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1 Introduction

Schwinger effect is one of the most interesting phenomena in particle physics. This is a

phenomenon that a pair creation of charged particles occur under an external field such

as an electromagnetic field. Schwinger obtained the creation rate of an electron positron

pair by evaluating the imaginary part of Euler-Heisenberg Lagrangian, which is an effective

Lagrangian for a constant electric field [1, 2]. This rate Γ is derived as Γ ∼ exp
(
−πm2

e/eE
)

to leading order and has a form with a negative power in the gauge coupling e. So the

Scwinger effect is a non-perturbative effect. Here, me is the electron mass and E is an

electric field. A critical electric field necessary energy for the electron positron pair creation

is Ecr ∼ m2
ec

3/e~, and the strength is about 1018 [V/m]. So, it is a phenomenon which

shows up only under strong electromagnetic fields.

Recently, we have seen advance in research on a strong electromagnetic field in both

theoretical and experimental aspects of hadron physics. At the heavy ion collision in RHIC

and LHC, it is expected that a strong magnetic field is generated by a collision of charged

particles accelerated at about the speed of light. Another related topic is neutron stars

and magnetors which carry a strong electromagnetic field. In such a strong electromagnetic

field, it may be possible to generate a pair creation of charged particles. For example, we

may think of a quark antiquark pair creation as well as the electron positron pair. We

need to analyze a non-perturbative effect because the quark dynamics is governed by a

strongly coupled gauge theory. This is becoming possible thanks to a development in

calculating physical observables of strongly coupled gauge theories from classical gravity

by the AdS/CFT correspondence [3–5].
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Within the AdS/CFT framework, the quark pair creation rate in the strongly coupled

N = 4 supersymmetric Yang-Mills theory was obtained in [6, 7]. Based on [6, 7], the

holographic Schwinger effect were calculated in various systems [8–15]. On the other hand,

two of the present authors obtained the vacuum decay rate, which can be identified as the

creation rate of quark-antiquark pairs, in N = 2 supersymmetric QCD(SQCD) by using a

different method [16] in AdS/CFT correspondence: the imaginary part of the probe D-brane

action.1 D3-D7 brane system corresponds to N = 4 supersymmetric SU(Nc) Yang-Mills

theory including an N = 2 hypermultiplet in the fundamental representation of the SU(Nc)

gauge group [17]. They obtained the creation rate of the quark antiquark in the N = 2

SQCD under a constant electric field by evaluating the imaginary part of the D7-brane

action. Then, the present authors evaluated the imaginary part of the D7-brane action

including not only a constant electric field but also a constant magnetic field and obtained

the creation rate of the quarks and antiquarks in the N = 2 SQCD [18].

We summarize the properties of the creation rate in both electric and magnetic fields

obtained in [18] for N = 2 SQCD as follows. We derived the Euler-Heisenberg Lagrangian

for a constant electromagnetic field in N = 2 SQCD at large Nc and at strong coupling.

Then, we obtained the creation rate of the quarks and antiquarks by evaluating the imagi-

nary part of the Lagrangian. We found that the creation rate diverges at a zero temperature

in the massless quark limit while it becomes finite when we introduce a nonzero temper-

ature. The divergence of the creation rate is influenced not only by a constant electric

field but also by a constant magnetic field. The results in SQCD showed similarities with

the creation rate of the electron positron pair in N = 2 supersymmetric QED(SQED) in

constant electromagnetic field.

In this paper, we study the quark antiquark pair creation in non-supersymmetric QCD

at large Nc at strong coupling, and the imaginary part of D8-brane action in a constant

electromagnetic field. The holographic models are the Sakai-Sugimoto model [19] and its

deformed version [20]. Our findings in this paper are as follows:

• We derive the Euler-Heisenberg Lagrangian for confining gauge theories: the Sakai-

Sugimoto model and the deformed Sakai-Sugimoto model. We obtain the creation

rate of the quark antiquark pair under the electromagnetic field, by evaluating the

imaginary part of the D-brane actions.

• The imaginary part is found to increase with the magnetic field parallel to the electric

field, while it decreases with the magnetic field perpendicular to the electric field. So

the vacuum instability strongly depends on the direction of the applied magnetic field

relative to the electric field.

1The method based on [6, 7] is a single instanton process for the creation of a pair and is valid for the

electric field E smaller than the critical electric field, while the method in [16] is for E stronger than or

comparable to the critical electric field. Both are basically a disc partition function in string theory, but

evaluated in different regimes. The former is a semi-classical large disc, while the latter is a small disc

giving the Dirac-Born-Infeld action. The boundary of the disc corresponds to the world line of the created

quark pair. A small E means a large disc , i.e. a larger separation of the created quark pair.
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• We obtain a critical value of the electric field, i.e., the Schwinger limit, by using

the condition that the D-brane action has the imaginary part. In the case of the

Sakai-Sugimoto model, the critical electric field corresponds to a QCD string tension

between a quark and an antiquark.

As for the first part among above, a result with only an electric field was reported in [21].

We analyze generic electric and magnetic fields in this paper.

The organization of this paper is as follows. In section 2, we summarize the behavior

of the critical electric field under a magnetic field. In section 3, we derive the creation rate

of the quark antiquark pair from the imaginary part of the Euler-Heisenberg Lagrangian in

the the Sakai-Sugimoto model by using the AdS/CFT correspondence. Also, in section 4,

we consider the imaginary part of the D-brane action in the deformed the Sakai-Sugimoto

model. Section 5 is for summary and discussion.

2 Universal behavior of the critical electric field

In this section, we derive an expression for the critical electric field Ecr in generic holo-

graphic QCD beyond which the Euler-Heisenberg Lagrangian acquires an imaginary part

in the presence of a magnetic field. This part follows analyses by Sato and Yoshida done

in [10] and [13]. Then, we will find that the expression coincides with that of QED in the

strong magnetic field limit.

First, in any holographic QCD model, it is known that there is an “IR wall” at which

the geometry is terminated in the holographic radial direction. The renowned Gibbons-

Maeda geometry [22, 23] for confining pure Yang-Mills dual is one of the best examples. It

has the radial scale typically written as UKK, and the region U < UKK is cut out smoothly

and any physical excitations coming down from the boundary of the spacetime should be

reflected back at the IR wall. The IR wall is an essential ingredient in any bottom-up

holographic model for implementing the confining scale. So the generic confining geometry

should have the following form

ds2 = g(r)ηµνdx
µdxν + f(r)dr2 + h(r)[internal space] (2.1)

in which every function of r terminates at some value of r where the IR wall exists. Here

r is the holographic radial coordinate, and µ, ν = 0, 1, 2, 3 is our space time directions. In

the above, the internal space can be generic, and can even mix with the r coordinate if one

wishes. The important factor is only g(r), as we shall see below.

We consider a flavor D-brane representing the quark sector, and its generic form is

given by the Dirac-Born-Infeld (DBI) action

Sflavor = −TDp

∫
dp+1ξ e−φ

√
− det(g̃ij + 2πα′Fij) . (2.2)

Here φ is the background dilaton, and g̃ij is the induced metric on the D-brane (as the

flavor D-brane is curved in the curved background geometry (2.1)),

g̃ij ≡ gMN∂iX
M∂jX

N . (2.3)
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XM (ξ) are the worldvolume scalar fields which specify the position of the flavor D-brane

in the bulk spacetime. The indices i and j run from 0 to p + 1, the dimension of the

worldvolume of the D-brane. The field strength F can have various components, but our

interest is only the 1+3 dimensional spacetime electromagnetic field which is constant, ~E

and ~B. This constant electromagnetic field can satisfy the equations of motion of the DBI

theory (2.2) since everything on the static D-brane is consistently assumed to depend only

on r. So, given constant ~E and ~B, once the scalar field X(r) is solved, the static D-brane

configuration is determined.

Now, we put a simple assumption: the flavor D-brane hits the IR wall. The D-

brane reaches the bottom of the geometry, which is a natural assumption for confining

gauge theories with a quark mass less than the QCD dynamical scale. For example, the

Sakai-Sugimoto model [19] with the flavor D8-brane placed at the antipodal points on the

Kalza-Klein circle has this property. There are other models sharing this property. The

assumption is necessary to show the critical electric field formula.

Let us calculate the critical electric field. The definition of the critical electric field is

the value beyond which the effective Euler-Heisenberg (EH) action obtains an imaginary

part. The EH action is nothing but the flavor D-brane action evaluated with the constant

field strength F [16]. The DBI action density is either real or pure imaginary, so, there

exists some r = r∗ at which we have a vanishing DBI action, in general if the EH has an

imaginary part: √
− det(g̃µν + 2πα′Fµν) = 0 . (2.4)

For E < Ecr, there exist no r∗ which satisfies this equation, so there appears no imaginary

part in the Euler-Heisenberg action. However, with E beyond the critical Ecr, there appears

some r = r∗ on the flavor D-brane and the effective action obtains an imaginary part and

becomes unstable. At the critical E = Ecr, one should find r∗ at the IR bottom of the

D-brane, which is required by a consistency. So one finds

det
[
g(r∗)ηµν + 2πα′Fµν

]
= 0 (2.5)

at the critical Ecr. After a simple calculation one finds

Ecr =
g(r∗)

2πα′

√√√√√√ 1 +
(

2πα′

g(r∗)

)2
| ~B|2

1 +
(

2πα′

g(r∗)

)2
| ~B//|2

(2.6)

where ~B// is the components of the constant magnetic field which are parallel to the electric

field. For the case of N = 4 supersymmetric Yang-Mills theory where the probe brane is a

D3-brane, this formula was first found in [10]. We find a generalization of it applicable to

any probe and background.

In particular, when ~B⊥ is zero, we find an expression

Ecr( ~B⊥ = 0) =
g(r∗)

2πα′
. (2.7)
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Interestingly, this is independent of the parallel magnetic field. This is natural because

charged particle moving along the electric field do not feel the Lorentz force if the magnetic

field is parallel to the electric field. Note that this quantity (2.7) is written only in terms

of a single metric component at the IR bottom of the confining geometry. For a generic

magnetic field, we find an inequality

Ecr( ~B) ≥ Ecr( ~B = 0) (2.8)

which is nothing but the magnetic catalysis.

The particular value of the critical electric field (2.7) for ~B⊥ = 0 in fact coincides with

the QCD string tension σstring [13]. The QCD string tension is just the effective tension

of a fundamental string at the bottom of the geometry. The string worldsheet should be

along the time direction and some spatial direction µ = 1, 2, 3, as being consistent with the

Regge behavior, so

σstring = TF1
√
−g00g11

∣∣∣∣
IR bottom

. (2.9)

Substituting the background metric (2.1) and using the fundamental string tension TF1 =

1/2πα′, we obtain

σstring =
1

2πα′

√
−g(r∗)η00g(r∗)η11 =

g(r∗)

2πα′
. (2.10)

The value again is written solely by a single component of the metric at the IR bottom,

and coincides completely with the critical electric field (2.7).

Using the relation (2.10), from (2.6) we find a formula for the critical electric field in

the presence of the generic magnetic field as

Ecr = σstring

√√√√ σ2
string + | ~B|2

σ2
string + | ~B//|2

. (2.11)

The critical electric field is shown in figure 1. One can see that the magnetic field perpen-

dicular to the electric field makes the critical electric field to increase.

When there is no magnetic field, this formula reduces to

Ecr = σstring (2.12)

which states that the critical electric field coincides with the confining force (the QCD

string tension) σstring between a quark and an antiquark. The equality is quite naturally

interpreted in QCD. Quarks are charged under the electric field, while the quark is bound

to an antiquark with a confining force. So, if the external electric field is stronger than the

confining force, the quarks are liberated, and electric current would start to flow. It is a

phase transition to a non-equilibrium steady state, and naively the critical electric field is

expected to be equal to the confining force, that is, the QCD string tension.

Remember that we have assumed that the flavor D-brane hits the IR wall, to derive

this equation. For some AdS/CFT models, once the magnetic field is turned on, the

– 5 –



J
H
E
P
0
6
(
2
0
1
5
)
0
0
1

-5

0

5
-5

0

5
1

2

3

4

5

B// B⊥

Ecr

Figure 1. The critical electric field formula Ecr as a function of the magnetic field. B// is the

magnetic field parallel to the electric field, and B⊥ is the one perpendicular to the electric field.

assumption may not be satisfied (for example, see [24–26]). So the above formula applies

only a sub-class of the AdS/CFT models.

The formula shows that in the presence of the magnetic field, the critical electric

field has a particular dependence on the magnetic field. It is interesting to note that

the dependence agrees with what is expected in QED in strong magnetic field. In QED,

electrons form Landau levels in the magnetic field, and for a strong magnetic field only the

lowest Landau level is expected to contribute to the dynamics. The lowest Landau level

approximation provides a decay rate of the vacuum in the strong magnetic field as [27]

ImLQED ∼
EB
4π2

log

[
1

1− exp[−πm2/E ]

]
, (2.13)

where

E ≡
√√

F 2 +G2 − F , B ≡
√√

F 2 +G2 + F , (2.14)

with the Lorentz invariant combinations of the electromagnetic field,

F ≡ ( ~B2 − ~E2)/2, G ≡ ~B · ~E . (2.15)

The exponent appearing in (2.13) is expected to be corrected [28] at a finite coupling

constant e as −πm2/E → −πm2/E+e2/4. The QED expression (2.13) will become singular

if the exponent vanishs, which occurs at a certain value of E ,

E = σ̃ (2.16)

with σ̃ = 4πm2

e2
. Using the definition of E , this equation is solved as

Ecr = σ̃

√√√√ σ̃2 + | ~B|2

σ̃2 + | ~B//|2
. (2.17)

This expression is exactly the same as what we found in the D-brane analysis, (2.11).

It is intriguing that our generic formula derived from string theory with the DBI action

coincides with the QED expectation at strong magnetic field.
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3 Pair creation of quark antiquark in D4-D8 brane system

In this section, we study a quark antiquark pair creation in the confining phase. The Sakai-

Sugimoto model is the D-brane construction of the D4-D8 brane which has the SU(Nf )L×
SU(Nf )R chiral symmetry and the confining phase [19]. We will obtain the creation rate

of the quark antiquark in the confining non-supersymmetric gauge theory by evaluating

the imaginary part of the D8-brane action with a constant electromagnetic field. Also, the

critical electric field is obtained by a threshold at which the D8-brane action acquires a

non-vanishing imaginary part.

3.1 Review of the Sakai-Sugimoto model

The D-brane contruction of the Sakai-Sugimoto model is with Nc D4- and D8-branes. A

spatial coordinate x4 of the spatial world-volume directions is compactified on S1 with an

anti-periodic boundary conditions for the fermions. The Nf D8-branes intersect x4 = 0

with the D4-branes. Similarly, the Nc anti-D8-branes put parallel at x4 = πR. Here, the

R is the radius of S1. We consider a flavor Nf = 1 for simplicity in this paper.2

The D4-branes metric is

ds2
D4 =

(
u

RD4

)3/2

(−dt2 + δijdx
idxj + f(u)(dx4)2) +

(
RD4

u

)3/2( du2

f(u)
+ u2dΩ2

4

)
.

(3.1)

The dilaton, the field strength of the Ramond-Ramond field, the function f(u) and the

AdS radius are defined as follows,

eφ = gs

(
u

RD4

)3/4

, F4 ≡ dC3 =
2πNc

V4
ε4, f(u) ≡ 1−

u3
KK

u3
, R3

D4 ≡ πgsNcl
3
s , (3.2)

where gs is a string coupling and Nc is the number of colors gauge group. String length is

ls and is related to α′ as l2s = α′. The coordinate u is the holographic radial direction, and

u =∞ corresponds to the boundary of the bulk space. The coordinate u is defined for the

region uKK ≤ u ≤ ∞. V4 is the volume of the unit four sphere S4. ε4 is the volume form

of the S4. In order to avoid a possible singularity at u = uKK, the coordinate u is follows

a periodic boundary condition as follows,

x4 ∼ x4 + δx4, δx4 ≡ 4π

3

R
3/2
D4

u
1/2
KK

= 2πR. (3.3)

The Kaluza-Klein mass parameter is defined as follows,

MKK ≡
2π

δx4
=

3

2

u
1/2
KK

R
3/2
D4

. (3.4)

2Since we consider the Nf = 1 D8-brane, the system does not have any charged mesons (which would

have been created if they are lighter).
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The gauge coupling gYM at the cutoff scale MKK in the 4-dimensional Yang-Mills theory is

derived as g2
YM = (2π)2gsls/δx

4 from the D4-brane action compactified on S1. Thus, the

AdS/CFT dictionary which is the relationship between the parameters RD4, uKK, gs in the

gravity side and the parameters MKK, gYM, Nc in the gauge side is the following,

R3
D4 =

1

2

λl2s
MKK

, uKK =
2

9
λMKKl

2
s , gs =

1

2π

λ

MKKNcls
, (3.5)

where a ’t Hooft coupling λ is defined as λ ≡ g2
YMNc.

Next, we consider a D8-brane embedded in the D4-brane background. The D8-brane

and the anti-D8-brane are inserted respectively to x4 = 0 and x4 = πR. Under this

boundary condition, the equation of motion requires dx4/du = 0 which means that the

coordinate x4 of the D8-brane and anti-D8-brane is constant. Then, the induced metric on

the D8-brane is

ds2
D8 =

(
u

RD4

)3/2

(−dt2 + δijdx
idxj) +

(
RD4

u

)3/2( du2

f(u)
+ u2dΩ2

4

)
. (3.6)

The D8-brane action is represented by

SD8 = SDBI
D8 + SCS

D8. (3.7)

The SDBI
D8 is the D8-brane Dirac-Born-Infeld(DBI) action and the SCS

D8 is the D8-brane

Chern-Simons term. We do not consider the Chern-Simons term in this paper.

3.2 Euler-Heisenberg Lagrangian of the Sakai-Sugimoto model

We shall calculate the Euler-Heisenberg Lagrangian. It is simply the DBI action with a

constant electromagnetic field. We substitute the D8-brane background and a constant

electromagnetic field to the DBI action. The constant electromagnetic field on the S4 is

zero. We turn on only the electric field on the x1 direction without losing generality due

the spacial rotational symmetry. The magnetic fields are introduced in x1, x2, x3 directions.

The DBI action in the D8-brane background including a constant electromagnetic field is

given by

SDBI
D8 = −T8

∫
d4xdudΩ4e

−φ√−det(P [g]ab + 2πα′Fab), (3.8)

where T8 is a D8-brane tension and defined as T8 = 1/(2π)8l9s . Substituting the D8-brane

background and the constant electromagnetic field to the D8-brane action, the effective

Lagrangian is obtained by

L = −8π2

3
T8

∫ ∞
uKK

du e−φ
u4√
f(u)

(
RD4

u

)3/4√
ξ, (3.9)

where the dΩ4 integral is Vol(S4)=8π2/3. Here ξ is defined by

ξ ≡ 1−
(2πα′)2R3

D4

u3

[
F 2

01 − F 2
12 − F 2

23 − F 2
13 + f(u)

u3

R3
D4

(F 2
0u − F 2

1u)

]
−

(2πα′)4R6
D4

u6

[
F 2

01F
2
23 + f(u)

u3

R3
D4

{F 2
0u(F 2

12 + F 2
23 + F 2

13)− F 2
1uF

2
23}
]
. (3.10)

– 8 –
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Next, we derive the equations of motion from the DBI action. We put ∂i = 0, (i =

1, 2, 3) because we are interested in homogeneous phases. The equations of motion are

given by3

(2πα′)28π2T8

3gs
∂u

(RD4/u)3/2u4
√
f(u)F0u

(
1 +

(2πα′)2R3
D4

u3

)
(F 2

12 + F 2
23 + F 2

13)
√
ξ

 = 0,

(3.11)

(2πα′)28π2T8

3gs
∂0

(RD4/u)3/2u4
√
f(u)F0u

(
1 +

(2πα′)2R3
D4

u3

)
(F 2

12 + F 2
23 + F 2

13)
√
ξ

 = 0,

(3.12)

(2πα′)28π2T8

3gs
∂0

(RD4/u)9/2u4F01

(
1 +

(2πα′)2R3
D4

u3
F 2

23

)
√
ξf(u)


+

(2πα′)28π2T8

3gs
∂u

(RD4/u)3/2u4
√
f(u)F1u

(
1 +

(2πα′)2R3
D4

u3
F 2

23

)
√
ξ

 = 0.

(3.13)

In particular, the equations of motion for static configurations are derived as

(2πα′)28π2T8

3gs
∂u

(RD4/u)3/2u4
√
f(u)F0u

(
1+

(2πα′)2R3
D4

u3

)
(F 2

12+F 2
23+F 2

13)
√
ξ

 =0, (3.14)

(2πα′)28π2T8

3gs
∂u

(RD4/u)3/2u4
√
f(u)F1u

(
1 +

(2πα′)2R3
D4

u3
F 2

23

)
√
ξ

 =0. (3.15)

By using the equations of motion, we can derive the charge density d and the current

density j respectively as,

d ≡ (2πα′)28π2T8

3gs

(RD4/u)3/2u4
√
f(u)F0u

(
1 +

(2πα′)2R3
D4

u3

)
(F 2

12 + F 2
23 + F 2

13)
√
ξ

, (3.16)

j ≡ (2πα′)28π2T8

3gs

(RD4/u)3/2u4
√
f(u)F1u

(
1 +

(2πα′)2R3
D4

u3
F 2

23

)
√
ξ

. (3.17)

In this paper, we are not interested in the charge density and the current as we are looking

at the vacuum instability. So we put F0u = 0 and F1u = 0 consistently.

3When both the electric and the magnetic fields are nonzero, the Chern-Simons term comes into the

equations of motion. Since the Chern-Simons term is of the form ∼ AuEB, the equations of motion for Au

acquire a new term, ∂0Au ∼ EB. This is nothing but the chiral anomaly. The field Au grows in time for a

constant E and B. We ignore this anomaly effect for simplicity, and interpret our outcome as the physical

values measured at t = 0 at which Au vanishes as an initial condition.
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Therefore, the D8-brane Lagrangian is derived as

L = −8π2T8

3gs

∫ ∞
uKK

du
u4(RD4/u)3/2√

1− u3KK
u3

√
1−

(2πα′)2R3
D4

u3

[
E2

1 − ~B2
]
−

(2πα′)4R6
D4

u6
E2

1B
2
1 ,

(3.18)

where we define the constant electric field as F01 ≡ E1 and the constant magnetic fields

as F12 ≡ B3, F23 ≡ B1, F13 ≡ B2, ~B2 ≡ B2
1 + B2

2 + B2
3 . We change the variable u in

this integral to a new coordinate y defined by u = uKK/y. By using the dictionary of the

AdS/CFT correspondence, we reach the non-supersymmetric Euler-Heisenberg Lagrangian

at large Nc,

L = −
M4

KKλ
3Nc

2 · 38π5

∫ 1

0
dy

√
1− 36π2

4M4
KKλ

2 y3(E2
1 − ~B2)−

(
36π2

4M4
KKλ

2

)2
y6E2

1B
2
1

y9/2
√

1− y3
. (3.19)

3.3 Imaginary part of the effective action in Sakai-Sugimoto model

In the previous subsection, we obtained the Euler-Heisenberg Lagrangian (3.18). Let us

evaluate the imaginary part from the effective Lagrangian.

We look at the region of the u where the imaginary part of the Euler-Heisenberg

Lagrangian (3.18) appears: the square root of the numerator in the integrand of (3.18)

needs less than zero,

1−
(2πα′)2R3

D4

u3

[
E2

1 − ~B2
]
−

(2πα′)4R6
D4

u6
E2

1B
2
1 < 0. (3.20)

Note that the region of the original integral in (3.18) is from uKK to ∞. The condition for

the variable u such that the imaginary part of the Euler-Heisenberg Lagrangian is nonzero

is given by

uKK ≤ u ≤
[

(2πα′)2R3
D4

2

{
E2

1 − ~B2 +

√
(E2

1 − ~B2)2 + 4E2
1B

2
1

}]1/3

. (3.21)

Thus, the imaginary part of the effective Lagrangian is obtained as

ImL =
8π2T8

3gs

∫ u∗

uKK

du
u4(RD4/u)3/2√

1− u3KK
u3

√
(2πα′)4R6

D4

u6
E2

1B
2
1 +

(2πα′)2R3
D4

u3

[
E2

1− ~B2
]
− 1,

(3.22)

where the u∗ is defined by

u∗ ≡
[

(2πα′)2R3
D4

2

{
E2

1 − ~B2 +

√
(E2

1 − ~B2)2 + 4E2
1B

2
1

}]1/3

. (3.23)

The region of the integral (3.22) is shown in figure 2.
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Figure 2. When the region of u is uKK ≤ u ≤ u∗, the Euler-Heisenberg Lagrangian has an

imaginary part. It means that the pair creation of the quark antiquark occurs by the vacuum

instability.

In terms of the integral variable y, the imaginary part is

ImL =
Ncλ

3M4
KK

2 · 38π5

∫ 1

y∗

dy

√(
36π2

4λ2M2
KK

)2
y6E2

1B
2
1 + 36π2

4λ2M2
KK
y3
[
E2

1 − ~B2
]
− 1

y9/2
√

1− y3
, (3.24)

where y∗ is defined by

y∗ ≡
[

36π2

23λ2M4
KK

{
E2

1 − ~B2 +

√
(E2

1 − ~B2)2 + 4E2
1B

2
1

}]−1/3

. (3.25)

Let us examine whether or not this creation rate of the quark antiquark diverges. We

evaluate (3.22) by the neighborhood of uKK. When we expand u = uKK + ε (ε � uKK),

the creation rate of the quark antiquark is

ImL '
8π2T8R

3/2
D4

3gs
F (uKK)

∫ u∗−uKK

0
dε

1√
(uKK + ε)3 − u3

KK

'
8π2T8R

3/2
D4F (uKK)

3
√

3gsuKK

∫ u∗−uKK

0
dε

1√
ε

= (finite), (3.26)

where the function F (u) is defined by

F (u) ≡ u4

√
(2πα′)4R6

D4

u6
E2

1B
2
1 +

(2πα′)2R3
D4

u3

[
E2

1 − ~B2
]
− 1. (3.27)

In the case of ε� uKK, we may approximate F (uKK+ε) ' F (uKK) since it is not divergent.

So, the creation rate does not diverge in the Sakai-Sugimoto model. Obviously, this is due

to the confining scale uKK.

We evaluate the critical electric field to break the vacuum by the creation of the

quark antiquark. We derive the critical electric field from the condition that the effective

Lagrangian starts to have the imaginary part. That is, from (3.21) we obtain

uKK≤
[
(2πα′)2R3

D4

2

{
E2

1− ~B2 +

√
(E2

1− ~B2)2+4E2
1B

2
1

}]1/3

. (3.28)
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Thus, the critical electric field Ecr is

Ecr =

 u3
KK

(2πα′)2R3
D4

·

{
u3KK

(2πα′)2R3
D4

+ ~B2
}

{
u3KK

(2πα′)2R3
D4

+B2
1

}
1/2

. (3.29)

As we can see from (3.29), for B2 = B3 = 0, the critical electric field is Ecr =[
u3

KK/(2πα
′)2R3

D4

]1/2
and does not depend on B1. By using the dictionary of the AdS/CFT

correspondence, the critical electric field is obtained as

Ecr =
2

27π
λM2

KK

[
4

36π2λ
2M4

KK + ~B2

4
36π2λ2M4

KK +B2
1

]1/2

. (3.30)

This expression coincides with the generic formula (2.11), since the QCD string tension of

the Sakai-Sugimoto model is (2/27)λM2
KK. When B2, B3 = 0, the critical electric field is

Ecr = 2λM2
KK/27π.4

Let us evaluate the imaginary part of the Lagrangian (3.24). For a given electric field,

the magnetic field can be decomposed into the parallel component and the perpendicular

component. For numerical simplicity, we choose to measure the electric and magnetic fields

in the unit of 2λM2
KK/(3

3π) and denote those rescaled electromagnetic fields as Ẽ and B̃.

Our result (3.24) is written as

ImL =
Ncλ

3M4
KK

2 · 38π5

∫ 1

y∗

dy

√
y6Ẽ2B̃2

// + y3
(
Ẽ2 − B̃2

⊥ − B̃2
//

)
− 1

y9/2
√

1− y3
. (3.31)

This can be numerically evaluated, and the result is shown in figure 3. For a fixed electric

field, we plot ImL as a function of the parallel magnetic field B// and the perpendicular

magnetic field B⊥.

We find that the imaginary part ImL has a very different dependence on these parallel

/ perpendicular components of the magnetic field. When the magnetic field is parallel to

the electric field, the imaginary part of the Lagrangian increases as the parallel magnetic

field increases. On the other hand, when the magnetic field is perpendicular to the electric

field, the situation is completely different. The evaluated imaginary part of the Lagrangian

decreases when the perpendicular magnetic field increases. So, we conclude that the insta-

bility of the system is enhanced with the parallel magnetic field while is suppressed with

the perpendicular magnetic field.

The creation rate of the quark antiquark pair is expected to increase with the paral-

lel magnetic field because the magnetic field makes the (1+3)-dimensional system reduce

effectively to a (1+1)-dimensional system by a Landau-level quantization. Our result is

similar to [18] in SQCD.

4Note that we do not calculate the time-dependent process from the confining phase to the deconfining

phase. We just evaluate the vacuum instability at the confined phase when we introduce the electromagnetic

field. We follow the story in [16] and [18].
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0

5
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10

15

20

B⊥ B//

ImL

Figure 3. The plot of the imaginary part of the Lagrangian for a fixed E, as a function of the

magnetic field B// parallel to the electric field, and the magnetic field B⊥ perpendicular to the

electric field. For a large |B//|, the imaginary part disappears. We took Ẽ = 10 in this figure.

Figure 4. The plot of the imaginary part of the Lagrangian. Left: the case with a magnetic field

parallel to the electric field. Right: the case with a magnetic field perpendicular to the electric field.

Let us look more about the electric field dependence. For a parallel magnetic

field, (3.31) is written as

ImLpara. B =
Ncλ

3M4
KK

2 · 38π5

∫ 1

Ẽ−2/3

dy

√
(y3Ẽ2 − 1)(y3B̃2

// + 1)

y9/2
√

1− y3
. (3.32)

For a perpendicular magnetic field, it is written as

ImLperp. B =
Ncλ

3M4
KK

2 · 38π5

∫ 1

(Ẽ2−B̃2
⊥)−1/3

dy

√
y3(Ẽ2 − B̃2

⊥) + 1

y9/2
√

1− y3
. (3.33)

The evaluation of our imaginary part of the Lagrangian (3.32) (3.33) is summarized in

figure 4.

If we look at only the critical value of the electric field as a function of the magnetic

field, it shows a magnetic catalysis — the critical electric field only increases once one

turns on the magnetic field. The imaginary part of the Lagrangian for the perpendicular
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magnetic field also follows the magnetic catalysis. However, the imaginary part of the

Lagrangian increases for the parallel magnetic field, which can be interpreted as an inverse

magnetic catalysis. In sum, the behavior of the instability of the system depends on the

direction of the magnetic field relative to the electric field.

In the next section, we evaluate the imaginary part of the D8-brane action in the

deformed Sakai-Sugimoto background.

4 Pair creation of quark antiquark in deformed D4-D8 brane system

In this section, in the deformed Sakai-Sugimoto model [20], we derive the creation rate of

the quark antiquark pair from the imaginary part of the D-brane action with a constant

electromagnetic field. We follow a procedure described in the previous section.

4.1 Euler-Heisenberg Lagrangian of deformed Sakai-Sugimoto model

In the Sakai-Sugimoto model, the D8-brane and the anti-D8-brane are inserted at the

antipodal points of the compactified S1, x4 = 0 and x4 = πR. However, generically

x4 coordinate for the inserted D-branes can depend on the coordinate u, and becomes a

function of u. Accordingly, the region of u in which the D8-brane hangs down changes from

[uKK,∞) to [u0,∞). The D4-brane background is given by (3.1). The coordinate x4 of the

anti-D8-brane is a function of u and moves in a sub-region of 0 < x4(u) < πR (uKK < u <

∞). When x4 = πR (u = uKK), the model corresponds to the Sakai-Sugimoto model in

the previous section. For generic x4(u), the induced metric on the D8-brane is given by

ds2
D8 =

(
u

RD4

)3/2

(−dt2 + δijdx
idxj) +

(
u

RD4

)3/2 du2

h(u)
+

(
RD4

u

)3/2

u2dΩ2
4, (4.1)

where the region of u is u0 ≤ u <∞ (uKK < u0 <∞) and the function of h(u) is defined by

h(u) ≡

[
f(u)

(
dx4(u)

du

)2

+

(
RD4

u

)3 1

f(u)

]−1

. (4.2)

Let us consider the D8-brane action including a constant electromagnetic field in the

deformed Sakai-Sugimoto model. Substituting the induced metric on the D8-brane to (3.8),

we obtain the following,

L = −8π2

3
T8

∫ ∞
u0

du
u4√
h(u)

(
u

RD4

)3/4

e−φ
√
ξ, (4.3)

where the function of ξ is defined by

ξ ≡ 1−
(2πα′)2R3

D4

u3

[
F 2

01 − F 2
12 − F 2

23 − F 2
13 + h(z)(F 2

0u − F 2
1u)
]

−
(2πα′)4R6

D4

u6

[
F 2

01F
2
23 + h(u){F 2

0u(F 2
12 + F 2

23 + F 2
13)− F 2

1uF
2
23}
]
. (4.4)
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Figure 5. The Euler-Heisenberg Lagrangian has an imaginary part in u0 ≤ u ≤ u∗. Since the

function of x4 depends on u coordinate, the below region of the integral changes from uKK to u0.

After a massage of the equations, we obtain

L = −8π2T8

3gs

∫ ∞
u0

du
u4√
h(u)

√
1−

(2πα′)2R3
D4

u3

[
E2

1 − ~B2
]
−

(2πα′)4R6
D4

u6
E2

1B
2
1 , (4.5)

where the electromagnetic fields are defined by F01 ≡ E1, F12 ≡ B3, F23 ≡ B1, F13 ≡ B2

and ~B2 ≡ B2
1 +B2

2 +B2
3 .

4.2 Imaginary part of the effective action in deformed Sakai-Sugimoto model

In the previous subsection, the D8-brane action in the deformed Sakai-Sugimoto model was

obtained as (4.5). In this subsection, we derive the creation rate of the massless quark an-

tiquark from the imaginary part of the D8-brane action in a constant electromagnetic field.

From (4.5), we examine the case when the imaginary part of the effective Lagrangian

appears. Since the function of h(u) is positive, we should find a region of u such that

the square root in the numerator of the integrand has an imaginary part. Although the

coordinate of x4 depends on u in the deformed Sakai-Sugimoto model, the dependence on

u in the function of x4 has no relation with the imaginary part of the effective Lagrangian.

So, we may follow the same logic as given in the previous section. The condition that this

effective Lagrangian has an imaginary part is the same as (3.20). The integration region

of u which gives an imaginary part is

u0 ≤ u <
[

(2πα′)2R3

2

{
E2

1 − ~B2 +

√
(E2

1 − ~B2)2 + 4E2
1B

2
1

}]1/3

. (4.6)

The imaginary part of the effective Lagrangian is evaluated as

ImL =
8π2T8

3gs

∫ u∗

u0

du
u4√
h(u)

√
(2πα′)4R6

u6
E2

1B
2
1 +

(2πα′)2R3

u3

[
E2

1 − ~B2
]
− 1, (4.7)

where u∗ is defined by (3.23). The integral region of u is shown in figure 5

Next, we evaluate the critical electric field. The critical electric field is derived from the

condition that the imaginary part of the effective Lagrangian starts to grow. From (4.6),
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we obtain

u0 ≤
[

(2πα′)2R3

2

{
E2

1 − ~B2 +

√
(E2

1 − ~B2)2 + 4E2
1B

2
1

}]1/3

. (4.8)

The critical electric field Ecr is obtained by the following,

Ecr =

 u3
0

(2πα′)2R3
·

{
u30

(2πα′)2R3 + ~B2
}

{
u30

(2πα′)2R3 +B2
1

}
1/2

. (4.9)

This critical electric field is of the same form as that for the critical electric field in the

Sakai-Sugimoto model, if we change from uKK to u0 on (3.29). Indeed, this expression

coincides with the generic formula (2.11), though the parameter appearing here is different

from the QCD string tension of the D4-brane geometry (2/27)λM2
KK. This is because

the D8-brane does not reach the bottom of the confining geometry and does not satisfy

the assumption to derive the generic formula (2.11) with the QCD string tension. When

B2, B3 = 0, the critical electric field is Ecr =
[
u3

0/(2πα
′)2R3

]1/2
, which is the independent

of B1 as in the case of the Sakai-Sugimoto model.

5 Summary

In this paper, we studied the vacuum instability induced by a constant electromagnetic field

by evaluating the Euler-Heisenberg Lagrangian of the large Nc non-supersymmetric QCD

with the (deformed) Sakai-Sugimoto model in the gravity side. Since the Sakai-Sugimoto

model has a confining scale, we obtained qualitatively different results from that of N = 2

SQCD [18].

By evaluating the imaginary part of the Euler-Heisenberg Lagrangian in the large Nc

QCD, we found that the creation rate of the massless quark antiquark is finite as oppose to

the results in the N = 2 SQCD. We found that the imaginary part of the Euler-Heisenberg

Lagrangian increases when the magnetic field parallel to the electric field increases, on the

other hands, it deceases when the magnetic field perpendicular to the electric field. We

also obtained the critical electric field by the condition such that the effective Lagrangian

has an imaginary part. It was shown to have the universal form.

There are several issues concerning the instability of the holographic QCD set-up we

used in this paper. We found an instability caused on the flavor D-brane by the electric

field. How the instability results in a dynamical decay process is beyond our scope of this

paper. In fact, since the background geometry is a confining geometry, if we keep the

geometry during the decay, it is impossible to have an electric current — there is no place

for the flavor D-brane to end in the geometry, as opposed to the situation with a black hole

horizon in the bulk (for example in the case of supersymmetric QCD). To make an electric

current flow, one may need a baryon vertex, but generically it is too heavy to create. So,

we are not sure where the dynamical instability leads us to. Creation of such a baryon

vertex in a time-dependent holographic QCD is an interesting question. We leave it to a

future work.
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