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1 Introduction

The study of the mathematical properties of multiloop Feynman integrals has received

increasing attention in the last years both by the physics and the mathematics communities.

The high precision reached by the experimental measurements carried out at the LHC, in

fact, requires on the theory side the calculation of multi- (typically two- or three-) loop

corrections to various complicated 2 → 1, 2 → 2 and 2 → 3 processes, including the

exchange of massless and massive virtual particles. Indeed, unravelling their mathematical

structures will be crucial to handle the complexity of such calculations and, on the long

run, it could help gain a deeper understanding of quantum field theory itself.

Impressive progress has been achieved in the last years in both directions. The de-

velopment of new techniques for the calculation of multiloop Feynman integrals has ren-

dered many previously out-of-reach calculations feasible. Among these, a fundamental

role has been played by integration-by-parts reductions [1–3] and the differential equation

method [4–6], augmented more recently by the use of a canonical basis [7, 8]. A posteriori,

a reason for the success of these techniques can be traced back to the almost concurrent

“discovery” that the ε expansion of a rather large class of multiloop (mainly massless)

Feynman integrals can be expressed in terms of a very well understood class of special

functions, dubbed multiple polylogarithms [9–12]. In particular the understanding of their

algebraic and analytical properties, also thanks to the development of the symbol and co-

product formalism [13–17], together with stable routines for their evaluation on the whole

complex plane [18–20], have played a crucial role in the last years. Nevertheless, as it has
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been known for a long time, starting at the two-loop order the ε expansion of Feynman

integrals can involve new mathematical structures which lie beyond the realm of multiple

polylogarithms. The first and best studied example is that of the two-loop massive Sunrise

graph [21–34]. Its imaginary part in d = 4 space-time dimensions is known to be express-

ible as linear combination of complete elliptic integrals of first and second kind. The real

part of the graph can be reconstructed by a dispersive relation and involves integrals over

elliptic integrals. In the last years quite some effort has been spent on studying the new

functions appearing in the Sunrise graph, trying to extend the properties of multiple poly-

logarithms to embrace also elliptic generalizations of the latter [27, 29–33]. Much progress

has been made but a complete understanding of these functions is still missing, in particular

regarding their analytic continuation and numerical evaluation. Moreover, it is not clear

whether they can be easily used to express also graphs with more complicated kinematics

(i.e. three- and four-point functions). Last but not least, the interplay of these functions

with the simpler multiple polylogarithms and their iterative structure remains unclear in

context with the method of differential equations. There, simpler integrals appear as inho-

mogeneous terms in the differential equations of more complicated integrals. The solution

of these equations requires on the one hand the solution of the homogeneous equations

and, on the other, the integration over the inhomogeneous piece. Multiple polylogarithms

(and in general Chen iterated integrals [35]) are particularly well suited for this scope, as

they can be defined as iterative integrals over a set of differential forms. Of course, it is a

priori unclear whether such a feature can be expected to hold for arbitrarily complicated

Feynman graphs.

More recently, a new picture has started to emerged, where a generalization of this

approach to more complicated cases becomes possible. When dealing with a system of

coupled differential equations, the most non-trivial step consists in solving the homogeneous

part of the system. In [36] it was shown that, for arbitrarily complicated cases, integral

representations of the homogeneous solutions can be found by computing the maximal cut

of the graph under consideration. Once the homogeneous solution is known, an integral

representation for the inhomogeneous solution is provided by Euler’s variation of constants.

Even if usually such integrals cannot be expressed in terms of known special functions, from

a practical point of view we are particularly interested in obtaining results that allow for

fast and reliable numerical evaluations over the physical phase space. In this context, it

was shown in [34] that the study of the imaginary part and of the corresponding dispersion

relations of Feynman integrals within the differential equations framework can facilitate

obtaining compact one-fold integral representations for the two-loop massive Sunrise and

the Kite integral.1 There are indications that more complicated Feynman integrals with

different and unrelated kinematics can be casted in a similar form, see for example [38, 39]

and more recently a set of two-loop planar double boxes relevant for H+jet production [40].

The new ideas summarized above provide us with the tools required to start successfully

studying more examples of relevant Feynman diagrams whose ε expansions do not evaluate

1Note that more recently it was shown that the Kite integral can also be re-written in terms of elliptic

polylogarithms [37].
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to multiple polylogarithms. In this paper, we focus on a three-point non-planar topology

which is relevant for the two-loop QCD corrections to the processes gg → tt̄ and gg → γγ

through a massive top loop. Similar integrals appear in the non-planar sectors of H+jet and

HH production. The rest of the paper is organized as follows. In section 2 we describe the

problem and establish the notation. We continue in section 3 showing how the ε expansion

of the simpler subtopologies can be integrated in terms of multiple polylogarithm with

a new algorithm based on the differential equations in canonical form. In section 4 we

consider the top topology, which cannot be integrated in terms of multiple polylogarithms.

We show how to solve the coupled system of differential equations satisfied by its two

master integrals based on information extracted from the maximal cut; we then compare

it to the result obtained by solving directly the second order differential equation. We

thoroughly study the required functions in section 4 and appendix B, where we also show

how to analytically continue our solution to all relevant regions of the phase space. Finally

in section 4.3 we use the results of the previous sections to build up the inhomogeneous

solution for the top topology in analytic form. We write the results as one-fold integrals over

rational and irrational functions, multiple polylogarithms and complete elliptic integrals of

first and second kind. We then draw our conclusions in section 5.

2 Differential equations

We consider the Feynman integrals family Ia1,a2,a3,a4,a5,a6,a7 defined as

q
p1

p2

= Ia1,a2,a3,a4,a5,a6,a7

∣∣∣
a7<0

(2.1)

=

∫
ddk ddl (m2)2εN2

ε (k2)−a7

[(k−p1)2]a1 [(l−p1)2−m2]a2 [(k+p2)2]a3 [(k−l+p2)2−m2]a4 [(k−l)2−m2]a5 [(l2−m2)a6 ]
,

where

Nε =
(
iπ2−εΓ(1 + ε)

)−1
(2.2)

and ε = (4 − d)/2. We stress that the triangle topology above is obtained by limiting

ourselves to negative powers of the last propagator, i.e. a7 < 0. Four of the six propagators

are massive (thick lines), while only one of the three external legs is off-shell, i.e. p21 = p22 = 0

and q2 = (p1 + p2)
2 = s . Integrals in family (2.1) with different values of the exponents ai

may be reduced to master integrals using integration by parts reductions as implemented

for example in Reduze 2 [41–44]. As a result we find 11 different master integrals: 9 for

the subtopologies and 2 for the top topology.

As we will see explicitly, the nine master integrals of the subtopologies can be ex-

pressed in terms of multiple polylogarithms only. For them we choose a canonical basis

using the method described in [45].2 The remaining two integrals, instead, contain elliptic

generalizations of the multiple polylogarithms and, therefore, it is not possible to find for

2For recent related work on the analysis of master integrals and the construction of a canonical basis

see [46–56].

– 3 –



J
H
E
P
0
6
(
2
0
1
7
)
1
2
7

them a canonical basis as defined in [8].3 This can be motivated using the ideas presented

in [50]. There it was shown for various examples that the possibility of decoupling the

differential equations in the limit d → 4 (and therefore of writing the result in terms of

multiple polylogarithms) is signaled by a degeneracy of the integration by parts identities

in the limit of even numbers of dimensions, d→ 2n with n ∈ N.

We first consider the part of the Euclidean region where s < −4m2 and employ the

following basis

: m1 = ε2 I2,100,2,0,2,0,0,0 ,

: m2 = ε2 s I3,72,2,1,0,0,0,0 ,

: m3 = ε2 s I3,220,2,1,0,2,0,0 ,

: m4 = ε2
√
s(s− 4m2)

[
I3,220,2,2,0,1,0,0 +

1

2
I3,220,2,1,0,2,0,0

]

: m5 = ε3 s I4,151,2,1,1,0,0,0 ,

: m6 = ε2
√
s(s+ 4m2)

[
s I4,152,2,1,1,0,0,0 −

ε

2m2(1 + 2ε)
I2,100,2,0,2,0,0,0

]

: m7 = ε3 s I4,300,2,1,1,1,0,0 ,

: m8 = ε4 s I5,591,1,0,1,1,1,0 ,

: m9 = ε4 s I5,311,1,1,1,1,0,0 ,

: m10 = ε4s2I6,631,1,1,1,1,1,0 ,

: m11 = ε4
s2(s+ 16m2)

2(1 + 2ε)
I6,631,2,1,1,1,1,0 . (2.3)

For each of the equations the graph visualizes a corresponding independent integral. As

above, thick lines represent massive propagators. As customary, we also associated to each

integral two derived superscripts for a more convenient identification , It,idn1,n2,n3,n4,n5,n6,n7 .

The first, t, provides the number of different denominators, while the second, id, is the

binary identifier for the sector obtained by considering all propagators raised to positive

3We stress here that a canonical basis as defined in [8] requires not only a specific factorization of the ε

dependence from the kinematics, but also, as an additional condition on the matrix of the system, a d-log

form for the differential equations. In the general case the first condition could still be realized, while the

d-log form condition might have to be generalized to differentials of more complicated functions.
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powers: id =
∑7

j=1 2j−1θ(nj), where θ(n) is the theta function with θ(n) = 1 if n ≥ 0 and

θ(n) = 0 if n < 0.

In order to write down the system of differential equations we introduce the

massless ratio

x = −s/m2 .

We introduce the vector ~m = (m1, . . . ,m9) for the master integrals of the subtopologies,

which fulfil canonical differential equations. In matrix notation we obtain

d~m = ε

5∑
i=1

d ln(li(x))Ai ~m (2.4)

with the letters

l1 =
√
x, l2 =

1

2
(
√
x+
√
x+ 4), l3 =

√
x+ 4, l4 =

1

2
(
√
x+
√
x− 4), l5 =

√
x− 4

(2.5)

and the matrices

A1 =


0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 −2 0 0 0
0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0
0 0 0 0 2 0 −1 0 −2

 , A2 =


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
2 0 −6 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 , A3 =


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 −6 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 ,

A4 =


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0
2 2 0 0 −6 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 , A5 =


0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 . (2.6)

The root appearing in the normalization of m4 leads to l2 and l3, while the root appearing

in the normalization of m6 leads to l4 and l5. We note that, as long as we limit ourselves

to m1, . . . ,m9, these pairs of roots never mix and we could rationalize them separately

with two different changes of variables. The two structures, nevertheless, mix up once

considering the differential equations for the two master integrals of the top sector, m10

and m11.

With the basis given in (2.3), the differential equations for the master integrals of the

top topology read

d

dx

(
m10

m11

)
= B(x)

(
m10

m11

)
+ εD(x)

(
m10

m11

)
+

(
N10(ε;x)

N11(ε;x)

)
(2.7)

where B(x) and D(x) are two 2 × 2 matrices that do not depend on ε, while N10(ε;x)

and N11(ε;x) contain the dependence on the simpler subtopologies. The matrices of the

homogeneous part are

B(x) =

(
0 1

2(x−16) −
1
2x

1
2x

1
x

)
, D(x) =

(
− 2
x

1
x−16 −

1
x

2
x

1
x −

1
x−16

)
, (2.8)
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while the non-homogeneous terms read

N10(ε;x) = 0 ,

N11(ε;x) =
ε2

1 + 2ε

(
5

4
m3 −

7

2
m5 −

3

2

x√
x(x− 4)

m6 + 2m7 +m9

)
. (2.9)

From the latter it is clear that in the top topology all letters appear simultaneously. In our

normalization the integrals mj = mj(ε;x) (j = 1, . . . , 11) have a Taylor series expansion

at ε = 0,

mj(ε;x) =

∞∑
n=0

m
(n)
j (x) εn for j = 1, . . . , 11, (2.10)

and we wish to calculate the expansion coefficients up to n = 4.

3 Integration of the subtopologies

We first consider the evaluation of the subtopologies m1, . . . ,m9. Inserting the expan-

sion (2.10) into the differential equation (2.4) and comparing coefficients of powers in ε gives

dm
(n)
j (x) =

5∑
i=1

d ln(li(x))Aim
(n−1)
j (x) for n = 0, . . . ,∞, (3.1)

which allows us to solve fully decoupled systems of differential equations order by order

n bottom-up. The differential equations (3.1) have the form of the differential equations

of multiple polylogarithms with root-valued letters. We find it useful to solve the full

vector ~m in a uniform setup, where we consider all letters at the same time. This pre-

vents a rationalization of the x dependence and therefore a traditional integration of the

differential equations.

Instead, we construct an ansatz for the solution using suitable target functions and

require it to fulfil the differential equation (3.1). In other words, we integrate the symbol of

the loop integrals. The basis of our function construction is the Duhr-Gangl-Rhodes algo-

rithm [16], which was originally formulated for the case of a rational alphabet. We extend

it here to the case of an irrational alphabet employing a heuristic approach to factorization.

For simpler cases it is usually not strictly necessary to work with a canonical basis in order

to be able to integrate the differential equations, provided they (partially) decouple. In

contrast to this, our strategy here crucially relies on the differential equation (3.1) being

in canonical form, such that we can read off the symbol letters of the solution. A similar

approach for the integration of the differential equations has been used in [40] to calculate

solutions through to weight two.

The core idea is to construct the solution via functions, which do not introduce symbol

letters beyond the alphabet (2.5) of the differential equation (3.1). The construction relies

on the ability to check whether a given expression y factorizes over the alphabet, that is,

whether a decomposition of the form

y = ca0 la11 · · · l
a5
5 , (3.2)

– 6 –
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exists with a rational number c and an ∈ Q. In the presence of roots depending on

one or several variables it is challenging to check with computer algebra systems whether

a factorization of the form (3.2) exists. We therefore resort to the following approach.

Equation (3.2) implies a linear relation between ln(z), ln(c), ln(l1), . . . , ln(l5) with rational

coefficients,

ln(y)− a0 ln(c)− a1 ln(l1)− . . .− a5 ln(l5) = 0 . (3.3)

We replace each variable by a numerical sample and apply heuristic integer relation searches

to the numerical values for the logarithms to detect relations of the type (3.3) via the

Lenstra-Lenstra-Lovász (LLL) algorithm [57–60]. This provides us with a tool to normalize

the symbols of the encountered multiple polylogarithms in a symbol based calculus and to

arrive at a set of independent letters.

To construct our solutions in the region s < −4m2 through to weight four we choose

the functions

ln, Li2, Li3, Li4, Li2,2 (3.4)

with suitable arguments. For the arguments of ln we can just choose the original letters

themselves in order to avoid spurious symbols.

A classical polylogarithm Lin(z) (n = 2, 3, 4) has symbol entries z and 1− z,

sym(Lin(z)) = −(1− z)⊗ z ⊗ . . .⊗ z︸ ︷︷ ︸
(n−1) times

. (3.5)

Choosing z to be a power product of our original letters, ensures z to factorize over our

alphabet. For our current application it is sufficient to consider an ∈ Z (as for rational

letters) and ca0 = ±1 in our ansatz (3.2). We stress that this is too constraining in general.

First, there could be numerical letters which are not visible in the differential equations

since e.g. d ln(2) = 0. Second, depending on the (choice of) letters it may be necessary

to also consider roots of letters for the factorization and allow the an to be non-integer

rational numbers. Note that there is an ambiguity related to the freedom of redefining the

letters by expressions of the form (3.2). In our case, the definition of our letters absorbs

any further explicit roots.

In addition to the argument z of a polylogarithm we also require 1−z to factorize over

our original alphabet to ensure the absence of spurious letters. Consider as an example

the function argument z = 1/(l2l3). Our heuristic factorization approach finds that 1 − z
factorizes over our alphabet as follows

1− 1

l2l3
=
l2
l3
, (3.6)

which can be verified by inserting the explicit definitions of the letters,

1− 1
1
2(
√
x+
√
x+ 4)

√
x+ 4

=
1
2(
√
x+
√
x+ 4)

√
x+ 4

. (3.7)

Consequently 1/(l2l3) is an admissable argument for classical polylogarithms Lin (n=2,3,4),

since it generates no spurious symbols. For example, the symbol of the dilogarithm,

– 7 –
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see (3.5), takes the form

sym(Li2(1/(l2l3))) = − (l2/l3)⊗ (1/(l2l3)) , (3.8)

which involves only our original letters.

Our heuristic search produces this set of admissable arguments:{
1/(l1l4), l4/l1, 1/(l2l3), l3/l2, −(1/(l1l2)), −(1/(l4l5)), l5/l4, 1/l24, l4/l5, l2/l3, l2/l1,

l24, 1/l22, −(1/l24), −l4l5, −(1/l22), l2l3, l1/l4, l1l4, −l24, l1/l2, l22, −l22, −l1l2,
− (1/(l1l

2
2l3)), −(1/(l1l

2
4l5)), l

2
4/(l1l5), 1/l42, l

2
2/(l1l3), 1/l44, l

4
4, (l1l5)/l

2
4, −l1l24l5, l42,

(l1l3)/l
2
2, −l1l22l3

}
, (3.9)

which is closed under z → 1− z and z → 1/z, where z is an element of the set.

For Li2,2(z1, z2) we need to make sure that the symbol entries z1, 1− z1, z2, 1− z2 and

1− z1z2 do not introduce new letters. Our construction proceeds along the lines described

above, but we do not list the generic result for the argument set here since it is too lengthy.

We concentrate here on the part of the Euclidean region where s < −4m2 and require

all functions to be real valued for x > 4. Indeed, we find that all of these constraints can

be satisfied and a solution in terms of such functions can be found, which satisfies the

differential equations. Our functions read{
ln(l1), ln(l2), ln(l3), ln(l4), ln(l5),Li2(l

−2
2 ),Li2(1/(l2l3))),Li2(−l−24 ),Li2(−1/(l4l5)),

Li3(l
−2
2 ),Li3(l1/l2),Li3(−1/(l1l

2
2l3)),Li3(1/(l2l3))),Li3(l2/l3)),Li3(−l−24 ),Li3(l

−2
4 ),

Li3(1/(l1l4)),Li3(−1/(l4l5))),Li3(l1l5)/l
2
4),Li4(−l−22 ),Li4(l

−2
2 ),Li4(−1/(l1l2)),Li4(l1/l2),

Li4(−1/(l1l
2
2l3)),Li4(1/(l2l3)),Li4(l2/l3),Li4(l1l3)/l

2
2),Li4(−l−24 ),Li4(l

−2
4 ),Li4(1/(l1l4)),

Li4(l4/l1),Li4(−1/(l1l
2
4l5)),Li4(−1/(l4l5)),Li4(l1l5/l

2
4),Li4(l5/l4),Li2,2(−1,−l−22 ),

Li2,2(−1,−l−24 ),Li2,2(−1/(l1l2), l1/l2),Li2,2(1/(l1l4), l1/l4)
}
. (3.10)

In order to fix the integration constants, we employ regularity conditions supplemented

by explicit results for some simple integrals. The integrals m1 and m2 are built from the

massive one-loop tadpole and the massless one-loop bubble, for which we employ the well-

known explicit results. The integrals I3,220,2,1,0,2,0,0, I
3,22
0,2,2,0,1,0,0, I

4,30
0,2,1,1,1,0,0 and I5,591,1,0,1,1,1,0 are

required to be regular for s→ 0 (m2 fixed). This implies that m3, m4, m7 and m8 vanish

in that limit, which fixes their boundary constants. The integral (−s/m2)2εI4,151,1,1,1,0,0,0 is

required to match the well-known result for its massless counterpart in the limit m2 → 0

(s fixed). In addition, the integral I4,152,2,1,1,0,0,0 is required to be regular for s → −4m2

(m2 fixed), which implies that m6 vanishes in that limit. These constraints fix the boundary

constants of m5 and m6. Finally, the integral (−s/m2)2εI5,311,1,1,1,1,0,0 is required to vanish

for m2 →∞ (s fixed), which fixes the boundary constant of m9.

We find very compact results for the final solutions of the subtopology integrals in terms

of our choice of functions. These results will be a necessary building block to construct the

full solution of the top topology. The explicit form of the results can be found in appendix A

and, in electronic format, in the ancillary file of the arXiv submission of this paper.
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4 Integration of the top topology

4.1 Homogenous solution

Having the expressions for all subtopologies in terms of multiple polylogarithms, we can

now proceed and study the differential equations (2.7) for the top sector. We start by

expanding in ε the inhomogeneous terms (2.9), up to ε4

Nj(ε;x) =
4∑

a=0

N
(a)
j (x) εa , for j = 10, 11 . (4.1)

Substituting explicitly the subtopologies we find the remarkably simple expressions

N
(0)
10 (x) = 0 , N

(1)
10 (x) = 0 , N

(2)
10 (x) = 0 , N

(3)
10 (x) = 0 N

(4)
10 (x) = 0 ,

N
(0)
11 (x) = 0 , N

(1)
11 (x) = 0 , N

(2)
11 (x) = 0 , N

(3)
11 (x) = 0 ,

N
(4)
11 (x) = 5 ln2(l2)− l1

3/2 ζ2 + 3 ln2(l4) + 3 Li2(−1/l24)

l5
, (4.2)

where the letters lj have been defined above (2.5). We can now expand the right- and

left-hand-side of (2.7) and we find, at any order n,

d

dx

(
m

(n)
10

m
(n)
11

)
= B(x)

(
m

(n)
10

m
(n)
11

)
+D(x)

(
m

(n−1)
10

m
(n−1)
11

)
+

(
N

(n)
10 (x)

N
(n)
11 (x)

)
. (4.3)

Comparing with (4.2), we see that we get a non trivial non-homogeneous term only at order

ε4, which is also the maximum order in the expansion we are interested in. In fact, the

integrals I6,631,1,1,1,1,1,0 and I6,631,2,1,1,1,1,0 are finite, which can be checked e.g. with the methods

of [61, 62] implemented in Reduze 2.1, such that the first non-vanishing coefficients of m10

and m11 occur at order ε4.

The first step to solve (4.3) is to find a solution of its homogeneous part, which at

every order in ε is a coupled system of two first-order linear differential equations

d

dx

(
M10

M11

)
= B(x)

(
M10

M11

)
, (4.4)

where we use a capital letter M instead of m to describe the homogeneous part of the

solution and drop the superscript (n), since the form of the equation does not depend on

n. In order to solve the system we need to find two independent set of solutions, i.e. a

2× 2 matrix

G(x) =

(
I1(x) J1(x)

I2(x) J2(x)

)
(4.5)

such that
d

dx
G(x) = B(x)G(x) . (4.6)
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The inverse of the matrix G(x) reads

G(−1)(x) =
1

W (x)

(
J2(x) −J1(x)

−I2(x) I1(x)

)
, (4.7)

where W (x) is the Wronskian of the solutions, W (x) = I1(x)J2(x) − J1(x)I2(x) . If the

matrix G(x) is known, one can perform at every order in ε the rotation(
m

(n)
10

m
(n)
11

)
= G

(
m̃

(n)
10

m̃
(n)
11

)
, (4.8)

such that the new functions m̃
(n)
10 , m̃

(n)
11 fulfil the differential equations

d

dx

(
m̃

(n)
10

m̃
(n)
11

)
= G(−1)(x)D(x)G(x)

(
m̃

(n−1)
10

m̃
(n−1)
11

)
+G(−1)(x)

(
N

(n)
10 (x)

N
(n)
11 (x)

)
, (4.9)

whose solution can be now written by quadrature as(
m̃

(n)
10 (y)

m̃
(n)
11 (y)

)
=

∫ y

y0

dxG(−1)(x)D(x)G(x)

(
m̃

(n−1)
10

m̃
(n−1)
11

)
+

∫ y

y0

dxG(−1)(x)

(
N

(n)
10 (x)

N
(n)
11 (x)

)
+

(
c
(n)
10

c
(n)
11

)
,

(4.10)

where c
(n)
10 and c

(n)
11 are two integration constants and y0 is a suitable boundary for the

integration.

In order to find an explicit solution for the matrix G(x) it is useful to recast (4.4) as

a second order differential equation for the first master integral

d2M10(x)

dx2
+

(
1

x− 16

)
dM10(x)

dx
+

1

64

(
1

x
+

16

x2
− 1

x− 16

)
M10(x) = 0 . (4.11)

A general way to solve this equation is to compute the maximal cut of M10(x) as explained

in detail in [36]. In that reference it was shown that the maximal cut of M10(x) computed

on a specific integration contour can be written (up to an irrelevant overall numerical

constant) as

Cut1(M10(x)) =

√
x

x− 16
K

(
x

x− 16

)
, (4.12)

where we introduced the complete elliptic integral of the first kind defined as

K(z) =

∫ 1

0

dx√
(1− x2)(1− z x2)

, for z ∈ C and <(z) < 1 . (4.13)

It is straightforward to verify that (4.12) satisfies (4.11). A second independent solution

can be obtained integrating on an independent contour. As explained in [36], this can be

avoided in the case of elliptic integrals, as the second solution is simply given by

Cut2(M10(x)) =

√
x

x− 16
K

(
1− x

x− 16

)
. (4.14)

The two solutions (4.12) and (4.14) completely determine the first row of the matrix (4.5).
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Before proceeding, it is instructive to try to solve eq. (4.11) directly, since in this case

the equation is particularly simple. We define the auxiliary function

f(x) =
1√
x
M10(x) , (4.15)

which fulfills the differential equation

d2 f(x)

dx2
+

(
1

x
+

1

x− 16

)
d f(x)

dx
+

1

64

(
1

x− 16
− 1

x

)
f(x) = 0 . (4.16)

Equation (4.16) is now in standard form and its solution can be easily written in terms of

the complete elliptic integral of the first kind (4.13). Since the differential equation (4.16)

has regular singular points in x = 0, x = 16 and x = ±∞, we must consider the solution

of the latter in the three intervals 0 < x < 16, 16 < x < ∞ and −∞ < x < 0 . We start

by considering the region 0 < x < 16 i.e. −16m2 < s < 0. This region is non physical and

the master integrals m10, m11 are real there. Following the same procedure, we can build

up similar solutions in the remaining regions, i.e. the part of the Euclidean region where

−∞ < s < −16m2 and the physical region s > 0. We derive explicitly those solutions in

appendix B. The general solution of the homogeneous second order differential equation

for 0 < x < 16 can be written as

f(x) = c1 K
( x

16

)
+ c2 K

(
1− x

16

)
, (4.17)

which determines the first row of the matrix (4.5) as

I
(0,16)
1 (x) =

√
x K

( x
16

)
, J

(0,16)
1 (x) =

√
x K

(
1− x

16

)
. (4.18)

In eqs. (4.18) we introduced the notation I
(a,b)
j (x) and J

(a,b)
j (x), with j = 1, 2, for the two

pairs of solutions valid in the region a < x < b. We will use this notation in the rest of

the paper and, consistently, we will write G(a,b)(x) for the matrix of the solutions defined

in the same region.

Eqs. (4.18) are apparently different from the solutions determined by studying the

maximal cut (4.12) and (4.14). Indeed, as the four functions are all solutions of the same

second order homogeneous differential equation, a relation among them must exist such

that only two functions are really independent. Indeed, it is well known that the elliptic

integral of the first kind K(z) and its complementary K(1− z) fulfil the following relations

K (z) =
1√
z

(
K

(
1

z

)
− i K

(
1− 1

z

))
(4.19)

K (1− z) =
1√
z

K

(
1− 1

z

)
(4.20)

where we use the prescription z → z + i 0+ for definiteness.4 Applying eq. (4.19) twice to

the solutions (4.12) and (4.14), we construct two more equivalent sets of solutions{
K

(
16

x

)
, K

(
1− 16

x

)}
and

{√
x K

( x
16

)
,
√
x K

(
1− x

16

)}
. (4.21)

4Note that eqs. (4.19) and (4.20) are not the only relations between elliptic integrals of different

arguments. Other relations are known, which we did not find necessary in this context.
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It is simple to check by direct insertion that these functions do indeed solve our second

order differential equation. This proves the equivalence of the solutions found through

the maximal cut with the ones found by solving directly the differential equation. The

existence of more than one representation for the same solutions in terms of elliptic integrals

of different arguments will turn out to be very important to write down the analytic

continuation of the solution from 0 < x < 16 to the whole phase space in terms of explicitly

real solutions, as explained in appendix B.

We can now proceed with the solution of the system (4.3) in the region 0 < x < 16; here

the most convenient representation is provided by the choice (4.18), which we will adopt

from now on. In order to determine the second row of the matrix G(x) we plug (4.18)

into (4.6) and find for consistency that

I
(0,16)
2 (x) = −

√
x E

( x
16

)
, J

(0,16)
2 (x) =

√
x
[
E
(

1− x

16

)
−K

(
1− x

16

)]
, (4.22)

where we introduced the complete elliptic integral of the second kind

E(z) =

∫ 1

0
dx

√
1− z x2√
1− x2

, for z ∈ C and <(z) < 1 . (4.23)

We write therefore the matrix of the solutions valid for 0 < x < 16 as

G(0,16)(x) =

(
I
(0,16)
1 (x) J

(0,16)
1 (x)

I
(0,16)
2 (x) J

(0,16)
2 (x)

)
. (4.24)

We can now compute the Wronskian of the solutions. We find

W (0,16)(x) = det
(
G(0,16)(x)

)
= I

(0,16)
1 (x)J

(0,16)
2 (x)− J (0,16)

1 (x)I
(0,16)
2 (x) =

π

2
x (4.25)

which is a direct consequence of the Legendre identity among the first two complete elliptic

integrals

K(z) E(1− z) + E(z) K(1− z)−K(z) K(1− z) =
π

2
. (4.26)

Alternatively, we can determine W (x) also without resorting to the Legendre identity.

The fact that the Wronskian must be a linear function of x can be easily seen taking its

derivative as

d

dx
W (x) =

d

dx
det (G(x)) = Tr

(
G(−1)(x)B(x)G(x)

)
det (G(x)) =

1

x
W (x) , (4.27)

which gives as a solution

W (x) = c x , (4.28)

with c an arbitrary integration constant.5 The value of the constant c can be then fixed by

computing the Wronskian for a fixed value of x. For example, we can study the behaviour

5Note that this is of course a general property of the solution and remains true independent of the region

a < x < b that we consider.
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of the solutions at the two boundaries, i.e. x → 0+ and x → 16−. We find respectively,

keeping only the leading behaviour,

lim
x→0+

I
(0,16)
1 (x) =

π

2

√
x ,

lim
x→0+

I
(0,16)
2 (x) = −π

2

√
x ,

lim
x→0+

J
(0,16)
1 (x) =

√
x

2
(− ln (x) + 8 ln (2)) ,

lim
x→0+

J
(0,16)
2 (x) =

√
x

2
(ln (x)− 8 ln (2) + 2) , (4.29)

and

lim
x→16−

I
(0,16)
1 (x) = −2 ln (16− x) + 16 ln (2) +

(16− x)

32
(ln (16− x)− 8 ln (2)− 2) ,

lim
x→16−

I
(0,16)
2 (x) = −4 +

(16− x)

16
(ln (16− x)− 8 ln (2) + 3) ,

lim
x→16−

J
(0,16)
1 (x) = 2π − π

32
(16− x) ,

lim
x→16−

J
(0,16)
2 (x) = − π

16
(16− x) . (4.30)

By using (4.29) and (4.30) it is easy to verify explicitly that

lim
x→0+

W (0,16)(x)

x
= lim

x→16−

W (0,16)(x)

x
=
π

2
, (4.31)

which fixes the constant c.

4.2 Analytic continuation of the inhomogeneous term

With the results of the previous sections we can solve the inhomogeneous differential equa-

tions for the top topology using Euler’s variation of constants. In order to employ explicitly

real building blocks, we need to analytically continue the homogeneous solutions and the

inhomogeneous term to the various regions of the phase space. Details for the continuation

of the homogeneous solutions are worked out in appendix B. For the analytic continua-

tion of the inhomogeneous term we give the explicit results in this section to highlight the

different emerging functions.

For clarity, in every region a < x < b we extract explicitly the imaginary part (whenever

there is one) and introduce the functions R(a,b)(x) and Q(a,b)(x) respectively for the real

and imaginary parts of N
(4)
11 (x) in that region

N
(4)
11 (x)

∣∣∣
a<x<b

= R(a,b)(x) + iQ(a,b)(x) .

For the analytical continuation to other kinematical regions we assign an infinitesimal pos-

itive imaginary part to s which translates to a negative imaginary part for x, x→ x− i 0+.

We will also make use of letters from the alphabet

l′i =

{√
−x, 1

2
(
√
−x+

√
−x− 4),

√
−x− 4,

1

2
(
√
−x+

√
−x+ 4),

√
−x+ 4

}
, (4.32)

depending on the region of phase space.
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For the region 4 < x < 16 we obtain

R(4,16)(x) = 5 ln2(l2)− 3 l1
ζ2/2 + ln2(l4) + Li2(−1/l24)

l5
,

Q(4,16)(x) = 0 . (4.33)

We remark that x = 16 is actually no special point for the subtopologies and a single

analytic expression is sufficient for the entire range x > 4. In the region 0 < x < 4, N
(4)
11 (x)

stays real and we obtain

R(0,4)(x) = 5 ln2(l2) + 3 l1
Cl2(−2 arccsc(2/l1))

l′5
,

Q(0,4)(x) = 0 , (4.34)

where the Clausen function Cl2(θ) = −
∫ θ
0 ln

∣∣2 sin t
2

∣∣ dt arises from the dilogarithm of a pure

phase factor, Cl2(θ) = =
(
Li2(e

iθ)
)
, which can be seen from l24 = (

√
x − i

√
4− x)/(

√
x +

i
√

4− x). In the region −4 < x < 0, the inhomogeneous terms develop an imaginary part

and can be conveniently expressed in terms of

R(−4,0)(x) = −5 arcsec2 (2/l3) + 3 l′1

(
ζ2 − ln2 (l′4)− Li2(1/l

′2
4 )
)

l′5
,

Q(−4,0)(x) = π
3 l′1
l′5

ln (l′4) , (4.35)

where the first term of the real part arises from a purely imaginary ln(l2) since l22 =

(
√
−x+ i

√
4 + x)/(

√
−x− i

√
4 + x) is a pure phase factor. Finally, for −∞ < x < −4 we

obtain for the real and the imaginary part,

R(−∞,−4)(x) = 5 ln2 (l′2)−
15

2
ζ2 + 3 l′1

(
ζ2 − ln2 (l′4)− Li2(1/l

′2
4 )
)

l′5
,

Q(−∞,−4)(x) = π

(
3 l′1
l′5

ln (l′4)− 5 ln (l′2)

)
, (4.36)

respectively.

4.3 The inhomogeneous solution

We are now finally in the position of writing down the complete solution of (2.7) in all

relevant regions of the phase space. For definiteness, we start in the Euclidean region

0 < x < 4, −4m2 < s < 0, and then use the results of the previous section and of

appendix B to continue the solution to the other regions. In appendix B, in particular, we

build up matrices of solutions

G(a,b)(x) =

(
I
(a,b)
1 (x) J

(a,b)
1 (x)

I
(a,b)
2 (x) J

(a,b)
2 (x)

)
whose entries are explicitly real for a < x < b, and we show explicitly how to match the

homogeneous solution moving from one region to the other. We recall that the expansions

of m10 and m11 start at order ε4. We first write down the solutions for m̃
(4)
10 and m̃

(4)
11 and

then rotate them back to obtain expressions for the physical master integrals m10 and m11.
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Region 0 < x < 16. From (4.9), (4.7), (4.25) and the inhomogeneous term in (4.2) we

get in the region 0 < x < 4

d

dx

(
m̃

(4)
10

m̃
(4)
11

)
=

2

π

1

x

(
J
(0,16)
2 (x) −J (0,16)

1 (x)

−I(0,16)2 (x) I
(0,16)
1 (x)

)(
0

R(0,4)(x)

)
(4.37)

which gives

m̃
(4)
10 (x) = − 2

π

∫ x

0

dy

y
J
(0,16)
1 (y)R(0,4)(y) + c10 ,

m̃
(4)
11 (x) = +

2

π

∫ x

0

dy

y
I
(0,16)
1 (y)R(0,4)(y) + c11 , (4.38)

where c10 and c11 are two integration constants. We stress again that R(0,4)(y) is a sim-

ple combination of weight two polylogarithms. Since neither the top topology nor the

subtopologies develop an imaginary part when x crosses the pseudo-threshold x = 4, we

can write an explicitly real solution for the physical (unrotated) master integrals m10, m11

valid for the larger range 0 < x < 16

m
(4)
10 (x) = c10I

(0,16)
1 (x) + c11J

(0,16)
1 (x) (4.39)

+
2

π
J
(0,16)
1 (x)

∫ x

0

dy

y
I
(0,16)
1 (y)R(a,b)(y)− 2

π
I
(0,16)
1 (x)

∫ x

0

dy

y
J
(0,16)
1 (y)R(a,b)(y) ,

m
(4)
11 (x) = c10I

(0,16)
2 (x) + c11J

(0,16)
2 (x),

+
2

π
J
(0,16)
2 (x)

∫ x

0

dy

y
I
(0,16)
1 (y)R(a,b)(y)− 2

π
I
(0,16)
2 (x)

∫ x

0

dy

y
J
(0,16)
1 (y)R(a,b)(y) ,

where (a, b) is either (0, 4) or (4, 16), depending on whether y < 4 or y > 4. The integration

constants must be fixed with two proper boundary conditions. Imposing that the integrals

be regular as x→ 16− and go to zero for x→ 0+, we find c10 = c11 = 0

m
(4)
10 (x) =

2

π

[
J
(0,16)
1 (x)

∫ x

0

dy

y
I
(0,16)
1 (y)R(a,b)(y)− I(0,16)1 (x)

∫ x

0

dy

y
J
(0,16)
1 (y)R(a,b)(y)

]
,

m
(4)
11 (x) =

2

π

[
J
(0,16)
2 (x)

∫ x

0

dy

y
I
(0,16)
1 (y)R(a,b)(y)− I(0,16)2 (x)

∫ x

0

dy

y
J
(0,16)
1 (y)R(a,b)(y)

]
.

(4.40)

Region −4 < x < 0. We continue the solution to the region −4 < x < 0 using

x→ x− i 0+, (4.35), (B.16) and (B.17) and obtain

m
(4)
10 (x) =

2

π

[
J
(−∞,0)
1 (x)

∫ x

0

dy

y
I
(−∞,0)
1 (y)R(−4,0)(y)− I(−∞,0)

1 (x)

∫ x

0

dy

y
J
(−∞,0)
1 (y)R(−4,0)(y)

]
+ i

2

π

[
J
(−∞,0)
1 (x)

∫ x

0

dy

y
I
(−∞,0)
1 (y)Q(−4,0)(y)−I(−∞,0)

1 (x)

∫ x

0

dy

y
J
(−∞,0)
1 (y)Q(−4,0)(y)

]
,

m
(4)
11 (x) =

2

π

[
J
(−∞,0)
2 (x)

∫ x

0

dy

y
I
(−∞,0)
1 (y)R(−4,0)(y)− I(−∞,0)

2 (x)

∫ x

0

dy

y
J
(−∞,0)
1 (y)R(−4,0)(y)

]
+ i

2

π

[
J
(−∞,0)
2 (x)

∫ x

0

dy

y
I
(−∞,0)
1 (y)Q(−4,0)(y)−I(−∞,0)

2 (x)

∫ x

0

dy

y
J
(−∞,0)
1 (y)Q(−4,0)(y)

]
.

(4.41)

Note that now all integrals are explicitly real and all imaginary parts are explicit.
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Region −∞ < x < −4. We can then go further and continue beyond the threshold

for the production of two massive particles, i.e. s > 4m2, x < −4. Using again formu-

las (4.36), (B.16) and (B.17) we obtain

m
(4)
10 (x) =

2

π

[
J
(−∞,0)
1 (x)

(∫ x

−4

dy

y
I
(−∞,0)
1 (y)R(−∞,−4)(y)− c1

)
− I

(−∞,0)
1 (x)

(∫ x

−4

dy

y
J
(−∞,0)
1 (y)R(−∞,−4)(y)− c2

)]
+ i

2

π

[
J
(−∞,0)
1 (x)

(∫ x

−4

dy

y
I
(−∞,0)
1 (y)Q(−∞,−4)(y)− c3

)
− I

(−∞,0)
1 (x)

(∫ x

−4

dy

y
J
(−∞,0)
1 (y)Q(−∞,−4)(y)− c4

)]
,

m
(4)
11 (x) =

2

π

[
J
(−∞,0)
2 (x)

(∫ x

−4

dy

y
I
(−∞,0)
1 (y)R(−∞,−4)(y)− c1

)
− I

(−∞,0)
2 (x)

(∫ x

−4

dy

y
J
(−∞,0)
1 (y)R(−∞,−4)(y)− c2

)]
+ i

2

π

[
J
(−∞,0)
2 (x)

(∫ x

−4

dy

y
I
(−∞,0)
1 (y)Q(−∞,−4)(y)− c3

)
− I

(−∞,0)
2 (x)

(∫ x

−4

dy

y
J
(−∞,0)
1 (y)Q(−∞,−4)(y)− c4

)]
, (4.42)

where all imaginary parts are explicit and all integrals are real. The matching constants are

c1 =

∫ 0

−4

dy

y
I
(−∞,0)
1 (y)R(−4,0)(y) , c2 =

∫ 0

−4

dy

y
J
(−∞,0)
1 (y)R(−4,0)(y) ,

c3 =

∫ 0

−4

dy

y
I
(−∞,0)
1 (y)Q(−4,0)(y) , c4 =

∫ 0

−4

dy

y
J
(−∞,0)
1 (y)Q(−4,0)(y) . (4.43)

They can be evaluated with high precision starting directly from this integral

representation.

Numerical evaluation. We verified our formulas with a thorough comparison against

SecDec 3, both in the physical and in the non-physical region. Numerical results for the

top-level master integrals are shown in figure 1. We would like to point out that our

representation allows for particularly fast and precise evaluations also in the physical region

of phase space. A straight-forward implementation in Mathematica 11 allows us to evaluate

either of the top level integrals for generic physical kinematics to 13 significant digits within

15ms on a somewhat older laptop computer.

As an example for a result with higher precision, we obtain

m4I1,1,1,1,1,1,0
∣∣
s=5m2,d=4

≈ −0.07776462028160023644086669458011467822536257409024

+ i 0.34306740464518688969054397597465622650767181505054

(4.44)

for one of our six-line master integrals.
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Figure 1. Finite top-level master integrals m4 I1,1,1,1,1,1,0 (left) and m6 I1,2,1,1,1,1,0 (right). Solid

curves were obtained with our representations, dots with SecDec 3.

5 Conclusions

Feynman integrals which evaluate to classes of functions outside the realm of multiple

polylogarithms constitute the bottleneck for many multiloop calculations relevant for LHC

phenomenology. To this day, only a very limited number of examples have been considered

in the literature. An important step towards a more complete understanding of the new

mathematical structures therefore consists of the study of more explicit examples in order

to expose their common properties. In this paper we have considered the calculation of a

two-loop non-planar three-point function with four massive internal propagators and one

external off-shell leg using the method of differential equations. The differential equations

for the subtopologies can be put in canonical form and integrated in terms of multiple

polylogarithms over an irrational alphabet. In general, in the presence of different roots,

traditional approaches to integrate the result in terms of Goncharov’s polylogarithms fail,

unless one is able to find a change of variables which linearizes or at least rationalizes the

letters of the alphabet. We employed a new algorithm to perform the integration without

any rationalization of the alphabet. This allowed us to write the results up to weight four

in terms of simple logarithms, classical polylogarithms and Li2,2 functions only.

We moved then to the two master integrals of the top level sector, which fulfil two

coupled differential equations in the momentum transfer squared. By studying the maximal

cut of the two master integrals we showed how to solve the differential equations in terms

of complete elliptic integrals of first and second kind; we then used Euler’s variation of

constants in order to write the solution as a one-fold integral over elliptic integrals and

multiple polylogarithms. Finally, we used the same techniques described in [34] in order to

continue our results to the Minkowski physical region. In this way we provided expressions

which can be evaluated in a fast and reliable manner in the entire physical region of the

phase space. We compared our results with SecDec 3 and found perfect agreement. We

expect that similar techniques can be extended to study also more complicated three- and

four-point functions, as in part confirmed by the results recently obtained in [40].
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A Solutions for the subtopologies

In this appendix we report the explicit results for the subtopologies in the Euclidean region

with s < −4m2. Having a canonical form, we can write the ε expansion through to weight

four in a relatively compact form in terms of simple functions, including only logarithms,

classical polylogarithms and Li2,2 functions with arguments built from the alphabet defined

in (2.5). Expanding the master integrals according to

mj =

4∑
k=0

m
(k)
j εk +O(ε5) . (A.1)

we find for the coefficients m
(k)
j

m
(0)
1 = 1 ,

m
(j)
1 = 0 , for j ≥ 1, (A.2)

m
(0)
2 = −1 ,

m
(1)
2 = 2 log(l1) ,

m
(2)
2 =

π2

6
− 2 log2(l1) ,

m
(3)
2 =

4 log3(l1)

3
− 1

3
π2 log(l1) + 2ζ3 ,

m
(4)
2 = −4ζ3 log(l1)− 2

3
log4(l1) +

1

3
π2 log2(l1) +

π4

40
, (A.3)

m
(0)
3 = 0 , m

(1)
3 = 0 ,

m
(2)
3 = 4 log2(l2) ,

m
(3)
3 = 8 log(l1) log2(l2)− 12Li3

(
1

l22

)
− 16Li2

(
1

l22

)
log(l2) + 24Li3

(
1

l2l3

)
+ 24Li3

(
l2
l3

)
+ 24 log(l2)Li2

(
1

l2l3

)
+ 12 log(l2) log2(l3)− 20 log3(l2)− 10

3
π2 log(l2)

− 8 log3(l3) + 4π2 log(l3)− 30ζ3 ,

m
(4)
3 = −24Li2,2

(
−1,− 1

l22

)
− 48 log(l2)Li3

(
− 1

l1l22l3

)
+ 32 log(l1)Li2

(
1

l22

)
log(l2)

− 48 log(l1) log(l2)Li2

(
1

l2l3

)
+ 48 log(l1)Li3

(
1

l2l3

)
+ 48 log(l1)Li3

(
l2
l3

)
+ 24 log2(l1) log(l2) log(l3)− 24Li4

(
− 1

l1l2

)
+ 24Li4

(
l1
l2

)
− 32 log(l2)Li3

(
l1
l2

)
+ 4 log3(l1) log(l2)− 76 log(l1) log3(l2) + 10 log2(l1) log2(l2) +

8

3
π2 log(l1) log(l2)
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− 16 log(l1) log3(l3) + 8π2 log(l1) log(l3)− 84ζ3 log(l1)− log4(l1)− 2π2 log2(l1)

+ 48Li2

(
1

l22

)
Li2

(
1

l2l3

)
+ 24Li2

(
1

l22

)
log2(l3) + 48Li2

(
1

l22

)
log(l2) log(l3)− 8Li2

(
1

l22

)
2

− 4

3
π2Li2

(
1

l22

)
+ 36Li4

(
− 1

l22

)
− 12Li4

(
1

l22

)
− 40Li2

(
1

l22

)
log2(l2)− 112Li3

(
1

l22

)
log(l2)

− 36Li2

(
1

l2l3

)
2 + 4π2Li2

(
1

l2l3

)
+ 60 log2(l2)Li2

(
1

l2l3

)
− 36 log2(l3)Li2

(
1

l2l3

)
− 72 log(l2) log(l3)Li2

(
1

l2l3

)
+ 24 log(l2)Li3

(
1

l2l3

)
+ 72 log(l2)Li3

(
l2
l3

)
− 44 log(l2) log3(l3) + 60 log3(l2) log(l3) + 66 log2(l2) log2(l3) + 8π2 log(l2) log(l3)

+ 28ζ3 log(l2)− 26 log4(l2)

3
− 62

3
π2 log2(l2)− 9 log4(l3) + 2π2 log2(l3)− 61π4

180
, (A.4)

m
(0)
4 = 0 ,

m
(1)
4 = 2 log(l2) ,

m
(2)
4 = −4 log(l1) log(l2) + 2Li2

(
1

l22

)
− 6Li2

(
1

l2l3

)
− 6 log(l2) log(l3)

+ 5 log2(l2)− 3 log2(l3) +
π2

6
,

m
(3)
4 = −6Li3

(
− 1

l1l22l3

)
+ 12 log(l1) log(l2) log(l3)− 8Li3

(
l1
l2

)
+ 6 log2(l1) log(l2)

− 20 log(l1) log2(l2) + 3 log2(l1) log(l3) + 3 log(l1) log2(l3) + log3(l1) + π2 log(l1)

− 16Li3

(
1

l22

)
+ 24Li3

(
l2
l3

)
+ 18 log(l2) log2(l3)− 20 log3(l2)

3
− 16

3
π2 log(l2)

− 3 log3(l3) + 3π2 log(l3)− 5ζ3 ,

m
(4)
4 = 12Li2,2

(
− 1

l1l2
,
l1
l2

)
− 18Li4

(
− 1

l1l22l3

)
− 18Li4

(
l1l3
l22

)
− 6 log2(l1)Li2

(
1

l22

)
+ 12 log(l1)Li2

(
1

l22

)
log(l2) + 48 log(l3)Li3

(
l1
l2

)
− 18 log2(l1) log(l2) log(l3)

− 18 log(l1) log(l2) log2(l3) + 12 log(l1) log2(l2) log(l3) + 32Li4

(
− 1

l1l2

)
− 4Li4

(
l1
l2

)
− 48 log(l2)Li3

(
l1
l2

)
+

34

3
log3(l1) log(l2) + 44 log(l1) log3(l2)− 22 log2(l1) log2(l2)

+
4

3
π2 log(l1) log(l2)− 3 log3(l1) log(l3)− 3 log(l1) log3(l3)− 9

2
log2(l1) log2(l3)

− 3π2 log(l1) log(l3) +
7 log4(l1)

12
+

13

6
π2 log2(l1) + 24Li3

(
1

l22

)
log(l3)− 6Li2

(
1

l22

)
2

− 264Li4

(
− 1

l22

)
− 164Li4

(
1

l22

)
− 54Li2

(
1

l22

)
log2(l2)− 120Li3

(
1

l22

)
log(l2)− 72Li4

(
1

l2l3

)
+ 72Li4

(
l2
l3

)
+ 72 log2(l2)Li2

(
1

l2l3

)
+ 144 log(l2)Li3

(
1

l2l3

)
+ 144 log(l2)Li3

(
l2
l3

)
− 78 log(l2) log3(l3) + 184 log3(l2) log(l3) + 18 log2(l2) log2(l3) + 38π2 log(l2) log(l3)

− 172ζ3 log(l2)− 412 log4(l2)

3
− 101

3
π2 log2(l2)−24ζ3 log(l3)− 3 log4(l3)

4
− 3

2
π2 log2(l3)− 19π4

45
,

(A.5)
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m
(0)
5 = 0 , m

(1)
5 = 0 , m

(2)
5 = 0 ,

m
(3)
5 = −2Li3

(
− 1

l24

)
+

4 log3(l4)

3
+

1

3
π2 log(l4) + 2ζ3 ,

m
(4)
5 = −8Li2,2

(
−1,− 1

l24

)
+ 4Li4

(
− 1

l1l24l5

)
− 4Li4

(
l1l5
l24

)
− 8 log(l1)Li3

(
− 1

l24

)
− 16 log(l1)Li3

(
1

l24

)
+ 4 log2(l1) log(l4) log(l5) + 4 log(l1) log(l4) log2(l5)

− 24 log(l1) log2(l4) log(l5)− 12Li4

(
1

l1l4

)
− 12Li4

(
l4
l1

)
+

4

3
log3(l1) log(l4)

+
64

3
log(l1) log3(l4)− 6 log2(l1) log2(l4)− 8

3
π2 log(l1) log(l4) +

2

3
log3(l1) log(l5)

+
2

3
log(l1) log3(l5) + log2(l1) log2(l5) +

2

3
π2 log(l1) log(l5)− 4ζ3 log(l1)− 5

6
log4(l1)

+
4

3
π2 log2(l1)+8Li2

(
− 1

l24

)
Li2

(
− 1

l4l5

)
+4Li2

(
− 1

l24

)
log2(l5)−8Li2

(
− 1

l24

)
log(l4) log(l5)

− 16Li3

(
− 1

l24

)
log(l5)− 4Li2

(
− 1

l24

)
2 − 4

3
π2Li2

(
− 1

l24

)
+ 12Li4

(
− 1

l24

)
− 4Li4

(
1

l24

)
− 4Li2

(
− 1

l24

)
log2(l4) + 16Li3

(
− 1

l24

)
log(l4) +

2

3
π2Li2

(
− 1

l4l5

)
− 16Li4

(
− 1

l4l5

)
+ 16Li4

(
l5
l4

)
+8 log2(l4)Li2

(
− 1

l4l5

)
− 4

3
log(l4) log3(l5)+

16

3
log3(l4) log(l5)+4 log2(l4) log2(l5)

+
2

3
π2 log(l4) log(l5) + 12ζ3 log(l4)− 35 log4(l4)

3
+

1

3
π2 log2(l4)− 12ζ3 log(l5)− log4(l5)

2

− 2

3
π2 log2(l5)− π4

72
, (A.6)

m
(0)
6 = 0 , m

(1)
6 = 0 ,

m
(2)
6 = 2Li2

(
− 1

l24

)
+ 2 log2(l4) +

π2

6
,

m
(3)
6 = 4Li3

(
l1l5
l24

)
− 8 log(l1)Li2

(
− 1

l4l5

)
− 8 log(l1) log(l4) log(l5) + 4Li3

(
1

l1l4

)
− 6 log2(l1) log(l4) + 22 log(l1) log2(l4)− 4 log(l1) log2(l5)− 2

3
log3(l1)− π2 log(l1)

+ 10Li3

(
− 1

l24

)
+ 12Li3

(
1

l24

)
+ 8Li3

(
− 1

l4l5

)
− 4 log(l4) log2(l5) + 20 log2(l4) log(l5)

− 70 log3(l4)

3
+

5

3
π2 log(l4)− 4 log3(l5)

3
− 4

3
π2 log(l5)− 8ζ(3) ,

m
(4)
6 = 4Li2,2

(
1

l1l4
,
l1
l4

)
− 8Li4

(
− 1

l1l24l5

)
− 8Li4

(
l1l5
l24

)
− 2 log2(l1)Li2

(
− 1

l24

)
+ 4 log(l1)Li2

(
− 1

l24

)
log(l4)− 16 log(l1)Li3

(
1

l24

)
+ 8 log2(l1)Li2

(
− 1

l4l5

)
− 32 log(l1)Li3

(
− 1

l4l5

)
− 16 log(l5)Li3

(
1

l1l4

)
+ 8 log2(l1) log(l4) log(l5)

+ 8 log(l1) log(l4) log2(l5)− 40 log(l1) log2(l4) log(l5) + 12Li4

(
1

l1l4

)
+ 16 log(l4)Li3

(
1

l1l4

)
+

10

3
log3(l1) log(l4) + 46 log(l1) log3(l4)− 21 log2(l1) log2(l4)− 10

3
π2 log(l1) log(l4)
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+
4

3
log3(l1) log(l5) + 4 log(l1) log3(l5) + 2 log2(l1) log2(l5) +

8

3
π2 log(l1) log(l5) + 16ζ3 log(l1)

+
log4(l1)

6
+ π2 log2(l1)− 8Li3

(
− 1

l24

)
log(l5)− 2Li2

(
− 1

l24

)
2 − 40Li4

(
− 1

l24

)
− 28Li4

(
1

l24

)
− 2Li2

(
− 1

l24

)
log2(l4) + 8Li3

(
− 1

l24

)
log(l4)− 2

3
π2Li2

(
− 1

l4l5

)
+ 16Li4

(
− 1

l4l5

)
+ 16Li4

(
l5
l4

)
+

80

3
log3(l4) log(l5)− 4 log2(l4) log2(l5)− 2

3
π2 log(l4) log(l5)− 8ζ3 log(l4)

− 169 log4(l4)

6
+

2

3
π2 log2(l4) + 8ζ3 log(l5) +

log4(l5)

3
+

1

3
π2 log2(l5)− 7π4

60
, (A.7)

m
(0)
7 = 0 , m

(1)
7 = 0 , m

(2)
7 = 0 ,

m
(3)
7 = 8 log(l1) log2(l2)− 4Li3

(
1

l22

)
− 8Li2

(
1

l22

)
log(l2)− 16

3
log3(l2) + 4ζ3 ,

m
(4)
7 = −24Li2,2

(
−1,− 1

l22

)
− 24 log(l2)Li3

(
− 1

l1l22l3

)
+ 16 log(l1)Li2

(
1

l22

)
log(l2)

+ 48 log(l1)Li3

(
1

l2l3

)
+ 48 log(l1)Li3

(
l2
l3

)
+ 12 log2(l1) log(l2) log(l3)

+ 12 log(l1) log(l2) log2(l3)− 24Li4

(
− 1

l1l2

)
+ 24Li4

(
l1
l2

)
− 36 log(l1) log3(l2)

+ 2 log2(l1) log2(l2)− 8

3
π2 log(l1) log(l2)− 16 log(l1) log3(l3) + 8π2 log(l1) log(l3)

− 84ζ3 log(l1)− log4(l1)− 2π2 log2(l1) + 24Li2

(
1

l22

)
Li2

(
1

l2l3

)
+ 12Li2

(
1

l22

)
log2(l3)

+ 24Li2

(
1

l22

)
log(l2) log(l3)− 4Li2

(
1

l22

)
2 − 2

3
π2Li2

(
1

l22

)
+ 36Li4

(
− 1

l22

)
− 12Li4

(
1

l22

)
− 20Li2

(
1

l22

)
log2(l2)− 48Li3

(
1

l22

)
log(l2) + 2π2Li2

(
1

l2l3

)
+ 24 log(l2)Li3

(
1

l2l3

)
− 24 log(l2)Li3

(
l2
l3

)
+ 4 log(l2) log3(l3)− 6π2 log(l2) log(l3) + 48ζ3 log(l2) + 19 log4(l2)

+
7

3
π2 log2(l2) + π2 log2(l3)− 14π4

45
, (A.8)

m
(0)
8 = 0 , m

(1)
8 = 0 , m

(2)
8 = 0 , m

(3)
8 = 0 ,

m
(4)
8 = −8Li4

(
− 1

l1l2

)
+ 8Li4

(
l1
l2

)
+ 16 log(l2)Li3

(
l1
l2

)
− 4

3
log3(l1) log(l2) +

44

3
log(l1) log3(l2)

− 2 log2(l1) log2(l2)− 4

3
π2 log(l1) log(l2)− 1

3
log4(l1)− 2

3
π2 log2(l1) + 8Li3

(
1

l22

)
log(l2)

− 8ζ3 log(l2)− 29 log4(l2)

3
+ 2π2 log2(l2)− 7π4

45
, (A.9)

m
(0)
9 = 0 , m

(1)
9 = 0 , m

(2)
9 = 0 , m

(3)
9 = 0 ,

m
(4)
9 = 4Li4

(
− 1

l1l2

)
− 4Li4

(
l1
l2

)
− 8 log(l2)Li3

(
l1
l2

)
+

2

3
log3(l1) log(l2)− 22

3
log(l1) log3(l2)

+ log2(l1) log2(l2) +
2

3
π2 log(l1) log(l2)− 4 log(l1)Li3

(
− 1

l24

)
+

8

3
log(l1) log3(l4)
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(
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7

+
2

3
π2 log(l1) log(l4) + 4ζ3 log(l1) +

log4(l1)

6
+

1

3
π2 log2(l1)− 4Li3

(
1

l22

)
log(l2) + 4ζ(3) log(l2)

+
29 log4(l2)

6
− π2 log2(l2)− 2Li2

(
− 1

l24

)
2 − 1

3
π2Li2

(
− 1

l24

)
− 4Li2

(
− 1

l24

)
log2(l4)

− 2 log4(l4)− 1

3
π2 log2(l4) +

23π4

360
. (A.10)

B Details on the analytic continuation of the homogeneous solution

Our goal here is to write down a set of solutions of the homogeneous equation (4.11)

in terms of real-valued functions for all regions of the phase space. This will allow us to

analytically continue the inhomogeneous solution found in section 4.3 to the physical region

and extract all imaginary parts explicitly in terms of real functions. We will consider in

order the two relevant regions, i.e. the Minkowski region −∞ < x < 0 (0 < s <∞) and the

part of the Euclidean region with 16 < x <∞ (s < −16m2). Our strategy is to first derive

real-valued homogeneous solutions for each region separately and later relate the different

solution sets using matching matrices.

Minkowski region −∞ < x < 0. In order to obtain a complete set of solutions defined

in the Minkowski region we recall that for any value of x a general solution of the second

order differential equation (4.16) can always be written as a linear combination of two

independent solutions. Our starting point is (4.17),

f(x) = c1 K
( x

16

)
+ c2 K

(
1− x

16

)
. (B.1)

In the Minkowski region we have s > 0 with s→ s+ i0+, i.e. x < 0 with x→ x− i 0+ and

we can take as two independent real solutions

I
(−∞,0)
1 (x) = −

√
−x K

( x
16

)
, J

(−∞,0)
1 (x) =

√
−x

[
K
(

1− x

16

)
− i K

( x
16

)]
(B.2)

where the sign of the imaginary part is fixed requiring that for x→ x− i 0+ the solution is

real for −∞ < x < 0. As for the Euclidean region discussed in section 4, we can determine

the two missing solutions by consistency

I
(−∞,0)
2 (x) =

√
−x E

( x
16

)
, J

(−∞,0)
2 (x) =

√
−x

[
E
(

1− x

16

)
−K

(
1− x

16

)
+i E

( x
16

)]
.

(B.3)

This solution is not optimal, since it is not explicitly real for −∞ < x < 0. To find a real

valued representation of the solution we can use the other set of functions found in (4.21).

We find in particular that for −∞ < x < 0 the follow identities hold identically

√
−x

[
K
(

1− x

16

)
− i K

( x
16

)]
= 4 K

(
16

x

)
√
−x

[
E
(

1− x

16

)
−K

(
1− x

16

)
+ i E

( x
16

)]
=
x− 16

4
K

(
16

x

)
− x

4
E

(
16

x

)
, (B.4)
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such that a basis of functions explicitly real in the whole domain −∞ < x < 0 can be

chosen as

I
(−∞,0)
1 (x) = −

√
−x K

( x
16

)
, J

(−∞,0)
1 (x) = 4 K

(
16

x

)
,

I
(−∞,0)
2 (x) =

√
−x E

( x
16

)
, J

(−∞,0)
2 (x) =

x− 16

4
K

(
16

x

)
− x

4
E

(
16

x

)
. (B.5)

Similar to our analysis for the region 0 < x < 16, it is useful to study the limiting

behaviour of these functions close to the two boundaries

lim
x→−∞

I
(−∞,0)
1 (x) = −2 ln (−x)− 8 ln (−x)− 16

x
,

lim
x→−∞

I
(−∞,0)
2 (x) = −x

4
− ln (−x) + 1− 2 ln (−x)− 3

x

lim
x→−∞

J
(−∞,0)
1 (x) = 2π +

8π

x
,

lim
x→−∞

J
(−∞,0)
2 (x) = −π − 2π

x
(B.6)

and

lim
x→0−

I
(−∞,0)
1 (x) = −π

2

√
−x ,

lim
x→0−

I
(−∞,0)
2 (x) =

π

2

√
−x

lim
x→0−

J
(−∞,0)
1 (x) =

√
−x
2

(− ln (−x) + 8 ln (2)) ,

lim
x→0−

J
(−∞,0)
2 (x) =

√
−x
2

(ln (−x)− 8 ln (2) + 2) . (B.7)

As discussed above, the Wronskian of the solutions must be a linear function of x,

see (4.28). It is simple starting from (B.6) and (B.7) to prove that we have

lim
x→−∞

W (−∞,0)(x)

x
= lim

x→0−

W (−∞,0)(x)

x
=
π

2
(B.8)

also for our solutions in this region.

Euclidean region 16 < x <∞. The same idea can be applied in the remaining part

of the Euclidean region. Similar to the Minkowski region, we start here with solutions

constructed as complex linear combinations of the original functions which evaluate to real

numbers for 16 < x <∞,

I
(16,∞)
1 (x) =

√
x
[
K
( x

16

)
+ i K

(
1− x

16

)]
,

J
(16,∞)
1 (x) =

√
x K

(
1− x

16

)
(B.9)

and

I
(16,∞)
2 (x) = −

√
x
[
E
( x

16

)
− i

(
E
(

1− x

16

)
−K

(
1− x

16

))]
,

J
(16,∞)
2 (x) =

√
x
[
E
(

1− x

16

)
−K

(
1− x

16

)]
. (B.10)
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Again we use x → x− i0+. Similarly as before, this representation of the solutions is not

optimal since it is not explicitly real. Using the sets of solutions (4.21) we find the following

identities, valid for 16 < x <∞ with x→ x− i0+,

√
x
[
K
( x

16

)
+ i K

(
1− x

16

)]
= 4 K

(
16

x

)
,

−
√
x
[
E
( x

16

)
−i
(

E
(

1− x

16

)
−K

(
1− x

16

))]
=
x−16

4
K

(
16

x

)
−x

4
E

(
16

x

)
. (B.11)

A possible choice of real solutions for the region 16 < x <∞ is therefore

I
(16,∞)
1 (x) = 4 K

(
16

x

)
, J

(16,∞)
1 (x) =

√
x K

(
1− x

16

)
I
(16,∞)
2 (x) =

x−16

4
K

(
16

x

)
−x

4
E

(
16

x

)
, J

(16,∞)
2 (x) =

√
x
[
E
(

1− x

16

)
−K

(
1− x

16

)]
.

(B.12)

Also in this last case we shall study the limiting values at the two boundaries x→ 16+

and x→ +∞. We find

lim
x→16+

I
(16,∞)
1 (x) = −2 ln (16− x) + 16 ln (2) +

(16− x)

32
(ln (16− x)− 8 ln (2)− 2) ,

lim
x→16+

I
(16,∞)
2 (x) = −4 +

(16− x)

16
(ln (16− x)− 8 ln (2) + 3) ,

lim
x→16+

J
(16,∞)
1 (x) = 2π − π

32
(16− x) ,

lim
x→16+

J
(16,∞)
2 (x) = − π

16
(16− x) , (B.13)

and

lim
x→+∞

I
(16,∞)
1 (x) = 2π +

8π

x
,

lim
x→+∞

I
(16,∞)
2 (x) = −π − 2π

x
,

lim
x→+∞

J
(16,∞)
1 (x) = 2 ln (x) +

8 ln (x)− 16

x
,

lim
x→+∞

J
(16,∞)
2 (x) =

x

4
− ln (x)− 1− 2 ln (x)− 3

x
. (B.14)

Finally, we compute the value of the Wronskian also in this part of the Euclidean

region. As before, it must be a linear function of x, see (4.28). Again, starting from the

limiting behaviours above (B.13) and (B.14), we get at once

lim
x→16+

W (16,∞)(x)

x
= lim

x→+∞

W (16,∞)(x)

x
=
π

2
. (B.15)

We stress once more that of course the overall normalization of the Wronskian depends

on the overall normalization of the functions chosen as a solution in the given region. It

is useful for simplicity to fix it such that the Wronskian assumes always the same value in

every region.
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The matching. In this section we will show how to match the solutions found in the

three different regions, by analytically continuing them across the three boundaries x = 0,

x = 16 and x = ±∞. Given the matrix of the solutions defined in the region a < x < b,

G(a,b)(x) =

(
I
(a,b)
1 (x) J

(a,b)
1 (x)

I
(a,b)
2 (x) J

(a,b)
2 (x)

)
,

we define the matching matrix in the point x = b, M (b), which allows to continue the

solution to the next region b < x < c as follows

G(b,c)(x) = G(a,b)(x)M (b) . (B.16)

We perform the matching analytically at each of the three points, where we implement

Feynman’s causality prescription by adding to x a small negative imaginary part, x →
x− i 0+. The matching is straightforward at this point, since we derived all required limits

already in eqs. (4.29), (4.30), (B.6), (B.7), (B.13) and (B.14). The matching matrices read

M∞ =

(
−i 1

−1 0

)
, M0 =

(
i −1

0 −i

)
, M16 =

(
1 0

i 1

)
. (B.17)

As expected we find consistently that

M∞M0M16 = M16M∞M0 = M0M16M∞ =

(
1 0

0 1

)
.

As an example, in order to continue the solution valid in the range 0 < x < 16 to the

Minkowski region −∞ < x < 0, we must continue across x = 0 through the matrix M0 as

follows

G(0,16)(x) = G(−∞,0)(x)M0 (B.18)

i.e. (
I
(0,16)
1 (x) J

(0,16)
1 (x)

I
(0,16)
2 (x) J

(0,16)
2 (x)

)
=

(
I
(−∞,0)
1 (x) J

(−∞,0)
1 (x)

I
(−∞,0)
2 (x) J

(−∞,0)
2 (x)

)(
i −1

0 −i

)
(B.19)

which gives, for x < 0,

I
(0,16)
1 (x) −→ i I

(−∞,0)
1 (x) ,

J
(0,16)
1 (x) −→ − I(−∞,0)1 (x)− i J (−∞,0)

1 (x) ,

I
(0,16)
2 (x) −→ i I

(−∞,0)
2 (x) ,

J
(0,16)
2 (x) −→ − I(−∞,0)2 (x)− i J (−∞,0)

2 (x) . (B.20)
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