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1 Introduction

Higher-order derivative terms play important roles in the several contexts, e.g., inflation

models, modified gravity, renormalization of gravity, and so on. From a phenomenological

and theoretical viewpoint, their embeddings into supersymmetry (SUSY) or supergravity

(SUGRA) are also interesting. In particular, there exist many non-renormalizable terms in

SUGRA and it is quite natural to consider the extension including higher-order derivative

terms and the effects of them on cosmology and particle phenomenology. The higher-

order derivative terms of a chiral superfield in 4D SUSY or SUGRA and their cosmological

applications have been investigated so far, e.g., in refs. [1–13].

The Dirac-Born-Infeld (DBI) action [14, 15] includes such higher-order derivative

terms. It was first proposed as a nonlinear generalization of Maxwell theory. The DBI

action is also motivated by string theory, which is a promising candidate for a unified

theory including gravity. In the context of string theory, an effective action of D-brane is

described by a DBI-type action, which consists of Maxwell terms Fµν as well as the ones

of scalar fields ∂µφ
i∂νφ

jgij and a two-form Bµν in general,

SDBI =

∫
dDx
√
−g
(

1−
√

det(gµν + ∂µφi∂νφjgij +Bµν + Fµν)

)
. (1.1)
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SUSY Dp-brane actions in D dimension are also important for the effective theory of

superstring. With a component formalism, such actions have also been discussed in many

literature. For example, in refs. [16, 17], the authors construct SUSY Dp-brane actions with

local kappa symmetry based on a component formalism in 10 dimensional spacetime. In a

similar way, the p-brane action in various dimensions has also been discussed in ref. [18].

In refs. [19–22], the SUSY Dp-brane in SUGRA background is constructed by considering

the background super-vielbein on the brane and couplings between them.

An approach based on superfields is useful for constructing a manifestly SUSY invariant

action and generalizing it. Within the formalism, such 4D N = 1 SUSY extensions of the

DBI action have been known partially. The DBI action of a vector superfield, which

corresponds to the case with φi = Bµν = 0 in eq. (1.1), is constructed in refs. [23–27]. In

particular, in refs. [24, 25], it is shown that such an action appears from the partial breaking

of 4D N = 2 SUSY. Its SUGRA embedding has also been discussed in refs. [23, 26–28].

Its application to inflation models has been investigated in ref. [29]. Furthermore, in

global SUSY, multiple U(1) [30, 31] and massive [32] extensions of the DBI action have

been discussed. In particular, for the case with multiple U(1) vector multiplets, linear

actions [33], general conditions for partial SUSY breaking [34, 35], and c-maps [36] have

also been discussed.

For the DBI action of scalar fields, which corresponds to the case with Fµν = Bµν = 0

in eq. (1.1), its SUSY extension has been done via partially broken N = 2 SUSY theory,

where the Goldstino multiplet is an N = 1 real linear superfield [25, 37, 38]. However, there

has never been the SUGRA extension of the DBI action of a real linear superfield. In this

paper, we discuss the embedding of the DBI action of a real linear superfield into SUGRA.

The action of a chiral superfield can be found in ref. [5]. In general, it is known that

the action with a chiral superfield can be rewritten in terms of the one with a real linear

superfield, and vice versa (via linear-chiral duality [39]). Therefore, our action, which will

be discussed in this paper, would be equivalent to that derived in ref. [5] through the duality

transformation. We will discuss this point and the differences between their result and ours.

In refs. [25, 37, 38], the DBI action of a real linear multiplet is realized with a chiral

multiplet, which is constrained by a specific N = 1 SUSY constraint. We will investigate

the corresponding constraint which is a key for the construction of DBI action, in SUGRA.

To achieve this, we use a formulation based on conformal SUGRA [40–44],1 where one can

treat off-shell SUGRA with different sets of auxiliary fields in a unified manner. Because

of the restrictions on the SUGRA embedding of the N = 1 constraint, we will find that

the DBI action of a real linear superfield can be realized only in the so-called new minimal

formulation of SUGRA. Furthermore, we will extend the DBI action to the matter coupled

version of it.

The remaining parts of this paper are organized as follows. First, we will briefly

review the SUSY DBI action of a real linear superfield in section 2. There, we will find

that the constraint imposed between a chiral and real linear superfield is important for

1We will use the superconformal tensor calculus [40–44]. See also another formulation, conformal super-

space [45, 46].
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the construction. Then, we will extend the constraint to that in conformal SUGRA in

section 3. After a short review of conformal SUGRA, we will also review the concept of

the u-associated derivative which is crucial for the superconformal extension. Using this

u-associated derivative, we will complete the embedding and find that the constraint can be

consistently realized in the new minimal SUGRA. With the constraint, we will construct the

corresponding action in the new minimal SUGRA, and write down the bosonic component

action in section 4. The linear -chiral duality and the matter coupled extension will be

also discussed there. Finally, we will discuss the correspondence and differences between

results in related works and ours in section 5, and summarize this paper in section 6. In

appendix. A, the explicit components of the multiplet including the u-associated derivative

are shown.

In this paper, we use the unit MP = 1 where MP = 2.4 × 1018 GeV is the reduced

Planck mass, and follow the conventions of [47] in section 2 and of [48] in other parts.

a, b · · · denote Minkowski indices and µ, ν · · · denote curved indices.

2 Review of DBI action in global SUSY

In this section, we briefly review the DBI action of a real linear superfield in global

SUSY [37]. We use a chiral superfield X and a real linear superfield L which satisfy

the conditions,

D̄α̇X = 0, D2L = D̄2L = 0, (2.1)

where Dα and D̄α̇ are a SUSY spinor derivative and its complex conjugate. To construct

the DBI action for L, we consider the following constraint between X and L,

X − 1

4
XD̄2X̄ − D̄α̇LD̄

α̇L = 0, (2.2)

where X̄ is a complex conjugate of X.2 The equation (2.2) can be solved with respect to

X and we obtain

X = D̄α̇LD̄
α̇L+

1

2
D̄2

 DαLDαLD̄α̇LD̄
α̇L

1− 1
2A+

√
1−A+ 1

4B
2

 , (2.3)

where

A ≡ 1

2
{D2(D̄α̇LD̄

α̇L) + h.c.}, B ≡ 1

2
{D2(D̄α̇LD̄

α̇L)− h.c.}. (2.4)

Using this solution (2.3), we can construct the SUSY DBI action as

L =

∫
d2θX(L) + h.c.. (2.5)

2In ref. [37], the constraint (2.2) has been obtained from the tensor multiplet in N = 2 SUSY through

partial breaking of it. Here, we do not discuss its origin and we just use the constraint as a guideline to

obtain the DBI action. In section 5, we will briefly comment on the relation between the partial breaking

of N = 2 SUSY and our construction.
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One can check that the bosonic part of the Lagrangian (2.5) produces,

LB = 1−
√

1−B ·B + ∂C · ∂C − (B · ∂C)2, (2.6)

where C and Ba are a real scalar and a constrained vector satisfying ∂aBa = 0, in the real

linear superfield, and we use the notation B · ∂C ≡ Ba∂aC. It is known that, through the

linear-chiral duality, eq. (2.6) produces the DBI action of a complex scalar, which can be

interpreted as the 4D effective D3-brane action. We call eq. (2.6) the DBI action of a real

linear superfield in this paper.

It is worth noting that eq. (2.3) satisfies the nilpotency condition, i.e., X2 = 0, due to

the Grassmann property of the SUSY spinor derivative, D̄α̇. This reflects the underlying

Volkov-Akulov SUSY [49–53]. Instead of writing the action like eq. (2.5), we can also

rewrite the same system imposing the constraint (2.2) by a chiral superfield Lagrange

multiplier Λ,

L =

∫
d2θ

[
X + Λ

(
X − 1

4
XD̄2X̄ − D̄α̇LD̄

α̇L

)
+ Λ̃X2

]
+ h.c.. (2.7)

Here we have introduced another Lagrange multiplier Λ̃, which ensures the nilpotency of

X. Indeed, we need not require this condition in the Lagrangian since X satisfies X2 = 0

after integrating out Λ first and solving X with respect to L, but the condition is still

consistent and makes the calculation simple as far as we focus on the bosonic part of the

action, as we will see in the following section.

3 Extension to 4D N = 1 conformal SUGRA

In this section, we generalize the SUSY DBI action (2.7) discussed in section 2 to that

in SUGRA.

3.1 Review of conformal SUGRA

To construct the action in SUGRA, we use conformal SUGRA formulation. Then, let

us briefly review the basics of the conformal SUGRA before proceeding to the specific

construction of the DBI action.

In this formulation, there are extra gauge symmetries such as dilatation, U(1)A sym-

metry, S-SUSY and conformal boost in addition to translation, Lorentz transformation and

SUSY. The commutation and anti-commutation relations are governed by the supercon-

formal algebra and its representation Φ called a superconformal multiplet has the following

components,

Φ = {C,Z,H,K,Ba,Λ,D}, (3.1)

where Z and Λ are spinors; Ba is a vector; the others are complex scalars. We also denote

the superconformal multiplet Φ by its first component C,

Φ = 〈C〉, (3.2)

– 4 –
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where 〈. . .〉 represents the superconformal multiplet which has C as the first component. C
must be invariant under the transformations of S-SUSY and conformal boost in order for

Φ = 〈C〉 to be a superconformal multiplet [44].

A superconformal multiplet is characterized by the charge (w, n) under dilatation and

U(1)A symmetry called the Weyl weight and the chiral weight, respectively. For example,

a chiral multiplet X has (w,w), in order to satisfy

D̄α̇X = 0, (3.3)

where D̄α̇ is a spinor derivative [44]. For a real linear multiplet L defined by,

ΣL = Σ̄L = 0, (3.4)

where Σ (Σ̄) is a (anti-) chiral projection operator, the values of each weight are determined

as (w, n) = (2, 0). We will discuss these operators, Dα and Σ, more precisely in the following

subsections.

The chiral multiplet consists of the following components, {z, PLχ, F}, where z and F

are complex scalars and PLχ is a chiral spinor; PL = (1 + γ5)/2 is a left-handed projection

operator. It is embedded into a general superconformal multiplet (3.1) as

{z,−
√

2iPLχ,−F, iF, iDaz, 0, 0}, (3.5)

where Da is a superconformal covariant derivative. On the other hand, a real linear multi-

plet has components, {C,Z,Ba}, where C is a real scalar, Z is a Majorana spinor and Ba
is a constrained vector which satisfies DaBa = 0. A real linear multiplet is embedded into

a general superconformal multiplet (3.1) as

{C,Z, 0, 0, Ba,− 6DZ,−�C}, (3.6)

where 6D ≡ γaDa.

For later convenience, we also introduce a multiplication rule for superconformal mul-

tiplets. For a function of multiplets f(CI), where I classifies different multiplets, we have

〈f(CI)〉 =

[
f, fIZI , fIHI −

1

4
fIJ Z̄JZI , fIKI +

i

4
fIJ Z̄Jγ5ZI , fIBIa −

i

4
fIJ Z̄Jγaγ5ZI ,

fIΛ
I − i

2
γ5

(
KI− 6BI − iγ5 6DCI + iγ5HI

)
fIJZJ −

1

4

(
Z̄JZI

)
ZKfIJK ,

fIDI +
1

2
fIJ

(
KIKJ +HIHJ − BaIBJa −DaCIDaCJ − 2Z̄JΛI − Z̄J 6DZI

)
− 1

4
fIJKZ̄J(HK − iγ5KK − i 6BKγ5)ZI +

1

16
fIJKL(Z̄JZI)(Z̄KZL)

]
, (3.7)

where fIJ ··· is ∂f/∂CI∂CJ · · · and Z̄ ≡ ZT Ĉ (Ĉ is a charge conjugation matrix).

We also need action formulas to construct a superconformal action. For a chiral multi-

plet X = {z, PLχ, F} with its weight (3, 3), there exists the so-called F-term formula [43],

[X]F =

∫
d4x
√
−gRe

[
F +

1√
2
ψ̄µγ

µPLχ+
1

2
zψ̄µγ

µνPRψν

]
, (3.8)
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where ψµ is a gravitino. For a real multiplet φ = {C,Z,H,K,Ba,Λ, D} with its weight

(2, 0), we can apply the following D-term formula [43],

[φ]D =

∫
d4x
√
−g
[
D − 1

2
iψ̄ · γγ5λ−

1

3
CR+

1

3
(Cψ̄µγ

µρσ − iZ̄γρσγ5)Dρψσ

+
1

4
εabcdψ̄aγbψc

(
Bd −

1

2
ψ̄dZ

)]
. (3.9)

Here, all the components of φ are real (Majorana).

Using these superconformal multiplets, the multiplication rule (3.7), and the action

formulas (3.8) and (3.9), we can construct superconformal invariant actions. Finally, we

fix some parts of the extra gauge symmetries by imposing the condition to one of the

superconformal multiplets Φ0 called a compensator multiplet, and obtain the Poincaré

SUGRA action.

3.2 u-associated derivative

Now, we have prepared the tool for constructing the DBI action in SUGRA. Within

the conformal SUGRA formulation, we will discuss a constraint corresponding to that

in global SUSY,

X − 1

4
XD̄2X̄ − D̄α̇LD̄

α̇L = 0, (3.10)

in the following. However, it seems to be a nontrivial task to extend the term including

SUSY spinor derivatives,

D̄α̇LD̄
α̇L (3.11)

to that in conformal SUGRA.

To treat the term (3.11) in conformal SUGRA, we need the spinor derivative defined

as a superconformal operation. In ref. [44], it is pointed out that the spinor derivative in

conformal SUGRA, Dα (D̄α̇), cannot be defined on a superconformal multiplet Φ unless

Φ satisfies a specific weight condition, w = −n (w = n). This is because DαΦ (D̄α̇Φ) is

not generically a superconformal multiplet, i.e., the first component of it is S-SUSY and

conformal boost inert only when w = −n (w = n) is satisfied. Then, it is obvious that we

cannot define D̄α̇L as a superconformal multiplet since L has the weight with (2, 0).

However, the authors in ref. [44] also proposed an improved spinor derivative operation,

which can be defined on any supermultiplet. They introduced another multiplet, u, called

a u-associated multiplet,

u = {Cu,Zu,Hu,Ku,Bau,Λu,Du}, (3.12)

in order to force the first component of DαΦ to be invariant under S-SUSY and conformal

boost. To be specific, they defined the u-associated spinor derivative as

D(u)
α Φ = 〈(PLZ)α + i(n+ w)λαC〉, λα ≡

i(PLZu)α
(wu + nu)Cu

, (3.13)

– 6 –
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where wu and nu are the Weyl and chiral weight of a u-associated multiplets, respectively.

Unless wu+nu = 0, we can choose any multiplet as the u-associated multiplet. Then, we can

define the spinor derivative for an arbitrary superconformal multiplet by this u-associated

spinor derivative.

For our purpose, we need the u-associated spinor derivative acting on a real linear

multiplet, D(u)
α L. More generally, we can consider

D(u1)
α (u2L), (3.14)

where u1 is a u-associated multiplet and u2 is an additional multiplet. These multiplets

must satisfy u1 6= u2, since D(u)
α u is identically zero obviously from the definition (3.13).3

Using this u-associated spinor derivative, eq. (3.11) can be generalized to the one in con-

formal SUGRA as

1

u3
D̄(u1)(ū2L)D̄(u1)(ū2L), (3.15)

where we have introduced a new multiplet u3,4 for generality and omitted the spinor index,

α̇, and we have also defined the conjugate of a u-associated derivative as D̄u
α̇Φ = (Du

α(Φ)∗)∗

following ref. [44].

Let us comment on the weight of the multiplet (3.15). The operator D̄(u)
α̇ has the

weight (1/2, 3/2), then the total weight of eq. (3.15) is (2w2−w3 + 5, 2n2− n3 + 3), where

wi and ni with i = 1, 2, 3 are the Weyl and chiral weights of ui, respectively.

Furthermore, eq. (3.10) is a “chiral” constraint since the first and second term in

eq. (3.10) are chiral multiplets. Then, we require a condition that the multiplet (3.15) is a

chiral multiplet, that is,

D̄
[

1

u3
D̄(u1)(ū2L)D̄(u1)(ū2L)

]
= 0. (3.16)

To apply D̄ for eq. (3.15), the Weyl and chiral weight of eq. (3.15) must satisfy w = n as

mentioned before,

2w2 − w3 + 5 = 2n2 − n3 + 3. (3.17)

The condition (3.16) implies that

PRZ ′ = 0, (3.18)

where PR = (1−γ5)/2 is a right-handed projection operator and Z ′ is the second component

of the multiplet (3.15). The equation (3.18) can be written explicitly as

¯̃Zc2PRZ̃c2
[
PRZ̃ + kPRZ̃c1 − PRZ̃3

]
+ ¯̃ZPRZ̃

[
PRZ̃c2 + kPRZ̃c1 − PRZ̃3

]
− k ¯̃Zc1PRZ̃c1

[
(1− 2k)

(
PRZ̃ + PRZ̃c2

)
+ PRZ̃3

]
3As we will discuss, we choose u1 and u2 as compensators, which become some parts of the gravity

multiplet after superconformal gauge fixings. In the global SUSY expression (3.11), all the fields in the

gravitational multiplet decouple from it. Therefore, it is natural to consider a possibility that a compensator

appears as in eq. (3.14).
4We will refer all of ui as u-associated multiplets.
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− 2k

[
¯̃Zc2PRZ̃c1

(
2PRZ̃ − PRZ̃3

)
+ ¯̃ZPRZ̃c1

(
2PRZ̃c2 − PRZ̃3

)]
− 2i

[
iH̃∗2 + K̃∗2 − k

(
iH̃∗1 + K̃∗1

)][
PRZ̃c2 + PRZ̃ − kPRZ̃c1

]
− 2 ¯̃Zc2PRZ̃PRZ̃3 = 0,

(3.19)

where

ui = {Ci,Zi,Hi,Ki,Bai,Λi,Di}, (i = 1, 2, 3), (3.20)

Z̃ ≡ 1

C
Z, Z̃i ≡

1

Ci
Zi, H̃i(K̃i) ≡

1

Ci
Hi(Ki), (3.21)

k ≡ w2 + n2 + 2

w1 + n1
, (3.22)

and “c” denotes the charge conjugation for spinors.

As a summary, we find that the superconformal realization of eq. (3.11) is the multi-

plet (3.15) satisfying the conditions (3.17) and (3.19).

3.3 Old minimal versus new minimal

We have found, in the previous subsection 3.2, the conditions for extending eq. (3.11)

to that in conformal SUGRA. Here, we will choose a conformal compensator Φ0 as u-

associated multiplets, ui. Then, we have two choices of compensators; one of them is a

chiral compensator S0 realizing the old minimal SUGRA and the other is a real linear

compensator L0 realizing the new minimal SUGRA.5

Now, we will examine what forms of ui with both compensators are allowed. Let us

start from the old minimal SUGRA realized with a chiral compensator,

S0 = {z0,−
√

2iPLχ0,−F0, iF0, iDaz0, 0, 0}, (3.23)

with its weight (1, 1). Here we assume that the multiplets ui take the following form

ui = Spi0 S̄
qi
0 , (i = 1, 2, 3), (3.24)

where pi and qi are the power of S0 and S̄0, and satisfy p1 6= 0 since w1 + n1 = (p1 +

q1) + (p1 − q1) = 2p1 must be nonzero by a definition of the u-associated multiplet. Here

we have to stress that eq. (3.24) is the most general form except for the case including

derivative operators on a compensator,6 which might produce higher-derivative terms of

gravity. Using eq. (3.5) and the multiplication rule (3.7), the components of the multiplet

5We do not discuss the case of the non-minimal formulation which is realized with a complex linear

compensator.
6For example, S0ΣS̄0 could be considered.
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in eq. (3.24) are written as

{Ci,Zi,Hi,Ki,Bai,Λi,Di}

=

{
zpi0 z

∗qi
0 ,
√

2izpi−1
0 z∗qi−1

0 (qiz0PRχ0 − piz∗0PLχ0),

zpi−2
0 z∗qi−2

0

(
−qiz2

0z
∗
0F
∗
0 −piz0z

∗2
0 F0+

1

2
qi(qi−1)z2

0χ̄0PRχ0+
1

2
pi(pi−1)z∗20 χ̄0PLχ0

)
,

zpi−2
0 z∗qi−2

0

(
−iqiz2

0z
∗
0F
∗
0 +ipiz0z

∗2
0 F0+

i

2
qi(qi−1)z2

0χ̄0PRχ0−
i

2
pi(pi−1)z∗20 χ̄0PLχ0

)
,

. . . , . . . , . . .

}
, (3.25)

where we have omitted the components, Bai,Λi and Di, which are not necessary to evaluate

eq. (3.19). One finds that eq. (3.19) cannot be satisfied by eq. (3.24) by the following reason:

terms including Hi and Ki must vanish by themselves since any other terms cannot cancel

them. After substituting eq. (3.25) into such a part, we obtain

iH̃∗2 + K̃∗2 − k
(
iH̃∗1 + K̃∗1

)
= 2iF ∗0 z

∗−1
0 + iχ̄0PRχ0z

∗−2
0 (p2

2 − p2p1 − p1 + 1).

Apparently, the first term cannot be eliminated no matter how we choose the parameters

pi and qi, and the other terms in eq. (3.19) cannot eliminate it because they do not contain

F ∗0 . Therefore, we find that eq. (3.24) cannot be a solution of eq. (3.19). This means that

eq. (3.15) cannot be realized as a chiral constraint in the old minimal SUGRA.

Next, we examine the case in the new minimal SUGRA with a real linear compensator

L0 = {C0, Z0, 0, 0, B0a,− 6DZ0,−�C0} (3.26)

with its weight (2, 0). In the same way as the old minimal case, we assume the general

form of ui as

ui = Lri0 , (i = 1, 2, 3), (3.27)

whose components are

{Ci,Zi,Hi,Ki,Bai,Λi,Di}

=

{
Cri0 , riC

ri−1
0 Z0,−

1

4
ri(ri − 1)Cri−2

0 Z̄0Z0,
i

4
ri(ri − 1)Cri−2

0 Z̄0γ5Z0, . . . , . . . , . . .

}
.

(3.28)

Here we have used eq. (3.6) and eq. (3.7). Then, after substituting eq. (3.28) into eq. (3.19)

with the Fierz rearrangement, eq. (3.19) is summarized as

(2r2 − r3 + 1)
{
CPRZZ̄0PRZ0 + C0PRZ0Z̄PRZ

}
= 0. (3.29)

To satisfy eq. (3.29), the coefficient must be zero,

2r2 − r3 + 1 = 0. (3.30)
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Then, we find that the chiral condition (3.19) is satisfied as long as the u-associated mul-

tiplets follow the condition (3.30).

Noting that wi = 2ri and ni = 0 in the ansatz (3.27), the weight condition (3.17) which

the chiral multiplet should obey is now reduced to

2r2 − r3 + 1 = 0. (3.31)

This is nothing but eq. (3.30) which is satisfied automatically.

Therefore, we conclude that one can make a multiplet in eq. (3.15) a chiral one with

the real linear compensator if eq. (3.30) is satisfied. Here and hereafter, we focus on the

case of the new minimal SUGRA with r1 = r3 = 1 and r2 = 0 for simplicity. In this case,

the multiplet in eq. (3.15) becomes

1

L0
D̄(L0)LD̄(L0)L. (3.32)

We present the components of this chiral multiplet (3.32) explicitly in appendix A.

3.4 Embedding the constraint into conformal SUGRA

Let us consider the remaining terms, X and XD̄2X̄ in eq. (3.10). For X, we just regard it

as a superconformal chiral multiplet with the weight (w,w). In order to extend the second

one, XD̄2X̄, to a superconformal multiplet, we replace it with XΣX̄, where Σ is a chiral

projection operator in conformal SUGRA. However, Σ cannot always be applied for any

multiplet Φ in the same way as the spinor derivative D. It can be applied only when Φ

satisfies the following weight condition,

wΦ = nΦ + 2. (3.33)

Therefore, we compensate the weight of X̄, which has the weight (w,−w), by the real linear

compensator multiplet Ls0, where s is the power of L0,

XΣ

(
1

Ls0
X̄

)
. (3.34)

Here, the term, 1
Ls
0
X̄, has the weight (−2s+w,−w). According to eq. (3.33), s must satisfy

the condition,

s = w − 1. (3.35)

Taking into account this condition and the fact that Σ raises the weight by (1,3), eq. (3.34)

has the weight (3, 3), which is correct for a chiral multiplet. Since the total weight of

eq. (3.34) must be the same as the first term X, the value of w is determined as

w = 3. (3.36)

Then, we find s = 2 from eq. (3.35), and eq. (3.34) becomes

XΣ

(
1

L2
0

X̄

)
. (3.37)
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Finally, the weight of the multiplet in eq. (3.15) with that in eq. (3.27) is (3, 3) as long as

eq. (3.31) is satisfied, then eq. (3.32) is automatically satisfied.

Therefore, we find the complete embedding of a global SUSY expression (3.10),

X +
1

2
XΣ

(
1

L2
0

X̄

)
+

1

4L0
D̄(L0)LD̄(L0)L = 0, (3.38)

where X is a chiral multiplet with (3, 3), L is a real linear multiplet with (2, 0), and L0 is

a real linear compensator with (2, 0).

4 Component action

In this section, we derive the DBI action based on the constraint (3.38) in the new minimal

SUGRA.

4.1 Minimal action

We first consider the minimal extension of the action (2.6). The action corresponding to

eq. (2.7) is expected to be

S =[2X]F +

[
2Λ

{
X +

1

2
XΣ

(
X̄

L2
0

)
+

1

4L0
D̄(L0)LD̄(L0)L

}]
F

+ [Λ̃X2]F +

[
3

2
L0VR

]
D

,

(4.1)

where VR ≡ log L0

SS̄
, S is a chiral multiplet with (1, 1), and we have assigned the weights

of the Lagrange multiplier chiral multiplet Λ to (0, 0) and also Λ̃ to (−3,−3) in such a

way that the total weight is equal to (3, 3). The last term in eq. (4.1) is responsible for

the kinetic term of the gravitational multiplet. Note that this term is invariant under the

transformation S → SeiΘ where Θ is a chiral multiplet with the weight (0, 0) since [L0(Θ+

Θ̄)]D ≡ 0 by the nature of a real linear multiplet. Due to this additional gauge invariance,

we have gauge degrees of freedom other than superconformal ones. After imposing the

gauge fixing condition for this additional gauge symmetry as S = {1, 0, 0}, the bosonic

part of (4.1) is given by

SB =

∫
d4x
√
−g
[(
FX(1 + Λ)− |FX |

2Λ

C2
0

− Λ

4C0
(Ba − iD̂aC)2

+
CΛ

2C2
0

(Ba − iD̂aC)(Ba
0 − iD̂aC0)− C2Λ

4C3
0

(B0a − iD̂aC0)2 + h.c.

)
− 3

2
�̂C0 logC0 −

3

2
�̂C0 −

3

4C0
(B0 ·B0 + D̂C0 · D̂C0) + 3A ·B0

]
, (4.2)

where Λ and FX are a scalar component of the chiral multiplet Λ and an auxiliary field of X,

and D̂µ is a superconformal covariant derivative only including bosonic fields, for example,

D̂µC = ∂µC − 2bµC, (4.3)
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where bµ is the gauge field of dilatation. The third term in eq. (4.1), Λ̃X2, imposes the

nilpotency condition for X. Thanks to this, we can drop the scalar component of the chiral

multiplet X since the first scalar component can be represented as a fermion bilinear after

solving X2 = 0. That is why, we have inserted this term into the action from the beginning.

Integrating out the gauge field of U(1)A symmetry Aµ, we obtain

B0a = 0. (4.4)

To eliminate the dilatation symmetry and conformal boost symmetry, we impose the fol-

lowing D-gauge and K-gauge conditions,

C0 = 1, bµ = 0. (4.5)

These conditions simplify the action (4.2), which becomes

SB =

∫
d4x
√
−g
[

1

2
R+

(
FX(1 + Λ)− |FX |2Λ

− Λ

4
(B ·B − 2iB · ∂C − ∂C · ∂C) + h.c.

)]
. (4.6)

Then, eliminating the auxiliary field FX leads to

SB =

∫
d4x
√
−g
[

1

2
R+

1

2λ

(
(λ+ 1)2 + χ2

)
− 1

2
(B ·B − ∂C · ∂C)λ−B · ∂Cχ

]
, (4.7)

where λ = ReΛ and χ = ImΛ. Finally, we obtain the following conditions from the E.O.Ms

for λ and χ,

χ

λ
= B · ∂C, (4.8)

1

λ2
= 1− (B · ∂C)2 −B ·B + ∂C · ∂C. (4.9)

Substituting them into the action (4.7), we obtain the on-shell DBI action of a real linear

multiplet,

SB =

∫
d4x
√
−g
[

1

2
R+ 1−

√
1−B ·B + ∂C · ∂C − (B · ∂C)2

]
. (4.10)

This is almost the same form as eq. (2.6) except for that our action (4.10) is formulated in

curved background.

Before closing this subsection, let us discuss the linear-chiral duality. It is known

that the action of a real linear multiplet can be rewritten in terms of that of a chiral

multiplet. However, in the case with the action including derivative terms such as eq. (4.1),

it is nontrivial to take this duality transformation in a manifestly SUSY way.7 Then, we

focus only on the bosonic part (4.10) and discuss this duality at the component level of

bosonic part.

7In global SUSY, the dual action has been obtained at the level of superfield in ref. [38].
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We start from the following Lagrangian which is the relevant part in the action (4.10),

L = 1−
√

1−B ·B + ∂C · ∂C − (B · ∂C)2. (4.11)

To rewrite this Lagrangian (4.11) in terms of the complex scalar of a chiral multiplet, we

first relax the constraint on the vector field Ba. We impose it by the E.O.M for a scalar

field `, that is, we use

L = 1−
√

1−B ·B + ∂C · ∂C − (B · ∂C)2 +B · ∂`, (4.12)

where Ba is now an unconstrained vector. The Lagrangian (4.12) is equivalent to the

original one (4.11) since the variation with respect to ` leads to the constraint, ∂aB
a = 0.

Instead of `, varying with respect to Ba gives

∂a`+ (∂aCB · ∂C +Ba){1−B ·B + ∂C · ∂C − (B · ∂C)2}−1/2 = 0. (4.13)

Our task is now to solve this equation (4.13) with respect to Ba. By taking scalar products

of eq. (4.13) with Ba, ∂aC and ∂a`, we obtain three independent equations and can solve

them with respect to B2, B · ∂C, and B · ∂`. The solutions are

B2 =
(∂`)2(1 + (∂C)2)2 − (∂C · ∂`)2(2 + (∂C)2)

Y 2
, (4.14)

B · ∂C = − ∂C · ∂`
Y

, (4.15)

B · ∂` =
−(∂`)2(1 + (∂C)2) + (∂C · ∂`)2

Y
, (4.16)

where

Y ≡ {(1 + (∂C)2)(1 + (∂`)2)− (∂C · ∂`)2}1/2. (4.17)

Substituting these solutions into the Lagrangian (4.12), we obtain the dual action,

L = 1−
√

1 + (∂C)2 + (∂`)2 + (∂C)2(∂`)2 − (∂C · ∂`)2

= 1−
√

1 + ∂φ · ∂φ̄− 1

4
(∂φ)2(∂φ̄)2 +

1

4
(∂φ · ∂φ̄)2, (4.18)

where we have defined a complex scalar φ = `+ iC. The Lagrangian (4.18) can be written

as the DBI form

L = 1−

√
det

(
gab +

1

2
∂aφ∂bφ̄

)
. (4.19)

This Lagrangian (4.19) agrees with the one constructed in ref. [5] using a chiral multiplet

directly.
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4.2 Matter coupled extension

Finally, we discuss the matter coupled DBI action given by

S = [2f(ΦI)X]F +

[
2Λ

{
X +

1

2
XΣ

(
X̄

M(L0,ΦI , Φ̄J̄)

)
+

1

4L0
D̄(L0)LD̄(L0)L

}]
F

+ [F(L0,Φ
I , Φ̄J̄)]D + [Λ̃X2]F , (4.20)

where ΦI (Φ̄J̄) is a (anti-) chiral matter multiplet; f(Φ) is a holomorphic function of ΦI

with (0, 0); M(L0,Φ
I , Φ̄J̄) and F(L0,Φ

I , Φ̄J̄) are real functions of ΦI , Φ̄J̄ and L0 with (4, 0)

and (2, 0), respectively. Note that we have omitted superpotential term [W (ΦI)]F , where

W (ΦI) is a holomorphic function of ΦI with the weight (w, n) = (3, 3), since the term is

irrelevant to the following discussion. Taking into account the nilpotency condition on X,

the bosonic component of the action (4.20) is given by

SB =

∫
d4x
√
−g
[(
FX(f + Λ)− Λ|FX |2

M
− Λ

4C0
(Ba − iD̂aC)2

+
CΛ

2C2
0

(Ba − iD̂aC)(Ba
0 − iD̂aC0)− C2Λ

4C3
0

(Ba
0 − iD̂aC0)2 + h.c.

)
+ Lm

]
, (4.21)

where

Lm = − 1

3
(F − FC0C0)R(b) +

1

2
FC0C0(D̂C0 · D̂C0 −B0 ·B0)

+ 2FIJ̄(F I F̄ J̄ − D̂ΦI · D̂Φ̄J̄) +
(
−iFC0IB0 · D̂ΦI + h.c.

)
. (4.22)

In the above expression, ΦI (Φ̄J̄) and F I (F̄ J̄) represent the scalar and auxiliary com-

ponents of the (anti-) chiral matter multiplet, and subscripts denote the derivative with

respect to the corresponding scalar. R(b) becomes a Ricci scalar when bµ = 0 is imposed

as the K-gauge condition.

Before setting superconformal gauge conditions, we integrate out the auxiliary field

FX and the Lagrange multiplier Λ. We can easily solve the E.O.M for FX and obtain

SB =

∫
d4x
√
−g
[
M

2λ

{
(λ+ p)2 + (χ+ q)2

}
− λ

2C0
(B ·B − D̂C · D̂C)

− χ

C0
B · D̂C +

Cλ

C2
0

(B0 ·B − D̂C0 · D̂C) +
Cχ

C2
0

(B0 · D̂C +B · D̂C0)

− C2λ

2C3
0

(B0 ·B0 − D̂C0 · D̂C0)− C2χ

C3
0

B0 · D̂C0 + Lm
]
, (4.23)

where λ = ReΛ, χ = ImΛ, p = Ref , and q = Imf . Note that, at this stage, the matter

Lagrangian Lm is not affected by the DBI sector. Next, we eliminate λ and χ by using

their E.O.Ms, which are given by

− M

2λ2

{
(λ+ p)2 + (χ+ q)2

}
+
M

λ
(λ+ p) +A = 0, (4.24)

M

λ
(χ+ q) + B = 0, (4.25)
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where

A ≡ − 1

2C0
(B ·B − D̂C · D̂C) +

C

C2
0

(B0 ·B − D̂C0 · D̂C)− C2

2C3
0

(B0 ·B0 − D̂C0 · D̂C0),

(4.26)

B ≡ − 1

C0
B · D̂C +

C

C2
0

(B0 · D̂C +B · D̂C0)− C2

C3
0

B0 · D̂C0. (4.27)

Solutions for them are

λ|−1
sol =

1

p

√
1 +

2A
M
− B

2

M2
, (4.28)

χ|sol = −q − λ|sol

M
B. (4.29)

Substituting the above solutions into the action (4.23), we obtain a relatively simple form

SB =

∫
d4x
√
−g

[
Mp

(
1−

√
1 +

2A
M
− B

2

M2

)
− qB + Lm

]
. (4.30)

The remaining issue is the elimination of auxiliary fields Ba
0 and Aa. However, it is

difficult to do it because of the presence of nonlinear terms of Ba
0 contained in the first

term in eq. (4.30). In addition, Lm has AaA
a as well as mixing terms between Ba

0 and Aa
in general cases. Therefore, integration of those auxiliary fields is technically difficult and

we cannot obtain the complete on-shell action.8

Although a general case is difficult to complete the remaining task, we can con-

tinue our discussion for the following special case. Let us consider the following choice

of F(L0,Φ
I , Φ̄J̄),

F = L0 log

(
L0G(Φi, Φ̄j̄)

SS̄

)
, (4.31)

where Φi is a matter chiral multiplet with its weight (0, 0), G(Φi, Φ̄j̄) is a real function of

Φi and Φ̄j̄ , and S is a chiral multiplet with (1, 1). This action is also invariant under the

transformation S → SeiΘ in the same way as the last term in eq. (4.1), which characterizes

the new minimal SUGRA.

We use the D-gauge condition to make the Ricci scalar term canonical. From eq. (4.22),

we can find an appropriate D-gauge choice [54]

F − FC0C0 = −3

2
. (4.32)

As the choice of the additional gauge, we set FC0 = 0 [54]. Then, we can solve these gauge

conditions with respect to C0 and S and obtain

SS̄ =
3

2
eG, (4.33)

C0 =
3

2
. (4.34)

Using the K-gauge, we also set a condition bµ = 0.

8The general matter coupled system in the new minimal SUGRA not including higher-order derivative

terms can be found in ref. [54].
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Under these conditions, Lm becomes

Lm =
1

2
R+ 2Fij̄(F iF̄ j̄ − ∂aΦi∂aΦ̄j̄)− 1

2
Ba

0B0a

+ (−iFC0iB
a
0∂aΦ

i + h.c.) + (iBa
0∂a logS + h.c.) + 2Ba

0Aa, (4.35)

where Aa is the U(1)A gauge field mentioned above. We find that the E.O.M for Aa gives a

constraint Ba
0 = 0 and the difficulty due to the nonlinear term of Ba

0 is circumvented in this

case. This result is irrelevant to other parts of the action (4.30) since they do not contain

terms of Aa. F i can be eliminated by their E.O.Ms, and we finally obtain the following

on-shell action,

SB =

∫
d4x
√
−g

[
Mp

(
1−

√
1 +

2A
M
− B

2

M2

)
− qB +

1

2
R− 2Fij̄∂aΦi∂aΦ̄j̄

]
, (4.36)

with

A =
1

3
(∂C · ∂C −B ·B), B = −2

3
B · ∂C. (4.37)

Here, the real function M should be understood as M |C0=3/2. Note that, in this case, we

cannot add superpotential terms of Φi by the following reason: to obtain the constraint

Ba
0 = 0, we assumed that only S has the weight (w, n) = (1, 1) and a special form of F giving

FSS̄ = 0, otherwise such a constraint does not appear. For the superconformal invariance,

the superpotential W should have (3, 3). From the weight condition, a possible form is W =

S3g(Φi) but this term is forbidden by the symmetry under S → SeiΘ which the D-term

part [F ]D has. Therefore, we cannot add any superpotential terms of matter multiplets.

5 Relation between our results and other works

Here, we comment on the differences between ours and the results in ref. [5], in which

the DBI action of a chiral multiplet is constructed in the old minimal SUGRA. As we

mentioned before, the DBI action of a real linear multiplet can be rewritten in terms of a

chiral multiplet through the linear-chiral duality and the whole action of a chiral multiplet

is obtained in global SUSY in terms of superfield [38]. The authors of ref. [5] embedded the

dual chiral multiplet action into the old minimal SUGRA. On the other hand, our starting

point is the action of a real linear multiplet, more precisely, the constraint (2.2) imposed

upon it. This constraint has its origin in the tensor multiplet of N = 2 SUSY [25, 37, 38].

Indeed, in global SUSY case, the real linear multiplet corresponds to a Goldstino multiplet

for the broken SUSY. From such a viewpoint, our construction is important since it makes

the connection with the partial breaking of N = 2 SUSY much clearer .

Although the ways of construction are different, our action would realize their result.

Indeed, at the bosonic component level, we have found the correspondence between the

result in ref. [5] and ours. However, we also found that the action cannot be realized in the

old minimal SUGRA when we do not consider the case including higher-derivative terms

of a chiral compensator, which may contradict the result of ref. [5]. Unlike the DBI action
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of a real linear multiplet, that of a vector multiplet can be constructed in both of the old

and new minimal SUGRA [28]. The difference originates from the necessity of u-associated

derivatives in the DBI action of a real linear multiplet. For a vector superfield case, we

can construct the DBI action only with the chiral projection operator Σ, which does not

require u-associated multiplet to make the operand superfield a primary superfield [44–46].

It is interesting to explore these reasons and we expect that the direct derivation of the

constraint (2.2) and also DBI action from N = 2 SUGRA are necessary to understand this

issue, which would be our future work.9

6 Summary

In this paper, we have discussed superconformal generalization of a DBI action of a real

linear superfield known in global SUSY.

To achieve this, we have focused on the constraint (2.2) between a chiral multiplet and

a real linear multiplet, which comes from the partial breaking of 4D N = 2 SUSY [37].

However, it is a nontrivial task to embed this constraint into conformal SUGRA due to the

existence of the SUSY spinor derivative, which in general, cannot be applied for arbitrary

multiplets in conformal SUGRA. Instead of using an original spinor derivative, we have

adopted the u-associated spinor derivative, proposed in ref. [44]. We obtained the condi-

tion (3.17) and (3.19) by requiring that the corresponding constraint (3.15) in conformal

SUGRA becomes a chiral constraint. Surprisingly, we have found that these conditions can

be realized only in the new minimal formulation of SUGRA when we choose the general

power function of compensator as the u-associated multiplet. Then, we have derived the

condition (3.30) which u-associated multiplets must satisfy.

After embedding the constraint into the new minimal SUGRA, we have shown the

component action which is formulated in curved spacetime. We have also discussed the

linear-chiral duality at the level of bosonic components and rewritten the action from a

complex scalar field of a chiral multiplet. Finally, we have constructed the action where

matter multiplets are directly coupled to the DBI sector. Due to the appearance of non-

linear terms for vector field B0a, we have restricted the discussion to the special form of

matter function (4.31) and derived the bosonic action (4.36).

In this paper, we have shown that the DBI action of a real linear multiplet cannot be

realized in the old minimal SUGRA as a naive embedding of the constraint (2.2), which

may contradict the result of ref. [5]. The duality relation between the old and new mini-

mal SUGRA [54] is generically not obvious when there exist higher-derivative terms. For

example, the non-minimal coupling of gravity is realized only in new minimal SUGRA [4]

as in the case of the DBI action we discussed here. Such an issue may be revealed with the

help of deep understanding of SUGRA system with higher-order derivative terms.

To investigate our model further, we need the direct derivation of the constraint from

N = 2 SUGRA. And also, the remaining part in eq. (1.1), i.e., a term including Bµν , and

possible combinations of the Maxwell, scalar and 2-form parts have not been constructed.

We leave them for future work.

9For the DBI action of a vector multiplet, such attempts have been recently discussed [55]. There, the

partial breaking of N = 2 SUSY in some N = 1 SUSY background has been discussed.
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A The components of u-associated spinor derivative multiplet

Here we show the explicit component form of

1

L0
D̄(L0)LD̄(L0)L. (A.1)

As we have seen in section 3, eq. (A.1) is a chiral multiplet with weight (3, 3). The

components of this multiplet, {z′, PLχ′, F ′}, are

z′ =
C2

C0

(
¯̃Z − ¯̃Z0

)
PR

(
Z̃ − Z̃0

)
, (A.2)

PLχ
′ =

√
2C2

C0
PL

[(
˜6B − i 6DC̃ − ˜6B0 + i 6DC̃0

)(
Z̃ − Z̃0

)
− 3i

2
Z̃0

¯̃Z0PRZ̃0

− i

2
Z̃0

¯̃ZPRZ̃ +
i

4
γaZ̃0

¯̃Zγaγ5Z̃ + iZ̃ ¯̃Z0PRZ̃0 −
i

2
γaZ̃ ¯̃Z0γaγ5Z̃0

]
, (A.3)

F ′ =
C2

C0

[
−
(
B̃a − iDaC̃

)2
+ 2

(
B̃a − iDaC̃

)(
B̃a − iDaC̃

)
−
(
B̃0a − iD0aC̃

)2

+ i ¯̃Z0γ5

(
˜6B − i 6DC̃

)(
Z̃ − Z̃0

)
+
i

2
¯̃Zγ5

(
˜6B0 − i 6DC̃0

)
Z̃

− 2i ¯̃Zγ5

(
˜6B0 − i 6DC̃0

)
Z̃0 +

3i

2
¯̃Z0γ5

(
˜6B0 − i 6DC̃0

)
Z̃0

+ 2
(

¯̃Z − ¯̃Z0

)
PR 6D

(
Z̃ − Z̃0

)
+

1

2
¯̃Z0PRZ̃0

¯̃ZZ̃ +
1

2
¯̃ZPRZ̃

¯̃Z0Z̃0

+ 2 ¯̃ZPRZ̃0
¯̃ZZ̃0 − 3 ¯̃ZPRZ̃0

¯̃Z0Z̃0 − 3 ¯̃ZZ̃0
¯̃Z0PRZ̃0 +

1

2
¯̃Z0PRZ̃0

¯̃Z0Z̃0

]
, (A.4)

where the fields with˜are divided by the first components of the multiplet they belong to,

in the same way as eq. (3.21), and the superconformal derivative Da is understood to act

only on the numerator but not on the denominator, e.g., DaC̃ ≡ DaC/C = Da logC.
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