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1 Introduction and result

Ever since the pioneering work of [1, 2], it has been known that string theory can explain the

entropy of (at least some classes of) black holes in terms of microstates in an appropriate

ensemble. The argument is most under control when the system is BPS, so that one

can tune the string coupling to near-zero, while the degeneracy (more precisely an index)

remains invariant: the black hole then gets mapped to a system of weakly coupled D-branes

whose microstates are easily counted.

Impressive as it might be, this result is indirect and kinematical. In particular, the

origin of the event horizon in the gravity regime is entirely obscure from the weakly coupled

picture. As a corollary, we do not understand various dynamical issues like the information

paradox. An outstanding question in this context is this: what happens to the individual

microstates as one cranks up the coupling? The fuzzball proposal [3–5] is an attempt to

answer this question.

The claim of the fuzzball proposal is that at strong coupling, the microstates turn

into smooth non-singular solutions of string theory that differ from the black hole solution

at the horizon scale, and that the ensemble of these fuzzball microstate “geometries”1 is

1The word “geometries” is in quotes because one does not necessarily expect that all of these solutions

will be visible in supergravity. However, in the case of the two-charge (D1-D5) black hole, enough fuzzball

solutions to capture the leading order entropy are expected in supergravity, this paper (for example) will be

an explicit demonstration of this. However, the question for the 3-charge (D1-D5-p) black hole is much less

clear. Large classes of solutions have been constructed which contain a finite fraction of the entropy (see [6],

and also [7], for the state of the art on this), but it remains to be seen if the full entropy can be found

purely in supergravity states. One argument against such a possibility exists in four dimensions due to

the existence of pure Higgs states in the weakly coupled D-brane description (see [8], and the introduction

of [9]). These states do not have a Coulomb branch analogue (and therefore possibly cannot be seen in

supergravity) but have a direct interpretation as single-centred black hole microstates — they are stable

under wall-crossing, and have a so-called Lefschetz SU(2) symmetry which can be interpreted as capturing
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what the black hole is comprised of. For the two charge (D1-D5) black hole in Type IIB

string theory on K3 or T 4 there are various arguments that the entropy of the system at

leading order can be reproduced entirely via fuzzball solutions that are visible within the

supergravity description as smooth horizonless solutions [11]. One argument is to quantize

the phase space of fuzzball solutions and counting the number of states to see whether it

reproduces the D1-D5 entropy. This was done for the original Lunin-Mathur subclass of

2-charge fuzzball solutions [12] by Rychkov [13]. But Rychkov’s result,

S ≈ 2π

√

2

3
N1N5 (1.1)

does not reproduce the full entropy, which is

S ≈ 4π
√

N1N5 (1.2)

for the K3 black hole.2 This is not surprising because the approach of Rychkov [13] did

not incorporate the complete family of 2-charge fuzzballs, in particular they do not include

the excitations in the compact directions. The result is nonetheless suggestive because it

does capture the correct scaling of the entropy with the D1 and D5 charges.

In this paper, we will consider the complete phase space of 2-charge fuzzball solutions

for the specific case of compactification on K3. These were constructed by Kanitscheider,

Skenderis and Taylor (KST) [14]. We will use geometric quantization of the phase space

of those solutions. We will be able to argue that a simple generalization of the Rychkov

symplectic form is the correct choice on them, enabling us to extend his result to the full

phase space. We find that the result (1.2) is precisely reproduced, giving closure to a gap

in the literature.

2 General two charge fuzzballs on K3

The general two-charge fuzzballs for the K3 case were constructed in [14], we will refer to

them as the KST fuzzball solutions. We follow the conventions in [11]:

ds2string =
f
1/2
1

f̃1f
1/2
5

[−(dt−Aidx
i)2 + (dz −Bidx

i)2] + f
1/2
1 f

1/2
5 dxidx

i + f
1/2
1 f

−1/2
5 ds2(K3),

e2Φ =
f2
1

f5f̃1
, B

(2)
tz =

A
f5f̃1

, B
(2)
µ̄i =

ABµ̄
i

f5f̃1
, (2.1)

C(0) = −f−1
1 A, B

(2)
ij = lij +

2AA[iBj]

f5f̃1
, B(2)

ρσ = f−1
5 kγωγ

ρσ,

the spherical symmetry of the black hole horizon. In particular, it has been argued in [10] that all 4D

microstates must have zero angular momentum (J = 0). In [6], solutions that capture a finite fraction of

the entropy of the 5D black hole were constructed. The solutions have no non-trivial circles, so one does

not have contradictions with the arguments of [10] via dimensional reduction. As an aside — it is not clear

to us if the 4D pure Higgs microstates are forbidden (or not) from having a supergravity description in

terms of some hitherto undiscovered J = 0 microstates. In any event, our goal here is not to get into the

debate on what fraction of the 3-charge microstates can be seen in supergravity. Our goals are modest and

limited to the 2-charge system. But we feel it is necessary to give the reader some context regarding the

status of SUGRA fuzzball microstates in the interest of transparency.
2We will not consider the T 4 compactifications in this paper for reasons explained in the final section.
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C
(4)
tzij = lij +

A
f5f̃1

(cij + 2A[iBj]), C
(4)
µ̄ijk =

3A
f5f̃1

Bµ̄
[icjk],

C
(4)
tzρσ = f−1

5 kγωγ
ρσ, C

(4)
ijρσ = (lγij + f−1

5 kγcij)ω
γ
ρσ, C(4)

ρστπ = f−1
5 Aǫρστπ,

C
(2)
tz = 1− f̃−1

1 , C
(2)
µ̄i = −f̃−1

1 Bµ̄
i , C

(2)
ij = cij − 2f̃−1

1 A[iBj].

The metric is in the string frame. The ωγ ≡ (ωα+ , ωα−) are a basis of self-dual and anti-

self-dual 2-forms on K3 with γ = 1, · · · , 22 where 22 is the second Betti number of K3.

The labels3 take the values α+ = 1, 2, 3 and α− = 1, · · · 19. The intersection numbers of

the forms are

dγδ =
1

(2π)4V

∫

K3
ωγ
2 ∧ ωδ

2. (2.2)

The integration constant in C
(2)
tz ensures that the potential vanishes at infinity — the

solutions depend on the harmonic functions (H,K,Ai,A,Aα−) via

f5 = H, f̃1 = 1 +K −H−1(A2 +Aα−Aα−), f1 = f̃1 +H−1A2,

dlγ = ∗4dkγ , dl = ∗4dA, Bµ̄
i = (−Bi, Ai), (2.3)

kγ = (03,
√
2Aα−), dB = − ∗4 dA, dc = − ∗4 df5.

Here µ̄ = (t, z) and ∗4 is the Hodge dual over flat R4. The Hodge dual in the Calabi-Yau

K3 metric is given by ǫρστπ.

The solutions in [14] correspond to the choice of Harmonic functions given by

H = 1 +
Q5

L

∫ L

0

dv

|x− F (v)|2 , Ai = −Q5

L

∫ L

0

dvḞi(v)

|x− F (v)|2 ,

K =
Q5

L

∫ L

0

dv(Ḟ (v)2 + Ḟ(v)2 + Ḟα−(v)2)

|x− F (v)|2 , (2.4)

A = −Q5

L

∫ L

0

dvḞ(v)

|x− F (v)|2 , Aα− = −Q5

L

∫ L

0

dvḞα−(v)

|x− F (v)|2 .

Here, |x−F (v)|2 is to be understood as
∑

i |xi−F i(v)|2, we will often suppress summation

over the index i. The 5-brane charge Q5 and the length of the defining curve L in the

D1-D5 system (see [11]) are related through the radius of the z-circle R via by

L = 2πQ5/R. (2.5)

A relation that is useful and important for us is the expression for the D1 charge Q1:

Q1 =
Q5

L

∫ L

0
dv(Ḟ i(v)2 + Ḟ(v)2 + Ḟα−(v)2). (2.6)

The integral charges are given by

Q5 = gsα
′N5, Q1 = gs

N1(α
′)3

V
. (2.7)

Here (2π)4V is the volume of K3. Henceforth, we will set α′ to unity.

The Lunin-Mathur solutions correspond to setting F(v) = 0 = Fα−(v) in the KST

fuzzballs. The detailed form of the KST solution will not be necessary to follow most of

our discussions, but we present it here for two reasons:

3We stick to the α± notation that is used in [11] because it can be adapted to the K3 case as well.
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• In checking (3.4), which is the key observation of this paper, from first principles, we

will need the details of the solution.

• We want to emphasize that at least superficially, the general fuzzballs are substan-

tially more complicated than the Lunin-Mathur fuzzballs [12].

3 The consistent symplectic form

The basic idea of geometric quantization is to quantize the phase space, count the states

in the Hilbert space and use that as the definition of the micro-canonical entropy. The

phase space and the space of solutions have a one-to-one map, so we can also work with

the latter. The goal then is to compute the symplectic form on the space of solutions and

then quantization can proceed as usual. In principle this is straightforward, but it is bound

to be a complicated problem for the fuzzball solutions presented in the last section.

Indeed, even for the Lunin-Mathur solutions the task was complicated, and Rychkov

used two simplifying facts to make the problem tractable, and to compute the restriction of

the full IIB supergravity symplectic form4 onto the moduli space of solutions. The first was

that the the Lunin-Mathur solutions are time-independent, which is a fact that is trivially

true for our more general KST solutions as well. The second was that the Hamiltonian,

when restricted to the moduli space took a specific simple form [13]:

H|MLM
=

RV

g2s

(

Q5

L

∫ L

0
Ḟ i(v)2 dv +Q5

)

, (3.1)

where the subscript LM on the left hand side denotes the fact that we are working with the

Lunin-Mathur subclass of solutions. Using these facts, it was argued in pages 7-8 of [13]

that the symplectic form should take the form

Ω =
1

2α

∫

δḞ i(v) ∧ δF i(v)dv (3.2)

where α can only depend on the various integrals of motion determined by the curve

functions F i(v):

α ≡ α

[
∫

Ḟ i(v)2dv,

∫

F̈ i(v)2dv, ...

]

(3.3)

Furthermore, (a) by computing the symplectic form explicitly from the IIB symplectic

form for a subclass of curves with chosen F i(v), and (b) finding in that class of curves

that α = πµ2 is a numerical constant,5 Rychkov argued [13] that the only expression of

the form (3.3) which can reduce to such a constant on the subclass of curves, is the choice

α = πµ2 on the entire Lunin-Mathur moduli space. This fixed the symplectic form for the

Lunin-Mathur fuzzballs, allowing a direct determination of the entropy of those solutions

by geometric quantization.

4We will not write down the full IIB symplectic form, it can be found in many of the references we have

already listed.
5Here, µ2 =

g2
s

R2V
.
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At first sight, the generalization from Lunin-Mathur to KST fuzzballs seems

formidable. The solution is substantially more complex, and for the K3 case, there are

20 (=19+1) new independent functions in the solution now. It is also clear, that the

Hamiltonian of the KST fuzzballs must be different from (3.1).6 Despite these potential

complications, we will show in this paper that the IIB supergravity Hamiltonian, when

restricted to the KST solutions, retains enough of the simple features of the Lunin-Mathur

solutions that we can adapt the Rychkov arguments to get the complete answer without

getting bogged down in the details.

The basic observation is that the energy in the KST case can be directly computed,

and it takes the simple form

H|MKST
=

RV

g2s

(

Q5

L

∫ L

0
(Ḟ i(v)2 + Ḟ(v)2 + Ḟα−(v)2) dv +Q5

)

. (3.4)

despite the added complexity of the KST solutions.7 This can be obtained straightforwardly

via the ADM approach (we sketch it in an appendix), but it is easy to convince oneself that

this answer is as it should be, as follows — Using (2.6) and (3.4) we can show immediately

that the total mass of the system is

Ebrane−mass =
N1R

gs
+

N5RV

gs
, (3.5)

and since the system is BPS, this is something we would expect.8 Now, the form (3.4) is

very closely related to the original energy functional in Rychkov’s computation (3.1), with

the crucial fact that all the independent functions enter democratically and quadratically

in it. In effect, therefore the arguments leading to the symplectic form (3.2) in [13] go

through exactly as before, with the only new ingredient that it should also involve terms

from the new functions:

Ω =
1

2α

∫

(δḞ i(v) ∧ δF i(v) + δḞ(v) ∧ δF(v) + δḞα−(v) ∧ δFα−(v))dv. (3.6)

Now, since the subclass of curves considered in [13] to argue that α must be the numerical

constant πµ2 is also a subclass of the curves considered here, it immediately follows that

the α = πµ2 here as well. This fixes the symplectic form for the KST solutions completely.

4 Entropy match from quantized phase space

Once we have the symplectic form, we have everything we need to quantize and compute the

entropy. Since all the curve functions enter democratically in the discussion, we will define

F I(v) ≡ (F i(v),F(v),Fα−(v)). (4.1)

6Indeed this is necessary, if one has hopes of reproducing the full entropy by doing geometric quantization.
7The subscript KST on the left hand side denotes that we are working with the full family of KST

fuzzballs.
8In fact, it was this observation that lead us to first guess that the answer for the Hamiltonian might be

simple. Once having reproduced the correct entropy using the guess, one can also do the direct computation

of (3.4), see appendix.
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Note that I takes 24 values because of this definition. Now, the standard approach is to

expand the curve functions into Fourier oscillators and to count the modes, see section 2

of [13] for a clear discussion. The only difference between there and here is that there the

indices i in F i(v) took only four values reproducing a result that would be equal to that of

four chiral bosons (ie., central charge c = 4). Here we get the analogue of 24 chiral bosons

(c = 24). The latter is what is indeed expected for the D1D5 black hole on K3, see eg.

p.28 of [11]. The answer can therefore be obtained via the Cardy formula

S ∼ 2π

√

c

6
N1N5 = 4π

√

N1N5, (4.2)

reproducing the classical Bekenstein-Hawking entropy of the K3 hole.

5 Comments

We have found that the geometric quantization of the general fuzzball moduli space on K3

reproduces the corresponding D1-D5 entropy on the nose. The possibility that a more com-

plicated structure for the symplectic form could arise and complicate the computation has

been raised in the literature (see discussion after eq. (4.76) in [11]), but by working with the

energy of the general fuzzballs we have shown that the problem can be solved by a simple

generalization of the Rychkov argument. The final symplectic form is indeed simple and

democratic in all the curve functions. With the malice of hindsight, perhaps one could have

taken the existence of 24 unknown functions in the KST solutions as a hint of this, already

at the time they were constructed [11, 14]. It will be interesting to repeat a similar compu-

tation in the T 4 case. However, unlike in the K3 case, the solution (2.1) in the T 4 case (ie.,

now α− only in the range α− = 1, 2, 3 corresponding to the anti-self dual 2-forms on the 4-

torus) does not describe the most general fuzzball solution [11]. It describes only the bosonic

excitations, one needs to further add fermionic excitations. Related questions seem to have

been addressed in [15], we hope to come back to the T 4 computation sometime in the future.
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A ADM mass from 5D reduction

In this appendix we will briefly sketch how to get (3.4) directly, without using the BPS

argument. In [13] the analogous result is obtained via the formula for asymptotic charges in

general relativity. We will get our result by reading off the fall-offs of the gEinstein5Dtt piece of

the effective five dimensional metric in the Einstein frame and identifying its ADM energy.

This reproduces the result of [13] when restricted to the Lunin-Mathur subclass of solutions.
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We want to view the KST solutions as five dimensional asymptotically flat solutions. So

we wish to obtain the effectively five dimensional metric that captures the string frame KST

metric presented in section 2. The KST solution falls into the standard Kaluza-Klein ansatz

when thought of as a 10 D solution. See for example appendix E of Kiritsis [16], whose

notations we follow. The reduction there is done starting with the string-frame metric,

which is exactly what we want. From eqs. (E.3)–(E.4) in [16] and the structure of KST

solution (specifically, the dilaton and the metric components in the compact directions),

one can see that the reduction of the 10D string-frame KST metric gives rise to a 5D

string(-like)-frame metric and a 5D “dilaton” (this is the field φ defined in eq. E.4 of [16]).

The latter can be computed to be

φ =
3

8
ln f1 −

1

4
ln f̃1 +

1

8
ln f5 (A.1)

The effective five dimensional Einstein frame metric can then be obtained via a conformal

rescaling

gEinstein5Dtt = e−4φ/3 gtt (A.2)

where gtt ∼ f
1/2
1

f̃1f
1/2
5

is the string-frame metric component. Explicitly, this yields

gEinstein5Dtt ∼ 1

(f̃1f5)2/3
. (A.3)

Now it is straightforward to read off the ADM energy from the subleading fall-off of this

metric component, and the result (3.4) follows. Eq. (2.16) of [17] is useful for fixing ADM

conventions when comparing fall-offs. Note that |x−F (v)|2 can be approximated |x|2 ∼ r2

(where r is the radial coordinate in 4+1 D) and taken outside the integral to the order

that is relevant for calculating the ADM mass.
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