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1 Introduction

The family problem, repeating fifteen chiral fields three times in the standard model (SM),

has been known for almost four decades without an accepted theory so far. One family

consists of fifteen chiral fields. In the Georgi-Glashow(GG) grand unification(GUT) model,

the fifteen chiral fields in the first family are grouped into 10 (uc, u, d, e+) and 5 (dc, νe, e)

of SU(5)GG [1]. The family problem posited in GUTs is how 10+ 5 repeats exactly three

times in an extended GUT. The gauge coupling unification [2] is the underlying principle

for a GUT. A gauge model based on a simple group is a GUT. A gauge model based on a

semi-simple group rendering one coupling constant (by some discrete symmetry) is a GUT

also [3].
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A chiral model with fifteen fields in a GUT is achieved by assigning fifteen in some

complex representation of a GUT gauge group. Toward a solution of the family problem,

Georgi formulated a principle on the unification of GUT-families with gauge groups contain-

ing SU(5) as a subgroup [4]. Absence of gauge anomaly is required. Then, any gauge group

except SU(N) can be used for a GUT if they allow complex representations. In this try of

anomaly-free groups, SO(2N) with N = 2n + 1 allows complex representaions which are

spinors of SO(2N). The simplest case is SO(10) where the fifteen chiral fields plus a singlet

neutrino are assigned in the spinor 16 [5, 6]. It is one family model. One may try SO(12)

which however is not considered to be complex because the spinor 32 branches to 16 and 16

of SO(10). So, the next step is a two family model where the spinor 64 of SO(14) is used [7,

8] where however non-standard charges must appear.1 If we exclude the possibility beyond

the SM charges, 64 of SO(14) is vectorlike and no chiral family is obtained. A scheme

toward unification of GUT-families (UGUTF) came to a dead end within SO(2N) groups.

To open a gate from the dead end alley toward the meadow, Georgi proposed UGUTFs

in SU(N) groups [4], where the condition on the anomaly-freedom plays a central role.

There have been some attempts along this line [11, 12]. After the string revolution with

heterotic strings [13], the low energy gauge groups and spectra are computed through the

compactification process [14–16], and UGUTFs did not attain much interest because three

SM families could have been obtained through the compactification process [17, 18]. In

this string scenario, the compactification schemes (such as orbifolds) basically choose what

is the number of families. The drawback is that there are too many parameters to predict

the fermion mass spectra.

In this paper, we attempt to realize Georgi’s UGUTFs in string compactification. If

possible, we will try to introduce some structure among three families so that the difference

of the third family from the the first two is understood. Among heterotic strings, usually

the E8 × E′
8 hetrotic string has been used because it contains spinors in the adjoint rep-

resentation 248 of E8. Then, the E8 × E′
8 heterotic string has been favored subconciously

because of the embedding chain of the SO(10) spinor 16 in SO(10)→E6 →E7 →E8. But,

the SO(32) hetrotic string is also useful for phenomenology as we will briefly argue in this

paper. The most severe obstacle in obtaining a realistic SU(5) GUT from heterotic string

has been the difficulty, at the level 1 construction, of obtaining the adjoint representation

24 of SU(5) which is needed to break SU(5) down to the SM gauge group.

The first example without an adjoint representation for the Brout-Englert-Higgs(BEH)

boson can be traced back to anti-SU(7) where antisymmetric tensor fields for BEH bosons,

denoted as two and three index anti-symmetric tensor fields, Φ[αβ], Φ[αβ], Φ
[αβγ], and

Φ[αβγ], are used to reduce the rank of the SU(7)×U(1) GUT gauge group and separate

the color and the weak parts [7, 8].2 The sixteen chiral fields of the first family are grouped

into 101 (d
c, u, d,N0

1 ) and 5−3 (d
c, νe, e) and e+5 in SU(5)flip. The structure is included in

SU(7)anti2. If it is applied to SO(2N) gauge groups, we can call it anti-SU(N) where anti

means that separation of color SU(3)c from weak SU(2)W is by the anti-symmetric tensor

1There can exist a missing partner mechanism in this model, however, with certain assumptions. This

was emphasized in [9]. Later, it was worked out in SO(10) [10], which is basically anti-SU(5)=SU(5)flip.
2The acronym anti- was used in ref. [19] as anti-SU(5).
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fields instead of the adjoint representation. For N = 5, it is now known as the flipped

SU(5) [20]. It is obvious that the essential feature is included in the word ‘anti-SU(N)’.

Anti-SU(5) GUTs were obtained in string compactification [21, 22]. But, SU(5) GUTs are

not UGUTFs.

In addition to the restriction on the number of families for nf = 3, the R-parity is

used for proton longevity and weakly interacting massive particle possibility for cold dark

matter candidate. The R-parity can be a discrete subgroup of a U(1) gauge group which

has been discussed in ref. [23, 24]. Another issue in supersymmetric GUTs is the problem

of doublet-triplet splitting in the BEH multiplets containing Hu and Hd. We will realize

the doublet-triplet splitting mechanism in SU(7)anti2 anticipated in ref. [9].

In section 2, we recapitulate the old UGUTF scenario, and continue in section 3 to

present a rationale that anti-SU(N)s are theories for UGUTFs. In section 4, we summarize

an SU(7) realization of UGUTF in the Z12−I orbifold compactification. Here, we present

some details on how the massless spectra are obtained in Z12−I so that line by line can

be followed up in other orbifold constructions. We also point out how the missing-partner

mechanism is realized in SU(7)anti2. Section 5 is a conclusion. In appendix, we present the

spectra not included in section 4.

2 Families unified in grand unification

Let the fundamental representations (or anti-symmetric representations) of SU(N) are

bounded by square brackets. Representations [1] and [2] have the following matrix forms,

[1] ≡ Φ[A] =













































α1

α2

α3

α4

α5

f6
·

·

·

fN













































, [2] ≡ Φ[AB] =









































0, α12, · · · , α15

∣

∣

∣
ǫ16, · · · , ǫ1N

−α12, 0, · · · , α25

∣

∣

∣ ǫ26, · · · , ǫ2N

· · · ·
∣

∣

∣ · · ·

· · · α45

∣

∣

∣ · · ·

−α15, −α25, · · · , 0
∣

∣

∣
ǫ56, · · · , ǫ5N

−ǫ16, −ǫ26 · · · , −ǫ56

∣

∣

∣
0, · · · , β6N

· · · ·
∣

∣

∣
· · ·

−ǫ1N , −ǫ2N · · · , −ǫ5N

∣

∣

∣
−β6N , · · · , 0









































(2.1)

where [1] means the dimension N, [2] means the dimension
(

N(N−1)
2!

)

with two antisym-

metric indices, [3] means the dimension
(

N(N−1)(N−2)
3!

)

with three antisymmetric indices,

etc. We do not consider the symmetric indices such as {2}
(

= N(N+1)
2!

)

because they will

contain color sextets. [1] contains one 5, and [2] contains one 10 of SU(5). The number

of the SU(5)GG families, i.e. that of 10 plus 5, is counted by the number of 10 minus the

number of 10. The anomaly-freedom condition chooses the matching number of 5’s. The

numbers n1 and n2 for the vectorlike pairs n1(5⊕ 5) + n2(10 ⊕ 10) are not constrained
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by the anomaly freedom. Thus, we count the number of families just by the net number

of two index fermion representations in the SU(5)GG subgroup. For several SU(N)’s, we

have the following family number nf by counting the number of 10’s,

SU(5) : [2] → nf = 1

SU(6) : [3] → nf = 0, [2] → nf = 1

SU(7) : [3] → nf = 1, [2] → nf = 1

SU(8) : [4] → nf = 0, [3] → nf = 2, [2] → nf = 1

SU(9) : [4] → nf = 5, [3] → nf = 3, [2] → nf = 1

SU(11) : [5] → nf = −5, [4] → nf = 9, [3] → nf = 5, [2] → nf = 1

(2.2)

from which we define [m] = [N − m]. Negative nf gives the chiral family number |nf |,

which is also allowed. The anomaly units in SU(N) are

A([m]) =
(N − 3)!(N − 2m)

(N −m− 1)!(m− 1)!
,

A([1]) = 1, A ([2]) = N − 4, A ([3]) =
(N − 3)(N − 6)

2
, etc.

(2.3)

where m ≥ 1. For [m̄], we use A([m̄]) = −A([m]). From now on, we frequently use the

indices to represent the antisymmetric [m] in terms of Ψ[α1,··· ,αm] where α1, α2, · · · , and

αm are completely antisymmetrized.

Theory of families in GUTs does not allow repetition of the representation and gauge

anomalies [4]. I. I. Rabi’s terse question, “Who ordered that?” quipped after the 1936

discovery of muon, eloquently states the essence of the family problem. Let the matter

representation be

M =

[N/2]
∑

i=1

ci[ i ] +

[N/2]
∑

j=1

c̄j [ j̄ ]− c̄N/2[N/2]δN/2,integer . (2.4)

where the elements of the integer set {ci, c̄j} do not have a common divisor. For three

standard families of Georgi-Glashow GUT SU(5)GG, Georgi required that all integers are 1

and found an SU(11) unification of three SU(5)GG families [4], which was the first exampe

of UGUTF. Allowing possiblities of ci > 1 and c̄j > 1 but requiring no common divisor for

all of them is a non-repetition of a set, which is a reasonable requirement for a solution

of the family problem. Then, there are many possibilities [25]. If one requires renormaliz-

able Yukawa couplings, in addition, with one irreducible type of representation containing

the BEH doublet, an SU(9) model seems minimal [12]. However, at the GUT scale it

is possible to have some Planck mass suppressed nonrenormalizable Yukawa couplings.

Thus, constraining models by renormalizable couplings is not warranted at this stage. The

minimal chiral choice plus vectorlike representations for UGUTF by the rules of (2.2) is

SU(8) : [3]⊕ [2]⊕ 9 [1̄]⊕ n1([1]⊕ [1̄])⊕ n2([2]⊕ [2̄]) + · · · . (2.5)

SU(7) : [3]⊕ 2 [2]⊕ 8 [1̄]⊕ n1([1]⊕ [1̄])⊕ n2([2]⊕ [2̄]) + · · · . (2.6)
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where ni 6= 0 for i = 1, 2 are needed for the BEH mechanism. For eq. (2.5) the number of

non-singlet chiral fields is 156, while for eq. (2.6) the number of non-singlet chiral fields is

133. In this sense, eq. (2.6) is the minimal model.

2.1 Anti-SU(N)’s and SO(32) heterotic string

By the rules of (2.2), an SU(7) model with [3̄] ⊕ [2] ⊕ [1̄] of ref. [7] cannot be a theory

of UGUTF because family numbers in eqs. (2.2) do not allow funnily charged quarks and

leptons. But it contains the key feature we explore in this paper. Spinor representations

of SO(4n + 2) can be complex and the next possibility beyond spinor 16 of SO(10) is

spinor 64 of SO(14) which contains the SU(7) model with [3̄]⊕ [2]⊕ [1̄]. Under the SU(7)

antisymmetric-tensor notation, it is Ψ[αβγ] ⊕ Ψ[αβ] ⊕ Ψ[α] [7]. It was the first example of

anti-SU(N) where antisymmetric tensor BEH bosons, Φ[αβ], Φ[αβ], Φ
[αβγ], and Φ[αβγ] are

used to reduce the rank of the GUT gauge group. It allows two quark families and three

lepton families, but it had a drawback due to the appearance of non-standard quarks and

a doubly charged lepton. Note here that the rank 2n+1 of SO(4n+2) is reduced down to

the rank 2n via the vacuum expectation values (VEVs) of Φ[αβ] and Φ[αβ] representations

of the SU(2n+ 1)×U(1) subgroup of SO(4n+ 2).

Following the philosophy of ref. [7], we define SU(N)×U(1) subgroups of SO(2N) by

SU(N)anti2, SU(N)anti3, SU(N)anti4, etc., which means that the spontaneous symmetry

breaking of SO(2N) takes the SU(N)×U(1)2,3,4 subgroup route if Φ[AB], Φ[ABC], Φ[ABCD]

are used for the BEH bosons, respectively. The symmetry breaking of ref. [7] was the inter-

section of SU(7)anti2 and SU(7)anti3. In this language, SU(5)flip is identical to SU(5)anti2,

since there is no higher order anti-symmetric tensor field beyond Φ[AB] for N = 5.3 In

this vain, we can define SU(N)GG as the symmetry breaking route of the BEH field ΦA
B of

SU(N)×U(1) subgroup of SO(2N).

It looks like that the SM families are only possible from the spinor of SO(10), which

has been a reason for a GUT extension chain, containing the spinor 16 of SO(10),

SO(10) → E6 → E7 → E8, (2.7)

or

SO(10) → SO(12) → SO(14) → SO(16) · · · (2.8)

Of course, SO(2N) contains spinors, and spinors for N > 5 can produce 16’s of SO(10).

In string theory, gauge groups E8 × E′
8 and SO(32) are allowed only with their adjoint

representations. This observation did not favor the SO(32) hetrotic string theory for the

realistic purpose of obtaining 16 of SO(10), because the adjoint representation of SO(32)

cannot produce any spinor representation in its subgroups.

Because no non-SM charges have been found up to the TeV scale, the SU(5)anti2 rather

than [3̄] ⊕ [2] ⊕ [1̄] in SU(7) seems to contain some truth in it. But, for a UGUTF one

should consider groups larger than SO(10). Here, we go beyond the SU(5)anti2. Then, we

can use anti-SU(N)’s for a theory of UGUTF. In particular, GUT symmetry breaking is

easier in supersymmetric GUTs if we assign VEVs to Φ[45] (= α45 of eq. (2.1)) and Φ[45],

3In ref. [19], SU(5)flip was called anti-SU(5).
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i.e. in SU(N)anti2. In addition, the flipped SU(5) GUTs have been obtained from string

compactification [21, 22]. These string-derived anti- or flipped- SU(5)’s are assuming the

symmetry breaking chain through the SO(10) route assuming the appearance of the spinor

16, but the SO(10)-spinor chain is not possible in eq. (2.2). Therefore, for UGUTFs we

follow the extension chain

SU(5) → SU(6) → SU(7) → SU(8) → SU(9)

{

→ E8

→ SO(18) → · · · → SO(32).
(2.9)

In these chains, we do not follow the groups allowing only spinor representations. So,

anti-SU(N) by anti-symmetric tensor fields [7] is the key in string compactification. The

UGUTF of eq. (2.6) may be obtained in this way.

The SO(32) heterotic string is useful for phenomenology and UGUTF. Symmetry

breaking of SO(32) through SU(N)anti2 is possible because 496 of SO(32) contains the

following SU(16) representations

ΦA
B ⊕ Φ[AB] ⊕ Φ[AB], (A,B = 1, 2, · · · , 16), (2.10)

whose dimensions are (N2 − 1), N(N−1)
2 , and N(N−1)

2 , respectively, of its SU(16) subgroup.

In the orbifold compactification of SO(32), it will be easy to realize the representation

Φ[AB] and Φ[AB] even at level 1, and the key UGUTF breaking, i.e. the separation of color

SU(3)c and weak SU(2)W , to the SM is possible by 〈Φ[45]〉 and 〈Φ[45]〉 of eq. (2.1). Because

we allow only the SM fields, the fundamental representations Φ[A] and Φ[A] are also used

to reduce the rank further by the VEVs at the locations f6, · · · , fN of eq. (2.1).

3 Toward a theory of family uniflication in orbifold compactification

As noted in the previous section, a minimal UGUTF needs a GUT allowing SU(7) as a sub-

group. Compactification of heterotic string frequently needs an anti-SU(N) or SU(N)anti2.

The E8 × E′
8 heterotic string allows the rank 8 SU(9) which is considered to be a subgroup of

E8. We will try to realize eq. (2.6) from the string compactification. In addition, no degen-

eracy between families is left below the compactification scale. This means that we will in-

troduce all the needed Wilson lines. As we will see, it is more difficult to obtain multi-index

tensor fields in the twisted sectors. In particular, the three-index tensor field Ψ[ABC] cannot

be obtained in the twisted sectors. So, Ψ[ABC], if they appear, is required to come from U .

In table 1, we list the number of fixed points for the non-prime orbifolds. For example,

the cental number in Z6−II and Z12−I are 2 and 4, respectively, which mean that they have

Z6/2 and Z12/4 symmetries, i.e. both have the Z3 symmetry in the second torus. They cor-

respond to the gauge group phase in the untwisted sector matter P ·V = 2
6 and 4

12 , respec-

tively, and the untwisted sector multiplicity is 3. This is the easiest way to obtain three fam-

ilies from the U sector, i.e. 3 (10⊕5). In this case, the three families are not distinguished,

and there must be an S3 discrete symmetry. It may be broken by Higgsing at a GUT scale.

Here, we do not follow this line of argument because there are too many possibilities.

If Ψ[ABC] appears from U , its multiplicities can be 1, 2, 3, or 4. Always, p · V = 1
N

gives the multiplicity 1 except in Z4. In Z4 (entries 1) and Z8−I (entry 2), they give Z4

– 6 –
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Order N φs φ2
s No. of fixed points

4 1
4(2 1 1) 3

8 16

6-I 1
6(2 1 1) 1

6 3

6-II 1
6(3 2 1) 14

36 12

8-I 1
8(3 2 1) 14

64 4

8-II 1
8(4 3 1) 26

64 8

12-I 1
12(5 4 1) 42

144 3

12-II 1
12(6 5 1) 62

144 4

Table 1. Number of fixed points of non-prime orbifolds.

Ui Number of10 s Tensor form Chirality [pspin] (pspin · φs)

U1 (p · V = 5
12) 1 Ψ[ABC] R [⊕; + + +]

(

+5
12

)

U2 (p · V = 4
12) 3 Ψ[ABC] L [⊖; + +−]

(

+4
12

)

U3 (p · V = 1
12) 1 Ψ[ABC] L [⊖; +−+]

(

+1
12

)

Table 2. Number of 10’s from SU(7)anti2 in Z12−I , and chirality for P · V = φs · s with φs =

( 5
12 ,

4
12 ,

1
12 ) and even number of minuses from s = (⊖ or ⊕;±,±,±). For example, s = (⊕; + + +)

gives chirality R for P · V = pspin · φs =
5
12 .

which leads to multiplicity 2. In Z6−I (entry 2),Z6−II (entry 2) and Z12−I (entry 4), they

give Z3 which leads to multiplicity 3. In Z4 (entry 2),Z6−II (entry 3),Z8−II (entry 4) and

Z12−II (entry 6), they give Z2 which leads to multiplicity 4.

As an example, we show the U sector multiplicity of Ψ[ABC] in Z12−I in table 2. If it

is the representation of an SU(8) GUT, then there are two 10’s (due to eq. (2.2)) from U .

If it is the representation of an SU(7) GUT, then there is a possibility of one 10 from U .

Thus, we choose SU(7)anti2. The remaining 10’s of SU(5), i.e. 21’s of SU(7)anti2, come from

the twised sectors. However, it is not so easy to obtain two Ψ[AB]’s of SU(7)anti2 from T .

Summarizing the method to obtain three 10’s from SU(7)anti2,

1. Matter representationΨ[ABC] (A=1, 2, · · · , 7) must be present in the untwisted sector.

2. Matter Ψ[AB] must not appear in the untwisted sector.

3. Matter Ψ[AB] must be present in a twisted sector with the chirality that of Ψ[ABC].

(3.1)

Matter in the untwisted sector Ui occurs with P · V = Ni
N . For example, Ni = 5, 4, 1 for

Z12−I is shown in table 1. In addition, one matter Ψ[ABC] is allowed only in U1 and U3 in

Z12−I . We require that it has the spinor form, by choosing an appropriate V ,

p · V =
1

12
, U3 :(−−−−+++;+)(08)′,

p · V =
5

12
, U1 :(−−−−+++;+)(08)′,

(3.2)
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where the underline means permutations. Here, the torus or untwisted sector are called U3

and U1, respectively. Their CTP conjugates also appear in U as (−−−++++;−)(08)′.

Representations (3.2) satisfies Condition 1. To satisfy Condition 2, Wilson lines can be

used if needed.

Condition 3 requires a full construction method. Ψ[AB] located in a twisted sector is

the key part in this paper. In the ZN orbifold, multiplicities in the k-th twisted sector Pk

need to be calculated, which is given by4

Pk =
1

N

[N/2]
∑

l=0

χ̃(θk, θl)ei 2πlΘ0 , (3.3)

where Θ0 will be defined later. The chirality is given by the first entry of s, denoted as L-

or R- movers, with the even number of total ‘−’s,

s = (s0; s̃) = (⊖ or ⊕ ;±,±,±). (3.4)

In table 3, multiplicities are presented for Z6,Z8 and Z12 orbifolds. The multiplicities

in TN/4 are colored red. Matter Ψ[AB] can appear, if they do, only at TN/4. From the

red numbers in table 3, we note that Z8−II and Z12−I are the only allowed possibilities of

obtaining multiplicity 2 at TN/4, due to the large vacuum energy 2c̃N/4 =
13
8 , as presented

below in eqs. (3.14) and (3.15). In other models, it is impossible to house Ψ[AB]. Out

of Z8−II and Z12−I , we choose the simpler case Z12−I because we need to specify only

one Wilson line. Note that in Z8−II one has to specify two Wilson lines to specify the

model completely without degeneracy. Then, at TN/4, we must obtain two Ψ[AB]’s. This

condition is very restrictive and may rule out the Z12−I possibility. Luckily, we find a

model, satisfying this condition.

In the twisted sector, the masslessness conditions are satisfied for the phases con-

tributed by the left- and right-movers [22],

2N j
Lφ̂j + (P + kV ) · V −

k

2
V 2 = 2c̃k, L movers, (3.5)

2N j
Rφ̂j − s̃ · φs +

k

2
φ2
s = 2ck, R movers, (3.6)

where j denotes the coordinate of the 6-dimensional compactified space running over

{1, 1̄}, {2, 2̄}, {3, 3̄}, and φ̂j = φj
s · sign(φ̃j) with sign(φj̄) = −sign(φ̃j). In calculating

the multiplicities in Eq, (3.3), we use the phase Θ0 with ∆k,

Θ0 =
∑

j

(N j
L −N j

R)φ̂
j −

k

2
(V 2

a − φ2
s) + (P + kVa) · Va − (s̃+ kφs) · φs + integer,

= −s̃ · φs +∆k, (3.7)

∆k = (P + kVa) · Va −
k

2
(V 2

a − φ2
s) +

∑

j

(N j
L −N j

R)φ̂
j

≡ ∆0
k +∆N

k , (3.8)

4χ̃(θk, θl) are presented in ref. [26].
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Mult.

i Pk(0) Pk(
π
3 ) Pk(

2π
3 )

1 3 0 0

Z6−I 2 15 0 0

4 8 0 4

1 12 0 0

Z6−II 2 6 0 0

4 8 0 0

Mult.

i Pk(0) Pk(
π
2 ) Pk(π)

1 4 0 0

Z8−I 2 10 0 0

3 4 0 0

4 6 3 4

1 8 0 0

Z8−II 2 3 1 1

3 8 0 0

4 6 3 4

Mult.

i Pk(0) Pk(
π
3 ) Pk(

2π
3 ) Pk(π)

1 3 0 0 0

2 3 0 0 0

Z12−I 3 2 0 1 0

4 9 0 0 6

5 3 0 0 0

6 4 2 3 2

1 4 0 0 0

2 1 0 0 0

Z12−II 3 8 0 0 0

4 5 0 3 0

5 4 0 0 0

6 4 2 3 2

Table 3. Multiplicities in the Z6, Z8, and Z12 twisted sectors.

where Va is V distinguished by Wilson lines, and

∆0
k = P · Va +

k

2
(−V 2

a + φ2
s),

∆N
k =

∑

j

(N j
L −N j

R)φ̂
j .

(3.9)

We choose 0 < φ̂j ≤ 1 mod integer and oscillator contributions due to (NL − NR) to the

phase can be positive or negative, with NL,R ≥ 0. But each contribution to the vacuum

energy N j
L,Rφ̂

j is nonnegative. One oscillation contributes one number in φs. With the

oscillator, the vacuum energy is shifted to

(P + kVa)
2 = −2

∑

j

N j
Lφ̂

j + 2c̃k

(pvec + kφs)
2 = −2

∑

j

N j
Rφ̂

j + 2ck.
(3.10)
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In eq. (3.10), instead of pvec a four entry quantity pspin of ±1
2 ’s with even number of −’s is

possible, but we do not find any example with pspin. The vacuum energy contributions in

the twisted sectors in Z6,8,12 are given by5

Z6−I :

{

2c̃k : 3
2(k = 1), 4

3(k = 2), 3
2(k = 3),

2ck : 1
2(k = 1), 1

3(k = 2), 1
2(k = 3),

(3.11)

Z6−II :

{

2c̃k : 25
18(k = 1), 14

9 (k = 2), 3
2(k = 3),

2ck : 7
18(k = 1), 5

9(k = 2), 1
2(k = 3),

(3.12)

Z8−I :

{

2c̃k : 47
32(k = 1), 11

8 (k = 2), 47
32(k = 3), 3

2(k = 4),

2ck : 15
32(k = 1), 3

8(k = 2), 15
32(k = 1), 1

2(k = 3),
(3.13)

Z8−II :

{

2c̃k : 45
32(k = 1), 13

8 (k = 2), 45
32(k = 1), 3

2(k = 4),

2ck : 13
32(k = 1), 5

8(k = 2), 13
32(k = 1), 1

2(k = 4).
(3.14)

Z12−I :

{

2c̃k : 210
144(k=1), 216

144(k=2), 234
144(k=3), 192

144(k=4), 210
144(k=5), 216

144(k=6),

2ck : 11
24(k = 1), 1

2(k = 2), 5
8(k = 3), 1

3(k = 4), 11
24(k = 5), 1

2(k = 6).
(3.15)

Z12−II :

{

2c̃k : 103
72 (k=1), 31

18(k=2), 11
8 (k=3), 14

9 (k=4), 103
72 (k=5), 3

2(k=6),

2ck : 31
72(k = 1), 13

18(k = 2), 3
8(k = 3), 5

9(k = 4), 31
72(k = 5), 1

2(k = 6).
(3.16)

Note that 2c̃k − 2ck = 1 which is the required condition for N = 1 supersymmetry in the

4 dimensional spectra.

After Ψ[ABC] and Ψ[AB] are obtained, the number of families is fixed. Namely, the

number of Ψ[A] of SU(7)anti2 is fixed after fixing Ψ[ABC] and Ψ[AB]. For Ψ
[ABC]
R ⊕ 2Ψ

[AB]
R ,

there must be eight Ψ[A]R’s. Locating 5BEH and 5BEH of SU(5)GG in SU(7)anti2 can be

achieved in many ways.

Not to allow any left-over degeneracy, one must assign all possible Wilson lines. For

Z3 and Z4, one must specify three Wilson lines, a1 = a2, a3 = a4, a5 = a6. So, they have

the most complicated Wilson line structures. For Z6−II ,Z8−I and Z8−II , one must specify

two Wilson lines. Specifying one Wilson line is enough in Z12−I , i.e. only a3 = a4 in the

2nd torus.

The Wilson loop integral is basically the Bohm-Aharanov effect in the internal space

of two-torus,
∮

V i dxi =
1

2

∮

(

~∇× ~V
)i

0,+,−
ǫijk dx[jk]. (3.17)

If the B-field (i.e. ~∇ × ~V ) at the orbifold singularity is present, the phase through ∆0

contributes in the multiplicity. For Z12−I , this is the case in T1,2,4,5. The complication

arises at the points with 3a3 = 0 mod. integer, i.e. at T3,6 [22],
6 where the Bohm-Aharanov

phase has to be taken into account explicitly. If there is noB-field at the orbifold singularity,

there is no Bohm-Aharanov phase, but then there for the (internal space) gauge symmetry

we must require explicitly

(P + kV0) · a3 = 0. (3.18)

5Typos of appendix D of ref. [26] are corrected here.
6T9 contains the CTP conjugate states of T3.
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This case applies to T 0,+,−
3 , T6, and of course at U also. We distinguish T3 by 0,+ and −

because the phase ∆0
k of eq. (3.9) contains an extra k

2 factor. Namely, eq. (3.18) is applied

only at U, T3 and T6. We will comment more on this in subsections T3 and T6.

4 SU(7)anti2 spectra

We calculate the SU(7) non-singlet spectra of SU(7)anti2 in the Z12−I orbifold. We choose

the following model,

V a=

{

V0 =
(

−5
12 ,

−5
12 ,

−5
12 ,

−5
12 ,

−5
12 ,

−5
12 ,

−5
12 ;

+5
12

) (

4
12 ,

4
12 ,

4
12 ,

4
12 , 0,

4
12 ,

7
12 ,

3
12

)′
, V 2

0 = 338
144 ,

a3 = a4 = (13 ,
1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ;

1
3)(

−1
3 , −1

3 , −1
3 , −1

3 , 0, 0, 5
3 ,−1)′.

(4.1)

Here, a3 (= a4) is chosen to allow and/or forbid some spectra, and is composed of fractional

numbers with the integer multiples of 1
3 because the second torus has the Z3 symmetry.

Shifted lattices by Wilson lines are given by V+ and V−,

{

V+=
(

−1
12 ,

−1
12 ,

−1
12 ,

−1
12 ,

−1
12 ,

−1
12 ,

−1
12 ;

9
12

) (

0, 0, 0, 0, 0, 4
12 ,

27
12 ,

−9
12

)′
, V 2

+ = 914
144 ,

V−=
(

−9
12 ,

−9
12 ,

−9
12 ,

−9
12 ,

−9
12 ,

−9
12 ,

−9
12 ;

+1
12

) (

8
12 ,

8
12 ,

8
12 ,

8
12 , 0,

4
12 ,

−13
12 , 15

12

)′
, V 2

−= 1234
144 .

(4.2)

We anticipated to achieve the key spectra needed for SU(7)anti2

Ψ
[ABC]
U3

+ 2Ψ
[AB]
T3

+ (?)
(

Φ
[AB]
T3

+Φ[AB],T3

)

+ · · · , (4.3)

where the sectors they appear are marked as subscripts. At this point, we do not fix

how many vectorlike pairs appear in T3. The chiral representations, the candidates of

fermion families, are represented by Ψ, and vectorlike reresentations, candidates for the

BEH bosons, are represented by Φ.

The orbifold conditions, toward a low energy 4 dimensional (4D) effective theory,

remove some weights of the original ten dimensional E8 × E′
8 weights. The remaining ones

constitute the gauge multiplets and matter fields in the untwisted sector in the low energy

4D theory. Therefore, the weights in the U sector must satisfy P 2 = 2 as in the original

E8 × E′
8 weights. Orbifold conditions produce singularities. They are typically represented

in three two-dimensional tori. A loop of string can be twisted around these singularities

and define twisted sectors Tk (k = 1, 2, · · · , 12). Twisting can introduce additional phases.

Since T12−k provides the anti-particles of Tk, we consider only Tk for k = 1, 2, · · · , 6.

T6 contains both particles and anti-particles. T6, not affected by Wilson lines, is like an

untwisted sector. It contains the antiparticles also as in U . Since the Wilson lines can affect

only in non-contractible loops as the hidden sector Aharanov-Bohm effect, the Wilson lines

can affect only around the singularities in the twisted sectors, but have no effects in the

untwisted sector.

In this section we consider two twisted sectors, T3 and T6, explicitly. The other twisted

sectors, T1, T2, T4, and T5 will be listed in appendix.
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4.1 Untwisted sector U

In U , we find the following nonvanishing roots of SU(7)×SU(4)′

E8 gauge multiplet : P · V = 0 mod. integer

SU(7) :
{

P = (+1 − 1 0 0 0 0 0; 0)(08)′

E′
8 gauge multiplet : P · V = 0 mod. integer

SU(4)′ :
{

P = (08)(1 − 1 0 0 0 0 0 0)′.

(4.4)

In addition, there exists U(1)2×U(1)′5 symmetry. The non-singlet SU(7) matter fields are

E8 matter multiplet : P · V =
5

12
, mod. integer

SU(7) :

{

P = (+ ++−−−−; +)(08)′
}

: Ψ
[ABC]
R .

(4.5)

Ψ[ABC] contains one 10 of SU(5)GG family, which belongs to the first family, and is R-

handed as shown in table 2. It is simple to find the E′
8 hidden sector matter in U ,

E′
8 matter multiplet :

SU(4)′ :
{

P = (08)(+−−−; +−−−)′, P · V = 1
12

}

: 4′L,
(4.6)

where P · a3 = 0 excludes the cases of P = (08)(+−−−; + + +−)′ (P · V = 0) and

P = (08)(+ +−−;−++−)′ (P · V = 4
12).

4.2 Twisted sectors T

In the twisted sectors, we list only SU(7) or SU(4)′ non-singlets. Wilson lines distinguish

three fixed points in the second torus, and the shift vectors we consider at Tk are split into

three cases

T 0,+,−
k : kVa =











kV ≡ kV0

k(V + a3) ≡ kV+

k(V − a3) ≡ kV−,

(4.7)

where V+ and V− are given in eq. (4.2). Because 3a3 = 0 mod. integer and due to eq. (3.8),

T6 sector is not distingushed by the Wilson lines but T3,9 are distinguished.

We select only the even lattices shifted from the untwisted lattices. They form even

numbers for the sum of entries of each elements of P .

To obtain non-trivial number of families, we need two index tensor fields, Ψ[AB] and/or

Ψ[AB]. This possibility arises only in T3 because at T3 there appear fractional number with

integer times 1
4 . In other twisted sectors, the entries are not multiples of 1

4 in which case

we cannot fulfil the masslessness condition with 2c̃k given below.

In the k-th twisted sector, the masslessness condition to raise the tachyonic vacuum

energy to zero is

(P + kVa)
2 = 2c̃k −

(

2
∑

j

N j
Lφ̂

j

)

, (4.8)
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(p+ kφs)
2 = 2ck −

(

2
∑

j

N j
Rφ̂

j

)

, (4.9)

where 2c̃k and 2ck are given in eq. (3.15), and the brackets must be taken into account

when oscillators contribute. When the conditions (4.8), (4.9) are satisfied, we obtain the

SUSY spectra for which the chirality and multiplicity are calculated from Θ0 in the k-th

twisted sector,

Θ0 = −s̃ · φs + P · Va +∆0
k +∆N

k +
(

p · φs + δNk
)

, (4.10)

where

∆0
k =

k

2
(φ2

s − V 2
a ),

∆N
k = 2

∑

j

N j
L φ̂j ,

δNk = −2
∑

j

N j
R φ̂j .

(4.11)

We choose 0 < φ̂j ≤ 1 mod integer and oscillator contributions due to (NL − NR) can

be in principle positive or negative. As an example, consider the T3 sector for the N j
R

contribution. Here, 3φs = (54 ,
4
4 ,

1
4), needing p = (−1,−1, 0). So, (p + 3φs)

2 = 1
8 , needing

the NR contribution 4
8 = 2 · 3

12 to make up 2c3 = 5
8 [22]. Thus, the R-handed oscillator

contribution is 6
12 = 2 · 3

12 . Namely, δ3 is +3
12 which is included in the tables.

We will select only the even lattices shifted from the untwisted lattices. They form

even numbers if the entries of each elements of P are added. Because we consider E8 × E′
8,

the product of E8 and E′
8 parts must be even. They need not be even separately. But,

there is a distinction in even × even lattice and odd × odd lattice. In the former case, E8

and E′
8 gauge quatum numbers do not change, but in the latter case we change the signs

of the quantum numbers. In the table captions, we take into account this fact.

4.2.1 Twisted sector T3 (δ
3 = +3

12
)

In the multiplicity calculation in Θ0, there is a factor 1
2 between the lattice shifts by Wilson

lines. Even though the Wilson lines cannot distinguish the fixed points, we consider V+

and V− also as if Wilson lines distinguish fixed points.

• Two index spinor form for V 3
0 : the spinor form gives (P +3V0)

2 = 13
8 but (P +3V0) ·

a3 6= 0, and there is no allowed states.

• Two index vector form for V 3
0 : for a vector form of P ,

3V0 =

(

−5

4
,
−5

4
,
−5

4
,
−5

4
,
−5

4
,
−5

4
,
−5

4
;
+5

4

)(

4

4
,
4

4
,
4

4
,
4

4
, 0,

4

4
,
7

4
,
3

4

)′

, V 2
0 =

338

144

P = (2, 2, 1, 1, 1, 1, 1;−1)(−1,−1,−1,−1, 0,−1,−2,−1)′, P · V0 =
−87

12

P + 3V0 =

(

3

4

3

4

−1

4

−1

4

−1

4

−1

4

−1

4
;
1

4

)(

06
−1

4

−1

4

)′

, (P + 3V0) · a3 = 0,

3φs =

(

5

4
,
4

4
,
1

4

)

, pvec = (−1,−1, 0), pvec · φs =
−9

12
, pvec + 3φs =

(

1

4
, 0,

1

4

)

.

(4.12)
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Chirality s̃ −s̃ · φs −pvec · φs, P · V0 (3/2)φ2
s, −(3/2)V 2

0 , ∆N
3 [δ3] Θ0 (P

N
3 )

⊖ = L (−−−) +5
12

+9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +1
12

(0), +7
12

(0)

⊖ = L (−++) 0 +9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +8
12

(3), +2
12

(2)

⊖ = L (+−+) −1
12

+9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +7
12

(0), +1
12

(0)

⊖ = L (+ +−) −4
12

+9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +4
12

(3), −2
12

(2)

⊕ = R (+ + +) −5
12

+9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +3
12

(0), −3
12

(0)

⊕ = R (+−−) 0 +9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +8
12

(3), +2
12

(2)

⊕ = R (−+−) +1
12

+9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +9
12

(0), +3
12

(0)

⊕ = R (−−+) +4
12

+9
12

, −3
12

21
48

−169
48

0[+8
12

], 0[−3
12

] +12
12

(4), +6
12

(2)

Table 4. Two index vector for V 3
0 : chiralities (in the first column) and multiplicities (in the last

column) of Φ[AB] in the T3 sector of Z12−I for N = 12. φs = ( 5
12 ,

4
12 ,

1
12 ), (3/2)φs = ( 58 ,

4
8 ,

1
8 ) and

12(P +3V ) · a3 = 0. In the last column, δkR = 3
12 is added. Multiplicities of the masslessness states

are given by the phase Θ0. The allowed chiralities are colored red, Ψ
[AB]
R + 10(Φ

[AB]
L +Φ

[AB]
R ).

Chirality s̃ −s̃ · φs −pvec · φs, P · V+ (3/2)φ2
s, −(3/2)V 2

+, ∆N
3 [δ3] Θ0 (P

N
3 )

⊖ = L (−−−) +5
12

+9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +1
12

(0), +7
12

(0)

⊖ = L (−++) 0 +9
12

, −3
12

21
48

(−1
12

)−457
48

0[+3
12

], 0[−3
12

] +8
12

(3), +2
12

(2)

⊖ = L (+−+) −1
12

+9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +7
12

(0), +1
12

(0)

⊖ = L (+ +−) −4
12

+9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +4
12

(3), −2
12

(2)

⊕ = R (+ + +) −5
12

+9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +3
12

(0), −3
12

(0)

⊕ = R (+−−) 0 +9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +8
12

(3), +2
12

(2)

⊕ = R (−+−) +1
12

+9
12

, −3
12

21
48

−169
48

0[+3
12

], 0[−3
12

] +9
12

(0), +3
12

(0)

⊕ = R (−−+) +4
12

+9
12

, −3
12

21
48

−169
48

0[+8
12

], 0[−3
12

] +12
12

(4), +6
12

(2)

Table 5. Two index vector for V 3
+: the entries are the same as table 4, and we obtain Ψ

[AB]
R +

10(Φ
[AB]
L +Φ

[AB]
R ).

Massless states are shown in table 4. Since the phase 21
48 −

169
48 is an even integer times

1
24 , we choose the vector form −pvec · φs = −[ 512 × (−1) + 4

12 × (−1) + 1
12 × (0)] = 18

12 ,

instead of the spinor form pspin. So, we used −pvec · φs =
+9
12 in the table.

• Two index spinor form for V 3
+: the spinor form gives (P +3V0)

2 = 13
8 but (P +3V0) ·

a3 6= 0, and there is no allowed states.

• Two index vector form for V 3
+: for a vector form of P ,

3V+ =

(

−1

4
,
−1

4
,
−1

4
,
−1

4
,
−1

4
,
−1

4
,
−1

4
;
9

4

)(

0, 0, 0, 0, 0,
4

4
,
27

4
,
−9

4

)′

, V 2
+ =

914

144

P = (2, 2, 1, 1, 1, 1, 1;−1)(−1,−1,−1,−1, 0,−1,−7, 2)′, P · V+ =
−219

12
=

+9

12

P + 3V0 =

(

3

4

3

4

−1

4

−1

4

−1

4

−1

4

−1

4
;
1

4

)(

06
−1

4

−1

4

)′

, (P + 3V0) · a3 = 0,

3φs =

(

5

4
,
4

4
,
1

4

)

, pvec = (−1,−1, 0), pvec · φs =
−9

12
, pvec + 3φs =

(

1

4
, 0,

1

4

)

.

(4.13)

Massless states are shown in table 5, which are exactly the same as those of table 4.
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J
H
E
P
0
6
(
2
0
1
5
)
1
1
4

Chirality s̃ −s̃ · φs −pvec · φs, P · V− (3/2)φ2
s, −(3/2)V 2

−, ∆N
3 [δ3],∆N

3 [−δ3] Θ0 (P
N
3 )

⊖ = L (−−−) +5
12

+9
12

, −4
12

21
48

−617
48

0[+3
12

], 0[−3
12

] +8
12

(3), +2
12

(2)

⊖ = L (−++) 0 +9
12

, −4
12

21
48

−617
48

0[+3
12

], 0[−3
12

] +3
12

(0), −3
12

(0)

⊖ = L (+−+) −1
12

+9
12

, −4
12

21
48

−617
48

0[+3
12

], 0[−3
12

] +2
12

(2), −4
12

(3)

⊖ = L (+ +−) −4
12

+9
12

, −4
12

21
48

−617
48

0[+3
12

], 0[−3
12

] −1
12

(0), −7
12

(0)

⊕ = R (+ + +) −5
12

+9
12

, −4
12

21
48

−617
48

0[+3
12

], 0[−3
12

] −2
12

(2), −8
12

(3)

⊕ = R (+−−) 0 +9
12

, −4
12

21
48

−617
48

0[+3
12

], 0[−3
12

] +3
12

(0), −3
12

(0)

⊕ = R (−+−) +1
12

+9
12

, −4
12

21
48

−617
48

0[+3
12

], 0[−3
12

] +4
12

(3), −2
12

(2)

⊕ = R (−−+) +4
12

+9
12

, −4
12

21
48

−617
48

0[+8
12

], 0[−3
12

] +7
12

(0), +1
12

(0)

Table 6. Two index vector for V 3
−: chiralities (in the first column) and multiplicities are 10(Φ

[AB]
L +

Φ
[AB]
R ).

• Two index spinor form for V 3
−: the spinor form gives (P +3V0)

2 = 13
8 but (P +3V0) ·

a3 6= 0, and there is no allowed states.

• Two index vector form for V 3
−: for a vector form of P ,

3V− =

(

−9

4
,
−9

4
,
−9

4
,
−9

4
,
−9

4
,
−9

4
,
−9

4
;
+1

4

)(

8

4
,
8

4
,
8

4
,
8

4
, 0,

4

4
,
−13

4
,
15

4

)′

, V 2
− =

1234

144

P = (2, 2, 1, 1, 1, 1, 1;−1)(−2,−2,−2,−2, 0,−1, 3,−4)′, P · V− =
−100

12
=

−4

12
,

P + 3V− =

(

3

4

3

4

−1

4

−1

4

−1

4

−1

4

−1

4
;
1

4

)(

06
−1

4

−1

4

)′

, (P + 3V0) · a3 = 0,

3φs =

(

5

4
,
4

4
,
1

4

)

, pvec = (−1,−1, 0), pvec · φs =
−9

12
, pvec + 3φs =

(

1

4
, 0,

1

4

)

.

(4.14)

Massless states are shown in table 6.

The chiral spectrum we obtained for the two index tensors in T3 is

T3 : 2Ψ
[AB]

R,T 0
3
. (4.15)

These make up three chiral families together with Ψ
[ABC]
R from U . The number in (4.15) is

the same as the one if we treat T3 with multiplicity 2. This multiplicity is because 3V is a Z4

twist which has two fixed points in a two-dimensional torus. Since there is no Wilson line,

we could have treated only 3V with multiplicity 2 of Z4. The multiplicity 2 is accounted

by T 0
3 and T+

3 . But, T−
3 produce additional vectorlike pairs, which must be fictitious. We

may consider the spectra in table 6 are fictitious. In the remainder of the paper, we will not

consider V 3
+ and V 3

−. We consider only V 3
0 and take into account the multiplicity 2 of T3.

Now let us proceed to consider one index tensors in T3. In the final result, we will

multiply the overall multiplicity 2 as commented above.

• One index spinor form for V 3
0 :

– 15 –



J
H
E
P
0
6
(
2
0
1
5
)
1
1
4

Chirality s̃ −s̃ · φs −pvec · φs, P · V0 (3/2)φ2
s, −(3/2)V 2

0 , ±∆N
3 [±δ3] Θ0 (P

N
3 )

⊖ = L (−−−) +5
12

+9
12

, +4
12

21
48

−169
48

±3
12

[±3
12

] +12
12

(4), +6
12

(2), +6
12

(2), 0
12
(4)

⊖ = L (−++) 0 +9
12

, +4
12

21
48

−169
48

±3
12

[±3
12

] +7
12

(0), +1
12

(0), +1
12

(0), −5
12

(0)

⊖ = L (+−+) −1
12

+9
12

, +4
12

21
48

−165
48

±3
12

[±3
12

] +6
12

(2), 0
12
(4), 0

12
(4), −6

12
(2)

⊖ = L (+ +−) −4
12

+9
12

, +4
12

21
48

−165
48

±3
12

[±3
12

] +3
12

(0), −3
12

(0), −3
12

(0), −9
12

(0)

⊕ = R (+ + +) −5
12

+9
12

, +4
12

21
48

−165
48

±3
12

[±3
12

] +2
12

(2), −4
12

(3), −4
12

(3), −10
12

(2)

⊕ = R (+−−) 0 +9
12

, +4
12

21
48

−165
48

±3
12

[±3
12

] +7
12

(0), +1
12

(0), +1
12

(0), −5
12

(0)

⊕ = R (−+−) +1
12

+9
12

, +4
12

21
48

−165
48

±3
12

[±3
12

] +8
12

(3), +2
12

(2), +2
12

(2), −4
12

(3)

⊕ = R (−−+) +4
12

+9
12

, +4
12

21
48

−165
48

±3
12

[±3
12

] +11
12

(0), +5
12

(0), +5
12

(0), −1
12

(0)

Table 7. One index spinor form for V 3
0 : in the multiplicity, the order of

±3
12 [

±3
12 ] is +3

12 [
+3
12 ],

−3
12 [

+3
12 ],

+3
12 [

−3
12 ], and −3

12 [
−3
12 ]. Massless states are 4

(

Ψ[α′]L,1 +Ψ[α′]L,1̄

)

⊕

20
(

Φ[α′]L,1 +Φ[α′]L,1̄

)

⊕ 20
(

Φ[α′]R,1 +Φ[α′]R,1̄

)

, where multiplicity 2 of T3 is taken into account.

3V0 =

(

−5

4
,
−5

4
,
−5

4
,
−5

4
,
−5

4
,
−5

4
,
−5

4
;
+5

4

)(

4

4
,
4

4
,
4

4
,
4

4
, 0,

4

4
,
7

4
,
3

4

)′

, V 2
0 =

338

144

P =

(

1

2
,
3

2
,
3

2
,
3

2
,
3

2
,
3

2
,
3

2
;
−3

2

)

(−1,−1,−1,−1, 0,−1,−2,−1)′, P · V0 =
−92

12

P + 3V0 =

(

−3

4

1

4

1

4

1

4

1

4

1

4

1

4
;
−1

4

)(

06
−1

4

−1

4

)′

, (P + 3V0) · a3 = 0,

(4.16)

which make up 9
8 . The oscillator contributions of 2 3

12 are needed to satisfy the

masslessness condition. Chiralities and multiplicities are tabulated in table 7.

• One index vector form for V 3: vector forms do not give massless states because

(P + 3V−) · a3 6= 0.

4.2.2 Twisted sector T6 (δ
6 = 0)

• One index spinor form for V 6: we have7

6V0 =

(

−5

2
,
−5

2
,
−5

2
,
−5

2
,
−5

2
,
−5

2
,
−5

2
;
+5

2

)(

4

2
,
4

2
,
4

2
,
4

2
, 0,

4

2
,
7

2
,
3

2

)′

, V 2
0 =

338

144

P = (3+, 5+, 5+, 5+, 5+, 5+, 5+; 5−)(−2,−2,−2,−2, 0,−2,−3,−1)′,
−159

12
,

P + 6V0 =
(

−1, 06; 0
)

(

06,
1

2
,
1

2

)′

, (P + 6V0) · a3 = 0,

(4.17)

which saturate the needed masslessness condition 3
2 of T6, which are tabulated in

table 8. Note that to make the phase an integer times 1
12 , we choose −pvev · φs

as: since −(6/2)(V 2
0 − φ2

s) is even number times 1/24, we choose a vector pvev:

−pvev · φs = −[(−2)× 5
12 + (−2)× 4

12 + (0)× 1
12 ] =

18
12 . So, we used 18

12 in the table.

• One index vector form for V 6
0 : vector type forms cannot satisfy the masslessness

condition.
7Its CTP conjugate is provided by P = (7+, 5+, 5+, 5+, 5+, 5+, 5+; 5−)(−2,−2,−2,−2, 0,−2,−4,−2)′.
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J
H
E
P
0
6
(
2
0
1
5
)
1
1
4

Chirality s̃ −s̃ · φs −pvec · φs, P · V0 (6/2)φ2
s, −(6/2)V 2

0 , ∆N
6 [δ6] Θ0 (P

N
6 )

⊖ = L (−−−) +5
12

+18
12 , −3

12
21
24

−169
24 0[0] +6

12 (2)

⊖ = L (−++) 0 +18
12 , −3

12
21
24

−169
24 0[0] +1

12 (0)

⊖ = L (+−+) −1
12

+18
12 , −3

12
21
24

−165
24 0[0] 0

12 (4)

⊖ = L (+ +−) −4
12

+18
12 , −3

12
21
24

−165
24 0[0] −3

12 (0)

⊕ = R (+ + +) −5
12

+18
12 , −3

12
21
24

−165
24 0[0] −4

12 (3)

⊕ = R (+−−) 0 +18
12 , −3

12
21
24

−165
24 0[0] +1

12 (0)

⊕ = R (−+−) +1
12

+18
12 , −3

12
21
24

−165
24 0[0] +2

12 (2)

⊕ = R (−−+) +4
12

+18
12 , −3

12
21
24

−165
24 0[0] +5

12 (0)

Table 8. One index spinor from V 6
0 : chiralities and multiplicities, Ψ[A]L ⊕ 5

(

Φ[A]L +Φ[A]R

)

.

The remaining SU(7) non-singlet massless particles together with SU(4)′ nonsinglets

are presented in appendix. The SU(7) and SU(4)′ indices are represented by A and α′,

respectively. Therefore, twisted sectors T3, T6, and T9 may be guessed that they are not

affected by Wilson lines. However, T3 and T9 are affected by Wilson lines because in the

calculation of the phase ∆0
k there is an additional factor k

2 (viz. eq. (3.9)). Indeed, the

inclusion of this factor k
2 correctly produces a combination of an anomaly free set.

Let us comment on the multiplicities in T3 and T6. In T3, the multiplicity is 2 as

mentioned in subsubsection T3. In T6, we note that it is a Z2 shift which is in fact

an untwisted sector. The multiplicity of Z2 untwisted sector is 2, but it must include

antiparticles also. Thus, the multiplicity of Z2 untwisted sector is 1 [27]. It is taken into

account in the twisted sector Z6.

The SU(7) and SU(4)′ non-singlet massless states are summarized as R-handed fields in

table 9. The matter fields are denoted as Ψ and vectorlike representations are represented

by Φ. Some of Φ fields develop VEVs. The Φ fields can be removed at the GUT scale if

correct combinations of sectors and oscillators are satisfied. The chiral fields of table 9 are

Ψ
[ABC]
R ⊕ 2Ψ

[AB]
R ⊕ 8Ψ[A]R (4.18)

which do not have the SU(7) nonabelian anomaly. In the untwisted sector, there is no [ 1̄ ].

Thus, the family Ψ[ABC] from U has more suppressed Qem = 2
3 quark Yukawa coupling

and Ψ[ABC] is interpreted to include the 1st family members. All Ψ[A]R’s appear in twisted

sectors. Two chiral fields, (e) and one combination from (c), form a vectorlike pair and

removed at a high energy scale. The field in (d) and the remaining 7 fields from (c) are

the needed 8 fields for Ψ[A]R. Ψ[A]R from (e), i.e. from T+
5 , is interpreted as uc because it

can lead to the smallest Yukawa coupling among Qem = 2
3 quarks. The other 7 fields Ψ[A]R

from T3 have the same fate. Then, note that tc and cc are located in T3.

Since both Ψ[AB] and tc (from Ψ[A]) arise at T3, the cubic Yukawa coupling is possible

from the BEH boson from T6. There are many possibilities for assigning Hu and Hd of the

MSSM in T3 and T6. We will choose a specific one in subsection 4.4.

– 17 –



JHEP06(2015)114

P×(rep.) Sector Weight V k
a Q1 Q2 Q3 Q4 Q5 Q6 Q7

(a) Ψ
[ABC]
R U1 (−−−−+++;+) (08)′ 0 −6

12
6
12

0 0 0 0 0

(b) 2Ψ
[AB]
R T3

(

3
4

3
4

−1
4

−1
4

−1
4

−1
4

−1
4
; 1
4

)

(

06 −1
4

−1
4

)′
V 3
0

3
12

3
12

0 0 0 −3
12

−3
12

(c) 8Ψ[A]R T3

(

−3
4

1
4

1
4

1
4

1
4

1
4

1
4
; −1

4

)

(

06 −1
4

−1
4

)′
V 3
0

9
12

−3
12

0 0 0 −3
12

−3
12

(d) Ψ[A]R T+
5

(

11
12

−1
12

−1
12

−1
12

−1
12

−1
12

−1
12

; −3
12

) (

0 0 0 0 0 4
12

−3
12

−3
12

)′
V 5
+

5
12

−3
12

0 0 4
12

−3
12

−3
12

(e) Ψ
[A]
R T6

(

−1, 06; 0
) (

06, 1
2
, 1
2

)′
V 6
0

−12
12

0 0 0 0 6
12

6
12

(f) 40
(

Φ[A]R +Φ
[A]
R

)

T3

(

−3
4

1
4

1
4

1
4

1
4

1
4

1
4
; −1

4

)

(

06 −1
4

−1
4

)′
⊕ H.c. V 3

0 0 0 0 0 0 0 0

(g) 5
(

Φ[A]R +Φ
[A]
R

)

T6

(

−1 06 0
) (

06 1
2

1
2

)′
⊕ H.c. V 6

0 0 0 0 0 0 0 0

(h) 10
(

Φ[A]R +Φ
[A]
R

)

T+
5

(

11
12

−1
12

−1
12

−1
12

−1
12

−1
12

−1
12

; −3
12

) (

0 0 0 0 0 4
12

−3
12

−3
12

)′
⊕ H.c. V 5

+ 0 0 0 0 0 0 0
∑

i
35
12

63
12

0 0 4
12

−51
12

−51
12

(a′) Ψ[α′]R U3 (08) (−+++;−+++)′ 0 0 0 1
12

−1/2
12

1/2
12

1/2
12

1/2
12

(b′) Ψ
[α′]
R T 0

1

(

( 1
12
)7 ; −1

12

)

(

10
12

−2
12

−2
12

−2
12

; −6
12

−2
12

1
12
; −3

12

)′

V 1
0

7
12

−1
12

4
12

−6
12

−2
12

1
12

−3
12

(c′) Ψ[α′]R T 0
4

(

(−1
6
)7 ; 1

6

)

(

−1
3

1
3

1
3

1
3
; 0 1

3
1
3
0
)′

V 4
0

−14
12

2
12

8
12

0 4
12

4
12

0

(d′) Ψ
[α′]
R T 0

5

(

( 1
12
)7 ; −1

12

)

(

10
12

−2
12

−2
12

−2
12

; −6
12

−2
12

−5
12

3
12

)′

V 5
0

7
12

−1
12

4
12

−6
12

−2
12

−5
12

3
12

(e′) 10
(

Φ[α′]R +Φ
[α′]
R

)

T 0
1 H.c.⊕

(

( 1
12
)7 ; −1

12

)

(

10
12

−2
12

−2
12

−2
12

; −6
12

−2
12

1
12
; −3

12

)′

V 1
0 0 0 0 0 0 0 0

(f ′) 5
(

Φ[α′]R +Φ
[α′]
R

)

T 0
4

(

(−1
6
)7 ; 1

6

)

(

−1
3

1
3

1
3

1
3
; 0 1

3
1
3
0
)′

⊕ H.c. V 4
0 0 0 0 0 0 0 0

(g′) 10
(

Φ[α′]R +Φ
[α′]
R

)

T 0
5 H.c.⊕

(

( 1
12
)7 ; −1

12

)

(

10
12

−2
12

−2
12

−2
12

; −6
12

−2
12

−5
12

3
12

)′

V 5
0 0 0 0 0 0 0 0

(h′) 7
(

Φ[α′]R +Φ
[α′]
R

)

T6

(

08
) (

1 0 0 0; 0 0 −1
2

−1
2

)′
⊕ H.c. V 4

0 0 0 0 0 0 0 0

∑

i 0 0 17
12

−25/2
12

1/2
12

1/2
12

1/2
12

Table 9. Non-singlet SU(7)anti2 spectra represented as R-handed chiral fields. H.c. means the opposite numbers of those in the same site.
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4.3 U(1) charges and anomalous U(1)

We use the normalization that the index ℓ for fundamental representation N of SU(N) is

1. Then, the indices of some representations are [28, 29],

SU(N) : ℓ(N) = 1, ℓ ([2]) = N − 2, ℓ ([3]) =
(N − 2)(N − 3)

2
,

ℓ(Adj.) = 2N, ℓ ({2}) = N + 2,

ℓ ({3}) =
(N + 2)(N + 3)

2
,

U(1)em : ℓ(Qem) = 2Q2
em.

(4.19)

where [2] means the dimension
(

N(N−1)
2!

)

with two antisymmetric indices, {2} means the

dimension
(

N(N+1)
2!

)

with two symmetric indices, [3] means the dimension
(

N(N−1)(N−2)
3!

)

with three antisymmetric indices, etc. For SU(7), the index of Ψ[ABC] is 10 and the index

of Ψ[AB] is 5. We need these numbers for the contribution of Ψ[ABC] and Ψ[AB] to the

U(1)-SU(7)2 anomalies.

We choose the following seven U(1) directions, in terms of Qi [26],

Q1 = (1 1 1 1 1 1 1 0)
(

08
)′

Q2 = (0 0 0 0 0 0 0 1)
(

08
)′
; Q′

2 =
103

35
Q1 +Q6 +Q7,

Q3 =
(

08
)

(1 1 1 1 0 0 0 0)′ ; Q′
3 =

103

63
Q2 +Q6 +Q7,

Q4 =
(

08
)

(0 0 0 0 1 0 0 0)′ ; Q′
4 =

7

34
Q3 +Q5,

Q5 =
(

08
)

(0 0 0 0 0 1 0 0)′ ; Q′
5 = −

7

25
Q4 +Q5,

Q6 =
(

08
)

(0 0 0 0 0 0 1 0)′ ; Q′
6 =

11

255
Q4 +Q5 +

2

51
(Q6 +Q7),

Q7 =
(

08
)

(0 0 0 0 0 0 0 1)′ ,

(4.20)

where the redefined primed U(1) combinations give the identical sum for the SU(7) and

SU(4)′ anomalies. Note that Q′
6 itself is anomaly free. In terms of Q′

2, · · · , Q
′
5, we can

redefine anomaly free combinations. Six nonabelian-anomaly-free U(1) combinations are

denoted with tilde,

Q̃1 = Q′
2 −Q′

3,

Q̃2 = 2(Q′
2 +Q′

3)−Q′
4,

Q̃3 = Q′
4 −Q′

5,

Q̃4 = 2Q′
2 +

1

2
Q′

4 −Q′
5,

Q̃5 = Q′
6 =

11

255
Q4 +Q5 +

2

51
(Q6 +Q7),

Q̃6 = Q6 −Q7.

(4.21)
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The remaining U(1) must carry anomaly, which can be represented as

Qa = Q′
2 + aQ′

3 + bQ′
4 + cQ′

5. (4.22)

Parameters a, b and c are determined by how one breaks the SU(7)anti2, which defines

the electroweak hypercharges or the electromagnetic charges of the SM particles. Note

that SU(5)GG subgroup of SO(10) use the U(1) direction, or equivalently the B − L direc-

tion (1 1 1 0 0 0 0; 0)(08)′. The SU(5)flip subgroup of SO(10) use instead the U(1) direction

(1 1 1 1 1 0 0; 0)(08)′. SU(7)anti2 uses (1 1 1 1 1 0 0; 0)(0
8)′ and in addition (1 1 1 0 0 1 1; 0)(08)′.

These two directions of SU(7)anti2 can be fixed only after SU(7)anti2 is broken down to the

SM gauge group. The U(1)X of SU(7)anti2 is given by

QX = Q1 +Q2 −
1

3
(Q3 +Q4) +Q5 +Q6 +Q7, (4.23)

which is anomaly-free. The orthogonalities of Qa with QX and the above two

SU(7)anti2 directions determine three parameters of (4.22).

4.4 Yukawa couplings

For Yukawa couplings, we must satisfy all the symmetries of low energy effective fields and

the selection rules in the orbifold compactification. For the fields from twisted sectors,

the Yukawa coupling structure is simpler than those involving the untwisted sector fields.

Consider for example a vectorlike set from T6 in table 8. For the coupling, Φ
[A]
R · Φ[A]R,

we must satisfy the selection rules for the right-mover and for the left-mover conditions.

For the right-mover condition, 36 times pvec · φs is 0 mod. integer. It is satisfied for the

coupling Φ
[A]
R · Φ[A]R. For the left-mover condition, 36 times P · V is 0 mod. integer. It is

also satisfied for the coupling Φ
[A]
R · Φ[A]R.

As commented above, t, c, tc and cc quarks are located T3. On the other hand, u is

located in U and uc is located in T+
5 . Order 1 Yukawa coupling of the form 21(T3) ×

7(T3) × 7(T6) is possible if Hu in T6 is not removed at the GUT scale. This requires a

hierarchy of scales,

Ms ≪ M3 (4.24)

where M3 is a vacuum expectation value of a singlet 1 in T3,

〈1(T3)〉 = M3. (4.25)

Eight Ψ[A]’s and five (Φ[A] +Φ[A])’s have the following Yukawa couplings

1(T3)Ψ
i
[A]Φ

[A]
µ , MsΦ

i
[A]Φ

[A]
µ ; i = 1, · · · , 8, µ = 1, · · · , 5. (4.26)

Due to the hierarchy (4.25), five Φ[A]’s of T6 are paired with five Ψ[A]’s from T3. Three

Ψ[A]’s of T3 and five Φ[A]’s of T6 remain light at this stage. Introducing an angle tan θ = Ms
M3

,

five BEH fields

cos θΦµ
[A] − cµi sin θΨ

i
[A]. (4.27)

– 20 –



J
H
E
P
0
6
(
2
0
1
5
)
1
1
4

obtain mass of order M3 sin θ. Because of the democracy of couplings, four out of five Φ[A]’s

of T6 remain light. Collecting light 7’s up to this stage, we have

Three Ψ[A](T3), Ψ[A](T
+
5 ), Four Φ[A](T6). (4.28)

At the SU(7)anti2 level, still we have eight light 7’s. Thus, the BEH fields are located at

T6. Depending on θ, the BEH fields contain small components from T3, viz. eq. (4.27).

We interpret this angle as the ratio mc/mt = tan θ. The t-quark Yukawa coupling in

SU(5)anti2 is

T 21
3 T 7

3 T
7
6,BEH (t mass). (4.29)

The BEH fields giving mass to the b-quark are located in T3. There are 40 Φ[A] fields in

(f) of table 9. Because of the mass democracy, there can remain some light fields. Most of

them will be removed when SU(7)anti2 is broken, but we need one Φ[A] for the Qem = −1
3

quark masses. For the b-quark mass, we need the coupling

∼
1

Ms
T 21
3 T 21

3 T 21
3,BEHT

7
3,BEH. (4.30)

Thus, the b-quark mass is expected to be much smaller than the t-quark mass,

O(〈T 21
3,BEH〉〈T

7
3,BEH〉/Ms〈T

7
6,BEH〉), where 〈T

21
3,BEH〉 is the SU(5) splitting VEV 〈Φ[67]〉. Thus,

we expect mb/mt ∼
〈Φ[67]〉
Ms tanβ . Even if tanβ = O(1), we can fit mb/mt to the observed value

by appropriately tuning 〈Φ[67]〉. A similar suppression occurs for the second family mem-

bers.

For the 1st family members, the story is different. This is because dc appears in 35 of

SU(7)anti2, appearing in U . The d-quark mass may arise from

∼
1

M2
s

35U135U17T3,BEH〈1T 0
5 ,BEH〉〈1T6,BEH〉. (4.31)

Let us check whether this coupling is present. pspin · φs =
10
12 for 35U135U1 . From table 7,

we note pvec · φs =
−9
12 for 7T,BEH . We need the remaining singlet combinations to provide

−1
12 . Since we do not list singlets here, it cannot be shown at this stage, but there are

numerous singlets and we assume that it is possible. For the left-mover conditions which

are the gauge invariance conditions, the above coupling satisfies the condition. For the

u-quark mass, we must consider a higher dimensional operator than eq. (4.31),

∼
1

M3
s

35U17T+
5
7T6,BEH〈1T−

4 ,BEH〉〈7T3,BEH〉〈1T 0
1 ,BEH〉. (4.32)

It is because u appears in U, requiring another VEV 〈7〉 and also a field carrying another

Wilson shift − to remove the Wilsone shift +. Thus, there exists a possibility that mu <

md. It is a new mechanism for the inverted 1st family quark mass structure.

4.5 Missing partner mechanism

At the SU(7)anti2 level, we assume that one pair Φ[A] = 7 (giving mass to the t quark)

and Φ[A] = 7 (giving mass to the b quark) are survibing down to low energy. The missing

partner mechanism is discussed in this setup.
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In a sense, the absence of 7BEH · 7BEH is not guaranteed at field theory level. In the

MSSM, it is related to the µ problem, “Why there does not exists HuHd at the GUT

scale” [30]. Some interesting solutions with hidden-sector quarks exist [31, 32]. These

solutions are based on the Peccei-Quinn (PQ) symmetry with the very light axion [33]. In

the effective SUSY framework language, the superpotential W should not allow µHuHd by

assigning a nonvanishing PQ quantum number to the combination HuHd. But, the global

PQ symmetry is spoiled by gravity [34–37]. We may resort to some discrete subgroup, e.g.

matter parity [38], of a U(1) gauge symmetry [39]. Suppose assigning the mother gauge

charges of Hu and Hd as Q(Hu) = Q(Hd) = 1 such that the matter parity forbids HuHd at

the GUT scale. But we must allow the t-quark mass at the cubic order. It means, t and tc

carry the mother gauge charge, Q(t) = Q(tc) = −1
2 for example. In string compactification,

we do not worry the gravity spoil of global symmetries. Just string selection rules are

enough to consider the coupling. It has been noted that some string compactifications do

not lead to quadratic term in W as in Z3 [32], but in non-prime orbifolds the absence of 7·7

must be studied case by case. In our example discussed above, the coupling 7BEH ·7BEH is

not allowed because 7BEH is located in T3, and 7BEH is located in T6. But, GUTs need the

doublet-triplet splitting that in the same GUT scale BEH multiplet the colored fields are

superheavy while Hu and Hd remain light. In the absence of the coupling 7BEH · 7BEH, as

discussed above for 7BEH ∈ T3 and 7BEH ∈ T6, the missing partner mechanism of SU(7)anti2
is realized. Consider the coupling,

1

Ms
ǫABCDEFGΦ[AB]Φ[CD]Φ[EF ]Φ[G], and/or

1

M2
s

ǫABCDEFGΦ[AB]Φ[CD]Φ[E]〈Φ
′
[F ]〉〈Φ

′′
[G]〉,

(4.33)

where Φ′ and Φ′′ obtain string scale VEVs, and Φ[AB] = Φ[45] of eq. (4.33) are essential for

separating the color and weak parts. The BEH bosons Hu and Hd are in Φ[A] and Φ[A],

respectively. Equation (4.33) makes colored scalars heavy, viz.

Φ[23]Φ[1] 〈Φ[45]〉 〈Φ[67]〉,

Φ[23]Φ[1] 〈Φ[45]〉〈Φ′[6]〉〈Φ′′[7]〉,
(4.34)

where Φ[1] is Qem = −1
3 colored boson whose partner is Φ[23]. The color-weak separating

VEV 〈Φ[45]〉 ≈ MGUT ∼ Ms is the key making the colored scalar heavy. In the same

multiplet Φ[A], the BEH doublet Hd is present at Φ[4] and Φ[5]. But, the indices 4 and 5

are already used for the GUT scale VEV, hence Hd does not find a partner in Φ[AB]. This

is the missing partner mechanism we realize in SU(7)anti2.

5 Conclusion

In this paper, we proposed unification of families in string compactification. Here, we

suggested anti-SU(N) scheme [7] where the adjoint representation of SU(N) is not needed

for breaking the GUT group down to SU(3)c×U(1)em. It is pointed out that the anti-SU(N)

scheme has a merit in string compactification and can even save the SO(32) heterotic
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string theory for many phenomenological purposes. The minimal model for UGUTF is

SU(7) GUT with the representation [ 3 ] + 2 [ 2 ] + 8 [ 1̄ ]. We show it explicitly that this

representation is realized in the Z12−I orbifold compactification of E8 × E′
8 heterotic string.

The large top quark mass is possible in SU(7)anti2, where t
c is in 7 = [ 1̄ ]. In the exam-

ple discussed, 7’s in T3 contain tc and cc. The cubic coupling Ψ
[AB]
R,T3

Ψ[A]R,T3
Φ[B]R,T6,BEH

gives a dimension-3 superpotential for the t mass. This cubic coupling is the only possible

dimension 3 superpotential in our model and hence only mt is expected to be of order the

electroweak scale. Other fermion masses are much smaller than mt. We also presented

an argument why there is an inverted mass ratio in the u-quark family. It is because u

is located in U which requires an additional VEV for 〈7BEH〉. Finally, we presented the

missing partner mechanism in string compactification. The key assumption, the absence of

the coupling 7BEH ·7BEH in the superpotential, is achieved here by locating 7BEH and 7BEH

separately in T3 and T6. Then, it is shown that the missing partner mechanism works for

Hu and Hd in 7BEH and 7BEH. The colored particles in 7BEH and 7BEH find their partners

in 21BEH and 21BEH and obtain superheavy masses.

Here, we neglected the details of singlet vacuum expectation values, toward removing

vectorlike representations, though the singlet VEVs have been widely used in other string

compactification papers toward the MSSM [41–44]. In this sense, the SU(7)anti2 presented

in this paper may be an aethetic choice toward a desirable UGUTF. Other physics impli-

cations such as the quark and lepton mass textures, dark matter, and very light axions,

including SU(7) singlet representations, will be presented elsewhere.
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A SU(7)anti2GUT in Z12−I

In this appendix, we list up the remaining non-singlet states not included in section 4

where U, T3, and T6 are discussed. We only show the sectors containing SU(7) or SU(4)′

nonsinglets. They are listed up in the order of T4, T1, T2, and T5.

A.1 SU(7)anti 2 spectra

Here, we list SU(7)anti 2 spectra not listed in section 4.

A.1.1 Twisted sector T1

(

δ1 = 1/12
)

The masslessness condition for 2c1 requires (pvec + φs)
2 = 66

144−(oscillator contributions).

Oscillator conribution from the right mover is 2δ1 = 24
144 = 2 · 1

12 .

• One index spinor form for V 1
0 : for the spinor,
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Chirality s̃ −s̃ · φs −pvec · φs, P · V0 (1/2)φ2
s, −(1/2)V 2

0 , ∆N
1 [δ1],∆N

1 [−δ1] Θ0 (P
N
4 )

⊖ = L (−−−) +5
12

0
12
, +6

12
21
72

−457
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +12
12

(4), +10
12

(2)

⊖ = L (−++) 0 0
12
, +6

12
21
72

−169
72

+2/3
12

[+1
12

], +2/3
12

[−1
12

] +7
12

(0), +5
12

(0)

⊖ = L (+−+) −1
12

0
12
, +6

12
21
72

−457
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +6
12

(2), +4
12

(3)

⊖ = L (+ +−) −4
12

0
12
, +6

12
21
72

−457
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +3
12

(0), +1
12

(0)

⊕ = L (+ + +) −5
12

0
12
, +6

12
21
72

−457
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +2
12

(2), 0
12

(4)

⊕ = L (+−−) 0 0
12
, +6

12
21
72

−457
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +7
12

(0), +5
12

(0)

⊕ = L (−+−) +1
12

0
12
, +6

12
21
72

−457
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +8
12

(3), +6
12

(2)

⊕ = L (−−+) +4
12

0
12
, +6

12
21
72

−457
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +11
12

(0), +9
12

(0)

Table 10. One index spinor from V 1
0 : chiralities and multiplicities are 11

(

Φ[A]L +Φ[A]R

)

.

V0 =

(

−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
;
+5

12

)(

4

12
,

4

12
,

4

12
,

4

12
, 0,

4

12
,

7

12
,

3

12

)′

, V 2
0 =

338

144

P = (−++++++;−) (−−−−−−−−)′ , P · V0 =
−30

12
,

P + V0 =

(

−11

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
;
−1

12

)(

−2

12
,
−2

12
,
−2

12
,
−2

12
,
−6

12
,
−2

12
,

1

12
,
−3

12

)′

,

(P + V0) · a3 6= 0,

(A.1)

we have (P + V0)
2 = 194

144 . The masslessness condition for 2c̃1 requires (P + V a)2 =
210
144−(oscillator contributions). Note that (1/2)φ2

s − (1/2)V 2
0 = −148

12 = −13 + +2/3
12 .

The oscillator contribution is 16
144 = 2 · 2/3

12 . So we need −∆N
4 to cancel +2/3

12 in

(1/2)φ2
s − (1/2)V 2

0 . These are shown in table 10.

• One index vector form for V 2
0 : we have

2V0 =

(

−5

6
,
−5

6
,
−5

6
,
−5

6
,
−5

6
,
−5

6
,
−5

6
;
+5

6

)(

4

6
,
4

6
,
4

6
,
4

6
, 0,

4

6
,
7

6
,
3

6

)′

, V 2
0 =

338

144
,

P = (1, 1, 1, 1, 1, 1, 1;−1)(0,−1,−1,−1, 0,−1,−1,−1)′, P · V0 =
−65

12

P + 2V0 =

(

1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6
;
−1

6

)(

2

3
,
−1

3
,
−1

3
,
−1

3
, 0,

−1

3
,
1

6
,
−1

2

)′

, (P2 + 2V0) · a3 6= 0.

(A.2)

Note that (P + 2V0)
2 = 50

36 = 216
144 − 16

144 , which needs 16
144 = 2 · 2/3

12 as an oscillator

contribution with ∆N
2 = 2/3

12 . We have (2/2)φ2
s − (2/2)V 2

0 = −296
144 = −2 − 2/3

12 . So,

we need +∆N
2 . Massless states are presented in table 11.

A.1.2 Twisted sector T5 (δ
5 = 1/12)

• One index spinor form for V 5
+:
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Chirality s̃ −s̃ · φs −pvec · φs, P · V0 (2/2)φ2
s, −(2/2)V 2

0 , ∆N
2 [δ2],∆N

2 [−δ2] Θ0 (P
N
2 )

⊖ = L (−−−) +5
12

+9
12

, −3
12

21
24

−169
24

+2/3
12

[+2
12

], +2/3
12

[−2
12

] +1
12

(0), +9
12

(0)

⊖ = L (−++) 0 +9
12

, −3
12

21
24

−169
24

+2/3
12

[+2
12

], +2/3
12

[−2
12

] +8
12

(3), +4
12

(3)

⊖ = L (+−+) −1
12

+9
12

, −3
12

21
24

−165
24

+2/3
12

[+2
12

], +2/3
12

[−2
12

] +7
12

(0), +3
12

(0)

⊖ = L (+ +−) −4
12

+9
12

, −3
12

21
24

−165
24

+2/3
12

[+2
12

], +2/3
12

[−2
12

] +4
12

(3), 0
12

(4)

⊕ = R (+ + +) −5
12

+9
12

, −3
12

21
24

−165
24

+2/3
12

[+2
12

], +2/3
12

[−2
12

] +3
12

(0), −1
12

(0)

⊕ = R (+−−) 0 +9
12

, −3
12

21
24

−165
24

+2/3
12

[+2
12

], +2/3
12

[−2
12

] +8
12

(3), +4
12

(3)

⊕ = R (−+−) +1
12

+9
12

, −3
12

21
24

−165
24

+2/3
12

[+2
12

], +2/3
12

[−2
12

] +9
12

(0), +5
12

(0)

⊕ = R (−−+) +4
12

+9
12

, −3
12

21
24

−165
24

+2/3
12

[+2
12

], +2/3
12

[−2
12

] +12
12

(4), +8
12

(3)

Table 11. One index vector from V 2
0 : chiralities and multiplicities, 13

(

Φ[A]L +Φ[A]R

)

.

Chirality s̃ −s̃ · φs pvec · φs, P · V+ (5/2)φ2
s, −(5/2)V 2

+, ∆N
4 [δ5],∆N

5 [−δ5] Θ0 (P
N
5 )

⊖ = L (−−−) +5
12

+18
12

, −3
12

105
144

−2285
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +9
12

(0), +7
12

(0)

⊖ = L (−++) 0 +18
12

, −3
12

105
144

−2285
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +4
12

(3), +2
12

(2)

⊖ = L (+−+) −1
12

+18
12

, −3
12

105
144

−2285
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +3
12

(0), +1
12

(0)

⊖ = L (+ +−) −4
12

+18
12

, −3
12

105
144

−2285
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] 0
12

(4), −2
12

(2)

⊕ = R (+ + +) −5
12

+18
12

, −3
12

105
144

−2285
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] −1
12

(0), −3
12

(0)

⊕ = R (+−−) 0 +18
12

, −3
12

105
144

−2285
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +4
12

(3), +2
12

(2)

⊕ = R (−+−) +1
12

+18
12

, −3
12

105
144

−2285
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +5
12

(0), +3
12

(0)

⊕ = R (−−+) +4
12

+18
12

, −3
12

105
144

−2285
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +8
12

(3), +6
12

(2)

Table 12. One index spinor from V 5
+: chiralities and multiplicities, Ψ

[A]
L,1 ⊕ 10

(

Φ
[A]
L,1 +Φ

[A]
R,1

)

.

5V+ =

(

−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
;
45

12

)(

0, 0, 0, 0, 0,
20

12
,
135

12
,
−45

12

)′

, V 2
+ =

914

144
,

P = (−++++++; 7−)(0, 0, 0, 0, 0,−2,−11, 4)′, P · V+ =
−375

12
=

−3

12
,

P + 5V+ =

(

−11

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
;

3

12

)(

0, 0, 0, 0, 0,
−4

12
,

3

12
,

3

12

)′

, (P + 5V0) · a3 6= 0,

(A.3)

which gives (P +5V+)
2 = 170

144 , and the oscillator contribution of 40
144 = 25/3

12 is needed.

Note that (5/2)φ2
s−(5/2)V 2

+ = −18−4/3
12 , which means we select ∆N

5 [δ5] and ∆N
5 [−δ5].

The total gauge shift is even but it is even due to (odd shift) from E8 and (odd shift)

from E′
8. Thus, the gauge quantum numbers must be the opposite of eq. (A.8). These

are shown in table 12.

A.2 SU(4)′ spectra from twisted sectors T

A.2.1 Twisted sector T6 (δ
6 = 0)

• Hidden index vector form for V 6
0 : we have

– 25 –



J
H
E
P
0
6
(
2
0
1
5
)
1
1
4

Chirality s̃ −s̃ · φs −pvec · φs, P · V0 (6/2)φ2
s, −(6/2)V 2

0 , ∆N
6 [δ6] Θ0 (P

N
6 )

⊖ = L (−−−) +5
12

+18
12 , −4

12
21
24

−169
24 0[0] +5

12 (0)

⊖ = L (−++) 0 +18
12 , −4

12
21
24

−169
24 0[0] 0

12 (4)

⊖ = L (+−+) −1
12

+18
12 , −4

12
21
24

−165
24 0[0] −1

12 (0)

⊖ = L (+ +−) −4
12

+18
12 , −4

12
21
24

−165
24 0[0] −4

12 (3)

⊕ = R (+ + +) −5
12

+18
12 , −4

12
21
24

−165
24 0[0] −5

12 (0)

⊕ = R (+−−) 0 +18
12 , −4

12
21
24

−165
24 0[0] 0

12 (4)

⊕ = R (−+−) +1
12

+18
12 , −4

12
21
24

−165
24 0[0] +1

12 (0)

⊕ = R (−−+) +4
12

+18
12 , −4

12
21
24

−165
24 0[0] +4

12 (3)

Table 13. Hidden index spinor from V 6
0 : chiralities and multiplicities, 7

(

Φ
[α′]
L +Φ

[α′]
R

)

.

6V0 =

(

−5

2
,
−5

2
,
−5

2
,
−5

2
,
−5

2
,
−5

2
,
−5

2
;
+5

2

)(

4

2
,
4

2
,
4

2
,
4

2
, 0,

4

2
,
7

2
,
3

2

)′

, V 2
0 =

338

144

P = (5+, 5+, 5+, 5+, 5+, 5+, 5+; 5−)(−1,−2,−2,−2, 0,−2,−3,−1)′, P · V0 =
−160

12
,

P + 6V0 =
(

08
)

(

1, 0, 0, 0, 0, 0,
1

2
,
1

2

)′

, (P + 6V0) · a3 = 0,

(A.4)

which saturates the needed masslessness condition 3
2 of T6, which are tabulated in

table 13. P is odd under both E8 and E′
8, we complex conjugate the E′

8 quantum

numbers.

A.2.2 Twisted sector T4 (δ
4 = 0)

• Hidden index vector form for V 4
0 :

4V0 =

(

−5

3
,
−5

3
,
−5

3
,
−5

3
,
−5

3
,
−5

3
,
−5

3
;
5

3

)(

4

3
,
4

3
,
4

3
,
4

3
, 0,

4

3
,
7

3
,
3

3

)′

, V 2
0 =

338

144
,

P =

(

3

2
,
3

2
,
3

2
,
3

2
,
3

2
,
3

2
,
3

2
;
−3

2

)

(

−2,−1,−1,−1, 0,−1,−2,−1
)′
, P2 · V0 =

−101

12
=

−5

12
,

P + 4V0 =

(

−1

6
,
−1

6
,
−1

6
,
−1

6
,
−1

6
,
−1

6
,
−1

6
;
1

6

)(

−2

3
,
1

3
,
1

3
,
1

3
, 0,

1

3
,
1

3
, 0

)′

, (P2 + 4V0) · a3 6= 0.

(A.5)

Since the shift is (odd) × (odd) under E8 × E′
8, we interchange the SU(4)′ gauge

quantum numbers. Note (P2 + 4V0)
2 = 44

36 = 48
36 − 4

36 . The oscillator contribution of

2 · 2/3
12 is needed. Using −(4/2)(V 2

0 − φ2
s) =

−49−1/3
12 , we choose −∆N

4 .

Table 14.

A.2.3 Twisted sector T1 (δ
1 = 1/12)

• Hidden index spinor form for V 1
0 : for the spinor,

– 26 –



J
H
E
P
0
6
(
2
0
1
5
)
1
1
4

Chirality s̃ −s̃ · φs −pvec · φs, P · V0 (4/2)φ2
s, −(4/2)V 2

0 , −∆N
4 [δ4] Θ0 (P

N
6 )

⊖ = L (−−−) +5
12

+18
12 , −4

12
21
24

−169
24

−2/3
12 [0] +12

12 (4)

⊖ = L (−++) 0 +14
12 , −5

12
21
36

−169
36

−2/3
12 [0] +7

12 (0)

⊖ = L (+−+) −1
12

+18
12 , −4

12
21
24

−165
24

−2/3
12 [0] +6

12 (2)

⊖ = L (+ +−) −4
12

+18
12 , −4

12
21
24

−165
24

−2/3
12 [0] +3

12 (0)

⊕ = R (+ + +) −5
12

+18
12 , −4

12
21
24

−165
24

−2/3
12 [0] +2

12 (2)

⊕ = R (+−−) 0 +18
12 , −4

12
21
24

−165
24

−2/3
12 [0] +7

12 (0)

⊕ = R (−+−) +1
12

+18
12 , −4

12
21
24

−165
24

−2/3
12 [0] +8

12 (3)

⊕ = R (−−+) +4
12

+18
12 , −4

12
21
24

−165
24

−2/3
12 [0] +11

12 (0)

Table 14. Hidden sector vector from V 4
0 : chiralities and multiplicities, Ψ

[α′]
L ⊕ 5

(

Φ
[α′]
L +Φ

[α′]
R

)

.

Chirality s̃ −s̃ · φs −pvec · φs, P · V0 (1/2)φ2
s, −(1/2)V 2

0 , ∆N
1 [δ1],∆N

1 [−δ1] Θ0 (P
N
4 )

⊖ = L (−−−) +5
12

0
12
, +5

12
21
72

−169
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +9
12

(0), +7
12

(0)

⊖ = L (−++) 0 0
12
, +5

12
21
72

−169
72

−5/3
12

[+1
12

], −5/3
12

[−1
12

] +4
12

(3), +2
12

(2)

⊖ = L (+−+) −1
12

0
12
, +5

12
21
72

−169
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +3
12

(0), +1
12

(0)

⊖ = L (+ +−) −4
12

0
12
, +5

12
21
72

−169
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] 0
12

(4), −2
12

(2)

⊕ = L (+ + +) −5
12

0
12
, +5

12
21
72

−169
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] −1
12

(0), −3
12

(0)

⊕ = L (+−−) 0 0
12
, +5

12
21
72

−169
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +4
12

(3), +2
12

(2)

⊕ = L (−+−) +1
12

0
12
, +5

12
21
72

−169
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +5
12

(0), +3
12

(0)

⊕ = L (−−+) +4
12

0
12
, +5

12
21
72

−169
72

−2/3
12

[+1
12

], −2/3
12

[−1
12

] +8
12

(3), +6
12

(2)

Table 15. Hidden index spinor from V 1
0 : chiralities and multiplicities are Ψ[α′]L ⊕

10
(

Φ[α′]L +Φ[α′]R

)

.

V0 =

(

−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
;
+5

12

)(

4

12
,

4

12
,

4

12
,

4

12
, 0,

4

12
,

7

12
,

3

12

)′

, V 2
0 =

338

144

P = (+ ++++++;−) (+−−−,−−−−)′ , P · V0 =
−31

12
=

+5

12
,

P + V0 =

(

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
;
−1

12

)(

10

12
,
−2

12
,
−2

12
,
−2

12
,
−6

12
,
−2

12
,

1

12
,
−3

12

)′

,

(P + V0) · a3 6= 0,

(A.6)

we have (P +V0)
2 = 170

144 = 210
144 −

40
144 . Reverse the gauge quantum numbers. Note that

(1/2)φ2
s − (1/2)V 2

0 = −148
12 = −12+ −1/3

12 . The oscillator contribution is 40
144 = 2 · 5/312 .

So we need −∆N
4 = −5/3

12 to cancel +2/3
12 in (1/2)φ2

s − (1/2)V 2
0 . These are shown in

table 15.

A.2.4 Twisted sector T5 (δ
5 = 1/12)

• Hidden index vector form for V 5
0 : we have
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J
H
E
P
0
6
(
2
0
1
5
)
1
1
4

Chirality s̃ −s̃ · φs pvec · φs, P · V0 (5/2)φ2
s, −(5/2)V 2

0 , ∆N
4 [δ5],∆N

5 [−δ5] Θ0 (P
N
5 )

⊖ = L (−−−) +5
12

+18
12

, 0
12

105
144

−845
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +11
12

(0), +9
12

(0)

⊖ = L (−++) 0 +18
12

, 0
12

105
144

−845
144

+2/3
12

[+1
12

], +2/3
12

[−1
12

] +6
12

(2), +4
12

(3)

⊖ = L (+−+) −1
12

+18
12

, 0
12

105
144

−845
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +5
12

(0), +3
12

(0)

⊖ = L (+ +−) −4
12

+18
12

, 0
12

105
144

−845
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] 2
12

(2), 0
12

(4)

⊕ = R (+ + +) −5
12

+18
12

, 0
12

105
144

−845
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +1
12

(0), −1
12

(0)

⊕ = R (+−−) 0 +18
12

, 0
12

105
144

−845
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +6
12

(2), +4
12

(3)

⊕ = R (−+−) +1
12

+18
12

, 0
12

105
144

−845
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +7
12

(0), +5
12

(0)

⊕ = R (−−+) +4
12

+18
12

, 0
12

105
144

−845
144

+5/3
12

[+1
12

], +5/3
12

[−1
12

] +10
12

(2), +8
12

(3)

Table 16. One index spinor from V 5
0 : chiralities and multiplicities, Ψ[α′]L ⊕ 10

(

Φ[α′]L +Φ[α′]R

)

.

Chirality s̃ −s̃ · φs pvec · φs, P · V+ (5/2)φ2
s, −(5/2)V 2

+, ∆N
4 [δ5],∆N

5 [−δ5] Θ0 (P
N
5 )

⊖ = L (−−−) +5
12

+18
12

, −4
12

105
144

−2285
144

+2/3
12

[+1
12

], +2/3
12

[−1
12

] +7
12

(0), +5
12

(0)

⊖ = L (−++) 0 +18
12

, −4
12

105
144

−2285
144

+2/3
12

[+1
12

], +2/3
12

[−1
12

] +2
12

(2), −2
12

(2)

⊖ = L (+−+) −1
12

+18
12

, −4
12

105
144

−2285
144

+2/3
12

[+1
12

], +2/3
12

[−1
12

] +1
12

(0), −3
12

(0)

⊖ = L (+ +−) −4
12

+18
12

, −4
12

105
144

−2285
144

+2/3
12

[+1
12

], +2/3
12

[−1
12

] −2
12

(2), −6
12

(2)

⊕ = R (+ + +) −5
12

+18
12

, −4
12

105
144

−2285
144

+2/3
12

[+1
12

], +2/3
12

[−1
12

] −3
12

(0), −7
12

(0)

⊕ = R (+−−) 0 +18
12

, −4
12

105
144

−2285
144

+2/3
12

[+1
12

], +2/3
12

[−1
12

] +2
12

(2), −2
12

(2)

⊕ = R (−+−) +1
12

+18
12

, −4
12

105
144

−2285
144

+2/3
12

[+1
12

], +2/3
12

[−1
12

] +3
12

(0), −1
12

(0)

⊕ = R (−−+) +4
12

+18
12

, −4
12

105
144

−2285
144

+2/3
12

[+1
12

], +2/3
12

[−1
12

] +6
12

(2), +2
12

(2)

Table 17. Hidden sector V 5
+: massless states are 8

(

Φ
[α′]
L +Φ

[α′]
R

)

.

5V0 =

(

−25

12
,
−25

12
,
−25

12
,
−25

12
,
−25

12
,
−25

12
,
−25

12
;
+25

12

)(

20

12
,
20

12
,
20

12
,
20

12
, 0,

20

12
,
35

12
,
15

12

)′

,

V 2
0 =

338

144

P2 = (2, 2, 2, 2, 2, 2, 2;−2)(5−, 3−, 3−, 3−,+, 3−, 5−, 3−)′, P · V0 =
−456

12
=

0

12
,

P2 + 5V0 =

(

−1

12
,
−1

12
,
−1

12
,
−1

12
,
−1

12
,
−1

12
,
−1

12
;
+1

12

)(

−10

12
,

2

12
,

2

12
,

2

12
,

6

12
,

2

12
,

5

12
,
−3

12

)′

,

(A.7)

which gives (P1 + 5V0)
2 = 194

144 = 210
144 − 16

144 . The oscillator contribution of 2 · 2/3
12 is

needed. Massless states are shown in table 16.

• Hidden index spinor form for V 5
+:

– 28 –



J
H
E
P
0
6
(
2
0
1
5
)
1
1
4

5V+ =

(

−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
,
−5

12
;
45

12

)(

0, 0, 0, 0, 0,
20

12
,
135

12
,
−45

12

)′

, V 2
+ =

914

144
,

P = (+ ++++++; 7−)(1, 0, 0, 0, 0,−2,−11, 4)′, P · V+ =
−376

12
=

−4

12
,

P + 5V+ =

(

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
;

3

12

)(

1, 0, 0, 0, 0,
−4

12
,

3

12
,

3

12

)′

, (P + 5V0) · a3 6= 0

(A.8)

which gives (P + 5V+)
2 = 194

144 = 210
144 − 16

144 . The oscillator contribution of 2 · 2/3
12 is

needed. Note that (5/2)φ2
s − (5/2)V 2

+ = −181−2/3
12 , which means we select ∆N

5 [δ5] and

∆N
5 [−δ5]. Massless states are shown in table 17.
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