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1 Introduction

In many applications of gauge-gravity duality, there is a need to regulate divergences that

appear near the boundary of the bulk theory; these are simply associated with UV diver-

gences in the dual quantum field theory. The divergences appear, for example, in calcula-

tions of conformal anomalies, correlation functions, and the free energy. The prescription

for regulating divergences is to include suitable local counterterms. The resulting process

of holographic renormalization is an old subject: it was discussed in the early days of

AdS/CFT [1] and implemented in the classic calculations of conformal anomalies [2], the

trace of the stress-tensor [3], and since then in countless other examples.

We focus on bulk spacetimes that are asymptotically AdS or Euclidean AdS. This

includes duals of conformal theories (CFTs) as well as holographic renormalization group

flows with a UV CFT. For a given gravity dual, the local counterterms are universal and

one can calculate them once and for all in any given gravitational model. We distinguish

between infinite counterterms and finite counterterms. The former are unambiguous and

can be determined using the bulk equations of motion. The finite counterterms, however,
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can typically only be fixed using further constraints, such as supersymmetry. In this paper,

we are concerned only with the infinite counterterms.

There is a standard ‘brute force’ procedure for determining the infinite counterterms [2–

5]. One expands the metric and fields near the AdS boundary using the Fefferman-Graham

(FG) expansion [6]. Solving the equations of motion relates various coefficients in the FG

expansion, but leaves unfixed the coefficients that correspond to the source and vev rates for

each field. Using a suitable cutoff, the on-shell action is evaluated near the AdS boundary

by plugging in the FG expansion, subject to the equations of motion. This identifies

the divergences, however, they will be expressed in terms of the free coefficients in the

FG expansion. This is not sufficient, as local counterterms must be expressed directly in

terms of the fields on the cutoff surface. So starting with the most divergent terms, one

works systematically backwards to convert each divergence to a local field expression, thus

basically reversing the FG expansion. This process identifies the field polynomials that

are responsible for the divergences in the on-shell action. The counterterm action is then

taken to be exactly minus those field expressions; this ensures that the renormalized action

Sbulk+Sct is finite. (This still leaves the possibility of ambiguities from finite counterterms;

we will discuss this briefly in the Discussion section.)

While straightforward for many simple models with just one or two scalar fields, the

brute force approach outlined above becomes increasingly tedious for models with multiple

fields. Moreover, it is fundamentally unsatisfying that one first abandons the field expres-

sions in favor of Fefferman-Graham only to reverse back to fields after identifying the infinite

terms. For this reason, another approach, based on the Hamiltonian formalism for gravity

and the Hamilton-Jacobi equation, has been proposed for holographic renormalization.

Early in the studies of holographic renormalization group flows, de Boer, Verlinde, and

Verlinde [7] proposed to use the Hamilton-Jacobi equation to derive first-order equations

for the supergravity model and they related it to the Callan-Symanzik equation. (See

also [8, 9] and the lectures [10].) The specific application of the Hamilton-Jacobi equation to

determine infinite counterterms was studied by Kalkkinen, Martelli, and Mueck in [11, 12]

and subsequently by Papadimitriou and Skenderis in [13] (see also [14–16]).

One limitation of the method as formulated in [13] is that the dilatation operator is

used to organize the calculation. This requires that the fields are eigenfunctions of the

dilatation operator, but that makes it more challenging to handle scalars dual to operators

with scaling dimension ∆ = d/2, because of their leading log-falloff.1 This is not an exotic

case, but a very common one; for example, in a d = 4 field theory, a scalar mass term is a

relevant operator of dimension ∆ = 2. Another challenge is that, as presented in [13], the

Hamilton-Jacobi method looks rather difficult to carry out in practice.

The goal of this paper is to straighten out and simplify the Hamilton-Jacobi approach

for holographic renormalization. We will show that the application of the Hamilton-Jacobi

equation

∂Son-shell

∂r
+H = 0 (1.1)

1One can work around this, see for example [14]. The issue is also addressed in [16].

– 2 –



J
H
E
P
0
6
(
2
0
1
6
)
0
4
6

(with the radial coordinate r playing the role of the usual time-coordinate), can be imple-

mented via an algorithm that significantly simplifies the process of computing the infinite

counterterms. To avoid the issue of the dilatation operator and have an approach that

applies more generally, we organize the calculation in terms of a derivative expansion (or

inverse metric expansion), as also suggested in for example [7, 12, 16].

We will be working with bulk actions of the form

S = − 1

2κ2

∫

M
dd+1x

√
g
(

R[g]− gµνGIJ∂µΦ
I∂νΦ

J − V (Φ)
)

, (1.2)

where we allow for a general metric GIJ = GIJ(Φ) on the scalar manifold. We consider do-

main wall solutions with arbitrary slicing and assume that the asymptotic UV structure of

the metric is AdS (or Euclidean AdS). For such a system, we formulate the Hamilton-Jacobi

problem for the on-shell action Son-shell; (1.1) is basically a partial differential equation for

Son-shell and once derived, one no longer has to think about the Hamiltonian formulation of

general relativity. Instead, one systematically solves the Hamilton-Jacobi differential equa-

tion for Son-shell by writing a suitable Ansatz for its divergent terms and then solving for

the coefficients in this Ansatz. The key point here is that scalars dual to relevant operators

in the field theory go to zero at the boundary. Therefore there can only be limited powers

of each field in the infinite counterterms, and that makes the Ansatz finite.

Our method departs from previous approaches as follows.2 We consider Son-shell as

the action on the cut-off boundary; this breaks the general diffeomorphism invariance in

the radial direction and therefore we must take seriously the explicit dependence on the

radial coordinate in Son-shell. Thus, the r partial-derivative in (1.1) plays a central role

in our method. In fact, the coefficients in our Ansatz will be allowed to have explicit r-

dependence, and the Hamilton-Jacobi equation then yields differential equations for these

coefficients that we can solve unambiguously in the near boundary limit.

We illustrate the use of the method in several contexts. To start out, we reproduce the

purely gravitational counterterms [4] in d-dimensions. To show how the method works for

a case with d odd, we reproduce the infinite counterterms of the d = 3 ABJM dual model

of [18]. We then turn to the example of the d = 4 FGPW model [19] whose two scalars

have ∆ = 2 and ∆ = 3.

In the presence of a marginal scalar, more care must be taken. A marginal scalar

generically goes to a finite value at the boundary and therefore the associated counterterms

do not enjoy the same suppression as the scalars dual to relevant operators. We handle this

by allowing the coefficients of our Ansatz for Son-shell to be functions of the marginal scalar.

We have applied this method successfully to calculate the counterterms for a ten-scalar

model dual to (a limit of) N = 1∗ theory on S4 [20]; this indeed served as a motivation

for us to revisit the subject of holographic renormalization. However, for the purpose of

presentation here, we restrict ourselves to simply show how our method reproduce the

infinite counterterms for the dilaton-axion system in [16].

The paper is organized as follows. In section 2, we present the Hamilton-Jacobi equa-

tion for the bulk and describe our algorithm for determining the infinite counterterms.

2However, see [17] for a similar approach in dS space.
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Section 3 implements the method for pure gravity in d dimensions. The examples of the

ABJM model and FGPW can be found in sections 4 and 5; these give very concrete illus-

trations of how we implement the algorithm. The more advanced case of marginal scalars

is treated in section 6. The three appendices contain various technical details. Appendix A

is a short list of useful identities for the metric variations of gravitational curvatures. Ap-

pendix B gives details of the calculation of the gravitational six-derivative terms needed for

counterterms in d = 6. Finally, appendix C offers explicit calculation of the one-point func-

tions in FGPW to illustrate that the one-point functions determined from the renormalized

action with our infinite counterterms are indeed all finite.

2 Hamiltonian approach to holographic renormalization

We start with a brief description of the essential parts of the Hamiltonian formulation

needed for holographic renormalization. We then formulate the problem of determining

the on-shell action in terms of the Hamilton-Jacobi equation and we present our algorithm

for calculating the divergent part of the on-shell action.

2.1 Hamiltonian formalism of gravity

We consider a general form of the bulk gravitational action:

S = − 1

2κ2

∫

M
dd+1x

√
g
(

R[g]− gµνGIJ∂µΦ
I∂νΦ

J − V (Φ)
)

− 1

κ2

∫

∂M
ddx

√
γK . (2.1)

The last term in (2.1) is the Gibbons-Hawking boundary term which ensures that the

variational problem is well-defined. In this term, γij is the induced metric on the boundary

and K is its extrinsic curvature.

We choose a gauge for the bulk metric gµν such that the line element takes the form

ds2 = dr2 + γij(r, x)dx
idxj , (2.2)

where latin indices i, j, . . . are in the range i, j = 1, 2, . . . , d and will denote boundary

coordinates.

This allows us to decompose the Ricci scalar in the action to get

S = − 1

2κ2

∫

M
ddx dr

√
γ
(

R[γ]+K2−KijK
ij−GIJ Φ̇

IΦ̇J−γijGIJ∂iΦ
I∂jΦ

J−V (Φ)
)

, (2.3)

where the extrinsic curvatures are

Ki
j =

1

2
γikγ̇kj and K =

1

2
γij γ̇ij . (2.4)

The dots denote derivatives with respect to r. The boundary Gibbons-Hawking term does

not appear in the expression (2.3), since it has been canceled by boundary terms that occur

from partial integration of second derivative terms in the expansion of R[g].
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In the Hamiltonian formulation of holographic renormalization, the radial coordinate

r plays the role of the time coordinate. Therefore, the conjugate momenta to the fields are

given by

πij =
δS

δγ̇ij
=

1

2κ2
√
γ
(

Kij −Kγij
)

and πI =
δS

δΦ̇I
=

1

κ2
√
γGIJ Φ̇

J , (2.5)

and the Hamiltonian is

H =

∫

∂M
ddx

(

πij γ̇ij + πIΦ̇
I − L

)

=
1

2κ2

∫

∂M
ddx

√
γ
(

R[γ]−K2+KijK
ij+GIJpIpJ−γijGIJ∂iΦ

I∂jΦ
J−V (Φ)

)

,

(2.6)

where, for simplicity, we have introduced pI ≡ κ2
√
γπI .

2.2 Hamilton-Jacobi formulation

The Hamilton-Jacobi formulation is well-known in classical mechanics [21]. With the radial

coordinate r playing the role of time, the Hamilton-Jacobi equation takes the form

H +
∂Son-shell

∂r
= 0 . (2.7)

Just as in classical mechanics, it is key to emphasize that in the Hamilton-Jacobian for-

malism, the Hamiltonian is a functional of canonical momenta defined by

πij =
δSon-shell

δγij
and pI =

κ2√
γ
πI =

κ2√
γ

δSon-shell

δΦI
, (2.8)

as opposed to the canonical definitions (2.5). When the momenta are defined via equa-

tion (2.5) with the extrinsic curvature given by (2.4), the Hamiltonian constraint of Ein-

stein’s equation is simply H = 0. If this were used with the Hamilton-Jacobi equation (2.7),

it would imply that the action has no explicit r-dependence; this is of course true for the

diffeomorphism-invariant gravitational bulk action whose metric equations-of-motion im-

ply the Hamiltonian constraint. However, it is not true for the on-shell action, which is an

action on the cut-off boundary. It has explicit r-dependence, as we shall see, and to de-

termine it via the Hamilton-Jacobi equation we must use the definitions (2.8). With (2.8),

the Hamilton-Jacobi equation (2.7) should be thought of as a first-order partial differential

equation for Son-shell with respect to the fields, the metric, and r.

A practical approach is to use an Ansatz for the on-shell action: below we will be

more explicit about how we choose an appropriate Ansatz, but for now we will develop the

general formalism further. Let us write the Ansatz as

Son-shell =
1

κ2

∫

∂Mǫ

ddx
√
γ U(γ,Φ, r) . (2.9)

The function U is a function of the induced (inverse) metric γij on the boundary and the

scalar fields ΦI , and it has also explicit dependence on r. The cutoff surface ∂Mǫ becomes

the boundary of the spacetime when ǫ → 0.
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Using the above Ansatz, the Hamilton-Jacobi equation takes the form

R[γ] +KijK
ij −K2 +GIJpIpJ − γijGIJ∂iΦ

I∂jΦ
J − V (Φ) + 2

∂U

∂r
= 0 . (2.10)

We emphasize that this equation is to be understood as an integral equation, i.e. it holds

up to total derivatives and we can manipulate it using partial integration in the boundary

coordinates.

As discussed above, the conjugate momenta in (2.10) will be given by derivatives of

U . For the scalar field conjugates, this straightforwardly gives

pI =
κ2√
γ

δSon-shell

δΦI
⇒ pI =

δU

δΦI
. (2.11)

The conjugate momentum of the metric enters (2.10) via the extrinsic curvatures, since

Kij = 2κ2
√
γ

(

πij − 1
d−1γ

ijπklγkl
)

, as follows from (2.5). Now in the context of the Hamilton-

Jacobi formalism, the extrinsic curvatures Kij in (2.10) must then be expressed in terms

of πij as given by (2.8). This gives

Ki
j = −2γik

δU

δγkj
− 1

d− 1

(

U − 2γmn δU

δγmn

)

δij , (2.12)

where we have used γijγ
jk = δ k

i =⇒ (δγij)γ
jk = −γij(δγ

jk) to express Ki
j in terms

of derivatives with respect to the inverse metric rather than the metric; this will be useful

later.

It is convenient to define

Yij =
δU

δγij
and Y = γijYij . (2.13)

One then finds from (2.12) that the dependence on extrinsic curvatures in the Hamilton-

Jacobi equation (2.10) is given in terms of U as

K ≡ KijK
ij −K2 = 4YijY

ij − 1

d− 1
(U − 2Y )2 − U2 . (2.14)

To summarize, our strategy for computing the on-shell action Son-shell is to use the

Ansatz (2.9) and solve the Hamilton-Jacobi equation

R[γ] +K +GIJpIpJ − γijGIJ∂iΦ
I∂jΦ

J − V (Φ) + 2
∂U

∂r
= 0 . (2.15)

with conjugate momenta given by (2.11) and K defined in (2.14). We remind the reader

that equation (2.15) has to hold only as an integral equation, so we are free to manipulate

it using partial integration. While this was derived using the Hamiltonian formalism of

gravity, we no longer need to think of the problem that way. Rather, we now have dif-

ferential equation (2.15) for the on-shell action Son-shell. Next, we explain how to solve it

systematically.
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2.3 Algorithm to determine the divergent part of the on-shell action

Let us next address how we propose to use the Hamilton-Jacobi formulation to determine

the divergent part of the on-shell action and thereby the counterterms needed for a finite

result. We outline here the general approach, however the method is much better illustrated

by concrete examples; these follow in the next sections.

We assume that asymptotically the bulk metric approaches AdS space: in terms of the

choice of coordinates (2.2), ds2 = dr2 + γij(r, x)dx
idxj , this means that

γij → e2r/L γ(0)ij + . . . as r → ∞ , (2.16)

where L is the AdS radius. The boundary metric γ(0)ij can be Lorentzian or Euclidean, it

can be flat or curved. For example, recent applications of holography considered the dual

field theory on d-dimensional compact Euclidean spaces, such as spheres. In the following,

γ(0)ij will be general.

The asymptotic behavior (2.16), gives
√
γ ∼ edr

√
γ(0). We are focusing only on the

divergent parts of the on-shell action, so we need terms in U only up to orders e−dr (possibly

including also terms polynomial in r). Since the inverse metric γij scales as e−2r, we can

ignore any terms with more than
⌊

d
2

⌋

inverse metrics. Any (boundary) derivatives that

appear in terms in U must necessarily be contracted pairwise by inverse metrics γij , so we

do not consider terms with more than d-derivatives. All in all, this makes it natural to

organize the Ansatz for U in a derivative expansion:

U = U(0) + U(2) + . . .+ U(2⌊ d
2⌋) , (2.17)

where the subscript represents the number of derivatives in each term. Curvature terms

such as the boundary Ricci scalar, Ricci tensor, and Riemann tensor are each order 2 (i.e.

they have two derivatives). Previous work, for example [7] and [16], have also organized

the on-shell action as a derivative expansion.

For the 0th order in the derivative expansion, we have Y(0)ij =
δU(0)

δγij = 0, so (2.14)

simply gives

K(0) = − d

d− 1
U2
(0) . (2.18)

Thus at 0th order, the Hamilton-Jacobian equation (2.10) becomes

V (Φ) = GIJ δU(0)

δΦI

δU(0)

δΦJ
− d

d− 1
U2
(0) + 2

∂U(0)

∂r
. (2.19)

Without the last r-derivative term, we see that U(0) is essentially like a (fake) superpotential

for the scalar potential V ; this was also noted [7] (see also [16, 22]). In general, it is not

easy to solve for a superpotential for a given V ; however, we will not need to since our

focus is on the generic asymptotically divergent terms only. As noted in the discussion

below (2.8) the presence of the explicit r-derivative term in the Hamilton-Jacobi equation,

and hence in (2.19), is crucial — this point does not seem to have been appreciated in

previous discussions of the method.
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Let us for later convenience also record the results for K at two- and four-derivative

order:

K(2) = − 2

d− 1
U(0)

[

U(2) − 2Y(2)
]

− 2U(0)U(2) , (2.20)

K(4) = 4Y(2)ijY
ij
(2) −

1

d− 1

[

U(2) − 2Y(2)
]2 − 2

d− 1
U(0)

[

U(4) − 2Y(4)
]

− U2
(2) − 2U(0)U(4) ,

where Y(k)ij =
δU(k)

δγij .

We propose the following algorithm to determine the infinite terms in the on-shell action:

Step 1: ansatz for U(2n). For each U(2n), we write a systematic Ansatz that includes

all potentially divergent terms of this order with undetermined coefficients,3 for example

U(0) = A0 +A1φ+A3φ
2 + . . . and U(2) = B0R+B1Rφ+B2φ�φ+ . . . (2.21)

where the coefficients Ai and Bi can have explicit dependence on r. The Hamilton-Jacobi

equations will therefore give us differential equations of these coefficients which we solve

asymptotically, keeping only terms that give divergent contributions to the on-shell action.

Recall that the asymptotic behavior of a scalar with bulk mass m2
I is ΦI →

ΦI
(0)e

−(d−∆I)r/L, where m2
IL

2 = ∆I(∆I − d). The two solutions for ∆I correspond to

the source and vev-rate falloffs. When a scalar approaches zero at the boundary, as is the

case in many applications, we can immediately read off how many powers of the scalar

can possibly appear in U(2n); the number of possible terms is finite and limited by the fact

that we are only interested in the divergent terms.4 For example, if φ is a scalar with

dimension ∆φ = 3 in d = 4, then φ ∼ e−r, and we have to include powers up to φ4 in U(0)

and φ�φ can appear in U(2). (Note: such terms with e−dr falloff will be finite unless the

r-dependence in the coefficient makes it divergent.) On the other hand, if φ in (2.21) is a

∆φ = 2 scalar in d = 4, there can at most be quadratic powers of φ in U(0) and the term

φ�φ is not divergent, so it is not included in the Ansatz for U(2).

One can impose symmetries of the theory in order to further simplify the Ansatz for

U(2n). If, for example, the bulk action has a symmetry φ → −φ, we can drop any terms

odd under this symmetry in the Ansatz.

Step 2: conjugate momenta. Next, using the leading asymptotic behaviors of the

fields, we determine the leading asymptotics of the conjugate momenta. Using this together

with pI = δU
δΦI fixes some of the coefficients in U(0) quite easily.

Step 3: solving the Hamilton-Jacobi equation. We plug the Ansatz for U(2n) into

the Hamilton-Jacobi equation and we solve it order by order by demanding that the coef-

ficients of the different field monomials vanish independently. When necessary, use partial

integration to eliminate potentially non-independent terms that appeared by varying U .

We start with U(0), then use those results to determine U(2), then U(4) etc.

3Terms are considered equivalent if related by partial integration.
4We will also discuss cases with a marginal scalar m2

I = 0, for which there is no suppression near the

boundary and generically the scalar goes to a non-zero constant. For such cases, we allow the coefficients

Ai in our Ansatz to be functions of the marginal scalar. An example is presented in section 6.

– 8 –



J
H
E
P
0
6
(
2
0
1
6
)
0
4
6

Step 4: counterterm action. Once the divergent terms in Son-shell have been deter-

mined, the counterterm action is simply

Sct = −Son-shell

∣

∣

div
. (2.22)

This is added to the bulk action to get the regularized action Sreg = Sbulk+SGH+Sct from

which correlation functions can be computed and by construction are guaranteed to be

finite. In many cases, counterterm actions are presented in term of the Fefferman-Graham

radial coordinate ρ related to r via ρ = e−2r/L, so that the line element is

ds2 = L2dρ
2

4ρ2
+ γij dx

idxj . (2.23)

We determine the divergent terms in the on-shell action using the r-coordinate, but convert

to ρ-coordinates for the final presentation of our counterterm actions. In terms of the ρ-

coordinate, the cutoff surface ∂Mǫ, introduced in (2.9), is then located at ρ = ǫ.

In the following sections, we demonstrate the procedure explicitly in a set of representa-

tive explicit examples. We start with pure gravity in d-dimensions with d = 2, 3, 4, 5, 6, then

move on to a d = 3 ABJM dual model and the d = 4 two-scalar model known as FGPW. Fi-

nally, we illustrate how our method works with marginal scalars (dilaton + axion in d = 4).

3 Pure gravity

The simplest model one can consider is pure AdS gravity with no matter content in D =

d + 1 dimensions. Counterterms obtained by renormalizing this model will be present in

every other model and it is therefore useful to deal with them once and for all. The action

we consider is given by (2.1) with no scalar fields and constant scalar potential

V = −d(d− 1)

L2
. (3.1)

The Hamilton-Jacobi equation (2.15) simplifies to

R[γ] +K +
d(d− 1)

L2
+ 2

∂U

∂r
= 0 , (3.2)

with K given by (2.14). Let us now apply the algorithmic procedure described in the

previous section in order to determine the necessary counterterms for this class of theories.

Step 1: since there are no scalars, the general Ansatz for each order of the expansion of

U is

U(0) = A(r) , U(2) = B(r)R , U(4) = C1(r)RijR
ij + C2(r)R

2 , (3.3)

where the four-derivative terms are only needed for d ≥ 4.5 We are not including terms

like �R since it is a total derivative and it will not contribute in the on-shell action. For

d ≥ 6, we need

U(6) = D1R
3+D2RRijR

ij+D3R
j
i R

k
j R i

k +D4R
ijRklRikjl+D5R�R+D6Rij�Rij . (3.4)

5In U(4), one could also have included a term with the square of the Riemann tensor. However, it is not

hard to see that its coefficient will be set to zero in the HJ equation.
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This is not a complete list of independent six-derivative terms, but it turns out to be a

sufficient list.

It is important that all the coefficients in the above expressions for U depend on the

radial coordinate r, as this will capture the explicit r-dependence of the on-shell action.

Step 2: this step is irrelevant for the pure gravity case since there are no matter fields.

Step 3: we now solve Hamilton-Jacobi equation (3.2) order by order to determine the

unknown coefficients A, B, C1,2 and Di.

At zero-derivatives, (3.2) with K(0) given by (2.18) gives

2Ȧ− d

d− 1
A2 +

d(d− 1)

L2
= 0 , (3.5)

where the dot denotes differentiation with respect to r. For large r, the solution to the

differential equation is

A(r) = −d− 1

L
+O

(

e−dr/L
)

. (3.6)

The subleading terms in the large-r expansion of A give only finite contribution to the

on-shell action and we can drop it to simply have

U(0) = −d− 1

L
. (3.7)

This captures the leading divergence associated with the cosmological constant.

At two-derivative order, the HJ equation (3.2) with (2.20) gives

R− 2

d− 1
U(0)

(

U(2) − 2Y(2)
)

− 2U(0)U(2) + 2
∂U(2)

∂r
= 0 . (3.8)

The inverse-metric variation of U(2) simply gives Y(2)ij =
δU(2)

δγij = BRij , so Y(2) = BR.

With the solution for U(0) in (3.7), we obtain the following differential equation for B:

2Ḃ + 2
d− 2

L
B + 1 = 0 . (3.9)

The differential equation for B has solution

B(r) =

{

− r
2 +O(1) for d = 2

− L
2(d−2) +O

(

e−(d−2)r/L
)

for d > 2
(3.10)

In both cases, the subleading terms are not important since they give finite contributions

to the on-shell action. The result is therefore

U(2) =

{

− r
2R for d = 2

− L
2(d−2)R for d > 2

(3.11)

The linear r behavior in the d = 2 case is our first illustration of the explicit r-dependence in

the on-shell action and the importance of keeping the ∂Son-shell
∂r -term in the Hamilton-Jacobi

equation.
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For the four-derivative terms, we calculate the inverse-metric variation of U4 using

the formulas in appendix A. In particular, we find Y(4) = 2C1RijR
ij + 2C2R

2 (up to total

derivatives that can be dropped). Using this together with the results for Y(2) above, we can

calculate K(4) given in (2.20). At 4th order, the HJ equation (3.2) is simply K(4)+2
∂U(4)

∂r = 0

and collecting terms gives
[

2Ċ1 +
2(d− 4)

L
C1 +

(

L

d− 2

)2
]

RijR
ij+

[

2Ċ2 +
2(d− 4)

L
C2 −

dL2

4(d− 1)(d− 2)2

]

R2 = 0 .

Demanding the coefficients of the RijR
ij and R2 terms to vanish independently results in

two differential equation for the coefficients C1 and C2, which have solutions

C1 =

{

−L2r
8 +O(1) for d = 4

− L3

2(d−2)2(d−4)
+O

(

e−(d−4)r/L
)

for d > 4
(3.12)

C2 =

{

L2r
24 +O(1) for d = 4

dL3

8(d−1)(d−2)2(d−4)
+O

(

e−(d−4)r/L
)

for d > 4
(3.13)

Again, the subleading terms can be dropped because they give only finite contributions to

the on-shell action. Thus, the result for U(4) is

U(4) =







−L2r
8

(

RijR
ij − 1

3R
2
)

for d = 4

− L3

2(d−2)2(d−4)

(

RijR
ij − d

4(d−1)R
2
)

for d > 4
(3.14)

Step 4: we now have all information needed to write the counterterm action.

Sct = − 1

κ2

∫

∂Mǫ

ddx
√
γ U = − 1

κ2

∫

∂Mǫ

ddx
√
γ
[

U(0) + U(2) + . . .+ U(2⌊ d
2⌋)

]

. (3.15)

Summarizing the above results, the purely gravitational counterterms are

d = 2: Sct =
1

κ2

∫

∂Mǫ

ddx
√
γ

[

1

L
− log ρ

L

4
R

]

,

d = 3: Sct =
1

κ2

∫

∂Mǫ

ddx
√
γ

[

2

L
+

L

2
R

]

,

d = 4: Sct =
1

κ2

∫

∂Mǫ

ddx
√
γ

[

3

L
+

L

4
R− log ρ

L3

16

(

RijR
ij − 1

3
R2

)]

,

d = 5: Sct =
1

κ2

∫

∂Mǫ

ddx
√
γ

[

4

L
+

L

6
R+

L3

18

(

RijR
ij − 5

16
R2

)]

,

d = 6: Sct =
1

κ2

∫

∂Mǫ

ddx
√
γ

[

5

L
+

L

8
R+

L3

64

(

RijR
ij − 3

10
R2

)

− log ρ
L5

256

(

Rij�Rij − 1

20
R�R

+2RijRklRikjl +
1

5
RRijR

ij − 3

100
R3

)]

,

(3.16)
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where we have used ρ = e−2r/L. The results for the six-derivative terms displayed for d = 6

are derived in appendix B.

These purely gravitational counterterms reproduce results well-known in the literature,

see for example [4], but it is relevant to present them here in the context of our approach

to holographic renormalization. In particular, they will appear in the following examples.

4 Renormalization for the ABJM model

ABJM theory [23] is the N = 6 superconformal Chern-Simons theory in d = 3 dimensions

with gauge group U(N)× U(N) and Chern-Simons levels k and −k. Its holographic dual

is M-theory on AdS4 × S7/Zk. In the limit of large t’Hooft coupling (λ = N/k), M-theory

reduces to eleven dimensional supergravity on AdS4 × S7/Zk. The recent paper [18] by

Freedman and Pufu explores the gauge-gravity dual description of F -maximization for

ABJM theory on a 3-sphere using a 4-dimensional holographic dual. We will use the model

of [18] as a very simple example to illustrate our approach to holographic renormalization.

The ABJM holographic model [18] is described by the Euclidean bulk action

Sbulk = − 1

2κ2

∫

M
d3x dr

√
g
(

R[g]− Lm

)

, (4.1)

where κ2 = 8πG4 and the matter Lagrangian is

Lm = 2
3

∑

a=1

∂µz
a∂µz̄a

(1− zaz̄a)2
+ V (z, z̄) , V (z, z̄) =

1

L2

(

6−
3

∑

a=1

4

1− zaz̄a

)

. (4.2)

In the Euclidean theory, the scalars za and z̄a are independent complex fields, not related by

complex conjugation. However, since only products of za and z̄a appear in this Lagrangian,

it is useful to define za → 1√
2
(χa + iψa) , z̄a → 1√

2
(χa − iψa), where χa and ψa are fields

that can take complex values.

Under this, the matter Lagrangian becomes

Lm =

3
∑

a=1

∂µχ
a∂µχa + ∂µψ

a∂µψa

[

1− 1
2(χ

a)2 − 1
2(ψ

a)2
]2 +V , V =

1

L2

(

6−
3

∑

a=1

4

1− 1
2(χ

a)2 − 1
2(ψ

a)2

)

. (4.3)

Expanding the potential for small fields, we find

V =
1

L2

(

− 6− 2(χaχa + ψaψa)− (χaχa + ψaψa)2 + . . .
)

, (4.4)

so the six fields χa and ψa all have mass −2/L2. By our general discussion, this means

that their asymptotic falloff is generically e−r/L.

For simplicity, let us start out with a model with just one pair of the fields χ and ψ;

since the ABJM dual has the three pairs appear the same way and they do not mix, it

is easy to generalize the result back to that case. Thus setting the fields with a = 2, 3 to

zero, we will consider the model described by the potential

V =
1

L2

(

− 2− 4

1− 1
2χ

2 − 1
2ψ

2

)

. (4.5)
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In the notation (2.1), we have scalars ΦI = (χ, ψ) and the metric on the scalar target space

is the GIJ =
(

1− 1
2χ

2 − 1
2ψ

2
)−2

δIJ with I, J = 1, 2. The Hamilton-Jacobi equation (2.15)

for this model is then

R+K −
(

1− 1

2
χ2 − 1

2
ψ2

)−2

γij(∂iχ∂jχ+ ∂iψ∂jψ)

+

(

1− 1

2
χ2 − 1

2
ψ2

)2
(

p2χ + p2ψ
)

− 1

L2

(

−2− 4

1− 1
2χ

2 − 1
2ψ

2

)

+ 2
∂U

∂r
= 0 , (4.6)

where K is given by equation (2.14) and the conjugate momenta pχ and pψ are the χ

and ψ derivatives of the on-shell action (2.11). We now proceed to determine the infinite

counterterms for this model.

Step 1: since we are working in d = 3 dimensions we need to include in our Ansatz only

terms with up to two derivatives:

U = U(0) + U(2) . (4.7)

Terms with four or more derivatives give finite contributions to the on-shell action.

Keeping only potentially divergent contributions means that for U(0) we only need to

consider terms up to cubic order in the scalar fields. However, we get strong constraints

on the Ansatz from the symmetries of the model: it is invariant under the transformations

χ → −χ, ψ → −ψ, and χ ↔ ψ. With these symmetries imposed, the most general Ansatz

at zero-derivative order is

U(0) = − 2

L
+A(r)(χ2 + ψ2) . (4.8)

The constant term is fixed from the purely gravitational calculation of section 3. At two-

derivative order, the only potentially divergent term that preserves the symmetries of the

theory is purely gravitational and it was calculated in section 3:

U(2) = −L

2
R . (4.9)

We can skip Step 2 because the model is so simple.

Step 3: we are now able to solve equation (4.6). Keeping only zero-derivative terms and

using that K(0) = −3
2U

2
(0) from (2.14) we find that

− 3

2
U2
(0) +

(

1− 1

2
χ2 − 1

2
ψ2

)2

(p2χ(0) + p2ψ(0))− V (χ, ψ) + 2
∂U(0)

∂r
= 0 , (4.10)

where,

pχ(0) =
δU(0)

δχ
= 2Aχ , pψ(0) =

δU(0)

δψ
= 2Aψ . (4.11)

Putting everything together and collecting terms that are proportional to (χ2 + ψ2) gives

the following differential equation for A(r):

Ȧ+ 2A2 +
3

L
A+

1

L2
= 0 . (4.12)
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This has solution

A = − 1

2L
+O

(

e−r/L
)

. (4.13)

Since A was the only unknown coefficient in the Ansatz for U , this concludes the calculation

of the infinite contributions in the on-shell action. Specifically, we have found that

U(0) = − 1

L

(

2 +
1

2
χ2 +

1

2
ψ2

)

= − 1

L
(2 + zz̄) . (4.14)

Step 4: the counterterm action for the ABJM model is obtained by generalizing our

result to the three flavors of za and z̄a fields:

Sct =
1

κ2

∫

∂Mǫ

d3x
√
γ

[

1

L

(

2 +
3

∑

a=1

zaz̄a
)

+
L

2
R

]

. (4.15)

This result is in perfect agreement with the counterterm action given in equations (6.4)–

(6.5) in [18]. For the applications in [18] one further needs to use supersymmetry to

determine the finite counterterms; we do not discuss this here.

5 Renormalization for the FGPW model

The FGPW model [19] is the holographic dual of the single-mass limit of N = 1∗ gauge

theory in flat space. This non-conformal field theory is obtained from N = 4 SYM theory

by softly breaking the supersymmetry toN = 1 as follows. InN = 1 language, N = 4 SYM

consists of a vector multiplet and three chiral multiplets. The field theory dual to FGPW is

obtained by giving a mass to one of the chiral multiplets. In the UV, the conformal theory

of N = 4 SYM is recovered, while in the infrared, the theory flows to a Leigh-Strassler

fixed point. The holographic dual FGPW model captures the RG flow of this theory via

a flat-space sliced domain wall solution which approaches asymptotic AdS5 in the UV and

another AdS5 in the IR. The ratio of the AdS radii in the UV and IR translates to the ratio

of UV and IR central charges a in the field theory. More generally, the authors of [19, 24]

derived the first version of a holographic version of the c-theorem.

The holographic FGPW model is described by a D = 4 + 1-dimensional bulk action

S = − 1

2κ2

∫

M
d4x dr

√
g
(

R[g]− Lm

)

, (5.1)

with matter Lagrangian given by6

Lm = ∂µφ∂
µφ+ ∂µψ∂

µψ + V (φ, ψ) = φ̇2 + ψ̇2 + γij∂iφ∂jφ+ γij∂iψ∂jψ + V (φ, ψ) . (5.4)

6In the paper [19], the scalar potential V is given in terms of a superpotential W as

VFGPW =
1

L2

(

1

2

∣

∣

∣

∣

∂W

∂φ1

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∂W

∂φ3

∣

∣

∣

∣

2

− 4

3
W 2

)

, (5.2)

with

W =
1

4ρ2

[

cosh(2φ1)(ρ
6 − 2)− (3ρ6 + 2)

]

and ρ = eφ3/
√

6 . (5.3)

Here, we have conformed to our normalization conventions by rescaling the scalars φ1 = ψ/
√
2 and φ3 =

φ/
√
2, and taken the potential to be V = 4VFGPW.
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The scalars ψ and φ are dimension ∆ψ = 3 and ∆φ = 2 fields dual to the fermion and

scalar mass deformations of N = 4 SYM. They approach zero near the UV boundary as

ψ ∼ ψ0 e
−r/L and φ ∼ (φ0r + φ̃0) e

−2r/L , (5.5)

as r → ∞. For the purpose of holographic renormalization, we only need to keep the terms

in the potential that can give divergent terms in this limit, so we expand the potential in

small fields to find

V (φ, ψ) =
1

L2

(

−12− 4φ2 − 3ψ2 + cψ4 + . . .
)

. (5.6)

The masses of the scalars, m2
ψ = −3/L2 and m2

φ = −4/L2, are directly related to the

scaling dimensions ∆ψ = 3 and ∆φ = 2 via m2
IL

2 = ∆I(∆I − 4).

The actual FGPW model has c = 1 in (5.6), but here we keep the coefficients general.

This will serve to illustrate how the counterterms carry information that is specifically

dependent on coefficients in the scalar potential; i.e. one should in general expect model-

dependent terms in the counterterm action.

The HJ equation (2.15) for the FGPW model takes the form

R[γ] +K + p2φ + p2ψ − γij∂iφ∂jφ− γij∂iψ∂jψ − V (φ, ψ) + 2
∂U

∂r
= 0 . (5.7)

with K defined in (2.14) and momenta

pφ =
δU

δφ
pψ =

δU

δψ
. (5.8)

Since we are working in d = 4 dimensions we need to keep terms with up to four

derivatives, so we write

U = U(0) + U(2) + U(4) . (5.9)

We now proceed with solving for the divergent terms of the on-shell action following the

algorithmic procedure described in section 2.3:

Step 1: we begin by writing the most general Ansatz for each U(i). We only keep terms

that can give divergent contributions. With the scalar falloffs (5.5) and each inverse metric

giving e−2r, the most general Ansatz at 0th order is

U(0) = − 3

L
+A1ψ +A2φ+A3ψ

2 +A4φψ +A5ψ
3 +A6φ

2 +A7φψ
2 +A8ψ

4 , (5.10)

where the constant term is fixed by the purely gravitational analysis in section 3. Each of

the coefficients Ai is considered a function of r.

At order 2 we use the Ansatz

U(2) = −L

4
R+B1Rψ +B2Rφ+B3Rψ2 +B4ψ�ψ . (5.11)

We did not include (∂ψ)2, since it is equivalent to ψ�ψ after partial integration.
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At order 4, the only option are the purely gravitational terms we have already solved,

so we have

U(4) = −L2r

8

(

RijR
ij − 1

3
R2

)

. (5.12)

Since the full FGPW model (5.2)–(5.3) is symmetric under ψ → −ψ, we can immediately

set the following coefficients in the Ansatz to zero:

A1 = A4 = A5 = B1 = 0 . (5.13)

Step 2: at the leading order, the conjugate momenta obtained from (2.5) must agree

with those in (5.8). From (2.5), we have

pφ = φ̇ pψ = ψ̇ , (5.14)

and via (5.5) this gives

pφ = − 2

L

(

1− L

2r

)

φ+O
(

e−2r/L/r
)

, pψ = − 1

L
ψ +O

(

e−3r/L
)

. (5.15)

On the other hand (5.8) gives

pφ(0) =
δU(0)

δφ
= A2 + 2A6φ+A7ψ

2 , pψ(0) =
δU(0)

δψ
= 2A3ψ + 2A7φψ + 4A8ψ

3 . (5.16)

Comparing (5.15) to terms in (5.16) at similar orders, we can directly infer that some of

the coefficients Ai must vanish:

A2 = A7 = 0 . (5.17)

Furthermore, we learn that A3 = − 1
2L and A6 = − 1

L

(

1− L
2r

)

. However, let us leave A3 and

A6 unfixed for now for the purpose of illustrating how they are fixed using the HJ equation.

Step 3: we proceed to solve the HJ equation (5.7). We start from the terms at 0th order.

Keeping only terms without spatial derivatives and using K(0) = −4
3U

2
(0) from (2.18) we

find that

− 4

3
U2
(0) + p2φ(0) + p2ψ(0) − V (φ, ψ) + 2

∂U(0)

∂r
= 0 . (5.18)

To solve this, we set the coefficient of each combination of fields to zero. For example,

collecting the terms proportional to ψ2 gives

Ȧ3 +
4

L
A3 + 2A2

3 +
3

2L2
= 0 =⇒ A3 = − 1

2L
+O

(

e−2r/L
)

. (5.19)

This is the solution for A3 we anticipated from comparing (5.15) and (5.16).

Similarly, one finds

φ2-terms: Ȧ6 +
4

L
A6 + 2A2

6 +
2

L2
= 0 =⇒ A6 = − 1

L
+

1

2r
+O

(

L2

r2

)

,

ψ4-terms: Ȧ8 −
1

6L2
(1 + 3c) = 0 =⇒ A8 =

1

6L2
(1 + 3c) r +O

(

1
)

.

(5.20)
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Terms proportional to φψ2 vanish directly; had we had a term bφψ2 in the expansion of

the scalar potential, the HJ equation would have shown that b 6= 0 is not consistent with

the EOM.

Having calculated all the unknown coefficients in the U(0) Ansatz, let us write down

the final result (with r = −L
2 log ρ):

U(0) = − 1

L

[

3 +

(

1 +
1

log ρ

)

φ2 +
1

2
ψ2 +

1

12

(

1 + 3c
)

ψ4 log ρ

]

. (5.21)

We can identify each of the contributions. The first one is related to the cosmological

constant and it is fixed for all models in D = 4 + 1 dimensions, as we saw in the pure

gravity case in section 3. The terms that are quadratic in the fields are uniquely fixed by

the mass terms in the scalar potential and are as such universal for all models. Finally, the

ψ4-terms are clearly model-dependent, as can be seen from the explicit dependence on c.

With the 0th order result in hand, we are now able to continue solving HJ equation

for the two-derivative terms. Keeping only such terms from equation (5.7) gives

R− 8

3
U(0)

(

U(2) −
1

2
Y(2)

)

+2pφ(0)pφ(2)+2pψ(0)pψ(2)−γij∂iφ∂jφ−γij∂iψ∂jψ+2
∂U(2)

∂r
= 0 ,

(5.22)

where we used K(2) from (2.20). U(0), pφ(0) and pψ(0) are known from (5.16) and (5.21),

while we calculate pφ(2) and pψ(2), and Y(2) from the Ansatz (5.11) for U(2):

pφ(2) =
δU(2)

δφ
= B2R ,

pψ(2) =
δU(2)

δψ
= 2B3Rψ + 2B4�ψ ,

Y(2)ij =
δU(2)

δγij
= −L

4
Rij +B2Rijφ+B3Rijψ

2 +B4ψ∇i∇jψ ,

(5.23)

where we are dropping total derivatives. The result for Y(2)ij implies Y(2) = U(2). In

the HJ equation (5.22), we organize the terms according to the field monomials and set

the coefficients of divergent terms to zero. The terms simply proportional to R directly

vanish because we have already solved the purely gravitational part of the problem. The

remaining terms allow us to solve for the coefficients B2,3,4:

Rφ-terms: Ḃ2 +
1

r
B2 = 0 =⇒ B2 = O

(

1

r

)

,

Rψ2-terms: Ḃ3 −
1

12
= 0 =⇒ B3 =

1

12
r +O

(

1
)

,

ψ�ψ-terms: Ḃ4 +
1

2
= 0 =⇒ B4 = −1

2
r +O

(

1
)

.

(5.24)

As in the zero weight case the subleading terms related to integration constants are not

important because they lead to finite contributions to the action. The final expression for

U(2) is then

U(2) = −L

[

1

4
R− 1

4
ψ

(

�− 1

6
R

)

ψ log ρ

]

. (5.25)
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The first term is purely gravitational. The second term is independent of details of the

higher order terms in the potential and thus fixed for all models that contain a scalar with

m2L2 = −3. Finally, notice that the combination of the Laplace operator � and the Ricci

scalar R that appears in the last term is proportional, up to an overall constant to the

conformal Laplacian.

Step 4: we have now fully determined the counterterm action necessary to cancel the

divergences of the on-shell action. In particular we will have Sct = − 1
κ2

∫

d4x
√
γ U and

therefore,

Sct =
1

κ2

∫

∂Mǫ

d4x
√
γ

{

1

L

[

3 +

(

1 +
1

log ρ

)

φ2 +
1

2
ψ2 +

1

12
(1 + 3c)ψ4 log ρ

]

+ L

[

1

4
R− 1

4
ψ

(

�− 1

6
R

)

ψ log ρ

]

− 1

16
L3

(

RijR
ij − 1

3
R2

)

log ρ

}

. (5.26)

This is our final result for the FGPW model.

As a test, we have calculated the one-point functions of the QFT operators that are

dual to the fields of the FGPW model. The one-point function of the operator dual to field

φI will be given by7

〈OφI 〉 = − lim
ρ→0

ρ−∆I/2

√
γ

δSren

δφI
, (5.27)

where the regularized action (ignoring possible finite counterterms) is

Sreg = Sbulk + SGH + Sct . (5.28)

In order to check that the expressions obtained are indeed finite, one must impose the

equations of motion on the coefficients in the Fefferman-Graham expansion of the fields.

We find that with our infinite counterterms, all three one-point functions in FGPW are

indeed finite. Details are presented in appendix C.

6 Renormalization of a dilaton-axion model

In this section we present the procedure of renormalization of a dilaton-axion model. The

purpose of this example is to illustrate how the procedure for holographic renormalization

applies to theories that include marginal scalars. Specifically, we examine the renormaliza-

tion of the dilaton-axion model previously studied in [16]: the 5d bulk action is

Sbulk = − 1

2κ2

∫

M
d4x dr

√
g
(

R[g]− Lm

)

, (6.1)

with

Lm = ∂µϕ∂
µϕ+ Z(ϕ)∂µχ∂

µχ− 12

L2
. (6.2)

The fields ϕ and χ are massless and therefore correspond to marginal QFT operators

with scaling dimension ∆ = 4. Z denotes an arbitrary function of the dilaton field ϕ. Near

7In the special case where ∆I = d/2 the one-point function has an extra factor of log ρ.
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the asymptotic boundary, these scalars generically do not vanish but instead approach a

finite value. In particular, their asymptotic behavior is given by

ϕ(x, r) = ϕ(0)(x) +O
(

e−2r/L
)

, χ(x, r) = χ(0)(x) +O
(

e−2r/L
)

. (6.3)

As a consequence, we cannot regard the effective action as a power-expansion in these

fields, as higher powers are not suppressed. Instead, we will take the Ansatz to involve

general functions of ϕ and χ.

By defining the field Φ to be Φ = (ϕ, χ) and the Kähler metric to be G =

(

1 0

0 Z(ϕ)

)

,

we conclude that the HJ equation (2.15) now becomes

R[γ] +K + p2ϕ +
1

Z(ϕ)
p2χ − γij∂iϕ∂jϕ− Z(ϕ)γij∂iχ∂jχ+

12

L2
+ 2

∂U

∂r
= 0 . (6.4)

The momenta are defined, in the usual way (2.11), as derivatives of U .

Let us now examine step-by-step the procedure introduced in the previous sections

and spot any important differences.

Step 1: with d = 4, we need to keep terms with up to four derivatives:

U = U(0) + U(2) + U(4) . (6.5)

Taking into account that any possible function of the fields could give divergent contri-

butions in the on-shell action we write the following Ansatz for the zero, two and four

derivative parts of U respectively:

U(0) = A(ϕ, χ, r) , (6.6)

U(2) = B0R+B1(∇ϕ) · (∇χ) +B2(∇ϕ)2 +B3(∇χ)2 , (6.7)

U(4) = C1R
2 + C2RijR

ij + C3R�ϕ+ C4R�χ+ C5R(∇ϕ)2 + C6R(∇χ)2 + C7R(∇ϕ) · (∇χ)

+C8R
ij∇iϕ∇jϕ+ C9R

ij∇iχ∇jχ+ C10R
ij∇iϕ∇jχ+ C11(�ϕ)2 + C12(�χ)2

+C13�ϕ�χ+ C14∇i∇jϕ∇i∇jϕ++C15∇i∇jχ∇i∇jχ++C16∇i∇jϕ∇i∇jχ (6.8)

+C17�ϕ(∇ϕ)2 + C18�χ(∇χ)2 + C19�ϕ(∇χ)2 + C20�ϕ(∇ϕ) · (∇χ)

+C21�χ(∇ϕ)2 + C22�χ(∇ϕ) · (∇χ) + C23

(

(∇ϕ)2
)2

+ C24

(

(∇χ)2
)2

+C25(∇ϕ)2(∇χ)2 + C26((∇ϕ) · (∇χ))2 + C27(∇ϕ)2(∇ϕ) · (∇χ) + C28(∇χ)2(∇ϕ) · (∇χ) .

The coefficients A, Bi and Ci are all considered functions of the radial coordinate r as well as

the fields ϕ and χ. We have omitted terms that up to total derivatives can be decomposed to

the ones already included. For example, since B�ϕ = ∇i(B∇iϕ)−∂ϕB(∇ϕ)2−∂χB(∇ϕ) ·
(∇χ), such a term can be absorbed in B1 and B2, so it is redundant to include it in the

Ansatz.

Step 2: we use equation (2.5) and the asymptotic behavior of the fields (6.3) to determine

the leading behavior of pϕ and pχ to be

pϕ = ϕ̇ = O
(

e−2r/L
)

, pχ = Z(ϕ)χ̇ = O
(

e−2r/L
)

. (6.9)
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On the other hand, our Ansatz for U(0) gives

pϕ(0) =
δU(0)

δϕ
= ∂ϕA , pχ(0) =

δU(0)

δχ
= ∂χA . (6.10)

By comparing the two sets of expressions for the momenta, we understand that the coeffi-

cient A can neither depend on ϕ nor χ, and thus pϕ(0) and pχ(0) vanish. This leaves U(0)

to be purely gravitational and thus we can use directly our result from section 3:

U(0) = − 3

L
. (6.11)

Step 3: we now proceed to solve HJ equation and determine the unknown coefficients

of our Ansatz. Since the zero-derivatives contribution has already been fixed, we start our

analysis with the two-derivative terms. At this order, the HJ equation simplifies to

R− 8

3
U(0)

(

U(2) −
1

2
Y(2)

)

− (∇ϕ)2 − Z(ϕ)(∇χ)2 + 2
∂U(2)

∂r
= 0 , (6.12)

using pϕ(0) = pχ(0) = 0. Here, Y(2) = γijY(2)ij is the trace of the tensor

Y(2)ij =
δU(2)

δγij
= B0Rij −∇i∇jB0 +�B0γij +

1

2
B1∇iϕ∇jχ

+
1

2
B1∇iχ∇jϕ+B2∇iϕ∇jϕ+B3∇iχ∇jχ .

(6.13)

After plugging everything into the HJ equation, one uses partial integration to eliminate

terms that were not in our original Ansatz and therefore were not independent. Demanding

that the coefficient of each independent term in the resulting HJ equation is zero, one finds

that the two-derivative contribution to the on-shell action is

U(2) = −L

4

[

R− (∇ϕ)2 − Z(ϕ)(∇χ)2
]

. (6.14)

For terms with four spatial derivatives equation (6.4) simplifies to

− 8

3
U(0)

(

U(4) −
1

2
Y(4)

)

+ 4Y(2)ijY
ij
(2) −

4

3

(

U(2) −
1

2
Y(2)

)2

− Y 2
(2)

+ p2ϕ(2) +
1

Z(ϕ)
p2χ(2) + 2

∂U(2)

∂r
= 0 . (6.15)

The canonical momenta that appear in this equation are

pϕ(2) =
δU(2)

δϕ
= −L

2
�ϕ+

L

4
Z ′(ϕ)(∇χ)2

pχ(2) =
δU(2)

δχ
= −L

2
�χ− L

2
Z ′(ϕ)(∇ϕ) · (∇χ) .

(6.16)

It is useful to notice that

Y(4) = γij
δU(4)

δγij
= 2U(4) + total derivatives , (6.17)
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and the complicated tensor Y(4)ij is not needed for the calculation. The total derivatives

of Y(4) will not contribute to HJ equation since they are multiplied by U(0), which is a

constant, and total derivatives can be dropped by the equation.

Demanding that the different kinds of terms that appear in the four-derivative equation

vanish independently yields the following solution for U(4):

U(4) =
L3

16

[

RijR
ij − 1

3
R2 − 2

(

Rij − 1

3
Rγij

)

(∇iϕ∇jϕ+ Z(ϕ)∇iχ∇jχ)

+

(

�ϕ− 1

2
Z ′(ϕ)(∇χ)2

)2

+ Z(ϕ)

(

�χ+
Z ′(ϕ)

Z(ϕ)
(∇ϕ) · (∇χ)

)2

+
2

3

(

(∇ϕ)2 + Z(ϕ)(∇χ)2
)2

+ 2Z(ϕ)
(

((∇ϕ) · (∇χ))2 − (∇ϕ)2(∇χ)2
)

]

log ρ . (6.18)

Step 4: this concludes the calculation of the counterterms that cancel the infinities of

the on-shell action for the dilaton-axion model. For completeness, let us write down the

general result.

Sct =
1

κ2

∫

∂Mǫ

d4x
√
γ

{

3

L
+

L

4

[

R− (∇ϕ)2 − Z(ϕ)(∇χ)2
]

− L3

16

[

RijR
ij − 1

3
R2 − 2

(

Rij − 1

3
Rγij

)

(∇iϕ∇jϕ+ Z(ϕ)∇iχ∇jχ)

+

(

�ϕ− 1

2
Z ′(ϕ)(∇χ)2

)2

+ Z(ϕ)

(

�χ+
Z ′(ϕ)

Z(ϕ)
(∇ϕ) · (∇χ)

)2

+
2

3

(

(∇ϕ)2 + Z(ϕ)(∇χ)2
)2

+ 2Z(ϕ)
(

((∇ϕ) · (∇χ))2 − (∇ϕ)2(∇χ)2
)

]

log ρ

}

. (6.19)

This result for the counterterms agrees with the one found by a more complicated route

in [16].

7 Discussion

We have presented a simple implementation of the Hamiltonian approach to holographic

renormalization. The idea of using the Hamilton-Jacobi equation is not new, but we hope

that our presentation and algorithm makes the method more accessible and useful for

others to use. For our own purposes, it has shown great value in the application to the

holographic renormalization of a 10 scalar model dual to N = 1∗ gauge theory on S4, an

analysis that will be presented elsewhere [20].

Determining the infinite counterterms is typically only one part of holographic renor-

malization. One often needs the finite counterterms too, but just as in standard quantum

field theory, this typically amounts to being a scheme-dependent question. However, in the

presence of supersymmetry, one can fix the finite counterterms to be compatible with the

supersymmetries in the problem. In the case of flat-sliced domain walls, this can be done

using the Bogomolnyi-trick of writing the bulk action in terms of sums of squares that each

vanish on the BPS equations. This rewriting requires a partial integration that leaves a
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boundary term that exactly becomes the counterterm action and encodes both infinite and

finite counterterms. In the case of non-flat slicing, one can then argue that the universality

of the counterterms allows one to pick the finite counterterms of the flat-space Bogomolnyi

boundary term and use them in conjunction with the more general infinite counterterms dis-

cussed in this paper. This has worked successfully in several cases, for example [18] and [25].

The prescriptions does, however, have a bit of an ad hoc feel to it and it would be interesting

to understand better the relationship between the BPS equations for curved domain walls

and how/if they can be used to determine directly the infinite and finite counterterms.
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A Some useful formulas

We present here a list of formulas that are useful to computing the metric variations of

various contractions of curvature tensors:
∫

ddx
√
γ X

δR

δγij(y)
=
√
γ
(

RijX + (�X)γij −∇i∇jX
)

, (A.1)

∫

ddx
√
γ X

δ(RklR
kl)

δγij(y)
=
√
γ
(

2RikR
k
jX +∇k∇l(XRkl)γij +�(XRij)− 2∇k∇i(XRkj)

)

, (A.2)

∫

ddx
√
γ X

δRk
mln

δγij(y)
=
√
γ

(

− 1

2
∇m∇lXγinδ

k
j − 1

2
∇n∇lXγjmδki +

1

2
∇k∇lXγimγjn

)

, (A.3)

∫

ddx
√
γ X

δ�Y

δγij(y)
=
√
γ

(

X∇i∇jY +∇i(X∇jY )− 1

2
∇k(X∇kY )γij

)

+

∫

ddx
√
γ�X

δY

δγij(y)
. (A.4)

The fields on the r.h.s. of these equations depend on y.

B Six derivative counterterms for pure gravity

In d = 6 dimensions one needs to consider counterterms with up to six derivatives. For the

pure gravity case, the six-derivative Ansatz is given by equation (3.4). In this Ansatz, it is

possible to include terms with contractions of two or three Riemann tensors, but it is easy

to show that the coefficients of such terms will be zero.

The HJ equation at six-derivative order becomes

K(6) + 2
∂U(6)

∂r
= 0 . (B.1)
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The total derivatives of Y(4)ij that appear in K(6) are now important because they are

multiplied by the non-constant Y(2)ij = BRij . In particular, we have that

Y(4)ij = C1

(

2RklRikjl +
1

2
�Rγij +�Rij −∇i∇jR

)

+ C2

(

2RRij + 2�Rγij − 2∇i∇jR

)

.

(B.2)

The coefficients B and C1,2 are those calculated in section 3. Additionally, in the product

Y(2)ijY
ij

(4) , terms proportional to Rij∇i∇jR can be changed to R∇i∇jR
ij = 1

2R�R by

adding appropriate total derivatives and using the Bianchi identity. Finally, by using the

variation rules of appendix A, one realizes that Y(6) = 3U(6) up to total derivative terms

that can be ignored because Y(6) is only multiplied by the constant U(0). Putting everything

together and demanding that the coefficient of each of the independent terms is zero gives

differential equations for the coefficients D1,2,3,4,5,6:

R3-terms: Ḋ1 +
d− 6

L
D1 −

dL4

16(d− 1)2(d− 2)3
= 0 ,

RRijR
ij-terms: Ḋ2 +

d− 6

L
D2 +

L4

4(d− 1)(d− 2)2(d− 4)
= 0 ,

R j
i R

k
j R i

k -terms: Ḋ3 +
d− 6

L
D3 = 0 ,

RijRklRikjl-terms: Ḋ4 +
d− 6

L
D4 +

2L4

(d− 2)3(d− 4)
= 0 ,

R�R-terms: Ḋ5 +
d− 6

L
D5 −

L4

4(d− 1)(d− 2)3(d− 4)
= 0 ,

Rij�Rij-terms: Ḋ6 +
d− 6

L
D6 +

L4

(d− 2)3(d− 4)
= 0 .

(B.3)

Keeping only divergent contributions from the solutions of these equations, we obtain the

result (for d = 6)

U(6) = −L4r

128

(

Rij�Rij − 1

20
R�R+ 2RijRklRikjl +

1

5
RRijR

ij − 3

100
R3

)

. (B.4)

C One-point functions

In this appendix we calculate the one-point functions for the quantum field theory op-

erators dual to the fields of the FGPW model and explicitly check that the counterterm

contributions cancel the divergences that come from the bulk action. One may consider

three different one-point functions, 〈Oφ〉, 〈Oψ〉 and 〈Tij〉, where the QFT operators Oφ/ψ

are dual to the bulk fields φ/ψ respectively and the QFT energy-momentum tensor Tij is

dual to the metric γij .

These one point functions can be calculated by variations of the renormalized action

Sren = lim
ρ→0

Sreg = lim
ρ→0

(Sbulk + SGH + Sct) , (C.1)
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where the regularized action Sreg is the sum of the bulk action (5.1), the Gibbons-Hawking

boundary term, and the counterterm action (5.26). In particular, the three correlation

functions are given by:

〈Oφ〉 = − lim
ρ→0

log ρ

ρ

1√
γ

δSreg

δφ
, 〈Oψ〉 = − lim

ρ→0

1

ρ3/2
1√
γ

δSreg

δψ
, 〈Tij〉 = − lim

ρ→0

1

ρ

2√
γ

δSreg

δγij
.

(C.2)

The variation of the bulk action gives only a boundary term since the rest of the contribu-

tions are set to zero by the equations of motion. Namely, one gets

δSbulk

δφ
=

1

κ2
√
γ

(

− 2

L
ρ∂ρφ

)

,

δSbulk

δψ
=

1

κ2
√
γ

(

− 2

L
ρ∂ρψ

)

,

δSbulk

δγij
=

1

2κ2
√
γ
ρ

L

(

∂ργij − γmn∂ργmnγij
)

. (C.3)

On the other hand, the variation of the counterterm action has been already calculated

during the renormalization process and it is related to the conjugate momenta of the fields:

δSct

δφ
= −πφ = − 1

κ2
√
γpφ ,

δSct

δψ
= −πψ = − 1

κ2
√
γpψ ,

δSct

δγij
= −πij = − 1

κ2
√
γ

(

Yij −
1

2
Uγij

)

. (C.4)

After putting everything together, the following expressions are obtained:

〈Oφ〉=− 1

κ2
lim
ρ→0

log ρ

ρ

[

− 2

L
ρ∂ρφ+

2

L

(

1 +
1

log ρ

)

φ

]

, (C.5)

〈Oψ〉=− 1

κ2
lim
ρ→0

1

ρ3/2

[

− 2

L
ρ∂ρψ+

1

L
ψ+

(

1

3L
(1+3c)ψ3−L

2

(

�− 1

6
R

)

ψ

)

log ρ

]

, (C.6)

〈Tij〉=− 1

κ2
2

ρ

[

1

2L
ρ (∂ργij − γijγ

mn∂ργmn)− Yij +
1

2
Uγij

]

, (C.7)

with

Yij =
L

4
Rij +

[

L

24
(Rijψ

2 + 4∇iψ∇jψ − 2ψ∇i∇jψ − (∇ψ)2γij − ψ�ψγij)

+
L3

96
(4RRij − 12RklRkilj +�Rγij + 2∇i∇jR− 6�Rij)

]

log ρ , (C.8)

and U as calculated in section 5.

To determine whether the above expressions are finite, one has to use the Fefferman-

Graham expansions for the metric and the scalar fields of the theory:

γij=
1

ρ
γ(0)ij +

(

γ(2)ij + γ(2,1)ij log ρ
)

+ ρ
(

γ(4)ij + γ(4,1)ij log ρ+ γ(4,2)ij log
2 ρ

)

+O(ρ2) (C.9)
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ψ=ρ1/2ψ(0) + ρ3/2
(

ψ(2) + ψ(2,1) log ρ
)

+O(ρ5/2) (C.10)

φ=ρ
(

φ(0) + φ(0,1) log ρ
)

+O(ρ2) (C.11)

Notice that for the special case of the φ-field there is a logarithmic term even in leading

order in ρ. (This is generally true for all fields with scaling dimension ∆ = d/2.) All the

coefficients of the above expansions can be determined in terms of γ(0)ij , γ(4)ij , φ(0), φ(0,1),

ψ(0) and ψ(2) using the equations of motion for the fields and the metric. These undeter-

mined coefficients encode information about the boundary QFT. Namely, the leading order

coefficients φ(0,1) and ψ(0) are related to the source of the respective QFT operators, while

coefficients φ(0) and ψ(2) are related to their vev rate. Additionally, the leading coefficient

γ(0)ij in the expansion of γ is the background metric of the boundary QFT. Finally, al-

though γ(4)ij is not fully determined, its trace and covariant divergence can be related to

the other expansion coefficients using Einstein’s equation.

The substitution of the expansion (C.11) for φ into 〈Oφ〉 directly leads to cancellation

of all of the divergences, without using the equations of motion, and the result is

〈Oφ〉 = − 1

κ2
2

L
φ(0) . (C.12)

Plugging the expansion (C.10) for ψ into 〈Oψ〉 leads to direct cancellation of the

divergent terms in leading order, i.e. those proportional to 1/ρ, however, a logarithmic

divergence remains:

〈Oψ〉 =
1

κ2

(

2

L
ψ(2) +

2

L
ψ(2,1)

)

+
1

κ2
lim
ρ→0

[

2

L
ψ(2,1) −

1

3L
(1 + 3c)ψ3

(0) +
L

2

(

�(0) −
1

6
R(0)

)

ψ(0)

]

log ρ , (C.13)

where R(0) ≡ R[γ(0)] is the Ricci scalar obtained by the metric γ(0) and

�(0)ψ(0) ≡
1

√
γ(0)

∂i

(

√

γ(0)γ
ij
(0)∂jψ(0)

)

. (C.14)

In order to see the desired cancellations, one has to calculate the expansion coefficient ψ(2,1)

via the equation of motion for the field ψ,

L2
�γψ + 4ρ2∂2

ρψ + 4ρ∂ρψ + 2ρ2∂ρψTr(γ−1∂ργ) + 3ψ − 2cψ3 = 0 . (C.15)

By the asymptotic expansions for ψ and the metric, the terms proportional to ρ3/2 give

ψ(2,1) = −1

4

(

L2
�(0) +Tr(γ−1

(0)γ(2))− 2cψ2
(0)

)

ψ(0) . (C.16)

Finally, γ(2) is determined using Einstein’s equation:

Rµν [g] = ∂µφ∂νφ+ ∂µψ∂νψ +
1

3L2
V (φ, ψ)gµν . (C.17)

The ij component of this equation is

L2Rij [γ] = 2ρ2∂2
ργij + 2ρ∂ργij + ρ2Tr(γ−1∂ργ)∂ργij − 2ρ2γmn∂ργmi∂ργnj (C.18)
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− 1

2
ρ2Tr(γ−1∂ργ

−1∂ργ)γij + ρ2Tr(γ−1∂2
ργ)γij + ρTr(γ−1∂ργ)γij

+ L2∂iφ∂jφ+ L2∂iψ∂jψ + 2ρ2(∂ρψ)
2γij + 2ρ2(∂ρψ)

2γij +
2

L2
V (φ, ψ)γij .

Expanding it and keeping terms up to O(1) one finds

γ(2)ij = −L2

2

(

R(0)ij −
1

6
R(0)γ(0)ij

)

− 1

6
ψ2
(0)γ(0)ij . (C.19)

Now using these results for ψ(2,1) and γ(2) in 〈Oψ〉 exactly cancels the logarithmic term and

gives the following finite result for the one-point function:

〈Oψ〉 =
1

κ2

[

2

L
ψ(2) −

L

2

(

�(0) −
1

6
R(0)

)

ψ(0) +
1

3L
(1 + 3c)ψ3

(0)

]

. (C.20)

A similar approach leads to the renormalized one-point function for the energy-

momentum tensor. A direct substitution of the asymptotic expansions in equation (C.7)

leads to the cancellation of the leading O(ρ−2) divergences. However, the remaining diver-

gences can be canceled only after solving Einstein’s equation for γ(4,1) and γ(4,2). Terms

proportional to ρ log ρ give

γ(4,2)ij = −1

6
φ2
(0,1)γ(0)ij , (C.21)

while terms proportional to ρ give

γ(4,1)ij =
L4

8

(

Rkl
(0)R(0)ikjl −

1

3
R(0)R(0)ij

)

− L4

32

(

Rkl
(0)R(0)kl −

1

3
R2

(0)

)

γ(0)ij

+
L4

16

(

�(0)R(0)ij −
1

3
∇i∇jR(0) −

1

6
�(0)R(0)γ(0)ij

)

+
L2

4
ψ(0)

(

1

3
∇i∇j +

1

6
γ(0)ij�(0) −

1

6
R(0)ij

)

ψ(0)

− L2

6

(

∇iψ(0)∇jψ(0) −
1

4
γkl(0)∇kψ(0)∇lψ(0)γ(0)ij

)

− 1

24
(1 + 3c)ψ4

(0)γ(0)ij −
1

3
φ(0)φ(0,1)γ(0)ij .

(C.22)

Then, the renormalized energy momentum tensor will be given by:

〈Tij〉 = − 2

L
γ(4)ij −

1

L

(

1

3
φ2
(0) − φ(0)φ(0,1) +

2

3
φ2
(0,1) −

1

72
(1− 3c)ψ4

(0) + ψ(0)ψ(2)

)

γ(0)ij

+
L

8

(

γkl(0)∇kψ(0)∇lψ(0) + ψ(0)

(

�(0) −
1

9
R(0)

)

ψ(0)

)

γ(0)ij

− L

4
ψ(0)

(

∇i∇j −
1

2
R(0)ij

)

ψ(0) +
L3

32

(

R(0)klR
kl
(0) +

1

9
R2

(0) +�(0)R(0)

)

γ(0)ij

+
L3

4

(

R k
(0)i R(0)kj −

3

2
Rkl

(0)R(0)ikjl +
1

4
∇i∇jR(0) −

3

4
�(0)R(0)ij

)

. (C.23)
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The trace of the stress-tensor one-point function gives a much simpler expression, since the

trace Tr(γ−1
(0)γ(4)) can be obtained from the ρρ component of Einstein’s equation, which

gives

ρ2Tr(γ−1∂ργγ
−1∂ργ)−2ρ2Tr(γ−1∂2

ργ)−2ρTr(γ−1∂ργ) = (2ρ∂ρφ)
2+(2ρ∂ρψ)

2+
L2

3
V (φ, ψ) .

(C.24)

Keeping only terms of order O(ρ2) in this yields

Tr(γ−1
(0)γ(4)) =

L4

16

(

R(0)ijR
ij
(0) −

2

9
R2

(0)

)

− L2

8
ψ(0)

(

�(0) −
5

18
R(0)

)

ψ(0)

− 1

3
(2φ2

(0) + φ2
(0,1)) +

1

9

(

1 +
3

2
c

)

ψ4
(0) − ψ(0)ψ(2) .

(C.25)

After plugging in the above result the trace anomaly becomes

〈T i
i 〉 =

1

L

(

4φ(0)φ(0,1) − 2φ2
(0,1) −

1

6
(1 + 3c)ψ4

(0) − 2ψ(0)ψ(2)

)

+
L

2

(

ψ(0)�(0)ψ(0) + γij(0)∂iψ(0)∂jψ(0)

)

− L3

8

(

R(0)ijR
ij
(0) −

1

3
R2

(0)

)

. (C.26)

It must be mentioned that the above results for the one-point functions are true only

up to contributions from finite counterterms in the action.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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