are

X2 = E1 ∧ E2 , J2 = S1 ∧ S2 + S3 ∧ S4 . (3.9)

Similarly, the globally defined, left-invariant three-forms are:

X3 = E1 ∧
(
S1 ∧ S3 − S2 ∧ S4

)
− E2 ∧

(
S1 ∧ S4 + S2 ∧ S3

)
,

J3 = −E1 ∧
(
S1 ∧ S4 + S2 ∧ S3

)
− E2 ∧

(
S1 ∧ S3 − S2 ∧ S4

)
. (3.10)

Finally, the invariant four-forms are the wedges of the two-forms

X2 ∧ J2 , J2 ∧ J2 = 2ε(4) , (3.11)

where ε(n) denotes the volume-form of the n-sphere. Left-invariance ensures that this

system of forms closes under exterior differentiation and Hodge duality. In particular

we have

dX2 = dJ2 = X3 , dJ3 = 2 (X2 ∧ J2 + J2 ∧ J2) ,

∗X2 =
1

2α2
J2 ∧ J2 , ∗J2 = α2X2 ∧ J2 , ∗X3 = −J3 . (3.12)

From these forms it is easy to construct both the Kähler and the nearly Kähler structures

on CP3. When the squashing in (3.2) is fixed to α2 = 1 the metric admits a Kähler

structure, whose Kähler form is

JK = X2 − J2 , (3.13)

2With respect to [11], we are taking Sξthere = S
4
here and S3

there = −S3
here.

– 8 –
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which is closed by virtue of (3.12). If instead the squashing is α2 = 1/2, the almost-complex

structure associated to the NK structure reads

JNK =
1

2
X2 + J2 . (3.14)

This shows that the set of Sp(2)-invariant forms is general enough for our purposes. In

the following we will use them to construct solutions of type IIA supergravity with CP3 as

their internal geometry.

4 Singular flows

As explained in section 1, in this section we will construct type IIA solutions describing

RG flows from a D2-brane-like asymptotic geometry in the UV to a singular geometry

in the IR. The uplifts of these solutions to M-theory are also singular in the IR. In the

following sections we will modify these solutions in such a way that their eleven-dimensional

description is completely regular.

The transverse, seven-dimensional geometries that we will employ are the dimensional

reduction of the eight-dimensional metrics found in [1], with which we will make contact

below. Despite the fact that our UV asymptotic geometries are different from those in [11],

which focused on AdS4 solutions, the metrics that we are interested in fall within the ansatz

studied in [11], which we therefore follow.

The ten-dimensional string-frame metric and dilaton take the form

ds2
st = h−

1
2 dx2

1,2 + h
1
2 ds2

7 ,

eΦ = h
1
4 eΛ , (4.1)

with the transverse geometry given by

ds2
7 = dr2 + e2f dΩ2

4 + e2g
[(
E1
)2

+
(
E2
)2]

. (4.2)

The warp factor h, the squashing functions f, g and the dilaton function Λ depend only

on the radial coordinate r. Note that r, ef and eg have dimensions of length, whereas h

is dimensionless. The D2-brane solution (2.1), to which our more general solutions will

asymptote, is recovered setting

h ∼ N

r5
, e2f =

1

2
r2 , e2g =

1

4
r2 , eΛ = 1 . (4.3)

The metric and dilaton (4.1) will be supported by the fluxes

F2 = Qk JK , (4.4)

F4 = d3x ∧ d
(
h−1 e−Λ

)
, (4.5)

where we recall that JK is the Kähler form of CP3 given in (3.13). The fact that F4 does

not involve any new functions beyond those appearing in the metric and the dilaton is a

reflection of supersymmetry. Closure of F2 implies that Qk is a constant.

– 9 –
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The first-order BPS equations ensuring N = 1 supersymmetry follow from the results

in [11] and read

Λ′ = 2Qk e
Λ−2f −Qk eΛ−2g ,

f ′ =
Qk
2
eΛ−2f − Qk

2
eΛ−2g + e−2f+g , (4.6)

g′ = Qk e
Λ−2f + e−g − e−2f+g .

The warp factor can be expressed in terms of the other functions as [11]

h = e−Λ

[
h0 −Qc

∫ r

e2Λ(z)−4f(z)−2g(z)dz

]
. (4.7)

The constant Qc is related to the number of D2-branes, as we will see below, and has

dimensions of (length)5. The integrand has dimensions of (length)−6 and h is dimensionless.

The integration constant h0 can be shifted by changing the lower limit of the integral, so

we will henceforth set h0 = 0 without loss of generality.

The usual quantization condition for the RR fluxes takes the form∫
Σ8−p

F8−p = 2κ2
10TDpNp , (4.8)

where Σ8−p is an appropriate cycle. In the case p = 6 this cycle is a CP1 ⊂ CP3 given by

constant coordinates on the S4 and we get

Qk =
`sgs

2
k . (4.9)

As in [5, 7], we expect k to be the CS level of the dual gauge theory. This can be inferred

from a D4-brane probe in our background extending in the gauge theory directions and

wrapping the two-cycle in the internal geometry. The Wess-Zumino part of its action

includes the term

TD4 (2πα′)2

2

∫
CP1×R1,2

C1∧F ∧F =
TD4 (2πα′)2

2

∫
CP1×R1,2

F2∧A∧F =
k

4π

∫
R1,2

A∧F , (4.10)

where A and F are the gauge field on the D4-brane and its field strength respectively. This

is precisely a Chern-Simons interaction at level k in the gauge theory dual.

In the case p = 2 the cycle is the entire CP3 and we find

Qc = 3π2`5s gsN , (4.11)

where N is the number of D2-branes and the rank of the field theory gauge group.

In order to make contact with [1], let us uplift our ansatz to eleven dimensions. The

Kähler form (3.13) can be written as JK = dC1 with the potential

C1 = −
(
cos θ dϕ− ξ S3

)
. (4.12)

This means that in terms of the vielbein

E3 = dψ − cos θ dϕ+ ξ S3 , (4.13)

– 10 –
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with ψ ∈
[
0, 4π

k

)
, the eleven-dimensional metric can be written in the M2-brane

form (2.5) with

ds2
8 = e−Λ

[
dr2 + e2f dΩ2

4 + e2g
[(
E1
)2

+
(
E2
)2] ]

+ eΛQ2
k

(
E3
)2

(4.14)

and

H = h eΛ . (4.15)

Comparing with the ansatz in [1] we see that the functions a, b, c used there are related to

ours through

a2 = e2g−Λ , b2 = Q2
k e

Λ , c2 = e2f−Λ , (4.16)

and that their equations for special holonomy are equivalent to the BPS system (4.6). To

be precise, in order to recover the results of [1] we should set Qk = −1. Presumably, the

sign is a choice of radial coordinate, and absolute values different from one correspond to

orbifolds of the construction in [1]. In most of our paper we will focus on the case with

negative Qk. We conclude that all the solutions of [1] are also solutions of our equations

and that we have directly constructed their ten-dimensional description.

Before we describe the family of metrics that will be our main interest, let us point

out two particularly simple solutions that are dual to superconformal theories. If Qk > 0

there is the ABJM fixed point [5] described by

e2f = r2 , e2g = r2 , eΛ =
r

Qk
. (4.17)

The supersymmetry of this solution is enhanced generically to N = 6. If Qk < 0 there is

the OP fixed point [7] at

e2f =
9

5
r2 , e2g =

9

25
r2 , eΛ =

3r

5|Qk|
. (4.18)

The theory dual to the OP fixed point is an N = 1 deformation of the ABJM model. It

is easy to show that in both cases the coefficients of the three vielbeins Ei in the uplift

coincide and that altogether they parameterize a round three-sphere fibered over S4. Thus

in the ABJM case the eleven-dimensional geometry is AdS4 times a round S7 (orbifolded

by Zk), whereas in the OP case the sphere is not round but squashed. For this reason,

upon reduction to ten dimensions the internal metric involves the unsquashed CP3 in the

ABJM case, corresponding to α2 = 1 in (3.2), whereas for OP it involves the squashed CP3

with α2 = 1/5.

We now proceed to describe the family of metrics that will be our main interest. The

general solution to our BPS system can be found using the tricks developed in [1, 6]. First

we define the master function

P (r) = e2f−Λ , (4.19)

which verifies the third-order equation(
P ′ −Qk

)
T = P T ′ , (4.20)
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where

T = 2P W ′ +
(
P ′ + 3Qk

)
W , W = P ′ +Qk . (4.21)

Note that P has dimensions of (length)2. We now change to a radial coordinate % and a

function γ(%) defined by the conditions

P ′ = % , P ′′ = − γ
P
. (4.22)

With this we reduce the system to the first-order equation

γ

(
2

dγ

d%
− 6Qk

)
= (%+ 3Qk)

(
%2 −Q2

k

)
. (4.23)

The final change of variables to a new radial coordinate y and a new function v(y) defined

through

y =
2
(
Q2
k − γ +Qk%

)
(Qk + %)2 , % = −Qk (v + 1) , (4.24)

linearizes the equation to

2
(
1− y2

) dv

dy
= y v + 2 . (4.25)

Note that y and v are both dimensionless. This equation can be solved in terms of gen-

eralized hypergeometric functions, as we will explain below. Going back to (4.22), we see

that the master function satisfies the equation

1

P

dP

dy
=

v + 1

v (1− y2)
. (4.26)

The rest of the functions are determined in terms of P as

eg =
2P (2− v)

Qk (1 + y) v2
, eΛ =

4P (v − 2)

Q2
kv

3 (1 + y)
. (4.27)

Following the chain of definitions, we see that the r and y coordinates are related through

dr = − P

Qk v (1− y2)
dy , (4.28)

and hence that the eight-dimensional, Spin(7)-holonomy metric takes the form

ds2
8 =

v P (1 + y) dy2

4 (v − 2) (1− y2)2 + P dΩ2
4 +

P (v − 2)

v (1 + y)

[(
E1
)2

+
(
E2
)2]

+
4P (v − 2)

v3 (1 + y)

(
E3
)2
.

(4.29)

The general solution of (4.25) splits into several families depending on the initial condi-

tions for the “flow” v(y). We are particularly interested in the families denoted B+
8 and B−8

in [1, 6]. Both are characterized by the fact that there is a value of the radial coordinate,

y = y0, such that

v (y0) = 2 . (4.30)

At this point the three-sphere parametrized by Ei in (4.29) shrinks smoothly to zero size,

whereas the size of the four-sphere remains finite. We will see that, in both families, the
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IR region lies at y → y0 and the UV at y → 1. Since the allowed values of y0 are different

in each case, we will consider each family separately.

Let us finally mention that, aside from the solutions of B8-type that we are discussing in

this paper, the only other solution to the system (4.6) that provides a physically acceptable

metric is the one dubbed A8 in [1]. This geometry, which exists for Qk > 0, describes a

flow that starts at the same UV theory as the B8 metrics, but that in the IR flows to the

ABJM fixed point. The rest of the solutions of (4.6) are either singular and/or produce

signature changes in the metric.

4.1 B+
8 family

In this case the range of the radial coordinate is

− 1 ≤ y0 ≤ y < 1 , (4.31)

and the solutions of (4.25) and (4.26) are

v = v+(y) =
1

(1− y2)1/4

(
v+

0 + 2F1

[
1

2
,
3

4
;
3

2
; y2

]
× y
)
, (4.32)

P = P+(y) = P+
0

(1 + y)3/4

(1− y)1/4
v+(y) , (4.33)

where v+
0 is a dimensionless integration constant and P+

0 is an integration constant with

dimensions of (length)2. Although P+
0 sets the scale of the entire internal metric (4.29),

we will show below that it can be completely eliminated from the full, eleven-dimensional

metric once the warp factor is included. Nevertheless, we will need to fix the precise value

of P+
0 in order to ensure the same value of the dual gauge coupling for all solutions. We

will come back to this at the end of section 6.1.

Given y0, the condition (4.30) fixes v+
0 and vice versa. Hence we will think of y0 as

the parameter labelling the different solutions in the B+
8 family. The presence of 1− y2 in

the denominators of the expressions above indicates that regular solutions correspond to

y0 ∈ [−1, 1) or equivalently to v+
0 ∈ (−vc, vc], where

vc =
Γ [1/4]2√

8π
(4.34)

is the value of v+
0 that can be read off from (4.32) by setting v = 2 and taking the limit

y2 → 1. Looking at (4.33) and (4.27), and noting that v ≥ 2, we see that in order for P

and eg to be positive we must have P+
0 > 0 and k < 0. As we will see, the negative sign of

k is consistent with the fact that the B+
8 family contains a flow to the OP solution (4.18).

As we mentioned above, the UV corresponds to the region y → 1, in which the behavior

of the metric is universal for the entire family. In this region we can integrate the change

of coordinates (4.28) to leading order to obtain

Qk (1− y)1/4 r = 27/4P+
0 . (4.35)

– 13 –



J
H
E
P
0
6
(
2
0
1
7
)
1
5
3

With this result we can write the transverse metric (4.29) at leading order as

ds2
8 ∝ dr2 +

1

2
r2

[
dΩ2

4 +
1

2

[(
E1
)2

+
(
E2
)2] ]

+

(
4P+

0

Qk
(
v+

0 + vc
))2

(E3)2 . (4.36)

Since the size of the E3 circle becomes constant, we recognize this as the uplift of the D2-

brane metric whose internal space in ten dimensions, given above between square brackets,

is precisely the squashed CP3 at the NK point, corresponding to α2 = 1/2 in (3.2). Given

our parametrization of the dilaton in (4.1), in order for the solution to asymptote to the D2-

brane solution (2.1) with the correct normalization of the gauge coupling we must impose

the boundary condition eΛ → 1. This fixes the dimensionful constant P+
0 to the value

P+
0 =

Q2
k

(
v+

0 + vc
)

4
, (4.37)

which, in particular, depends on y0 through v+
0 . Since ψ has period 4π/|k|, this is equiv-

alent to normalizing the asymptotic radius of the M-theory circle in the eight-dimensional

transverse metric to the usual result

R(11) =
2Qk
k

= gs`s . (4.38)

Note that eΛ → 1 actually implies that we are setting gs = 1. Nevertheless, we will keep

explicit factors of gs in our formulas in order to facilitate comparison with the literature.

For the B+
8 family we have v+

0 6= vc and so the IR is located at y → y0, where the

geometry ends. In a suitable radial coordinate ρ defined through

4P+
0 (y − y0) = (1− y0)5/4 (1 + y0)1/4 ρ2 , (4.39)

the transverse metric at small ρ approaches

ds2
8 = dρ2 +

1

4
ρ2
[(
E1
)2

+
(
E2
)2

+
(
E3
)2]

+
2P+

0 (1 + y0)(
1− y2

0

)1/4 dΩ2
4 . (4.40)

Since the Ei describe a three-sphere fibration over S4, we find that in the IR the metric

approaches locally R4 × S4, where the four-sphere has a finite radius squared proportional

to P+
0 . However, solving for the warp factor with this transverse space we find an IR

singularity, since near y0 we have that

H =
Qc|Qk| (1− y0)7/4

4
(
P+

0

)3
(1 + y0)5/4

[
1

y − y0
+

1

8
(
1− y2

0

) log (y − y0) +O (y − y0)0

]
, (4.41)

which diverges as y → y0. A singularity in the warp factor is also present for the rest of

the solutions that we will discuss in this section. We will see in subsequent sections that

this singularity can be removed by turning on appropriate additional components of F4

corresponding to fractional M2-branes [13].
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4.2 B∞8 solution

In the particular case v+
0 = vc, corresponding to y0 = −1, after changing variables through

P+
0 (1 + y)3/4 =

9

211/4 × 5
ρ2 , (4.42)

one discovers that the transverse space in the IR corresponds to the OP solution

ds2
8 = dρ2 +

9

20
ρ2

[
dΩ2

4 +
1

5

[(
E1
)2

+
(
E2
)2

+
(
E3
)2]]

, (4.43)

since one can recognize the metric inside the square brackets as the squashed seven-sphere.

The full geometry was denoted B∞8 in [3] and its significance had been overlooked in studies

prior to this reference. It interpolates between the theory on the D2-branes on the squashed

CP3 and the OP fixed point, so it can be seen as an irrelevant deformation of the OP CFT

whose UV completion is a SYM-CSM theory.

4.3 BOP
8 solution

Remarkably, the OP fixed point also admits a relevant deformation that can be solved for

analytically. In our variables, the metric functions and dilaton are

e2f =
9

5
r2

[
1−

(r0

r

)5/3
]
, e2g =

9

25
r2

[
1−

(r0

r

)5/3
]2

, eΛ =
3 r

5|Qk|

[
1−

(r0

r

)5/3
]
,

(4.44)

with the radial direction ending at r = r0, which plays a role analogous to that of P+
0 in

the B+
8 family. Changing coordinates from r to % through

20|Qk|r = 3%2 (4.45)

we see that this solution corresponds to the original Spin(7) manifold of [8, 9], whose

metric is

ds2
8 =

d%2[
1−

(
%0
%

)10/3
] +

9

20
%2 dΩ2

4 +
9

100
%2

[
1−

(
%0

%

)10/3
] [(

E1
)2

+
(
E2
)2

+
(
E3
)2]

.

(4.46)

The UV of this flow is of course the OP fixed point while the IR, which lies at % = %0, is

precisely of the form (4.40), with the four-sphere radius proportional to %0.

4.4 B8 solution

At the other end of the allowed values for v+
0 , i.e. when v+

0 → −vc, corresponding to y0 → 1,

the coordinate y ceases to be appropriate to describe the geometry. Instead, in the original

radial coordinate r the solution takes the simple form

e2f =
1

2

r2 (r − 2r0)

(r − r0)
, e2g =

1

4

r2 (r − 2r0)2

(r − r0)2 , eΛ =
r0

2|Qk|
r (r − 2r0)

(r − r0)2 , (4.47)
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where one has to assume again that k < 0 and

r0 = 2|Qk| , (4.48)

so that eΛ → 1 asymptotically. Note that the space ends at r = 2 r0. Again, r0 plays

a role analogous to that of P+
0 in the B+

8 . Uplifting to eleven dimensions we get the

transverse space

ds2
8 =

(r−r0)2 dr2

r (r−2r0)
+

1

2
r (r−r0) dΩ2

4 +
1

4
r (r−2r0)

[(
E1
)2

+
(
E2
)2]

+
r2

0

4

r (r−2r0)

(r−r0)2

(
E3
)2
.

(4.49)

This metric was dubbed B8 in [1, 6]. The geometry ends smoothly at r = 2r0 and has the

same asymptotic behavior as the B+
8 family.

4.5 B−8 family

Pushing further the values of y0 one arrives to the B−8 family of metrics, as described

in [1, 6]. In our radial coordinate, they are defined in the range

1 < y ≤ y0 <∞ , (4.50)

where again v(y0) = 2. The functions in the solution can be written as

v = v− =
1

(y2 − 1)1/4

(
v−0 +

2
√
y

2F1

[
1

4
,

3

4
;

5

4
;

1

y2

])
,

P = P− = P−0
(y + 1)3/4

(y − 1)1/4
v− , (4.51)

where v−0 ∈
(
−
√

2 vc,∞
)

is a dimensionless integration constant and P−0 is an integration

constant with dimensions of (length)2 that sets the scale of the entire internal metric (4.29).

To fix the correct asymptotics, eΛ → 1, we must choose

P−0 =
Q2
k

(
v−0 +

√
2 vc
)

4
. (4.52)

Both the UV and IR behavior of the B−8 metrics, located respectively at y → 1 and y → y0,

coincide with those of the B+
8 family.

4.6 Bconf
8 solution

In all the solutions above we assumed that k < 0. We close this section with the case

k = 0. Changing coordinates through

dr =

(
1− ρ4

0

ρ4

)−1/2

dρ (4.53)

the BPS solution takes the form

eΛ = 1 , e2f =
1

2
ρ2 , e2g =

1

4
ρ2

(
1− ρ4

0

ρ4

)
. (4.54)
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Since k = 0 the RR two-form vanishes. This translates into the fact that the M-theory circle

is trivially fibered and hence the eight-dimensional transverse metric in eleven dimensions

is a direct product of the form M7 × S1, where M7 is the G2-manifold found in [8, 9].

The UV corresponds again to D2-branes on the NK CP3. It can be seen that in the IR,

located at ρ→ ρ0, the local geometry approaches R3 × S4, with a finite radius for the S4.

Again there is a singularity in the warp factor that can be cured with additional fluxes

corresponding to fractional D2-branes [14], as we describe in the following sections.

The uplift of this metric is very simple and its transverse part reads

ds2
8 =

dρ2(
1− ρ40

ρ4

) +
1

2
ρ2 dΩ2

4 +
1

4
ρ2

(
1− ρ4

0

ρ4

)[(
E1
)2

+
(
E2
)2]

+ `2p dψ2 . (4.55)

The IR limit corresponds now to R3× S1× S4, since the circle that before was fibered over

S2 to form the three-sphere in R4 is now trivial and remains of finite size in the IR. As we

will see, this change in topology has dramatic consequences in the dual field theory.

5 Adding fractional branes

The transverse geometries presented in the previous section are suitable to support D2-

brane solutions in ten dimensions or M2-brane solutions in eleven dimensions preserving

N = 1 supersymmetry in three dimensions. However, the corresponding warp factors

diverge in the IR, thus rendering the full metrics singular. Fortunately, these singularities

can be removed by the standard procedure of adding new fluxes to the system. This

mechanism was dubbed “transgression” in [14]. As usual in this type of constructions, the

new fluxes can be interpreted as resulting from the addition of fractional branes and can

be chosen so that supersymmetry is preserved.

We start by reviewing the transgression mechanism as used for instance in [14]. Imagine

that one starts with the solution for a D2-brane preserving N = 1 supersymmetry, that is,

a solution of the form (2.1) where the transverse space is a (non-compact) G2-holonomy

manifold. Since manifolds with special holonomy are Ricci-flat the only equation that needs

to be solved is that for the warp factor,

2h = 0 , (5.1)

with 2 the Laplacian of the seven-dimensional transverse metric. Now suppose that we

modify the ansatz for the four-form to include a new piece

F4 = d3x ∧ d
(
h−1

)
+G4 , (5.2)

where G4 is a closed four-form on the transverse seven-dimensional space. The equation of

motion for the NSNS three-form is then solved provided we also turn on

H3 = ∗7G4 , (5.3)

where the Hodge dual is taken with respect to the transverse metric. Closure of H3 then

implies that G4 is harmonic with respect to the G2-holonomy metric. With this ansatz,
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all the equations of motion and Bianchi identities are satisfied as long as the warp factor

obeys the inhomogeneous equation

2h = − 1

24
G2

4 . (5.4)

The key point of this construction is that the transverse geometry is not modified.

The solutions that we are interested in include a non-zero RR two-form, since they

correspond to deformation of the field theory by the addition of CS terms. This means

that the transgression mechanism above must be generalized as follows.

Suppose that we have a solution of type IIA supergravity preserving at least N = 1

supersymmetry with metric and dilaton given by (4.1), with a four-form given by (4.5),

and with a non-zero F2 with components only along the compact directions. We also

assume that the dilaton depends only on the non-compact coordinates in ds2
7. These

conditions are satisfied by the solutions that we discussed in section 4 and by all the

solutions of [2, 5, 7, 11, 12]. Under these assumptions the only non-trivial equations to

solve are those that determine the dilaton and the warp factor or, equivalently, Λ and h,

and the equation of motion for h can be derived from that for F4.

Now we would like to turn on additional fluxes with the purpose of resolving potential

singularities as those that we encountered in the warp factor in section 4 or, more gen-

erally, in order to add fractional branes to the system. Consider therefore the following

modification of the fluxes

H3 = dB2 ,

F4 = d3x ∧ d
(
h−1 e−Λ

)
+ (G4 +B2 ∧ F2) , (5.5)

where G4 is closed and the following duality condition on the transverse space is satisfied

eΛ (G4 +B2 ∧ F2) = ∗7H3 . (5.6)

Under these circumstances the metric ds2
7 and the function Λ are left unchanged by the

addition of the new fluxes. The only modified equation is that for the warp factor h. This

can be derived from the equation for F4 and becomes inhomogeneous because it is sourced

by the new fluxes. We emphasize that the only assumptions about F2 are that it does not

contain components along non-compact directions and that it verifies its Bianchi identity.

We will now implement this generalized transgression for the solutions of section 4.

The first task is to construct closed forms G4 and H3 on the metric (4.2) satisfying

the duality condition (5.6). We start from the most general left-invariant ansatz using the

forms defined on the coset:

B2 = bX X2 + bJ J2 ,

H3 = dB2 ,

G4 = d (aX X3 + aJ J3) + qc (J2 ∧ J2 −X2 ∧ J2) . (5.7)
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Note that H3 must be exact because it must be closed and CP3 has no non-trivial three-

cycles — see (3.3). In contrast, G4, which is also closed, can contain a non-exact piece

along the non-trivial four-cycle of CP3. This non-trivial flux is a constant with dimensions

of (length)3 that we have called qc and that, as we will see, is related to the number of

fractional branes. The rest of the coefficients bX , bJ , aX , aJ are functions of the radial

coordinate that we will determine below.

The duality condition (5.6) leads to the following set of equations

a′X = 0 ,

a′J = e−Λ (bX + bJ) ,

b′X = 2 e−4f+2g+Λ
(
qc + 2 aJ −Qk bJ

)
,

b′J = e−2g+Λ
[
Qk (bJ − bX) + 2 aJ − qc

]
. (5.8)

Given the first equation and the closure of X3, we see that the term aXX3 does not

contribute to G4, and therefore we will henceforth set aX = 0. In addition, the requirement

that G4 be normalizable in the UV implies the relation

aJ =
e2g
(
QkbJ − qc

)
− 2e2f+g−Λ

(
bJ + bX

)
+ e2f

[
qc +Qk

(
bX − bJ

)]
2
(
e2f + e2g

) . (5.9)

Moreover, the equation that is obtained by differentiating (5.9) is automatically satisfied

by virtue of the equations for bJ , bX in (5.8). We thus conclude that the system (5.8) can

be reduced to two equations for the two functions bJ and bX .

Finally, as anticipated, the equation for the warp factor acquires additional terms due

to the flux sources and reads

H ′ =
(
eΛ h

)′
= −e2Λ−4f−2g

[
Qc+Qk bJ (bJ − 2bX)+2qc (bX − bJ)+4aJ (bX + bJ)

]
, (5.10)

where we recall that the eleven- and the ten-dimensional warp factors are related

through (4.15). Remember that the equations (4.6) for the background are not modified

by the new sources. This will allow us in the next section to solve the system sequentially:

first we will solve for the background functions (4.6), then we will use that solution in (5.8)

and we will solve for the fluxes, and finally we will integrate the warp factor (5.10). As we

will see, in some cases we will be able to find fully explicit analytic solutions.

Again there is a correspondence between our functions and the ones used in [1] (see

also [3]) to construct a self-dual four-form in the eight-dimensional Spin(7) space. Specifi-

cally, the functions ui used in [1] are given by3

u1 = 4 e2Λ−4f
(
2aJ −Qk bJ +Q2

k qc
)
,

u2 = 2Qk e
2Λ−2f−2g

[
Qk (bX − bJ)− 2aJ + qc

]
,

u3 = −2eΛ−2f−g

Qk

(
bX + bJ

)
. (5.11)

3As explained below (4.16) we must set Qk = −1 in order to reproduce [1] exactly.
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In order to interpret the additional fluxes as fractional branes we need to properly

quantize them. From the different notions of charge that may be defined in supergrav-

ity [15], the one that is quantized and conserved and counts the number of branes is the

Page charge. We begin with the D2-brane charge. Following [3] we compute the number

of D2-branes, which sets the rank of the dual gauge group, as

N =
1

2κ2
10TD2

∫
CP3

(
− ∗ F4 −B2 ∧ F4 +

1

2
B2 ∧B2 ∧ F2

)
. (5.12)

Note that in the presence of the additional fluxes this equation replaces (4.8), since it is

not just ∗F4 but the full integrand above that is a closed form. Nevertheless, the result is

the same relation (4.11) between Qc and N , thus confirming that the new fluxes have not

modified the number of non-fractional D2-branes.

In the case of the D6-brane charge measured by the flux of F2 through the CP1,

equation (4.8) with p = 6 is unmodified by the new fluxes, since F2 is closed. Hence the

relation (4.9) between Qk and k is also unmodified.

Finally, the new fluxes induce D4-brane charge that is interpreted as M fractional

D2-branes. The quantization condition reads

M̄ =
1

2κ2
10TD4

∫
CP2

(F4 −B2 ∧ F2) =
1

2κ2
10TD4

∫
CP2

G4 , (5.13)

where

M̄ = M − k

2
. (5.14)

In the coordinates introduced in (3.6) the CP2 four-cycle is characterized by θ = ϕ = π/2,

so we get the relation

qc =
3π`3sgs

4
M̄ . (5.15)

Here M represents the shift in the gauge group due to the fractional branes, while the k/2

shift was argued in [16] to be needed to account for the Freed-Witten anomaly. We thus

expect the gauge group of the dual quiver to be U(N)k×U(N+M)−k, where the subindices

indicate the CS levels. In the next section we will construct the regular backgrounds that

are dual to this theory.

For completeness, we also quote here the value of the D4 and D2 Maxwell charges [15]:

QMax
4 = −1

3

(
M̄2 + 2|k|N

)1/2(
BX + 2BJ

)
, (5.16)

QMax
2 = −

(
M̄2 + 2|k|N

)
6|k|

[
B2
J + 2BXBJ + 12AJ(BJ − BX)− 3

]
, (5.17)

where BX ,BJ and AJ are the fluxes once the brane charges have been factorized, as defined

in the next section (see (6.1)). The Maxwell charges run with the radial coordinate or,

equivalently, with the energy scale. The differences between their UV and IR values are

∆QMax
4 =

(
M̄2 + 2|k|N

)1/2
(1− b0) , (5.18)

∆QMax
2 =

(
N +

M̄2

2|k|

)
(1− b20) , (5.19)
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where the parameter b0 controls the asymptotic value of the fluxes in the UV and again

will be defined in the next section (see (6.6)). We will come back to these differences in

section 6.1, once we have determined the dependence of b0 with y0.

6 Regular flows

We will now solve the equations that we introduced in the previous section in order to

obtain regular geometries. Recall that we must solve for two fluxes bJ , bX in (5.8) and for

the warp factor H in (5.10). The dependence on the different charges can be factored out

of the equations by writing them in terms of four dimensionless functions BJ ,BX ,AJ and

H defined through

bJ = − 2qc
3|Qk|

−
(
4q2
c + 3Qc|Qk|

)1/2
3|Qk|

BJ ,

bX =
2qc

3|Qk|
+

(
4q2
c + 3Qc|Qk|

)1/2
3|Qk|

BX ,

aJ = −qc
6

+
(
4q2
c + 3Qc|Qk|

)1/2 AJ , (6.1)

H =

(
4q2
c + 3Qc|Qk|

)
P 3

0

H .

Note that, although the constant terms in bJ and bX combine to give a closed form that

does not contribute to H3, they do contribute to B2. In the expression for the warp factor,

by P0 we mean P±0 for the B±8 family and the corresponding analogous scale for the other

metrics discussed in section 4. At this point we can already see why these scales of the

internal metric could be eliminated from the full, eleven-dimensional solution. Indeed, we

see from (6.1) that H ∼ P−3
0 and from (4.29) that ds2

8 ∼ P0. As a consequence, P0 cancels

out in the H1/3ds2
8 term of the eleven-dimensional metric (2.5), and its contribution to

the first term can be eliminated by rewriting the metric in terms of rescaled gauge theory

coordinates defined through

x̃µ =
P0

(4q2
c + 3Qc|Qk|)1/3

xµ . (6.2)

It follows that P0 also cancels out in the ten-dimensional metric and dilaton, since these

are directly read off from the eleven-dimensional metric. The RR-forms are also indepen-

dent of P0, since all the components (5.7) are manifestly P0-independent, and the same

rescaling (6.2) eliminates P0 from the first term in F4 in (5.5).

Substituting (6.1) in (5.8) we find that the dimensionless functions obey the equations

B′J =
6AJ + BJ + BX
(v − 2) (y − 1)

,

B′X =
2 (v − 2) (BJ − 6AJ)

v2 (y − 1) (1 + y)2 , (6.3)

H′ =
BJ (BJ + 2BX) + 12AJ (BJ − BX)− 3

36 (1− y)1/4 (1 + y)5/4 (v − 2)2
,
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where AJ is understood to be given by (5.9) as

AJ =
(1 + y) v2 − y v − 2

6 (y + 2) v − 12
BJ −

v (1 + y) (1 + v)

6 (y + 2) v − 12
BX . (6.4)

BJ ,BX ,AJ and H are functions only of y and a given solution is labelled only by the

parameter y0, since all the dependence on the charges has been factored out. This makes

these functions ideally suited for numerical integration. In order to do so, we first solve (6.3)

perturbatively around the IR and around the UV.

6.1 B+
8 family

In the IR, defined by the condition v(y0) = 2, we find

BJ = 1− 1

2
(
1− y2

0

) (y − y0) +
2− 3y0

8
(
1− y2

0

)2 (y − y0)2 +O (y − y0)3 ,

BX = 1− 3

4
(
1− y2

0

)2 (y − y0)2 +O (y − y0)3 , (6.5)

H=HIR −
7

48 (1+y0)3 (1−y2
0

)1/4 (y−y0)− 77(y0 − 2)

576 (1+y0)3 (1−y2
0

)5/4 (y−y0)2+O (y−y0)3 ,

where we have already imposed regularity of the warp factor, which fixes the integration

constants in BJ and BX . The only undetermined constant in the IR expansion is HIR,

which will be fixed in the full numerical solution by requiring D2-brane asymptotics in the

UV with the correct normalization.

In the UV, located at y → 1, we find the expansions

BJ = b0

[
1 +

29/4

w+
0

(1− y)1/4 +
27/2(
w+

0

)2 (1− y)1/2 − 219/4(
w+

0

)3 (1− y)3/4 +
b4(
w+

0

)4 (1− y)

+O (1− y)5/4

]
,

BX = b0

[
1 +

29/4

w+
0

(1− y)1/4 +
3× 25/2(
w+

0

)2 (1− y)1/2 +
223/4(
w+

0

)3 (1− y)3/4 −

(
128 + b4

2

)
(
w+

0

)4 (1−y)

+O (1− y)5/4

]
, (6.6)

H=HUV +

(
1− b20

)
15× 23/4

(
w+

0

)2 (1− y)5/4 +
23/2

(
1− 2b20

)
9
(
w+

0

)3 (1− y)3/2 +O (1− y)7/4 ,

with w+
0 =

(
v+

0 + vc
)
∈ (2vc, 0). The undetermined constants in the UV are thus b0, b4

and HUV. The latter must vanish in order to have the correct D2-brane asymptotics in the

decoupling limit, i.e. in order for H → 0 in the UV. Through the numerical integration,

this requirement fixes the value of HIR. Once this is done there is a unique solution for

each value of y0 and the UV constants b0, b4 can be simply read off from the solution. The

– 22 –



J
H
E
P
0
6
(
2
0
1
7
)
1
5
3

�
+

�
-

��-� � ��� ��� ���

���

���

���

���

���

b0

y0 + 1

�
+

�
-

��-� ��-� ��

-���

-���

-���

-���

���

���

b4

y0 + 1

Figure 4. Values of the UV parameters b0 (left) and b4 (right) from the numerical integration.

�
+

�
-

��-� � ��� ��� ���

��-��

��-��

��-�

���

64
H

IR
/(
w
± 0

)3

y0 + 1

Figure 5. Values of the parameter HIR from the numerical integration.

result is displayed in figure 4, whereas figure 5 shows the IR value of the warp factor. The

full solution is perfectly regular despite the fact that HIR diverges as y0 → −1.

We see from figure 4(left) that there is a one-to-one correspondence between y0 and

the values of b0 in the interval (0, 1). This is a nice consistency check of the fact that y0 is

related to the difference between the gauge couplings of the two gauge groups. The reason

is that varying b0 corresponds to varying the UV asymptotic flux of the NSNS two-form

through the CP1 ⊂ CP3. Since this asymptotic flux is expected to specify the difference

between the gauge theory couplings [3], the fact that b0 can be mapped to y0 in a one-to-

one manner supports the idea that the family of theories under consideration are indeed

parametrized by the difference between the gauge couplings.

Moreover, we now see that this information is partially encoded in the constant P0 in-

troduced in section 4, since this is determined by y0 and the CS level through e.g. eq. (4.37).

Finally, we note that the dependence of b0 on y0 displayed in figure 4(left) immediately

determines the differences between the UV and the IR values Maxwell charges (5.18).

Presumably, b4 is related to the vacuum expectation value of some operator in the

gauge theory.
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6.2 B∞8 solution

When y0 → −1 the IR expansions above are not well defined, reflecting the dramatic

change in the IR, which in this case is a fixed point instead of a gapped phase. Indeed, we

have that the fluxes are constant

bJ = − 2qc
3|Qk|

, bX =
2qc

3|Qk|
, aJ = −qc

6
. (6.7)

Using this, it is easy to find the expansions for the warp factor. In the IR, around y = −1,

we get

H = HIR + (y + 1)−9/4 5

9× 25/4

[
5

3
− 13

8
(y + 1) +

815

1664
(y + 1)2 +O (y + 1)3

]
. (6.8)

Notice that the constant term HIR is not the leading term in this case and this causes the

metric to be AdS. On the other hand, the UV expansion gives again D2-brane asymptotics,

as can be obtained from the general expansion of the B+
8 family, specifying to w+

0 = 2vc
and b0 = 0.

The only parameter to be found from the numerics is HIR such that the warp factor

has no constant piece in the UV. From our results we find HIR ' −0.0087.

6.3 BOP
8 solution

The RG flow that connects the OP fixed point to the gapped phase can also be solved for

analytically. In terms of a dimensionless coordinate

ρ =
r

r0
(6.9)

the fluxes are simply

BJ =
1

ρ1/3
, BX =

6ρ5/3 − 1

5ρ2
, (6.10)

and the regular warp factor is

H=
5

243

[
1

ρ2
− 9

ρ1/3
− 3

ρ4/3 − ρ1/3

ρ5/3 − 1

]
(6.11)

+
4
√

2

81

(√
5 +
√

5 arctan

[ √
10 + 2

√
5

4ρ1/3 + 1−
√

5

]
+

√
5−
√

5 arctan

[ √
10− 2

√
5

4ρ1/3 + 1 +
√

5

])
.

6.4 B8 solution

In this case a complete analytic solution can be found. In terms of a dimensionless coordi-

nate

ρ =
r

r0
, (6.12)

with r0 given by (4.48), the fluxes take the form

BJ =
2
(
ρ4 + ρ3 − 4 ρ+ 4

)
5ρ3 (ρ− 1)

, BX =
2
(
ρ5 − 10 ρ+ 8

)
5ρ3 (ρ− 1)2 , (6.13)
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where one integration constant was fixed to have D2-brane asymptotics in the UV while

the other two were fixed by regularity. The M2-brane warp factor can be found again in

closed form and is simply

H =

(
1323ρ6 + 924ρ5 + 963ρ4 + 510ρ3 − 1340ρ2 − 4340ρ+ 2800

)
47250 ρ9 (ρ− 1)2 , (6.14)

which is perfectly regular at ρ = 2. Notice that the boundary conditions have fixed all the

integration constants, the only parameters being the quantized charges.

6.5 B−8 family

For y0 > 1 the equations admit expansions similar to those of the B+
8 family. Around the

end of the geometry, imposing regularity, we find

BJ = 1 +
1

2
(
y2

0 − 1
) (y − y0) +

2− 3y0

8
(
y2

0 − 1
)2 (y − y0)2 +O (y − y0)3 ,

BX = 1− 3

4
(
y2

0 − 1
)2 (y − y0)2 +O (y − y0)3 , (6.15)

H = HIR +
7

48 (y0 + 1)3 (y2
0 − 1

)1/4 (y − y0)

− 77(y0 − 2)

576 (y0 + 1)3 (y2
0 − 1

)5/4 (y − y0)2 +O (y − y0)3 .

Again, we have HIR as the only undetermined constant in the IR, which will be fixed in the

numerics by the UV conditions. Similarly, for y → 1 we have expansions identical to those

in (6.6) with the replacements (1 − y) → (y − 1) and w+
0 → w−0 =

(
v−0 +

√
2 vc
)
∈ (0,∞).

The equations are solved using these expansions, with HUV = 0 for D2-brane asymptotics,

as boundary conditions.

6.6 Bconf
8 solution

In this case it is convenient to change from the ρ coordinate in (4.55) to a dimensionless

coordinate

z =
ρ

ρ0
. (6.16)

The fluxes regularizing the solution are

bJ =
Qc
4qc

+
2qc
3ρ0

[
z
√
z4 − 1−

(
3z4 − 1

)
U(z)

z4 − 1

]
,

bX = −Qc
4qc
− 2qc

3ρ0

[
z
√
z4 − 1−

(
3z4 − 1

)
U(z)

z4

]
, (6.17)

where the dimensionless function U is defined as

U(z) =

∫ z

1

(
σ4 − 1

)−1/2
dσ . (6.18)
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The warp factor, both in ten and eleven dimensions, is given by

h = H =
128q2

c

9ρ6
0

∫ ∞
z

[
2− 3σ4

σ3 (σ4 − 1)2 +

(
4− 9σ4 + 9σ8

)
U(σ)

σ4 (σ4 − 1)5/2
+

2
(
1− 3σ4

)
U(σ)2

σ5 (σ4 − 1)3

]
dσ .

(6.19)

6.7 Range of validity

We now turn to the determination of the range of validity of the supergravity solutions

above. Since in the UV the dilaton goes to zero, the correct description is the ten-

dimensional one. This one extends up to the UV scale at which the curvature ceases

to be small in string units. The Ricci scalar of the ten-dimensional solutions grows in the

UV as

`2sR ∼ `2s

(
|Qk|

4q2
c + 3Qc|Qk|

r(
1− b20

))1/2

. (6.20)

Requiring this to be small and translating to a gauge theory energy scale U via the usual

relation U = r/`2s [10] we find the condition

U � λ

(
1 +

M̄2

2N |k|

)(
1− b20

)
, (6.21)

where we recall that λ is the ’t Hooft coupling with dimensions of energy. We observe

that the usual result U � λ for the D2-branes gets modified due to the presence of the

fractional branes. We have included the dependence on y0 through the coefficient 1 − b20,

which vanishes as y
−1/2
0 when y0 → ∞. This is a manifestation of the fact that, in the

limit y0 → ∞, Qk must scale as Qk ∼ k ∼ y
−1/2
0 in order to obtain a valid supergravity

description. The origin of this scaling together with more details will be given in the next

section.

In the IR the ten-dimensional metrics are singular, so the correct description is given

in terms of the eleven-dimensional solutions, in which the IR value of the Ricci scalar in

units of the eleven-dimensional Planck length `p = g
2/3
s `s is finite and scales as

`2pR ∼
(
M̄2

2
+N |k|

)−1/3

. (6.22)

In order for this to be small we simply need to require that the combination

M̄2

2
+N |k| � 1 . (6.23)

For large y0, however, the IR value of the Kretschmann scalar, K = RµνρσR
µνρσ, shown in

figure 6, grows as

`4pK ∼
(
M̄2

2
+N |k|

)−2/3

y2
0 . (6.24)

Thus in the limit y0 →∞ we must impose the additional condition that

|k|6
(
M̄2

2
+N |k|

)
� 1 , (6.25)

where again we have assumed that k ∼ y−1/2
0 .
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y

Figure 6. Kretschmann scalar K = RµνρσR
µνρσ as a function of y for B+

8 solutions (left, red

curves) with y0 = −0.9,−0.3, 0.3, 0.9 from left to right, and for B−8 solutions (right, blue curves)

with y0 = 2, 3, 4, 5 from left to right. We see that at y = 1 all curves approach the same value

since they all share the same UV asymptotics, whereas the curvature at the IR endpoint (y = y0)

diverges as y20 as y0 →∞.

7 Limiting dynamics

In this section we will study the limits of the above metrics as y0 → ∞ and as y0 → −1.

In the first case the solution approaches Bconf
8 everywhere except in the deep IR. In the

second case the solution approaches the combination of the B∞8 flow followed by the BOP
8

flow. In this sense the solutions with generic y0 continuously interpolate between quasi-

confining and quasi-conformal dynamics. We will verify this with an explicit calculation of

the quark-antiquark potential in section 8.

7.1 Quasi-confining dynamics

Consider the limit y0 → ∞ of the B−8 solutions. Expanding the functions of the internal

metric for large y0 we find

e2f =
4
(
P−0
)2

|Qk|2

(
y + 1

y − 1

)1/2
[

1−
(
y2 − 1

)1/4
√
y0

+O
(
y−1

0

)]
,

e2g =
4
(
P−0
)2

|Qk|2
1

(y2 − 1)1/2

[
1−

2
(
y2 − 1

)1/4
√
y0

+O
(
y−1

0

)]
. (7.1)

Performing the change of variables

y =
ρ4 + ρ4

0

ρ4 − ρ4
0

(7.2)

we see that, to leading order, we recover the confining metric (4.55) with an internal scale

given by

ρ2
0 =

8
(
P−0
)2

|Qk|2
. (7.3)
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Given that P−0 was fixed by the UV condition eΛ → 1 as in (4.52), to leading order in y0

we have

ρ2
0 = 2 |Qk|2 y0 . (7.4)

Note that, since y0 → ∞, ρ0 seems to grow without bound. We may think of the limit in

two (equivalent) ways. One is simply to keep all charges fixed as we take y0 → ∞ but to

rescale the gauge theory coordinates as in (6.2) with P0 replaced by ρ0, since this cancels

all the dependence of the solution on ρ0. The other is to keep the gauge theory coordinates

fixed but to scale Qk ∼ y
−1/2
0 as we take y0 → ∞. This is intuitive since we know that

the Bconf
8 solution has k = 0. By comparing with the analytic confining solution (4.55) it

is possible to deduce how the parameters b0, b4 and HIR must scale for large y0, with the

result(
1− b20

)
∼ 6K (−1)√

2
y
−1/2
0 , b4 ∼ −27/2K (−1) y

3/2
0 , HIR ∼

hconf

256
y
−3/2
0 , (7.5)

where K(m) is the complete elliptic integral of the first kind and hconf is the IR value of

the warp factor for the confining solution given by eq. (6.19) with z = 1. We have verified

these scalings with our numerical solutions. One way to see that both ways of taking the

limit are equivalent is to note that in both cases the y0-dependent coefficient in front of

the dx2
1,2 term in (4.1) attains a finite limit as y0 →∞.

In terms of the ρ coordinate, the first correction in (7.1) (the second term inside the

square brackets) takes the form

ρ0

ρ

1

√
y0

(
1− ρ40

ρ4

)1/2
. (7.6)

We see that, no matter how large y0 is, this first correction competes with the leading term

(the 1 in (7.1)) sufficiently close to ρ0. This was expected because we know that, sufficiently

deep in the IR, the B−8 and the Bconf
8 metric differ dramatically from one another: in B−8

the M-theory circle shrinks to zero size whereas in Bconf
8 it does not. The intuitive picture

is therefore that, by taking y0 large enough, one can make the B−8 and the Bconf
8 metrics

arbitrarily close to one another on an energy range that extends form the UV down to an

IR scale arbitrarily close to the mass gap. Throughout this range the S1 of the internal

metric has a constant and identical size in both metrics. Sufficiently close to the mass gap,

however, the B−8 metric abruptly deviates from the Bconf
8 metric and the internal S1 closes

off. Presumably this fast change of the size of the circle is related to the fact that the

curvature in the deep IR diverges as y0 →∞, as shown in figure 6.

7.2 Quasi-conformal dynamics

The B∞8 and the BOP
8 solutions arise as two different limits of the B+

8 metrics. If the limit

y0 = −1 of the B+
8 is taken at fixed y then the result is the B∞8 solution, as we saw in

section 4.2.

Instead, if we first focus on the IR of B+
8 by expanding around y−y0, so that we see the

R4× S4 region, and afterwards take the y0 → −1 limit, then the BOP
8 metric is reproduced.
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Indeed, for the size of the four-sphere in the eight-dimensional transverse space we have in

the strict IR

e2f−Λ = 23/4 P0 (y0 + 1)3/4 +O (y0 + 1)7/4 . (7.7)

Comparing with the IR expansion for BOP
8 suggests the relation

r0 =
23/4P0

3|Qk|
(y0 + 1)3/4 . (7.8)

As in the previous subsection, we may take the limit in two ways, either by rescaling the

gauge theory directions or by rescaling Qk. In the latter case, in order for r0 to be finite,

we must scale Qk as (y0 + 1)−3/4 when y0 → −1. Moreover, using this identification of

parameters and integrating the change of coordinates (4.28) in the IR and around y0 + 1

we get

y − y0 =

[
4 (r − r0)

3r0
+

2 (r − r0)2

9r2
0

+O (r − r0)3

]
(y0 + 1)

−

[
5 (r − r0)

6r0
+

5 (r − r0)2

6r2
0

+O (r − r0)3

]
(y0 + 1)2 +O (y0 + 1)3 . (7.9)

Finally, substituting this expansion together with (7.8) for the metric functions in the IR

of the B+
8 family and taking the y0 → −1 limit we arrive at

e2f = 3r0 (r − r0) + 2 (r − r0)2 − (r − r0)3

9r0
+O (r − r0)4 ,

e2g = (r − r0)2 − 2 (r − r0)3

3r0
+O (r − r0)4 , (7.10)

which coincides, to this order, with the corresponding expansions for BOP
8 .

The intuitive picture is therefore that B+
8 solutions with y0 & −1 flow very close to the

OP fixed point but eventually deviate from it and develop a mass gap. The mass scale M∗
at which the deviation occurs can be estimated from the behavior of the dilaton, which is

plotted in figure 7. The mass scale M on the horizontal axis is the mass of a membrane

stretched from the bottom of the geometry until the position y at which the dilaton is

evaluated (see section 8). The normalization factor is

M0 =
|Qk|
2π`2s

=
λ |k|
4πN

. (7.11)

We define M∗ as the position of the maximum of each curve. We see that curves with

y0 → −1 tend to the B∞8 curve but eventually deviate from it around the scale M∗ and

approach zero at the end of the geometry, instead of approaching the OP value as B∞8 does.

8 Quark-antiquark potential

We will now present a computation of the potential between an external quark and an

external antiquark separated by a distance L in the gauge theory directions. In the string
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Figure 7. Dilaton as a function of the energy scale for several B+
8 solutions.

description this would be extracted from the action of a string hanging from the quark

and the antiquark. Instead, in M-theory we must consider a hanging membrane. Although

the membrane is asymptotically wrapped on the M-theory circle, namely on the S1 fiber

of the internal geometry, as the membrane penetrates into the bulk geometry the circle

wrapped by the membrane may vary. In particular, since the S1 fiber is contractible inside

the S7, the circle wrapped by the membrane may shrink to zero size at some value of the

holographic coordinate, even if at that point the entire S7 has finite size. All in all this

means that, in order to find the membrane with the minimum energy, strictly speaking

we would need to solve a problem involving partial differential equations (PDEs) for the

membrane embedding as a function of two worldspace intrinsic coordinates. Since this

calculation is beyond the scope of this paper, we will perform a simpler one that nevertheless

is expected to capture the qualitative physics. We will therefore assume that the circle

wrapped by the membrane is the S1 fiber at all values of the holographic coordinate. This

reduces the problem to that of solving ordinary differential equations. We will come back

to this simplification in section 9.

An important point in the calculation is that, generically, the membrane action is

UV divergent. We will renormalize away this divergence by subtracting the action of two

disconnected membranes extending from the UV all the way to the IR end of the geome-

try. For all metrics except for Bconf
8 this is in itself a physically acceptable configuration

that competes with the connected configuration. In the case of Bconf
8 the disconnected

configuration is not a physically acceptable configuration to which the connected one can

transition, but it can still be used as a mathematical well defined quantity that can be used

to regularize the membrane action.

The results for the quark-antiquark potential V as a function of the separation L for

the B+
8 and B−8 solutions are shown in figures 8(left) and 8(right), respectively, where M0
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Figure 8. (Left) Quark-antiquark potential for several B+
8 solutions and for the B∞8 solution,

shown as a continuous black curve. M0 and L0 are given in (7.11) and (8.1), respectively. The red,

dashed horizontal line at the bottom of the plot corresponds to the value of V L for the OP fixed

point. (Right) Quark-antiquark potential for several B−8 solutions with Qk scaled as Q2
k = ρ20/2y0,

as dictated by (7.4), where ρ0 is the scale of the Bconf
8 solution, whose quark-antiquark potential is

shown as a continuous black curve.

is given by (7.11) and

L0 =

(
4q2
c + 3Qc|Qk|

)1/2
|Qk|2

=
6πN

√
M̄2 + 2|k|N
λ |k|2

. (8.1)

The behavior of these curves can be understood as follows. In the UV, i.e. in the limit

L → 0, the behavior is the same for all curves, since it is dictated by their common D2-

brane asymptotics, which implies V L ∼ −L1/3. Thus, as L begins to increase from zero,

the curves first go down (V L becomes more negative) until they reach a turning point and

start going up.

This happens at the energy scale at which the Yang-Mills interaction ceases to dominate

the dynamics and the CS interactions take over. This scale can be estimated from the radial

position at which the first correction to the D2-brane metric is of the same order as the

leading term, which yields

λ
|k|
N

(
2b20 − 1

1− b20

)
. (8.2)

This is the usual result dressed with a function of the dimensionless parameter y0 through

the dependence on b0. After this point all curves except for the one corresponding to B∞8
reach V = 0 and cross the horizontal axis at a separation that we call L∗. When this

happens the disconnected configuration becomes energetically preferred. In the case of B∞8
the product V L asymptotically approaches a negative constant corresponding to the OP

fixed point, as expected form the fact that this is the endpoint of the B∞8 flow. In this case

the preferred configuration is always the connected one. We see from figure 8(left) that

curves with y0 closer and closer to −1 become flatter and flatter and cross the horizontal

axis at a larger and larger L∗. These curves cross the OP horizontal line at a smaller value

L′∗ < L∗. In this way we see that two IR mass scales emerge for flows that come close to

the OP fixed point:

ML = 1/L∗ , M ′L = 1/L′∗ . (8.3)
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Figure 9. Comparison of the emergent IR scales extracted from the behavior of the dilaton and

of the quark-antiquark potential.

In figure 9 we compare these scales to the scale M∗ that we determined in figure 7 from the

behavior of the dilaton. Although it is difficult to push the numerics to arbitrarily small

values of y0 + 1, the plots in the figure suggest that, in the limit y0 → −1, M ′L is of the

same order as M∗ (at least over a large range of values of y0), whereas ML/M∗ goes to

zero. In other words, the theory first deviates from the quasi-conformal behavior at the

scale M∗ ∼M ′L but the membrane becomes disconnected at a lower scale ML < M∗.

In the opposite limit, as y0 →∞, we see from figure 8(right) that the curves approach

that of the Bconf
8 solution, as expected from the discussion in section 7.1. This suggests

that these theories exhibit quasi-confining dynamics. We will come back to this point in

section 9.

At distances L slightly larger than L∗ all curves but Bconf
8 reach a cusp and “turn back”,

thus making the plots multivalued. The reason for the cusp is that, as the penetration

depth of the hanging membrane inside the bulk increases beyond the point corresponding

to the cusp, L begins to decrease. This kind of behavior also appears in e.g. calculations

of the quark-antiquark potential in solutions with horizons, i.e. in gauge theories at non-

zero temperature. As in those cases, the part of the curve beyond the cusp is always

energetically disfavored.

9 Discussion

The solutions that we have studied in this paper provide a counterexample to the expecta-

tion that holographic duals of gauge theories with a mass gap also exhibit confinement. The

key point is that, geometrically, this intuition is based on thinking of the quark-antiquark

potential in string theory, where it is computed by a hanging string. In this case the smooth

capping off of the geometry associated to the mass gap, together with charge conservation,

which prevents the string from becoming disconnected, lead to a linear quark-antiquark

potential at large distances, as illustrated in figure 1. In our examples, however, the ten-

dimensional description is singular and one must resort to eleven-dimensional M-theory

in order to have a regular description. In this context the potential is computed from a
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hanging membrane which is allowed to become disconnected because the M-theory circle

on which it is wrapped shrinks to zero size in the IR, as shown in figure 2. This cuts off the

linear growth of the potential at long distances. A necessary condition for the consistency

of these arguments is that the ten- and eleven-dimensional solutions are not simultane-

ously reliable in the IR, since otherwise they would have led to contradictory conclusions

regarding the presence of confinement.

As we explained in section 8, a priori the quark-antiquark potential that we computed

was a simplification because we did not allow the circle wrapped by the membrane to vary

inside the S7. However, the two key qualitative conclusions that we reached do not rely on

this simplification. Indeed:

1. The exact calculation of the minimum-energy configuration of the membrane, involv-

ing PDEs, would exhibit no confinement except for the Bconf
8 solution. This follows

simply from the topology of the solutions in eleven dimensions, which allow for an

isolated membrane with no boundary in all cases except Bconf
8 .

2. The exact calculation of the minimum-energy configuration of the membrane, involv-

ing PDEs, would yield a quark-antiquark potential that exhibits quasi-conformal and

quasi-confining behaviour in the limits y0 → −1 and y0 → ∞, respectively. The

reason for this is that, as we showed in section 7, in these limits the entire eleven-

dimensional metrics on which the calculation would performed approach B∞8 and

Bconf
8 , respectively.

In summary, the conclusions that our family of solutions exhibit (1) a mass gap but no

confinement (except for Bconf
8 ), and (2) quasi-conformal and quasi-confining behaviour in

the appropriate limits, are independent of the simplification that we used to compute the

quark-antiquark potential.

We have seen that the presence of confinement in the Bconf
8 solution seems to be

associated with the absence of CSM terms in the dual gauge theory. Confinement in a

theory with CS terms has been previously considered in [17, 18] in the case of a single

gauge group, as opposed to the product gauge group of our model. Despite this difference,

our results are compatible with those of [17, 18]. Both of these references distinguish

between the bare CS level occurring in the microscopic Lagrangian and the effective IR

CS level, and both of them claim that confinement appears only when the latter is zero,

i.e. when no CS terms are present in the IR theory. This suggests that, in our model, we

should think of k as the effective IR CS level, which is consistent with our identification of

this parameter based on the analogy with the ABJM IR fixed point.

Both the arguments of section 7 and the quark-antiquark potential of section 8 suggest

that the solutions we have discussed exhibit quasi-conformal and quasi-confining behavior

in the appropriate limits. The latter deserves some further discussion. Indeed, looking at

figure 8(right) we see that the curves corresponding to solutions with y0 → ∞ approach

the curve for the Bconf
8 metric. The latter shows the expected linear behavior V ∼ L

at asymptotically large distances, which appears as a parabola in the figure since we are

plotting V L ∼ L2. Although the curves with large y0 reproduce this behavior, we must
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remember that the connected configuration ceases to be preferred once the curves cross the

horizontal axis at L = L∗. Therefore, strictly speaking, the potential becomes constant

at distances beyond this crossing point. However, the transition from the connected to

the disconnected configuration is a semiclassical one, since it requires a fluctuation of the

membrane in such a way that the circle transitions from non-zero to zero size. We expect

that these fluctuations are exponentially suppressed provided the size of the circle is large

in Planck units. For B−8 solutions this can be achieved up to arbitrarily long distance

scales by taking y0 and the appropriate charges to be large enough. For these solutions

connected configurations with V L > 0 can be arbitrarily long lived, thus leading to an

effective confining potential up to distance scales longer than L∗.

Interestingly, some of the features discussed above are shared by four-dimensional

Quantum Chromodynamics (QCD) if we think of the quark masses as adjustable parame-

ters. Indeed, if all quarks are massive then QCD exhibits a mass gap but no confinement,

since the growth of the potential between an external quark-antiquark pair is cut off by

the breaking of the flux tube caused by the nucleation of a dynamical quark-antiquark

pair. However, if the mass of the quarks is much larger than the QCD scale, then these

nucleation is exponentially suppressed and the potential is effectively confining over a large

range of distances.

It would be interesting to explore the analogies between the solutions that we have

described and QCD further. For this purpose it would be useful to construct a four-

dimensional analogue of our solutions. We leave these issues for future work.

Acknowledgments
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A Reduced action

In this section we write the ansatz for reducing type IIA on the coset Sp(2)/U(2). We

will keep only the scalars. For the full N = 2 reduced supergravity see [19]. We take the

string-frame metric to be

ds2
s = eΦ/2

(
e−2U−4V ds2

4 + e2U 1

4

[(
E1
)2

+
(
E2
)2]

+ e2V 1

2
dΩ2

4

)
(A.1)

in such a way that the NK point corresponds to U = V = 0. The dilaton Φ only depends

on the external coordinates and the fluxes take the same form as in (5.7) with aX = 0 for

consistency.
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We find that all the type IIA equations of motion and Bianchi identities are verified if

the equations of motion deduced from the following action are satisfied

S =
1

2κ2
4

∫ [
R ∗ 1−Gijdφi ∧ ∗dφj − V ∗ 1

]
=

1

2κ2
4

∫ [
R ∗ 1− 1

2
(dΦ)2 − 4 (dU)2 − 12 (dV )2 − 8dU · dV − 4e−4V−Φ (dbJ)2

−8e−4U−Φ (dbX)2 − 32e−2U−4V+Φ/2 (daJ)2 − V ∗ 1

]
, (A.2)

with the potential

V = 128 e−6U−12V−Φ/2 [Qc + 4aJ (bJ + bX) +QkbJ (bJ − 2bX) + 2qc (bX − bJ)]2

+32 (bJ + bX)2 e−4U−8V−Φ + 64 [2aJ +Qk (bJ − bX)− qc]2 e−6U−8V+Φ/2

+32 (2aJ −QkbJ + qc)
2 e−2U−12V+Φ/2 + 4Q2

ke
−2U−8V+3Φ/2

+8Q2
ke
−6U−4V+3Φ/2 − 24e−2U−6V − 8e−4U−4V + 2e−8V . (A.3)

Remarkably, this potential follows from the superpotential

W± = e−4V + 2e−2U−2V +Qk e
−3U−2V+3Φ/4 −Qk e−U−4V+3Φ/4 (A.4)

±4e−3U−6V−Φ/4 [Qc + 4aJ (bJ + bX) +QkbJ (bJ − 2bX) + 2qc (bX − bJ)]

through the usual relation

V = 4Gij∂iW∂jW − 6W2 . (A.5)

Using the domain-wall ansatz

ds2
4 = e2Adx2

1,2 + dρ2 (A.6)

the resulting set of BPS equations coincide with (4.6), (5.8) and (5.10) upon the identifi-

cations

eΦ = h1/4 eΛ ,

e2U = 4h3/8 e2g−Λ/2 ,

e2V = 2h3/8 e2f−Λ/2 ,

e2A = 16h1/2 e4f+2g−2Λ , (A.7)

together with the change of radial coordinate

dρ = 4h3/4 e2f+g−Λdr . (A.8)

It is a consistent truncation to fix bJ = −bX = (2qc)/(3Qk) and aJ = −qc/6. The potential

thus admits two supersymmetric extrema at

e2U = 2 e2V =
4
(
4q2
c − 3QcQk

)3/8
33/4Q

1/4
k

, eΦ =

(
4q2
c − 3QcQk

)1/4
31/2Q

3/2
k

, (A.9)
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Mass Eigenstate m2L2 ∆

12δU + 24δV + δΦ 18 6

4δaJ −Qk (2δbJ + 5δbX) 10 5

3δΦ− 4δU 52
9

13
3

δaJ +QkδbJ
10
9

10
3

2δaJ −Qk (δbJ − 15δbX) −8
9

8
3

8δU − 12δV + 3δΦ −20
9

5
3

(
4
3

)
Table 1. Spectrum of scalars around the N = 1 supersymmetric AdS4 solution.

for positive Qk, and

e2U =
2

5
e2V =

4
(
4q2
c + 3Qc|Qk|

)3/8
39/8 × 53/8 × |Qk|1/4

, eΦ =

(
4q2
c + 3Qc|Qk|

)1/4
33/4 × 51/4 × |Qk|3/2

, (A.10)

for negative Qk. The uplifts of these extrema correspond to the ABJM and OP fixed

points, and thus preserve N = 6 and N = 1 supersymmetry, respectively. They are also

extrema of the superpotential with the + and − signs in the last term respectively. The

spectrum of scalar fluctuations together with the dimension of their dual operators at the

OP fixed point is shown in table 1.

B Spin(7) manifolds from tri-Sasakian geometry

In the main text we have considered a family of flows built around the seven-sphere as

the internal manifold, and therefore whose dual gauge theory is related to ABJM or its

supersymmetric reduced version, the OP theory. In this appendix we will show that what

was secretly exploited in [1, 6] to construct Spin(7)-manifolds is the tri-Sasakian structure

on S7. In this way we will extend the results of this paper to other of N = 3 gauge theories

conjectured to be dual to these seven-dimensional tri-Sasakian manifolds.

There exist several equivalent definitions of tri-Sasakian manifolds. For our purposes

the most convenient one is that they admit a triplet of one-forms ηI and a triplet of two-

forms JI so that

dηI = 2JI − εILMηL ∧ ηM , dJI = 2εILMJ
L ∧ ηM , (B.1)

with ιξIJ
K = 0, being ξI the vector dual to ηI . Indeed, the triplet of Killing vectors ξI ,

generating the algebra of SO(3), defines an SU(2) or SO(3) foliation over a quaternionic

Kähler base (QK), whose triplet of almost complex structures is precisely JI . In this way,

the tri-Sasakian metric is given by

ds2
3S = ds2 (QK4) +

(
η1
)2

+
(
η2
)2

+
(
η3
)2
. (B.2)
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It can also be shown that

JL ∧ JM = 2δLM ωQK

∗
(
JI ∧ ηL1 ∧ · · · ∧ ηLn

)
=

1

(3− n)!
εL1...Ln

Ln+1...L3 J
I ∧ ηLn+1 ∧ · · · ∧ ηL3 (B.3)

with ωQK the volume form of the quaternionic Kähler base.

We propose now the following eight-dimensional metrics constructed from these

squashed tri-Sasakian manifolds

ds2
8 = dt2 + 4a2

[(
η1
)2

+
(
η2
)2]

+ 4b2
(
η3
)2

+ 4c2 ds2 (QK4) , (B.4)

where a, b and c are functions of t chosen in order to facilitate the comparison with [1].

Furthermore, on this space we define the four-form

Ψ = 16c4 ωQK + 8a2c2 εLMNη
L ∧ ηM ∧ JN + 8b dt ∧

(
b2 η1 ∧ η2 ∧ η3 + c2 ηI ∧ JI

)
. (B.5)

Using the properties listed in eqs. (B.1) and (B.3) it can be seen that this four-form is

closed and self-dual provided the following system of equations is satisfied

a′ = 1− b

2a
− a2

c2
,

b′ =
b2

2a2
− b2

c2
, (B.6)

c′ =
a

c
+

b

2c
.

This set of equations coincides with the one studied in [1] and ensures Ricci-flatness of

the metric. Moreover, it is possible to show that Ψ has the symmetries of the octonionic

structure constants and thus is suitable for being the Cayley form defining Spin(7) mani-

folds. When the tri-Sasakian foliation is chosen to be S7 one recovers the results of [1] and,

through the identifications (4.16), everything discussed in the bulk of the paper.

By picking the solution

a = b =
3

10
t , c =

3

2
√

5
t , (B.7)

we get the eight-dimensional metric

ds2
8 = dt2 +

9

5
t2
{

ds2 (QK4) +
1

5

[(
η1
)2

+
(
η2
)2

+
(
η3
)2]}

, (B.8)

which is the Spin(7)-cone over the weak-G2 metric that every (squashed) tri-Sasakian

manifold admits and whose dual would be an N = 1 CFT. In the case of the seven-sphere

this is the OP point.

For other solutions it remains to be seen if the ansatz (B.4), together with a particular

solution to (B.6), defines globally a regular metric. In any case, the solutions analogous to

A8 in [1] would describe a flow from a N = 1 SYM-like quiver gauge theory to the N = 3

IR fixed points with tri-Sasakian duals.
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Let us now give some details about the geometries appearing in type IIA after reduc-

tion. On every tri-Sasakian there is an S2-worth of Sasaki-Einstein (SE) structures, each

one defined by picking a U(1) ⊂ SO(3) isometry through the Killing vector ξ = αIξI , with

αIαJδIJ = 1, and characterized by the forms

η = αIη
I , J = αM

(
JM − 1

2
εMNLη

N ∧ ηL
)
, (B.9)

and the metric

ds2
SE = ds2 (KE6) + (η)2 , (B.10)

that is, a U(1) fibration over a six-dimensional Kähler-Einstein (KE) base with metric

ds2 (KE6). The Kähler form on the base is precisely J . In the case of the seven-sphere,

this base is CP3. Since on the SE manifold dη = 2J we can write dψ+C1 with dC1 = 2J .

It follows that, after reduction along ψ, the type IIA two-form flux will be proportional to

the Kähler form and the internal metric will be ds2 (KE6). It turns out that the reduced

internal space admits also a nearly Kähler metric with almost complex structure

JNK = αM

(
JM +

1

4
εMNLη

N ∧ ηL
)
, (B.11)

which corresponds, in this paper, to the squashed CP3 appearing as the internal geometry

in the UV of the D2-branes.
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