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1 Introduction and main results

In this work we discuss mirror symmetry [1–3] for N = 4 three-dimensional quiver gauge

theories. These theories have been extensively studied in the literature for various types

of quivers [3–8]. Among other interesting things, such theories provide a rich laboratory

for studying dualities in supersymmetric QFTs. For three dimensional N = 4 theories

mirror symmetry is a particularly important duality, which involves two or more theories

with completely different UV description flowing to the same superconformal point in the

IR. Our aim in this paper is to demonstrate that mirror symmetry for a wide class of

N = 4 quiver gauge theories is connected in a very interesting fashion to mirror symmetry

in linear quivers.

Three-dimensional mirror symmetry interchanges Coulomb and Higgs branches of the

theory. Clearly this is a very nontrivial mapping. The Higgs branch, where the gauge group

is generically broken completely, is a hyper-Kähler quotient given by the zero locus of the

triplet of N = 4 D-terms divided by the gauge group. The metric on the Higgs branch is

protected against quantum corrections. On the Coulomb branch, where the gauge group

is broken to its maximal torus, a generic classical point is characterized by the scalar vevs

of the triplet of scalars in a N = 4 vector multiplet and the dual scalar. It is a hyper-

Kähler manifold whose metric receives large quantum corrections. The equivalence of the

Higgs branch of theory A with the Coulomb branch of theory B under mirror symmetry

immediately implies that the FI parameters of theory A must be linearly related to the

N = 4 mass parameters of theory B [2]. This linear relation between the two sets of

quantities is known as the “mirror map” and constitutes one of the fundamental pieces of

information associated with a given mirror pair.

It was pointed out fairly early [3] that mirror symmetry is a direct consequence of

S-duality. Therefore reading off the data of the dual of a theory which admits a Hanany-

Witten description (branes plus perturbative objects like orbifolds, orientifolds etc.) is, in

principle, a solved problem. However, even in this category of examples, the answer may not

be very satisfactory — the S-dual configuration may give rise to a so-called “bad” or “ugly”

quiver which, if treated naively, does not flow to a unitary theory in the infrared. For “bad”

theories there is however a resolution: the RG flow organizes itself in such a way that a

proper number of matter fields acquire minimal R-charges and therefore become effectively

free. The theory with those matter multiplets removed is no longer “bad”. Note, however,

that a “good” dual of a “bad” theory (3d version of the Seiberg duality [9–11]) may also be

problematic to identify. For the large class of quiver gauge theories, which do not admit any

brane description [6], the identification of the mirror dual becomes much more intricate.

The main players in our story are parameter spaces of their supersymmetric vacua

L [12–14] and their “quantizations” — three-sphere partition function ZS3 [15–19] and

Hilbert series H(t) [20–23] on the Coulomb branch and the Higgs branch of a given theory.

In [8], mirror symmetry in N = 4 quiver gauge theories of the linear AL type was

analyzed after mass-deforming the original theories to N = 2∗ (by turning on mass defor-

mations conjugate to the diagonal U(1) subgroup of the SU(2)L × SU(2)R R-symmetry)

and compactifying on a circle. The parameter spaces of the supersymmetric vacua L, which
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can be thought of as symplectic Lagrangian submanifolds inside the complex vector space

of all canonical mass parameters, were identified for all linear quiver theories and their

mirror duals.

The parameter space L of massive vacua is one of the basic protected quantities of a

theory. There are certainly more sophisticated gadgets which are extensively used in the

literature, namely partition functions on various 3-manifolds [15, 18] and superconformal

indices of different kinds [24–27]. In particular, partition function on a round sphere

turn out to be an extremely effective tool for studying dualities in three dimensions. For

example, mirror symmetry in a large class of affine D-type quiver gauge theories was

analyzed in [7, 28] using partition functions of such theories on round sphere.

Another important object that can be used to check three dimensional dualities like

mirror symmetry is the Hilbert series — a generating function which counts chiral operators

on the moduli spaces of gauge theories with respect to some specific U(1) charge. Explicit

formulae for Hilbert Series on the Higgs branch have been known for quite sometime [21, 22].

Recently, analogous formulae for the Coulomb branch of N = 4 theories were found [23].

Comparison of the Higgs branch Hilbert series of a given theory and the Coulomb branch

Hilbert series of the mirror gives yet another way to check the mirror symmetry.

The theme of this paper, however, is slightly different from the body of work [7, 16,

23, 28] where much emphasis was placed on checking mirror symmetry for various families

of quiver gauge theories. In this work we demonstrate that a large class of quiver gauge

theories and their mirror duals, including various avatars of D and E type quivers and

their affine extensions, star-shaped quivers and quivers with Sp(N) gauge groups, may be

constructed by starting from a mirror pair of linear quivers and gauging appropriate global

symmetries on one side of the duality. The operation of gauging flavor symmetries in a

linear quiver to obtain a more complicated quiver is relatively straightforward. However,

one needs to understand the resultant “ungauging” on the other side of the duality to

derive the correct mirror using this procedure. The idea to use gauging of a topological

U(1) symmetry in Abelian 3d theories to compensate a pre-existing gauged U(1) was used

by Witten in [29]. In this work we present two concrete computational strategies for

implementing this gauging/ungauging procedure - one of them uses the N = 2∗ classical

moduli space description while the other uses partition functions of the N = 4 theories

on S3. The method which uses the S3 partition function is particularly convenient since

it generalizes easily to arbitrary size of the quiver and arbitrary rank of the gauge group.

In addition, the partition function method gives a straightforward recipe to derive the

mirror map for a given pair of mirror duals obtained via this gauging procedure. For most

examples of mirror pairs constructed in the fashion described above, we perform additional

checks of mirror symmetry using Hilbert series.

The paper is organized as follows. In section 2 we shall review how several families

of three-dimensional linear quiver gauge theories with N = 4 supersymmetry arise from

brane constructions and how the mirror symmetry acts on them via the S-duality. We

shall also review the parameter space of massive vacua for AL quivers with canonical mass

deformations including the N = 4 supersymmetry breaking mass parameter. Finally, we

shall introduce the basics of S3 partition function and Hilbert series that will be needed
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in the rest of the paper. Some key illustrative examples of the gauging method will be

presented in section 3. The reader who is familiar with the basics of mirror symmetry

in three dimensions may start reading the paper directly from section 3. The rest of

the manuscript from section 4 through section 6 consists of detailed derivations of the

corresponding mirror pairs using the gauging procedure.

1.1 Open questions

Some aspects of the 3d mirror symmetry were left beyond the scope of the present paper.

We would like to name a few of them below. We hope to address some of these problems

in the near future.

One important class of theories missing from our analysis are quiver gauge theo-

ries which follow from brane constructions involving O3 planes. The present paper only

deals with O5 mirrors. Including O3 planes will allow us to study quivers with orthogo-

nal/symplectic gauge groups in addition to the examples we have covered here. Embeddings

of SO groups inside unitary groups should be realized on the level of the parameter space

of supersymmetric vacua and the partition function, very much along the lines of section 6,

where the analogous embedding for symplectic groups was discussed.

Our computations of Coulomb branch Hilbert series in this paper are performed along

the lines of [23]. There is, however another form of the Coulomb branch series, namely the

one involving Hall-Littlewood polynomials. These two methods together provide an efficient

way to compute the Coulomb branch Hilbert series for a large class of theories including

those with non-Lagrangian mirrors. These computations will be addressed elsewhere.

We also leave the discussion of implementations of gauging/ungauging to the dual inte-

grable models for future work. Recall that each 3d quiver with N = 2∗ supersymmetry cor-

responds to a XXZ spin chain of certain length with certain number of Bethe roots at each

level of nesting [12]. In section 6 we show that upon a non-Abelian gauging the Coulomb

branch of the mirror theory changes dramatically, in particular a quiver ‘tail’ shrinks down

to a single node. It would be nice to interpret this phenomenon using the spin chain lan-

guage, i.e. what happens with the higher level excitations and with the spin chain S-matrix.

In this work we only regard quiver theories with N = 4 supersymmetry, which is softly

broken to N = 2∗. It would be interesting to consider more generic N = 2 quiver theories.

Hopefully, some of the results can be easily obtained from our construction by taking certain

degenerate limits such that some matter fields will get decoupled. Another modification

of our scenario may be carried out by introducing (untwisted) superpotential couplings in

the UV Lagrangian of the quiver theory. We do believe that for specific superpotential

deformations our results can be applied almost directly without significant changes.

1.2 Summary tables

Here we present a summary of some of the important quivers we discuss in this paper

together with their mirror duals. We refer the reader to the main text for the details on

notations and conventions.
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There are several tables below: table 1 and table 2 list star-shaped quivers and D-

type quivers, table 3 lists E-type and uneven star-shaped quivers,1 and table 4 shows

mirrors for Sp(Nc) theories. Some notations: numbers inside circle nodes denote ranks of

unitary gauge groups, numbers inside box nodes denote ranks of global symmetry groups,

‘A’ in rows four and five designate matter transforming in antisymmetric power of the

fundamental representation of the group it is charged under.

We refer to mirror duals in these table as ‘A-model’ and ‘B-model’ which should

be simply understood as a way of labeling the dual theories. We emphasize that this

terminology is in no way connected to the 2d (homological) mirror symmetry.

Note that most of the mirror duals from the table below are already known.2 In this

work we focus more on viewing the physics of these quivers through the prism of linear

quivers and their mirrors rather than establishing new mirror pairs. As we show later

in the text that for each quiver from the table there is a direct connection between its

BPS protected quantities (parameter space of SUSY vacua and S3 partition function) and

similar BPS objects for some linear quivers. We however admit that we do not possess an

exhaustive classification of all quivers of this type (which can be obtained by gauging global

symmetries of some linear quiver). It is a challenging task to provide such classification.

2 N = 4 quivers, mass deformations and mirror symmetry

Our goal is to understand infrared physics of N = 4 and N = 2∗ three dimensional quiver

theories which are formulated for quivers of every allowed shape. Recall that in three

dimensions there is more freedom than, say, in four dimensions, where, in the subclass of

balanced quivers, only (extended) ADE-shaped quivers are allowed. Such quivers describe

asymptotically conformal theories in the IR; integrating out matter multiplets one can

easily obtain asymptotically free theories. However, in three dimensions the corresponding

inequality for the linking numbers has the opposite sign. For example, 3d SQCD with

gauge group Nc and Nf fundamental hypermultiples has to obey Nf ≥ 2Nc (so-called

“good” quiver) in order to prevent the runaway of the vacua. Actually, theories with

Nc ≤ Nf ≤ 2Nc are also admissible, but their infrared physics is the same as the theory

with Nf − Nc colors and Nf flavors. In what follows, unless otherwise specified we will

assume that the stronger constraint Nf ≥ 2Nc is satisfied.

We start our analysis with linear AL quiver theories (see [6, 8] for details, here we

provide only a minimal review) and then we shall develop an approach to study quivers of

other shapes. The “goodness” condition for linear AL quiver figure 1 with color labels Ni

and flavor labels (framings) Mi reads

∆i := Ni+1 +Ni−1 +Mi − 2Ni ≥ 0 . (2.1)

Several notations for quiver varieties are currently used in the literature. In figure 1 we

list two of them which will be used in our paper interchangeably. These are so-called

1One of the quivers in the second table does not have any global symmetry; we thereby assume that its

Coulomb branch is defined as a U(1) quotient of the products of all its gauge groups.
2The newly discovered “good” mirrors for double framed D̂ quivers are displayed in table 2.
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A-model B-model Location in the text

k

N

1

1 1}

1 k-1k-1
SU(k) SU(k) SU(k) SU(k)

k
N-1 nodes

k
Section 4.1, figure 7

 2

1

1 1

1

2

N-3 nodes

SO(2N) Sp(1)

Section 4.3

2k

k

k k

k

2k

1

N-3 nodes

Sp(k)

SO(2N-4)

Sp(k)

SO(4)

Section 4.3, figure 15

2k

k

k k

k

2k

1

N-3 nodes

SO(2N) Sp(k) A

Section 4.3, figure 16

2k

k

k k

k

2k

1

N-3 nodes

1      N 2k

A

A

Section 4.1, figure 22, (c)

k 1

N-3 nodes

k

2k

k

k

1

2k

Sp(k)

SO(2N-2)

Sp(k)

SO(2)

Section 4.1, figure 22, (b)

Table 1. Summary table of star and D-shaped quivers and their mirrors.

quanternionic representations of quivers. Each link corresponds to a hypermultiplet in

(bi)fundamental representation of the gauge groups it connects. Complex quiver represen-

tations reflect each chiral multiplet separately. A Nakajima quiver variety [30] is defined as

a cotangent bundle to the space of the above quanternionic quiver representation followed

by a hyper-Kähler quotient with respect to the gauge group action. In physics language

this construction describes Higgs branches of quiver theories. In the above example of the
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A-model B-model Location in the text

1 2

N-3 nodes

1

22

1

1

Sp(1)

SO(2N)

1

2
Section 4.4, figure 19

1 M

N-3 nodes

1

22

1

1

Sp(1)

SO(2N)

1

1

1 1 1

1

M-1 nodes

Section 4.4, figure 21

Table 2. Summary table of D-shaped quivers and their mirrors (continued).

A-model B-model Location in the text

SU(3)

6

Section 5, figure 27

SU(4)

8

Section 5, figure 28

SU(6)

9

SU(3)

Section 5, figure 30

Table 3. Summary table of star and E-shaped quivers and their mirrors.

U(Nc) SQCD with Nf fundamental hypermultiplets the quiver variety (Higgs branch) is

isomorphic to the contingent bundle of the complex Grassmannian

Higgs = T ∗(U(Nf )//U(Nc)) = T ∗GNf ,Nc . (2.2)

Its quanternionic dimension is Nc(Nf −Nc).

In the infrared, moduli space of the theory has a Higgs branch and a Coulomb branch.

On the Coulomb branch, one has an Abelian theory whose gauge group is the maximal

torus of original gauge group of the quiver U(1)
∑
Ni while on the Higgs branch the gauge

group is generically broken completely. The description of its moduli space depends on the

amount of supersymmetry the theory possesses. In an N = 4 theory both the Higgs and

the Coulomb branch are singular varieties and the type of singularity can be understood

– 7 –
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A-model B-model Location in the text

Nc

Nc

2Nc 2Nc 2Nc

2Nc-1

2Nc-2

1

1

...

...

N f -2Nc-1  nodes

Sp(Nc)

Nf

Section 6, figure 35

Table 4. Sp(Nc) gauge theory on the right with its mirror dual quiver.

N N N N1 2 3 L

M
1

M
2

M
3

M
L

.....................

.....................

(N1,M1) (N2,M2) (N3,M3) (NL,ML)

Figure 1. Two different notations of linear quiver AL with labels

(N1,M1)1(N2,M2)2 . . . (NL,ML)L. Ni and Mi are color and flavor labels of the i-th node

respectively.

from the quiver itself. For example, it is well-known that the Higgs branch for affine ADE

quivers has the corresponding ADE singularity. Since mirror symmetry exchanges Coulomb

and Higgs branches, the Coulomb branch of the mirror dual of such quivers will also have

the corresponding singularity.

For instance, consider a U(1) gauge theory with M electrons which is mirror dual to

a AM quiver. The Higgs branch of the latter is the Abelian orbifold C2/ZM and therefore

from mirror symmetry one expects the Coulomb branch of the former to be C2/ZM . Using

Hilbert Series analysis, one can readily check that this is indeed the case [23]. The analysis

is certainly more involved for non-Abelian gauge groups, but there is a canonical way to

derive the representation content of the chiral ring on the Coulomb branch [23]. As we

have just mentioned, Coulomb branches of such theories are singular and for Hilbert series

computation one does not need to consider the resolutions of these singularities. In order to

– 8 –
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Figure 2. Brane construction for (1, 0)(2, 2)(1, 0) quiver. In this figure and later on, red ovals

denote D5 branes, horizontal blue lines show D3 branes and vertical black lines designate NS5

branes. In a configuration where none of D3 branes end on D5 branes, the number of D3 branes

contained in a given NS5 chamber gives the rank of the corresponding gauge group.

make the S3 partition function finite, one needs to make the theory massive. In addition,

we consider some of the above mentioned singularities to be partially resolved by turning

on resolution parameters that are compatible with N = 4 supersymmetry; in particular,

these parameters are complex masses for each flavour node and Fayet-Iliopoulos parameters

for each gauge group. Besides, in order to make the parameter space of vacua of the theory

(this is another variety we still need to define) non-singular, we shall introduce another

mass which will break the supersymmetry from N = 4 to N = 2∗ [8].

2.1 Brane construction and mirror symmetry

Linear quiver theories can be conveniently formulated using brane constructions of Hanany-

Witten type [3]. Hanany-Witten type brane setups have been extensively used in string

theory and there are many detailed reviews in the literature; here we merely provide a

prompt summary. The setup involves D3, NS5 and D5 branes which coincide in the

worldvolume directions of the three-dimensional theory and are oriented in the comple-

mentary seven directions of Type IIB string theory such that the system preserves eight

real supercharges- see the table below.

0 1 2 3 4 5 6 7 8 9

NS5 x x x x x x

D5 x x x x x x

D3 x x x x

For example for quiver with labels (1, 0)(2, 2)(1, 0), which we will be using in the next

section (see figure 7), we can draw brane diagram shown in figure 2. Let us now look at

the field theory content in more details. Scalar fields parametrizing Higgs and Coulomb

branches of the theory form a pair of SU(2) triplets. N = 4 SCFTs admit canonical mass

deformations for flavor symmetries of Higgs and Coulomb branches. Therefore there are

two types of mass deformations, also SU(2) triplets — real masses mA
i on the Higgs branch

of the theory and Fayet-Iliopoulos (FI) parameters tZa on the Coulomb branch of the theory,

here A,Z = 1, 2, 3. The SU(2) symmetry is in fact geometrical, indeed the two symmetry

algebras su(2) ∼ so(3) are represented via rotations of 456 directions for the Higgs branch

R-symmetry and 789 directions for the Coulomb branch R-symmetry. For each i the values

of mA
i , A = 4, 5, 6 and tZa , Z = 7, 8, 9 give the coordinates of ith D5 brane inside R3

456 and

– 9 –
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ith NS5 brane inside R3
789. Because of the translational symmetry of R3 all coordinates

should be counted modulo the overall shift. In fact, only the differences tZa − tZa−1 have

actual physical meaning as FI parameters for the corresponding gauge groups in the linear

quiver. Sometimes it is convenient to impose a center of mass constraint on them as well

as on the masses for each gauge node of the quiver but we shall refrain from doing so in

this paper. It will turn out, somewhat surprisingly, that keeping all the mass deformations

unconstrained has some advantage when one works with S-duality and mirror symmetry.

The mirror symmetry in three dimensions can be easily understood via S-duality of

the above brane construction. Under S-duality NS5 branes turn into D5 branes and vice

versa, D3 branes remain self dual. To read off the dual gauge theory from the S-dual

brane system, one needs to move the D5 and NS5 branes appropriately with possible

creation/annihilation of D3 branes required to keep the linking numbers of the individual

5-branes invariant [3, 6]. Because Dirichlet and Neveu-Schwarz branes are interchanged

Higgs and Coulomb branches are to be swapped together with the SU(2) R-symmetries. In

the following sections of the paper we will be using various examples of mirror dual quiver

theories, but for now let us consider the mirror for the theory depicted in figure 2. It is

an A1 quiver with labels (2, 4) or 3d U(2) SQCD with four fundamental hypermultiplets.

Indeed, if we switch the NS5 and D5 branes in figure 2 and move NS5 branes to the

boundaries of the picture, invariance of linking numbers for various 5-branes will dictate

that the four D5 branes lie inside the NS5 chamber and two D3 branes end on these NS5

branes. This is clearly the Type IIB description for the A1 quiver (2, 4).

Note that we can easily generalize the prescription of obtaining mirror duals to theories

given by affine ÂN quivers. Circular D3 branes which wrap around all the NS5 branes are

selfdual, so it is straightforward to read off the data of the mirror quiver. Later in section 4.4

we shall consider a framed Â3 quiver and its mirror.

2.2 Parameter space of vacua for AL quivers

We need to introduce one more ingredient — the space of mass parameters of supersym-

metric vacua L for quiver gauge theories in question [31]. However, in order to define L we

need to deform the setup twofold (see [8] for details): first, we compactify the theory on

R2 × S1, and, second, we turn on another mass deformation which breaks the supersym-

metry down to N = 2. Both modifications are absolutely necessary in order to transform

L into a complex symplectic manifold with symplectic form

Ω =
∑
i

dpim ∧ dmi +
∑
a

dpat ∧ dta , (2.3)

where the conjugate momenta pt,m to (now complexified) coordinates mi and ta are defined

through the following generating function

pim =
∂W(s,m, t)

∂mi
, pat =

∂W(s,m, t)

∂ta
. (2.4)

The generating functionW(s,m, t) is nothing but the twisted effective superpotential which

describes the massive vacua of the N = 2 theory. The twisted superpotential can be

– 10 –
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derived straightforwardly from the UV description of the theory by integrating out all

chiral multiplets [12]. As is explained in [8], W serves as a generating function on the

parameter space of vacua, which represents itself as a symplectic Lagrangian submanifold

L ⊂ M inside the complex vector space of all coordinates (masses and FI terms) and the

corresponding conjugate momenta.

The N = 2∗ deformation is implemented by the canonical embedding of the N = 2

supersymmetry algebra inside the N = 4 supersymmetry algebra, namely, the U(1) R-

symmetry generator of the N = 2 subalgebra is given by the sum of two Cartan generators

of SU(2)Higgs × SU(2)Coulomb N = 4 algebra R-symmetry jR = j3Higgs + j3Coulomb. The

orthogonal Cartan generator jε = j3Higgs − j3Coulomb commutes with the N = 2 subalgebra

and generates U(1)ε flavor symmetry with ε being the corresponding twisted mass.

Finally, the circle compactification provides us with complex mass parameters which

are obtained by combining real masses and FI terms with the corresponding flavor Wilson

lines. Due to the periodicity along the compact direction it is convenient to replace tuple

(mi, ta, ε) by its trigonometric version

µi = e2πRmi , τa = e2πRta , η = e4πRε , (2.5)

where the numerical factors in the exponential are conventions. Analogously to (2.4) we

introduce exponentiated momenta

piµ = e2πRpim , paτ = e2πRpat , pη = e4πR ∂W
∂ε , (2.6)

where in the end we have introduced the momentum conjugate to ε, which can also be

treated an independent coordinate.

The twisted superpotentialW(s,m, t, ε) is to be minimized with respect to the adjoint

scalar s of the N = 2, 3d vector superfield, which can also be exponentiated

σi = e2πRsi . (2.7)

In the same symplectic fashion we introduce canonical momenta which are conjugate to s

The condition for supersymmetric vacua is thus precisely the extrema of W

piσ := exp 2πR
∂W
∂si

= 1 . (2.8)

Therefore algebraically vacua moduli space L is a Lagrangian submanifold in M given by

specifying the conjugate momenta to the full set of variables: s,mi, t
a, ε.

The mirror symmetry in three dimensions interchanges FI terms and masses, hence it

should also interchange the corresponding conjugate momenta. In particular it implies that

piµ of one model should coincide with paτ of the mirror dual model up to (possibly) some

identifications of the mass deformations on both sides. On top of that the mirror symmetry

flips the sign of ε since it negates the action of the U(1)ε generator we introduced above.
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2.3 The partition function on S3

Localization methods have emerged as a powerful toolbox for computing various observables

exactly in QFTs with enough supersymmetry [15, 18, 32, 33]. The study of localization

for N ≥ 2 quiver gauge theories on S3 was initiated in [15] and in recent years such

computations have been carried out extensively for various three-manifolds including the

squashed sphere S3
b [18]. In the b→ 0 limit the squashed sphere partition function simplifies

dramatically, namely it becomes the exponential of the twisted effective superpotential

ZS3
b
∼ e−i/bW . Therefore we recover the classical parameter space of the mass deformations

L in this limit. On the other hand, b ∼ 1 value corresponds to an intrinsic quantum regime.3

The computations of the squashed sphere partition function are slightly cumbersome

due to the presence of special functions constructed from double infinite products. However,

those functions reduce to exponentials for the round sphere when b = 1. The partition

function on round sphere is therefore a particularly convenient object for studying dualities

in 3d quiver gauge theories. Explicit computations of S3 partition functions as tools to

check three dimensional mirror symmetry for N = 4 quiver gauge theories was discussed

in [16]. This approach was also taken in [7, 28] where mirror symmetry for a large class of

affine D-type quivers was discussed.

Given an N = 4 quiver gauge theory, the rules for writing down the S3 partition func-

tion may be summarized in the following fashion. Localization ensures that the partition

function of the theory reduces to a matrix integral over the Cartan of the gauge group.

Since S3 does not have any instantons, any such partition function may be schematically

represented as

Z =

∫
dks

|W|
∏
α

α(s) expScl[s]Z1-loop[s] , (2.9)

where s is the real adjoint scalar that sits inside a 3d N = 2 vector multiplet. One can

use a constant gauge transformation to make s lie in the Cartan subalgebra of the gauge

group. In the above formula
∏
α α(s) is the Vandermonte determinant where the product

is over all roots of the gauge group. This factor appears in the measure as a result of gauge

fixing the matrix model such that s lies in the Cartan of the gauge group. |W| represents

the order of the Weyl group - the 1
|W| factor is needed to account for the residual gauge

symmetry after s is gauge-fixed to lie in the Cartan subalgebra.

The contribution of vectors and hypers in the N = 4 theory to the above partition are

as follows. For every U(1) factor in the gauge group, one obtains the following classical

contribution

SFI
cl = 2πiηTr(s) , (2.10)

where η is a FI parameter. Each N = 4 vector multiplet contributes with

Zv1-loop =
∏
α

sinh2 πα(s)

πα(s)
, (2.11)

3The radius of the sphere coincides with b in this limit.
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where the product extends over all the roots of the Lie algebra of G. In fact, this is precisely

the contribution of an N = 2 vector multiplet since contribution of the adjoint chiral which

is part of the N = 4 vector multiplet is trivial [16].

Finally, each N = 4 hypermultiplet contributes with

Zh1-loop =
∏
ρ

1

coshπρ(s+m)
, (2.12)

where the product extends over all the weights of the representation R of the gauge group

G and m is a real mass parameter.

Note that the Vandermonte factor in the measure exactly cancels with the denominator

of the 1-loop contribution of the vector multiplet for each factor in the gauge group and

we can therefore ignore this contribution in the matrix integral.

Now let us illustrate how S3 partition function may be useful in studying mirror symme-

try of N = 4 quiver gauge theories. Consider the linear quiver pair which we have already

discussed in this section: the A-model quiver with labels (1, 0)(2, 2)(1, 0) (see figure 2) and

its mirror, the B-model which has labels (2, 4). The A-model partition function is given by

ZA =

∫ 2∏
α=1

dsα
d2s0

2!

∏2
α=1 e

2πisαηα
∏2
i=1 e

2πisi0η0 sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(s1 − si0)

∏2
a=1 coshπ(si0 +ma) coshπ(s2 − si0)

= e−2πim1(t1+t2)e2πim2(t3+t4) 1

2 sinhπ(t1 − t2) sinhπ(t3 − t4) sinh2 π(m1 −m2)

×
[

(e2πit4(m1−m2) − e2πit1(m1−m2))(e2πit3(m1−m2) − e2πit2(m1−m2))

sinhπ(t2 − t3) sinhπ(t1 − t4)

− (e2πit3(m1−m2) − e2πit1(m1−m2))(e2πit4(m1−m2) − e2πit2(m1−m2))

sinhπ(t1 − t3) sinhπ(t2 − t4)

]
,

(2.13)

where m1 and m4 are the masses of the fundamental hypermultiplets in the middle node.

We have also defined η1 = t1 − t2, η0 = t2 − t3, η2 = t3 − t4 which are the Abelian coupling

constants for the three gauge groups in the quiver.

The partition function of the B-model (2, 4) is

ZB =

∫
d2s

2!

∏2
i=1 e

2πisi(t̃1−t̃2) sinh2 π(s1 − s2)∏2
i=1

∏4
a=1 coshπ(si +Ma)

=
1

2 sinhπ(M1 −M2) sinhπ(M3 −M4) sinh2 π(t̃1 − t̃2)

×
[

(e2πiM1(t̃1−t̃2) − e2πiM4(t̃1−t̃2))(e2πiM2(t̃1−t̃2) − e2πiM3(t̃1−t̃2))

sinhπ(M1 −M4) sinhπ(M2 −M3)

− (e2πiM1(t̃1−t̃2) − e2πiM3(t̃1−t̃2))(e2πiM2(t̃1−t̃2) − e2πiM4(t̃1−t̃2))

sinhπ(M1 −M3) sinhπ(M2 −M4)

]
.

(2.14)

For convenience we impose the following constraints on mass parameters and FI parameters:

t̃2 + t̃1 = 0 and M1 +M2 +M3 +M4 = 0.

From the formulae for ZA and ZB, it is evident that they are equivalent under the

mirror map

ti ↔Mi , ma ↔ t̃a , (2.15)
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up to a phase factor e2πim1(t1+t2)e−2πim2(t3+t4) which vanishes when one imposes the con-

straints m1 +m2 = 0, t1 + t2 + t3 + t4 = 0.

In the following sections, we shall make extensive use of the S3 partition function

to obtain various quiver gauge theories from linear quiver pairs using the technique of

abelian/non-abelian gauging.

2.4 The Hilbert series of the Coulomb branch

In this section we review a general formula for the Hilbert series of the Coulomb branch of

a 3d N = 4 theory discussed in [23].

It is convenient to use the 3d N = 2 formalism, in which the N = 4 vector multiplet

decomposes into a N = 2 vector multiplet and a chiral multiplet Φ in the adjoint repre-

sentation of the gauge group. On a generic point of the Coulomb moduli space, the triplet

of scalars in the N = 4 vector multiplets acquires a vacuum expectation value, and the

gauge fields that remain massless are abelian and can be dualized to scalar fields. The

classical Coulomb branch is parametrized by the collection of such massless scalar fields.

The Coulomb branch, however, receives many quantum corrections. The asymptotic hy-

perkähler metric in the weak coupling region of the Coulomb branch can be computed at

one loop. Yet this method does not provide a suitable description for the strongly coupled

region.

It is shown in [34] that there is a description of the quantum Coulomb branch that

bypasses the dualization of free abelian vector multiplets. This realization involves ’t

Hooft monopole operators, which are local disorder operators that can be defined directly

in the infrared CFT. The magnetic charges m of the monopole operators are labelled by

the weight lattice Γ∗G∨ of the GNO (Langlands) dual gauge group G∨ [35]. The GNO

monopole charges m breaks the gauge group G to a residual gauge group Hm, which is

the commutant of m inside G. The components of the complex scalar φ that are moduli

of the BPS monopole configuration reside in the Lie algebra of the group Hm and are

left unbroken by the monopole flux [23]. The monopoles can be dressed with the scalar

components φ of the chiral multiplet Φ that preserves some amount of supersymmetry.

The residual gauge symmetry in the monopole background contains continuous part Hm
and a discrete part, namely Weyl group WG∨ of G∨; they act on m and φ. The gauge

invariant operators are labelled by m ∈ Γ∗G∨/WG∨ , i.e. a Weyl chamber of weight lattice

Γ∗G∨ . Such operators are dressed by all possible products of φ which are invariant under

the action of the residual group Hm.

The Hilbert series is the generating function of the chiral ring that counts gauge invari-

ant BPS operators parametrizing the Coulomb branch, graded according to their dimension

and quantum numbers under global symmetries. From the above discussion, the general

formula for the Coulomb branch Hilbert series reads

HG(t, z) =
∑

m∈Γ∗
G∨/WG∨

t∆(m)PG(t,m)zJ(m) , (2.16)

where the notation is explained as follows:
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• The sum is taken over a Weyl Chamber of the weight lattice Γ∗G∨ ,

• The function PG(t,m) counts Casimir gauge invariants of the residual gauge group

Hm made with the adjoint φ, according to their dimension; it is given by

PG(t;m) =

r∏
i=1

1

1− tdi(m)
, (2.17)

where di(m), i = 1, . . . , rank Hm are the degrees of the Casimir invariants of the

residual gauge group Hm left unbroken by the GNO magnetic flux m.

• The factor t∆(m) takes into account quantum dimensions of monopole operators which

is given by [6, 36–38]

∆(m) = −
∑

α∈∆+(G)

|α(m)|+ 1

2

n∑
i=1

∑
ρi∈Ri

|ρi(m)| , (2.18)

where the first sum over positive roots α ∈ ∆+(G) of G is the contribution of N = 4

vector multiplets and the second sum over the weights ρi of the matter field represen-

tation Ri under the gauge group is the contribution of the i-th N = 4 hypermultiplet.

• For a non-simple connected group G, there is a non-trivial topological symmetry

under which the monopole operators are charged. J(m) denotes the topological

charge of the monopole operator of GNO charges m, and z is the fugacity associated

with the topological charge.

We refer to (2.16) as the monopole formula of the Coulomb branch Hilbert series.

3 Gauging quivers: a basic example

Let us describe a simple example which illustrates the main idea of the gauging method.

In this section we shall only discuss Abelian gauging by which we shall mean gauging a

single, or several U(1) factors. In later sections we shall address non-Abelian gauging,

which will result in a nontrivial deformation of the Coulomb branch of the mirror model.

Note that, at the level of partition functions, the latter can be cumbersome; we present a

sample computation in section 6 after we familiarize the reader with the basic results of

Abelian gauging in sections 4 and 5.

3.1 Parameter space approach

In this work we shall be repeatedly using the embedding of parameter spaces of various

quiver gauge theories L into larger parameter spaces of some linear AL quivers whose

mirrors can be easily constructed. Using the results of [8] we can approach the desired

parameter space by taking some singular limit of the AL mirror pair. Each N = 2 AL
quiver theory has a fairly large parameter space of masses µ

(I)
i (I corresponds to I-th

gauge node) and FI couplings τa. Similar set of parameters exists on the mirror side µ
∨ (I)
i
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Figure 3. A3 quiver with labels (1, 0)1(2, 2)0(1, 2)2 together with all Coulomb branch parameters

and masses.

and τ∨a . For the AL quivers the mirror map simply interchanges the masses and the FI

terms. For other quivers a more complicated mapping is expected.

Let us look at one of the simplest examples of quivers which are not linear, say the D̂4

quiver. Its mirror is known and is described as Sp(1) (or SU(2)) gauge theory with eight

fundamental half-hypermultiplets with SO(8) global symmetry. Below we shall describe

how to reproduce this result using the gauging method starting from another mirror pair

of linear quivers.

Coincidentally, the proper mirror pair consists of the two theories which we have al-

ready described in the previous section: A-models with labels (1, 0)(2, 2)(1, 0) (see fig-

ure 2, 3) and B-model, which is U(2) theory with 4 flavors. We have concluded that

these two theories are mirror dual to each other by applying the S-duality to their brane

descriptions. Now we shall look at these two models more carefully by studying their

supersymmetric vacua.

The vacua of the A quiver are governed by the following Bethe-type equations4

τ2

τ1

2∏
a=1

ησ(1) − σ(0)
a

ησ
(0)
a − σ(1)

= 1 ,

τ4

τ3

2∏
a=1

ησ(2) − σ(0)
a

ησ
(0)
a − σ(2)

= 1 ,

τ3

τ2

2∏
I=1

ησ
(0)
1 − σ(I)

ησ(I) − σ(0)
1

·
2∏

a=1

ησ
(0)
1 − µ

(0)
a

ηµ
(0)
a − σ(0)

1

· η
−1σ

(0)
1 − ησ

(0)
2

η−1σ
(0)
2 − ησ

(0)
1

= 1 , (3.1)

τ3

τ2

2∏
I=1

ησ
(0)
2 − σ(I)

ησ(I) − σ(0)
2

·
2∏

a=1

ησ
(0)
2 − µ

(0)
a

ηµ
(0)
a − σ(0)

2

· η
−1σ

(0)
2 − ησ

(0)
1

η−1σ
(0)
1 − ησ

(0)
2

= 1 .

These four equations are to be solved with respect to four A-model Coulomb branch pa-

rameters: σ(1), σ
(0)
1 , σ

(0)
2 and σ(2), where upper indices designate the corresponding gauge

groups in the quiver (see figure 3). Recall that FI terms t1 through t4 denote the co-

ordinates of the NS5 branes along the x3 direction (see figure 2) and their differences

4We shall be using two terms — “Bethe equations” and “SUSY vacua equations” in the paper inter-

changeably.

– 16 –



J
H
E
P
0
6
(
2
0
1
4
)
0
5
9

t2− t1, t3− t2, t4− t3 give the FI couplings. Note also that (3.1) contains all these variables

in a trigonometric form, see (2.5) and (2.7). The first and the second equations of (3.1)

arise from minimizing the effective twisted superpotential of the theory with respect to s(1)

and s(2) respectively. These two Coulomb coordinates only appear in the bifundamental

hypermultiplets (chiral parts inside those hypers contribute to the numerators, anti-chiral

parts give the denominators) which connect nodes (1) and (0) and nodes (2) and (0); that is

why the corresponding Bethe equations are fairly simple. At the middle node (0), however,

there are more contributions. First, there are two variables s
(0)
1 and s

(0)
2 for each Cartan

generator of U(2), so there is a contribution from the adjoint field, and second, in addition

to the bifundamental fields there are two more fundamental hypers with masses m
(0)
1 and

m
(0)
2 . Note that N = 2∗ mass ε enters differently in the expressions for chiral and vector

fields due to the special R-charge assignments: chiral fields have charge 1 and vectors fields

have charge −2. We refer the reader to [8] for more details.

In order to fully describe the parameter space L in addition to writing Bethe equa-

tions (2.8), which can be viewed as

p
(I)
σ i = 1 , i = 1, . . . NI , I = 1, . . . , L , (3.2)

we specify the momenta conjugate to the mass parameters and FI parameters. For the

case in hand we have for the middle node5

paµ = τ1τ2

2∏
j=1

ηµa − σ(0)
j

ησ
(0)
j − µa

, (3.3)

together with the corresponding formulae for pτ .

Already at this point we can make an interesting observation. Let us treat one of the

equations (say for m1) in (3.3) as a new Bethe equation (we shall now formally relabel m1

into σ(3)) as if the momentum p1
µ is fixed to some constant value. One can now rewrite

this equation as follows

τ1τ2

p3
µ

2∏
j=1

ησ(3) − σ(0)
j

ησ
(0)
j − σ(3)

= 1 . (3.4)

We now add this equation to (3.1) in order to form a new set of Bethe equations with

respect to five variables: four Coulomb coordinates of the A3 quiver we have started with

and σ(3). One recognizes in this set of five equations the vacua equations for D4 quiver

with U(2) gauge group in the middle (label (0)) node, three U(1) gauge nodes labeled by

(1)− (3), and one global U(1) symmetry figure 4.

From the point of view of the parameter space of the mirror theory fixing the momen-

tum in (3.4), which is equivalent to losing mass parameter m1 (because we now need to

solve the new set of equations with respect to it) corresponds to (up to some rescaling,

which we shall fix promptly) eliminating one of the FI parameters. Indeed, according to

the mirror map in the linear quivers FI parameters and masses get interchanged, as well as

their conjugate momenta; so removing m1 on the A-side corresponds to eliminating, say,

5For this example we omit the (0) superscript for the masses.
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Figure 4. D4 quiver and its mirror dual obtained from the mirror pair of linear quivers with labels

(1, 0)(2, 2)(1, 0) and (2, 4).

τ∨1 on the B-side. An exact expression for m1 as a solution of the A model Bethe equations

may be quite cumbersome, and requires the knowledge of the solution of some high-degree

polynomial equations. However, in order to identify the content of the B model after fixing

p1
µ we can use the expression for the momentum conjugate to τ∨1 . Recall that in our case

the mirror quiver is A1 with labels (2, 4), so it has two FI parameters: τ∨1 and τ∨2 and two

Coulomb parameters σ∨1 and σ∨2 . According to [8] we have

p∨ 1
τ =

1

σ∨1 σ
∨
2

. (3.5)

We recall that under the mirror map µ∨a = τa. Our prescription now requires to us to

fix p∨ 1
τ = 1, therefore we impose a constraint for σ∨1 and σ∨2 , namely that one variable

is inversely proportional to another, or, in terms of rational coordinates, s∨1 = −s∨2 . This

constraint yields us SU(2) = Sp(1) gauge theory with four flavors. Therefore we have shown

how the parameter spaces of the two mirror quivers in figure 4 can be embedded inside the

parameter spaces of two linear quivers. Interestingly enough SO(8) global symmetry arises

as an enhancement of SU(4) in the presence of SU(2) (rather than U(2)) gauge symmetry.

The statement will become obvious upon proper identification of the momentum (3.3)

with the twist parameters of the A quiver. It works as follows

τ1τ2

p1
µ

=
τ2

τ1
, (3.6)

therefore p1
µ = τ2

1 . In order to match it with p∨ 1
τ = 1, which we just used to derive the

Sp(1) theory we need to assume τ2
1 = 1 or t1 = 0, which in terms of the brane construction

of figure 2 fixes the location of the location of the leftmost NS fivebrane to the origin in

the x3 direction.

In a moment we shall demonstrate how the procedure we have just performed (also

known as gauging of an Abelian symmetry, or merely Abelian gauging) can also be carried

out at the level of partition functions of the A and B models (2.13), (2.14). This computa-

tion will turn out to be very effective in deriving mirror pairs via Abelian gauging as well

as obtaining exact relationships between the mass parameters/FI parameters of the dual

theories (so called mirror maps).

The dimensions of the Coulomb and Higgs branches of the A-model quiver before

the gauging figure 3 were 4 and 2 respectively (correspondingly these numbers give the
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dimensions of the Higgs and Coulomb branches of the B-model before the gauging). After

gauging these dimensions on the A-side (see figure 4) have become 5 and 1 respectively,

which agrees with the dimensions of the Higgs and Coulomb branches of the Sp(1) theory

with four flavors. Therefore we can see that by gauging a U(1) subgroup of the U(2) node

on the left in figure 6 we increase the dimension of the Coulomb branch by one and decrease

the dimension of the Higgs branch by one.

As we have already mentioned before, the mirror map (exact correspondence of the

mass/FI parameters on both sides of the duality) for linear quivers is very simple. Indeed,

one simply interchanges the roles of twisted masses and FI parameters. However, after the

gauging has been implemented, the mirror map will change as well. In order to derive the

exact form of this map, as well as verify the proposed mirror pair using exact localization

methods, we appeal to the computations of partition function on a three-sphere.

3.2 Partition function approach

For gauging the U(2) flavor symmetry we have to treat m1 and m2 as independent param-

eters, without imposing any constraints. Note that from (2.13) and (2.14) we have

ZA = e−2πim1(t1+t2)e2πim2(t3+t4)ZB . (3.7)

Now let us implement the gauging by m1(t̃1) → −s3. Since we are gauging a single U(1)

flavor symmetry, the partition function of gauged A-model (which we denote by Z̃A) may

be simply obtained by multiplying ZA with the appropriate FI contribution e−2πiη3s3 and

integrating over s3. Therefore,

Z̃(1)
A =

∫
ds3e

−2πiη3s3ZA

=

∫ 2∏
α=1

dsαds3
d2s0

2!

e−2πiη3s3
∏2
α=1 e

2πisαηα
∏2
i=1 e

2πisi0η0 sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(s1−si0) coshπ(si0−s3) coshπ(s2−si0) coshπ(si0+m2)

= e2πim2(t3+t4)

∫
ds3e

−2πis3(t1+t2)e−2πiη3s3ZB

= e2πim2(t3+t4)

∫
ds3e

−2πis3(t1+t2)e−2πiη3s3 d
2s

2!

∏2
i=1 e

2πisiη sinh2 π(s1 − s2)∏2
i=1

∏4
a=1 coshπ(si +Ma)

. (3.8)

The partition function Z̃(1)
A corresponds to the gauged A-model quiver which, from the

second line, is a U(1)3 × U(2) gauge theory with one fundamental hyper (figure 4). To

determine the mirror of this quiver, one needs to consider the formula on the third line,

which essentially rewrites the partition function of the gauged A-model quiver in terms of

the partition function of the original B-model. One may then identify the dual theory by

computing Z̃(1)
A using the third/fourth line of the above equation.

Z̃(1)
A =e2πim2(t3+t4)

∫
ds3

d2s

2!

sinh2 π(s1 − s2)∏2
i=1

∏4
a=1 coshπ(si+Ma)

2∏
i=1

e2πisi(−m2+s3)e2πis3(−t1−t2−η3)

= e2πim2(t3+t4)

∫
d2s

2!

sinh2 π(s1 − s2)δ
(
s1 + s2 − t1 − t2 − η3

)∏2
i=1

∏4
a=1 coshπ(si +Ma)

e−2πim2(s1+s2)
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with the overall U(1) factored out

Figure 5. D̂4 with U(2) gauge group in the middle node and overall U(1) factored out. It may be

considered as a result of two Abelian gaugings which were implemented on the middle node of the

linear (2, 0)(2, 2)(2, 0) quiver.

= e2πim2(−t1−t2−η3+t3+t4)

∫
d2s

2!

sinh2 π(s1 − s2)δ
(
s1 + s2

)∏2
i=1

∏4
a=1 coshπ(si + (t1 + t2 + η3)/2 +Ma)

. (3.9)

Therefore, up to the prefactor (a pure phase) indicated above, one can easily identify

the above as the S3 partition function of a SU(2) gauge theory with 4 hypers. Note that

the masses of the fundamental hypers are shifted as Ma →Ma+(t1 +t2 +η3)/2 as we gauge

the flavor in the A-model. The mirror map for the mirror dual pair in figure 4 is therefore

M (1)
a = Ma + (t1 + t2 + η3)/2 = ta + (t1 + t2 + η3)/2 (3.10)

The mirror map is very similar to that of the original linear quiver pairs - each mass just

gets shifted by the same factor. For the new mirror pair, the A-model has four independent

FI parameters, namely tas (a = 1, 2, 3, 4) with one constraint and η3 -which matches the

four independent masses in the B-model. Note that the masses of the B-model no longer

satisfy the constraint of zero sum - in fact
∑

aM
(1)
a = 2(t1 + t2 + η3) 6= 0.

One can gauge the remaining U(1) flavor in exactly the same way. In this case, one

obtains,

Z̃(2)
A =δ (t1+t2+η3+η4−t3−t4)

∫
d2s

2!

sinh2 π(s1 − s2)δ
(
s1 + s2

)∏2
i=1

∏4
a=1 coshπ(si+(t1+t2+η3)/2+ta)

=δ (η1+η2+η3+η4+2η0)

∫
d2s

2!

sinh2 π(s1 − s2)δ
(
s1+s2

)∏2
i=1

∏4
a=1 coshπ(si+(t1+t2+η3)/2+ta)

.

(3.11)

The B-model is therefore the same, but the A-model will be D̂4 quiver with an overall U(1)

removed as imposed by the delta function constraint in the previous equation.

η1 + η2 + 2η0 + η3 + η4 = 0 . (3.12)

Note that the form of the constraint is of the form
∑

i ηili = 0, where the sum runs over

the nodes of the D̂4 quiver while li denotes the Dynkin label of the i-th node.

One therefore has a quiver with the gauge group U(1)4×U(2)//U(1). On the B-model

side, this simply amounts to imposing the constraint (3.12). The mirror map formally

remains the same, subject to this extra constraint, see figure 5.
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One may wonder however if there is a preferred choice in imposing extra con-

straint (3.12). For instance, one could try to consider D̂4 quiver with SU(2) node in

the middle instead of the U(2). As it turns out, this choice, as well as all the other U(1)

quotients, except for S(U(1)4 × U(2)) or the configuration presented in figure 4 where an

overall U(1) factor is decoupled, does not give a correct mirror description. Below we

demonstrate this fact by computing the Hilbert series on the Coulomb branches [23] of the

corresponding D̂4 quivers.

3.3 Checking mirror symmetry: the Hilbert series of D̂4 quiver

The Hilbert series of D̂4 quiver in figure 5 can be obtained via formula (2.16); the result is

as follows:

H[D̂4](t,x) =
∑

m1,...,m4∈Z

∑
n1≥n2=0

t∆(m,n)

(
zn1+n2

0

4∏
i=1

zmii

)
×

×
[
PU(1)(t)

]4
(1− t)PU(2)(t,n) . (3.13)

Let us explain each part of the above formula as follows. The dimension formula of

monopole operators is given by

∆(m,n) = −|n1 − n2|+
1

2

4∑
i=1

2∑
j=1

|mi − nj | , (3.14)

where m1, . . . ,m4 are monopole charges associated with each U(1) group, and n1, n2 are

monopole charges associated with U(2) in the center of the quiver. The product in the

brackets in the first line of (3.13) corresponds to the refinement of various global charges:

each fugacity zi keeps track of the charge mi for each U(1) and the fugacity z0 keeps track of

the topological charge n1 +n2 of U(2). Functions PU(1)(t) and PU(2)(t,n) are contributions

from the Casimir invariants of U(1) and U(2) gauge groups given by (2.17):

PU(1)(t) =
1

1− t
, PU(2)(t,n) =

 1
(1−t)(1−t2)

, n1 = n2

1
(1−t)2 , n1 6= n2 .

(3.15)

An overall U(1) in the quiver figure 5 is factored out from the U(2) middle node via

the following steps:

1. fixing the charge n2 associated with U(2) gauge group to zero, as stated in the second

summation;

2. multiplying the factor (1− t) in front of PU(2)(t,n), and

3. by imposing the condition

z2
0z1z2z3z4 = 1 . (3.16)
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Note that this procedure of gauge fixing is not unique. One can instead, for example, take

any of the U(1) nodes in figure 5 to be a flavour node (see e.g., section 3.4 of [23]) and

obtain the same answer.

In order to make the SU(2) associated to each leg manifest and to fix the overall U(1),

we write

z0 = x1x2x3x4, zi = x−2
i , (3.17)

where xi (with i = 1, 2, 3, 4) are the SU(2) fugacities corresponding to each leg.

Since SU(2) gauge theory with 4 flavors has an SO(8) flavour symmetry, it is expected

that the Hilbert series should be written in terms of characters of SO(8) representations.

In order to do so, we may use the following fugacity map6

y1 = x1x2, y2 = x2
2, y3 = x3x2, y4 = x4x2 , (3.18)

where y1, y2, y3, y4 are the SO(8) fugacities and x1, x2, x3, x4 are the SU(2)4 fugacities. To

make a connection with the fugacities z0, z1, . . . , z4, we have

z0 = y1y
−1
2 y3y4 , z1 = y2

1y
−1
2 , z2 = y2, z3 = y−1

2 y2
3, z4 = y−1

2 y2
4 . (3.19)

In terms of y1, . . . , y4, the power series of (3.13) in t is given by

H[D̂4](t,y) =

∞∑
k=0

[0, k, 0, 0]yt
k , (3.20)

where [0, k, 0, 0]y denotes the character of representation [0, k, 0, 0] of SO(8) written in

terms of y1, . . . , y4. Henceforth, we use a square bracket [. . .]y to denote the character of our

representation written in terms of the variables in the subscript, which is y in this case.7 To

avoid the cumbersome notation, we drop the subscript when there is no potential confusion.

Setting yi = 1, which amounts to taking the dimension of the representations in (3.20),

we obtain the unrefined Hilbert series

H[D̂4](t, {yi = 1}) =
∞∑
k=0

dim [0, k, 0, 0]tk

=

∞∑
k=0

(k + 1)(k + 2)3(k + 3)3(k + 4)(2k + 5)

4320
tk

=
(1 + t)(1 + 17t+ 48t2 + 17t3 + t4)

(1− t)10

= 1 + 28t+ 300t2 + 1925t3 + 8918t4 + . . . . (3.21)

6This is the same as (4.5) of [21].
7The characters can be computed using Weyl’s character formula or using LiE online service in the fol-

lowing link: http://young.sp2mi.univ-poitiers.fr/cgi-bin/form-prep/marc/LiE_form.act?action=

character&type=D&rank=4&highest_rank=8.
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A remark on gauge fixing. We emphasize that the gauge fixing procedure described

above is different from taking the middle node of figure 5 to be SU(2). Let us com-

pare (3.13) with the Hilbert series of the same quiver with the central node taken to be

SU(2). The latter is given by

H̃(t,x) =
∑

m1,...,m4∈Z

∞∑
n=0

t∆̃(m,n)

(
4∏
i=1

x−2mi
i

)
×

×
[
PU(1)(t)

]4
(1− t)PU(2)(t, n,−n) , (3.22)

where

∆̃(m, n) = −|2n|+ 1

2

4∑
i=1

2∑
j=1

(|mi − n|+ |mi + n|) . (3.23)

Indeed, the summand of (3.22) is equal to that of (3.13) with n1 = n2 = −n. However,

after taking the summations into account, we see that this is not compatible with the

gauge fixing described above, where we fixed n2 = 0 rather than taking n2 to be −n1. For

reference, we present a few terms of (3.22):

H̃(t, {xi = 1}) = 1 + 12t+ 156t2 + 949t3 + 4486t4 + . . . . (3.24)

This is different from (3.21).

In the following section, while discussing a balanced or any generic flavorless 3d quiver,

we will implicitly assume that an overall U(1) vector multiplet decouples from the theory.

Note that in the classical analysis of the parameter space of vacua L there is a notion of the

“center of mass” for twisted masses and FI terms, which is naturally associated with the

translational symmetry of the system of D5 and NS5 branes. Therefore one can gauge the

entire global symmetry of the quiver on the level of L, except for a single U(1) factor. This

is the reason why in the A model quiver in figure 4 one global U(1) symmetry is present.

However, as we have shown above, the Hilbert series for this quiver and for balanced

flavorless D̂4 from figure 5 are identical. Classically the statement boils down to the fact

that a linear rank-L quiver has L+1 NS5 branes and therefore L+1 NS5 positions. However,

the FI parameters appearing in the N = 4 Lagrangian correspond to the differences ηi =

ti+1− ti. In the remainder of the paper we shall be using this observation — by specifying

a proper submanifold in L and obtaining a quiver with a single global U(1) symmetry we

will automatically arrive at the corresponding flavorless quiver and its mirror description.

The rest of the paper consists of the analysis of 3d mirror pairs involving quivers of

different shapes: generic D̂N and star-shaped quivers in the next section, exceptional E6,7,8

quivers and their extensions in section 5, and framed A1 Sp(Nc) quivers in section 6.

4 D̂N and star-shaped quivers

In this section, we analyze various examples of the framed D̂N quivers shown in table 1

and closely related star-shaped quivers using the Abelian gauging technique.
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2

N

1 1 2

2

2 2 2

2

Figure 6. Linear quivers which are mirror dual to each other. For the quiver on the right there

are N − 1 U(2) gauge groups in the chain.

2

N

1 1

1

1}

Sp(1) Sp(1) Sp(1) Sp(1)

SO(4) SO(4)N-1 nodes

Figure 7. New mirror pair obtained from linear quivers figure 6. For the quiver on the right there

are N − 1 Sp(1) gauge groups in the chain.

A straightforward generalization of the D̂4 quiver from figure 5 is a star-shaped quiver

with more than four nodes with U(1) gauge groups on those nodes. Later we shall also

discuss star quivers with longer legs.

4.1 Star-shaped quivers via Abelian gauging

Let us consider an obvious generalization of the example from figure 4.

Consider a mirror pair of linear quivers (figure 6) where the A-model is (1, 0)(2, N)(1, 0)

quiver and the B-model is (2, 2)1(2, 0)2 · · · (2, 0)N−2(2, 2)N−1, where the subscripts label the

N − 1 gauge nodes in the latter quiver .

We can now see how the ‘gauging’ trick works, namely, it splits a flavor node Mi

in an AL quiver with U(Ni) gauge group on its i-th node into a maximum of Mi U(1)

gauge group factors which leads us to more generic constructions of mirrors, as shown for

example in figure 7.

Now, let us demonstrate how the gauging procedure may be performed at the level of

partition functions. For a generic N , the partition function on a round 3-sphere for the

A-model is

ZA =

∫ 2∏
α=1

dsα
d2s0

2!

∏2
α=1 e

2πisαηα
∏2
i=1 e

2πisi0η0 sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(s1 − si0)

∏N
a=1 coshπ(si0 +Ma) coshπ(s2 − si0)

(4.1)

= −
∫
d2s0

2!

∏2
i=1 e

2πisi0(t2−t3)
(
e2πis10(t1−t2)−e2πis20(t1−t2)

)(
e2πis10(t3−t4)−e2πis20(t3−t4)

)
4 sinhπ(t1 − t2) sinhπ(t3 − t4)

∏N
a=1

∏2
i=1 coshπ(si0 +Ma)

where we have defined η1 = t1 − t2, η0 = t2 − t3, η2 = t3 − t4, with the constraint t1 + t2 +

t3 + t4 = 0. The masses obey the constraint
∑N

a=1Ma = 0. To obtain the second line, we

have simply integrated out the two boundary U(1) nodes in the integral.
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The partition function for the B-model (2, 2)1(2, 0)2 . . . (2, 0)N−2(2, 2)N−1 is

ZB=

∫ N−1∏
α=1

d2sα
2!

∏N−1
α=1

∏2
i=1 e

2πisiαη̃α sinh2 π(s1
α − s2

α)∏2
i=1

∏2
a=1 coshπ(si1+ma) coshπ(siN−1+m̄a)

∏N−2
α=1

∏
i,j coshπ(siα−s

j
α+1)

(4.2)

where we again set η̃α = t̃α − t̃α+1 with the constraint
∑N

α=1 t̃α = 0. As shown in the

case for N = 2, one can show that ZA and ZB merely differ by a phase. Using Cauchy

determinant formula and the associated tool-box for manipulating S3 partition functions,

as explained for example in [7], we obtain,

ZB(ma, m̄a; t̃α) = e2πit̃1(t1+t2)−2πit̃N (t3+t4)ZA(Mα; ti)

=⇒ ZA(Mα; ti) = e−2πit̃1(t1+t2)+2πit̃N (t3+t4)ZB(ma, m̄a; t̃α)
(4.3)

The mirror map is simply given by

Mα ↔ t̃α

t1, t2 ↔ m1,m2

t3, t4 ↔ m̄1, m̄2.

(4.4)

One can now gauge the Cartan of the U(N) flavor symmetry labeled by Mα(= t̃α) in N

steps starting with M1(= t̃1). As before, in the gauging procedure, we treat the Mα(= t̃α)s

as independent complex parameters without any constraint. Therefore, gauging the first

U(1) in the A-model, which in the dual theory corresponds to one of the nodes with

fundamental matter, we have

Z̃(1)
A (M2, . . . .MN ; ti, η3)=e2πit̃N (t3+t4−t1−t2−η3)

∫ N−1∏
α=1

d2sα
2!

2∏
i=1

∫ N−1∏
α=2

e2πis
i
α(t̃α−t̃α+1) (4.5)

×
δ(s11 + s21)

∏N−1
α=1 sinh2 π(s1α − s2α)∏2

i=1

∏2
a=1coshπ(si1+ta+ t1+t2+η3

2
)coshπ(siN−1+t2+a+ t1+t2+η3

2
)
∏N−2
α=1

∏
i,jcoshπ(siα−sjα+1)

where η3 is the FI parameter corresponding to the gauged U(1). The dual theory can

be immediately read off from the above partition function - it is the same quiver as the

B-model in figure 6 with the first U(2) replaced by a Sp(1). The mirror map is also obvious

from the above formula- the A-model has (N−1) mass parameters matching the number of

remaining t̃α parameters for the B-model. In addition, the 4 independent mass parameters

of the B-model are related to the 4 independent FI parameters (tis with one constraint and

η3) in the A-model in the following fashion:

t̃α = Mα (α = 2, . . . , N)

ma = ta +
t1 + t2 + η3

2
(a = 1, 2)

m̄a = t2+a +
t1 + t2 + η3

2
(a = 1, 2)

(4.6)
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Carrying on with gauging the second U(1), one gets

Z̃(2)
A (M3, . . . .MN ; ti, η3, η4) = e2πit̃N (t3+t4−t1−t2−η3−η4)

∫ N−1∏
α=1

d2sα
2!

2∏
i=1

∫ N−1∏
α=3

e2πis
i
α(t̃α−t̃α+1)

×
δ(s11 + s21)δ(s12 + s22)

∏N−1
α=1 sinh2 π(s1α − s2α)∏

a,i coshπ(si1 + ta + t1+t2+η3
2

) coshπ(siN−1 + t2+a + t1+t2+η3+η4
2

)
∏N−2
α=2

∏
i,j coshπ(siα − sjα+1)

× 1∏
i,j coshπ(si1 − s

j
2 −

η4
2

)

(4.7)

The mirror theory is now given by the B-model in figure 6 with the first two U(2)s replaced

by Sp(1)s and the mirror map in this case can be read off as follows:

t̃α = Mα (α = 3, . . . , N)

ma = ta +
t1 + t2 + η3

2
(a = 1, 2)

m̄a = t2+a +
t1 + t2 + η3 + η4

2
(a = 1, 2)

mbif
1 =

η4

2

(4.8)

Note that there is a non-zero mass for the hypermultiplet in the bifundamental representa-

tion of Sp(1)×Sp(1) in addition to the four fundamental masses. The number of FI param-

eters in the A-model therefore agrees with the number of mass parameters of the B-model.

Gauging (N − 1) of the N U(1)s in a manner outlined above, one obtains the desired

A-model of figure 7 . The resultant partition function

Z̃(N−1)
A (MN ; ti, η3, η4, . . . , ηN+1) =

∫
d2sα

2!

e2πit̃N (t3+t4−t1−t2−η3−...−ηN+1)∏N−2
α=1

∏
i,j coshπ(siα − s

j
α+1 −m

bif
α )

×
∏N
α=1 δ(s

1
α + s2

α)
∏N−1
α=1 sinh2 π(s1

α − s2
α)∏

a,i coshπ(si1 + ta + t1+t2+η3
2 ) coshπ(siN−1 + t2+a +

t1+t2+η3+η4+...+ηN+1

2 )

(4.9)

Therefore, up to a field-independent phase, one obtains the expected dual theory of

figure 7. The masses of the B-model are related to the FI-parameters of the A-model in

the following way,

ma = ta +
t1 + t2 + η3

2
(a = 1, 2)

m̄a = t2+a +
t1 + t2 + η3 + η4 + . . .+ ηN+1

2
(a = 1, 2)

mbif
α =

ηα+3

2
(α = 1, 2, . . . , N − 2)

(4.10)

One can further gauge the remaining mass MN . The partition function of the gauged

theory is

Z̃(N)
A (ti, η3, η4, . . . , ηN+1) =

∫
d2sα

2!

δ(−t3 − t4 + t1 + t2 + η3 + . . .+ ηN+1 + ηN+2)∏N−2
α=1

∏
i,j coshπ(siα − s

j
α+1)

×
∏N
α=1 δ(s

1
α + s2

α)
∏N−1
α=1 sinh2 π(s1

α − s2
α)∏

a,i coshπ(si1 + ta + t1+t2+η3
2 ) coshπ(siN−1 + t2+a +

t1+t2+η3+η4+...+ηN+1

2 )
(4.11)
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k 1

N

1 k-1k-1

Figure 8. Linear A2k−1 quiver with two T [U(k − 1)] with framing at the middle node which is

used to derive the mirror dual for star shaped quivers.

The mirror map remains unchanged. As we saw in the case for N = 2, gauging the final

U(1) imposes an extra constraint on the FI parameters of the A-model, namely

η1 + η2 + η3 + . . .+ ηN+1 + ηN+2 + 2η0 = 0 . (4.12)

The A-model is therefore a Star-shaped quiver with the gauge group U(1)N+2×U(2)//U(1)

with U(2) being the central node.

At this point it is easy to propose a higher-rank generalization of the mirror pair from

figure 7. If we start off with the following linear quiver

(k, k)1(k, 0)2 . . . (k, 0)N−2 . . . (k, k)N−1 , (4.13)

then its mirror will be a U(k) theory with N flavors and two T [U(k− 1)] tails attached to

it (see figure 8). We can now gauge the maximal torus of the U(N) flavor symmetry on the

middle node. This gauging imposes a simple constraint on the Cartan of each U(k) gauge

group in the dual quiver (4.13) (and a constraint on the FI parameters if the Cartan of

U(N) is fully gauged) which amounts to removing a U(1) subgroup from each U(k) gauge

group. This leads us to the mirror pair presented in the first line of table 1.

4.2 Flavorless D̂N quivers

The D̂N quiver and its mirror may be obtained by starting from the same pair of linear

quivers as we used to obtain the Star-shaped quiver and its mirror dual in section 4.1. The

brane constructions of such quivers using ON− planes are depicted in figure 9. In [39] sev-

eral of them are considered and interesting global symmetries of the quivers are discussed.

Start with the following mirror pair of linear quivers (see figure 6, with N → N − 2)

A-model: (2, 2)1(2, 0)2 . . . (2, 0)N−4(2, 2)N−3

B-model: (1, 0)(2, N − 2)(1, 0).

From our computation in the previous section one can readily see that (note that what

we called B-model there is the A-model in the present case)

ZA(ma, m̄a; t̃α) = e2πit̃1(t1+t2)−2πit̃N−2(t3+t4)ZB(Mα; ti) . (4.14)
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NS5

D5

n5 n4 n3 n2 n1

ON-ON-

k

2k

k

k

k

2n1+n2

n3

n0+n2

2n5+n4

n6+n42k
2k

2k

2k

2k

n6

(n0 , n6 = 0,1)

n0

Figure 9. Brane construction of a generic flavored D̂4 quiver. The labels indicate that there are

2k D3 branes in each interval, i.e. k copies of the D3 branes drawn in the diagram. The numbers

n1, . . . , n5 label the numbers of D5-branes at each interval, and the numbers n0, n6 = 0, 1 labels

the numbers of D5-branes stuck on each ON− plane.

The mirror map is the same as before and can be read off from the above equation.

Mα ↔ t̃α

t1, t2 ↔ m1,m2

t3, t4 ↔ m̄1, m̄2.

(4.15)

In the example of the Star-shaped quiver, we gauged the U(N) flavor symmetry of the

linear quiver (1, 0)(2, N)(1, 0) as U(1)N to obtain the SU(2) × U(1)N Star-shaped quiver.

To obtain the D̂N quiver, we gauge each of the two U(2) flavor symmetries of the linear

quiver (2, 2)1(2, 0)2 . . . (2, 0)(2, 2)N−3 as U(1)2. The partition function of the gauged

theory is given as

Z̃A(ζj ; t̃α) =

∫ 2∏
α=1

dsα
d2s0

2!

4∏
j=1

dtje
2πiζjtje2πit̃1(t1+t2)−2πit̃N−2(t3+t4)e2πis1(t1−t2)e2πis2(t3−t4)

×
∏2
i=1 e

2πisi0(t2−t3) sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(s1 − si0)

∏N−2
a=1 coshπ(si0 + t̃a) coshπ(s2 − si0)

(4.16)

Integrating over the tjs, we get

Z̃A(ζj ; t̃α) =

∫ 2∏
α=1

dsα
d2s0

2!
δ(s1 + ζ1 + t̃1)δ(s2 − ζ4 + t̃N−2)δ(s1

0 + s2
0 − s1 + t̃1 + ζ2)

× δ(s1
0 + s2

0 − s2 + t̃N−2 − ζ3) sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(s1 − si0)

∏N−2
a=1 coshπ(si0 + t̃a) coshπ(s2 − si0)

=

∫
d2s0

2!
δ(s1

0 + s2
0 + ζ1 + 2t̃1 + ζ2)δ(s1

0 + s2
0 − ζ4 + 2t̃N−2 − ζ3)
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× sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(si0+ζ1+ t̃1)

∏N−2
a=1 coshπ(si0+ t̃a) coshπ(si0−ζ4+ t̃N−2)

(4.17)

Finally, shifting the integration variables appropriately, we obtain the final form of the

partition function for the flavorless D̂N quiver.

Z̃A(ζj ; t̃α) = δ(ζ1 + 2t̃1 + ζ2 + ζ4 − 2t̃N−2 + ζ3)

∫
d2s0

2!
δ(s1

0 + s2
0) sinh2 π(s1

0 − s2
0)

× 1∏2
i=1 coshπ(si0 + (ζ1−ζ2)

2 )
∏N−2
a=1 coshπ(si0 −

ζ1+ζ2
2 − t̃1 + t̃a) coshπ(si0 + ζ3−ζ4

2 )

(4.18)

The delta function indicates that there exists one constraint involving FI parameters of

the D̂N quiver, which is equivalent to saying that an overall U(1) factor decouples from

the gauge group. Note that this should be taken as part of the definition of the flavorless

D̂N quiver. Explicitly, the constraint can be written as,

ζ1 + ζ2 + ζ3 + ζ4 + 2t̃1 − 2t̃N−2 = 0⇔
4∑
i=1

ζi + 2

N−3∑
j=1

η̃j = 0 . (4.19)

The constraint is again of the form
∑

i ηili = 0 - where the sum runs over all the nodes

of the quiver and li denotes the Dynkin label of the i-th node. Taken with the other

constraint
∑

a ta = 0, this tells us that there are exactly N independent FI parameters -

N + 2 parameters with 2 constraints.

The mirror dual of the D̂N quiver so defined, can now be read off from the partition

function of the theory — it is a Sp(1) gauge theory with N fundamental hypers. The

mirror map relating the N masses to the FI parameters of the D̂N quiver is

M1 =
ζ2 − ζ1

2

Ma =
ζ1 + ζ2

2
+ t̃1 − t̃a (a = 1, 2, 3, . . . , N − 2)

MN =
ζ4 − ζ3

2

(4.20)

Therefore the Abelian gauging technique allows one to derive the D̂N quiver and its mirror

from a pair of mirror dual linear quivers.

4.3 D̂N quivers with single framing

Let us start analyzing quivers with framing. For framed D̂N quivers there are two obvious

cases which require separate analysis: a framed node on the bifurcated edge of the quiver

or a framed internal node. We look at both cases below.

4.3.1 Framing on an internal node

In order to obtain a generic mirror pair in this class by Abelian gauging, we start from

the following linear quivers (figure 10) There is however a special case when N = 4 — the

A-model quiver looks slightly different (see figure 11) in this case. The partition functions
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2

2 2 1 2 2

N-3 2

2 1

2

Figure 10. A-model (2, 2)1(2, 0)2 . . . (2, 0)N−4(2, 2)N−3(1, 0)N−2 and B-model (1, 0)(2, N−3)(2, 2).

1

4

2 2

1

1 2

2

Figure 11. A-model (2, 4)(1, 0) and B-model (1, 0)(2, 1)(2, 2).

1

2 2 2 2

N-2 2

2 1

2
1

Figure 12. A-model (1, 0)(2, 1)1(2, 0)2 . . . (2, 2)N−3(1, 0)N−2 and B-model (2, N − 2)(2, 2).

of two linear quivers from (10) are related in the following way

ZA(ma; t̃α) = e2πit̃1(m1+m2−m3)−2πit̃N−2(m3−m4)−2πit̃N−1m4ZB(Mα; ta) , (4.21)

where a = 1, 2, 3, 4; α = 1, 2, . . . , N − 1. The mirror map can be read off from the above

equation.

Mα = t̃α ,

ta = ma .
(4.22)

In order to obtain the appropriate D̂N quiver, one has to gauge the Cartan of the U(2)1

flavor symmetry (parametrized by m1,m2) and partially gauge the Cartan of U(2)N−3

(parametrized by m3,m4). One can carry out the gauging one U(1) at a time and at each

step one obtains a new family of mirror pairs.

Step 1: gauging m1

The mirror pair obtained by gauging m1 is given in figure 12. On the A side we gauged

U(1) ⊂ U(2) of the global symmetry on the first node, thereby enlarging the A-quiver by

(1, 0) node. On the B-side the U(1) factor got “ungauged” and become a global symmetry

on the second node which resulted in the increase of the rank of the corresponding global

symmetry group.

The partition functions of the two theories are related in the following fashion

Z̃(1)
A (ma; t̃α, ζ1) = e2πim2(ζ1+2t̃1)e−2πit̃1m3−2πit̃N−2(m3−m4)−2πit̃N−1m4Z̃(2)

B (Mβ; ta) (4.23)
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Figure 13. A-model (1, 0)2(2, 0)1(2, 0)2 . . . (2, 0)N−4(2, 2)N−3(1, 0)N−2 and B-model (Sp(1), N −
2)(2, 2).

where a = 2, 3, 4, α = 1, 2, . . . , N − 1 and β = 1, 2, . . . , N . Here, ζ1 corresponds to the FI

parameter of the newly introduced U(1) node.

The mirror map can be read off from the above equation as before.

Mα = t̃α

MN = ζ1 + t̃1

ta = ma

(4.24)

Step 2: gauging m2

Next we gauge the remaining global U(1) on the second node of the A-quiver (figure 13)

as a result of which the associated U(2) gauge group is partially “ungauged” to an Sp(1).

The partition functions of the two theories are related in the following fashion

Z̃(2)
A (ma; t̃α, ζ1, ζ2) = e2πi(−t̃1+t̃N−2)m3e2πi(ζ1+ζ2+2t̃1−t̃N−2−t̃N−1)m4Z̃(2)

B (Mβ; ta) (4.25)

where a = 3, 4, α = 1, 2, . . . , N − 1 and β = 1, 2, . . . , N . Here, ζ2 corresponds to the FI

parameter of the newly introduced U(1) node.

The mirror map can be read off from the above equation as before.

Mα =
ζ1 + ζ2

2
+ t̃1 − t̃α, a = 1, 2, . . . , N − 1

MN =
ζ2 − ζ1

2

t3 = m3, t4 = m4 .

(4.26)

Step 3: gauging m3

Finally we gauge U(1) ⊂ U(2) on the second node from the right of the A-quiver to obtain

the desired framed D̂N quiver and the Sp-SO-type quiver on the mirror side (figure 14).

For N = 4, the mirror pair specified above is exactly the one in figure 15. The partition

functions of the two theories are related in the following fashion

Z̃(3)
A (m4; t̃α, ζ1, ζ2, ζ3) = e2πi(ζ1+ζ2+ζ3+t̃1−t̃N−1)m4Z̃(3)

B (Mβ,mbif ; t4) (4.27)

where α = 1, 2, . . . , N −1 and β = 1, 2, . . . , N . Here, ζ3 corresponds to the FI parameter of

the newly introduced U(1) node. mbif is a non-zero mass parameter for the Sp(1)× Sp(1)
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SO(2N-4)

2 1
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1

Sp(1)

SO(4)
1

Figure 14. A-model D̂N quiver with labels (1, 0)2(2, 0)1(2, 0)2 . . . (2, 1)N−3(1, 0)2 and B-model

(Sp(1), N − 2)(Sp(1), 2).

bi-fundamental hyper.

The mirror map can be read off from the above equation as before.

Mα =
ζ1 + ζ2

2
+ t̃1 − t̃α, α = 1, 2, . . . , N − 3

MN−2 =
ζ2 − ζ1

2

MN−1 =
ζ1 + ζ2 + ζ3

2
+
t̃1 − t̃N−2

2

MN =
ζ1 + ζ2 + ζ3

2
+
t̃1 + t̃N−2 − 2t̃N−1

2

mbif =
t̃1 − t̃N−2 − ζ3

2

t4 = m4

(4.28)

Note that the number of independent FI parameters for the A-model is N + 1, namely

N − 1 parameters {t̃α} with one constraint and three ζi. This exactly matches with

the number of mass parameters of the B-model, namely N fundamental masses and one

bi-fundamental mass.

Obviously, one can go ahead and gauge the remaining U(1) as well. As we saw in the

previous section, this does not change the mirror map in any way but imposes a constraint

on the FI parameters of the A-model which is tantamount to having an overall U(1) factor

decouple from the gauge group. More explicitly, the mirror pair in this case is the following

A-model: (1, 0)2(2, 0)1(2, 0)2 . . . (2, 1)N−3(1, 0)3//U(1)

B-model: (Sp(1), N − 2)(Sp(1), 2).

A generic D̂N quiver with a framing in this class (see figure 15 for N = 4) and gauge

groups of arbitrary rank as well as its mirror dual can be derived by starting from the

following linear quivers:

A-model: (2k, 2k)1(2k, 0)2(2k, 0)3 . . . (2k, k + 1)N−3(k, 0)

B-model: (1, 0)(2, 0) . . . (2k − 1, 0)(2k,N − 3)(2k, 2)(2k − 2) . . . (4, 0)(2, 0)

To obtain the appropriate D̂N quiver, one needs to completely gauge the U(2k) flavor

group as U(k)×U(k), while for the U(k+1) flavor group, a U(k) subgroup should be gauged.
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k

2k

1

k

k

k

Sp(k) Sp(k)

SO(4) SO(4)

(a) (b)

Figure 15. Framed D̂4 quiver on the left and its mirror on the right. The Higgs branch of quiver

(a) is the moduli space of k SU(2) instantons on C2/D̂4 and that of quiver (b) corresponds to k

SO(8) instantons on C2/Z2.

k

2k

k

k

k

Sp(k)SO(8)

1

A

(a) (b)

Figure 16. Single framed D̂4 quiver and its mirror. The Higgs branch of quiver (a) is the moduli

space of k U(1) instantons on C2/D̂4 and that of quiver (b) corresponds to k SO(8) instantons on

C2. On the right quiver ‘A’ stands for the (reducible) antisymmetric representation of Sp(k).

2

2

1 1

1

1

1

2

3

Figure 17. Two mirror dual linear quivers which give rise to mirror pair in figure 16.

4.3.2 Framing on boundary nodes

Let us proceed with D̂4 quiver, this time with a single hypermultiplet at a boundary

node (like quiver (a) in figure 16). In order to derive a mirror for this quiver by Abelian

gauging, we start from the following linear quivers — A-model with labels (1, 0)(2, 2)(1, 1)

and B-model with labels (1, 1)(2, 3) (see figure 17).

We perform the abelian gauging trick on the U(2) flavor symmetry on the second node

of the left quiver in figure 17 in order to map it onto the A model quiver in figure 16. Let us

see what happens with its mirror. The dimensions of the Coulomb and Higgs branches on

the A-model quiver are 4 and 3 respectively. After the gauging is done they become 6 and

1 correspondingly. In the classical parameter space description, this happens because two

momenta paµ on the A-model quiver get fixed, and two more vectormultiplets are introduced.

Thus on the B side the dimension of the Coulomb branch has to drop by two. We can see

that this indeed happens if we multiply two Bethe equations for the two gauge nodes of
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the B quiver. Because of the mirror constraints on p∨ jτ the value of σ(2) is fixed by p∨ 3
τ .

The second mirror constraint provides the projection of U(2)→ Sp(1) via σ
∨ (1)
1 σ

∨ (1)
2 = 1,

which can be implemented by adjusting the momenta and twists. Notice that classical

analysis does not explicitly show the contribution of the singlet multiplet A in figure 16.

In order to see how abelian gauging leads to the mirror pair we want and in particular

how antisymmetric matter (a singlet when k = 1) appears in the mirror we perform gauging

of the linear quivers using the partition function approach. For the two linear quivers from

figure 17 the partition functions are

ZA(ma; tα)=

∫ 2∏
α=1

dsα
d2s0

2!

∏2
α=1 e

2πisαηα
∏2
i=1 e

2πisi0η0 sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(s1−si0)

∏2
a=1 coshπ(si0+ma) coshπ(s2−si0)

× 1

coshπ(s2 +m3)
,

ZB(Mα; t̃a)=

∫
ds1

d2s0

2!

e2πis1η̃1
∏2
i=1 e

2πisi0η̃0 sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(si0−s1)

∏3
a=1 coshπ(si0+Ma) coshπ(s1+M4)

, (4.29)

where a = 1, 2, 3, 4; α = 1, 2, . . . , N − 1. In the A-model, the FI parameters are defined as

η1 = t1−t2, η0 = t2−t3, η2 = t3−t4, while for the B-model, these are η̃0 = t̃1−t̃2, η̃1 = t̃2−t̃3.

The mirror symmetry implies that ZA(ma; tα) = ZB(Mα; t̃a) up to some overall phase

(which we shall ignore in this example and the subsequent ones) provided the parameters

are related as follows:

Mα = tα

t̃a = ma .
(4.30)

Now, we gauge the U(2) flavor symmetry of the A-model as a U(1) × U(1), which gives

a D̂4 quiver with a single flavor on one of the boundary nodes. The partition function of

this theory is

Z̃A(ζ1, ζ2,m3; tα) =

∫
dm1dm2e

2πim1ζ1e2πim2ζ2ZA(ma; tα)

=

∫
dm1dm2e

2πim1ζ1e2πim2ζ2ZB(tα;ma) ,

(4.31)

where the second equality follows from the mirror symmetry of the linear quivers. From

the second equality, completing the integration over m1 and m2 we have

Z̃A(ζ1, ζ2,m3; tα)=

∫
ds1

d2s0

2!

δ(s1
0+s2

0+ζ1)δ(−s1
0−s2

0+s1+ζ2) sinh2 π(s1
0−s2

0)∏
i

∏3
α=1 coshπ(si0 + tα)

× e−2πim3s1∏
i coshπ(si0 − s1) coshπ(s1 + t4)

.

(4.32)

Finally, integrating over s1 using the delta function and shifting the remaining integration

– 34 –



J
H
E
P
0
6
(
2
0
1
4
)
0
5
9

variables appropriately, we have

Z̃A(ζ1, ζ2,m3; tα) =

∫
d2s0

2!

δ(s1
0 + s2

0) sinh2 π(s1
0 − s2

0)∏
i

∏3
α=1 coshπ(si0 − tα −

ζ1
2 )
∏
i coshπ(si0 + ζ1 + ζ2)

× e2πim3(ζ1+ζ2)

coshπ(ζ1 + ζ2 + t4)

= Z̃B(Mi,Msinglet) .

(4.33)

The dual theory can be immediately read off — the first line is identified as the partition

function of a Sp(1) gauge theory with 4 flavors while the second line is the partition

function of a single free hyper (up to a phase). The mirror map of this mirror pair is

Ma = ta +
ζ1

2
(a = 1, 2, 3)

M4 = ζ1 + ζ2

Msinglet = t4 + ζ1 + ζ2 .

(4.34)

Note that the number of parameters exactly matches on both sides. For the A-model, we

have 5 independent parameters - {t1, t2, t3, t4} with one constraint and {ζ1, ζ2}. This is

matched by the 5 mass parameters for the B-model.

In order to obtain a generic mirror pair in this class (for rank of the quiver N > 4) by

gauging, we start from the following linear quivers:

A-model: (1, 0)(2, 1)1(2, 0)2 . . . (2, 0)N−4(2, 1)N−3(1, 1)N−2 and

B-model: (2, N − 1)(1, 1).

One needs to gauge the U(1) flavor symmetries of the nodes (2, 1)1 and (2, 1)N−3 to

obtain the appropriately framed D̂N quiver. Proceeding as before, the mirror is found to

be a Sp(1) gauge theory with N fundamental hypers and one singlet hyper. The mirror

map in this case is an obvious generalization of the D̂4 case.

Ma = ta +
ζ1

2
(a = 1, 2, . . . , N − 1)

MN = ζ1 + ζ2

Msinglet = tN + ζ1 + ζ2 .

(4.35)

4.4 D̂N quivers with double framing

Next we analyze D̂N quivers with two hypermultiplets. Framing on one or more internal

nodes can be treated in a fashion analogous to the example of single framing on an internal

node discussed above. However, framing on the boundary nodes may be done in two

possible ways — one can either have double framing on a single boundary node, or one

can have two framed boundary nodes at different locations in the quiver. We will treat

each of these cases individually.
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2 24

(a) (b)

(b’)

Figure 18. Framed D̂3 quiver (a), its Hanany-Witten mirror (b), and its “good” mirror (b′).

According to [40], the Higgs branches of quivers (a), (b) and (b′) are as follows. (a): the moduli

space of 2 SU(2) instantons on C2/D̂3 ' C2/Z4. (b): the moduli space of 2 SO(6) instantons on

C2/Z2. (b′): the moduli space of 2 SU(4) instantons on C2/Z2.

4.4.1 Framed D̂3 quiver

Let us start with a warm-up example of a framed D̂3 quiver (see (a) in figure 18). In some

sense it can be treated as an SO(6) toy-example of our next quiver theory presented in

figure 19. The Hanany-Witten mirror (b) in figure 18 appears to be bad. However, due to

the isomorphism D̂3 ' Â3, we can apply known rules for the circular quiver Â3 and obtain

“good” quiver as its mirror — (b′) in the figure. Therefore we expect the two quivers —

(b) and (b′) to have the same infrared physics. One can readily check the proposed mirror

symmetry between the framed D̂3 quiver and the “good” quiver (b′) in figure 18 using

Hilbert series. For convenience, we introduce the notation

τ = t1/2 (4.36)

and use this to write the Higgs branch Hilbert series. The Hilbert series for the Higgs branch

of quiver (a) of figure 18 can conveniently be computed using the localization method (see

e.g. [40]). It reads

HH
(a)(τ, y) = 1 + ([0] + [2])τ2 + (5[0] + 2[2] + [4])τ4 + (7[0] + 9[2] + 2[4] + [6])τ6

+ (19[0] + 17[2] + 10[4] + 2[6] + [8])τ8 + . . . . (4.37)

Setting y = 1, we obtain

HH
(a)(τ, y = 1) =

1

(1− τ2)8 (1 + τ2)4 (1 + τ2 + τ4)3 (1 + 3τ2 + 8τ4 + 20τ6 + 41τ8 + 61τ10

+ 78τ12 + 84τ14 + 78τ16 + palindrome + τ28)

= 1 + 4τ2 + 16τ4 + 51τ6 + 143τ8 + 350τ10 + . . . , (4.38)
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where ‘palindrome’ denotes the repetitions of the coefficients that have been written before

in the reverse order.

The Coulomb branch Hilbert series of diagram (a) in figure 18 is given by

HC
(a)(t,a) =

4∑
α=1

∞∑
mα,1=−∞

mα,1∑
mα,2=−∞

t∆(m)PU(2)(t,mα,1,mα,2)
4∏

α=1

2∏
i=1

a
mα,i
α,i . (4.39)

where mα,1,mα,2 are the monopole charges associated with the α-th U(2) gauge group,

where α = 1, . . . , 4. Here ∆(m,n) is the dimension of the monopole operators:

∆(m) =
1

2

2|m1,1|+ 2|m1,2|+
4∑

α=1

2∑
i,j=1

|mα,i −mα,j |

− 4∑
α=1

|mα,1 −mα,2| . (4.40)

For simplicity, we set aα,i = 1 and obtain

HC
(a)(t, {aα,i = 1}) = 1 + 18t+ 221t2 + 1898t3 + 12663t4 + . . . . (4.41)

The dimensions for the monopole operators in quiver (b) of figure 18 are given by

∆(m1,m2;n1, n2) =
1

2

3

2∑
i=1

(|ni|+ |−ni|) +

1∑
s1,s2=0

2∑
i,j=1

|(−1)s1mi + (−1)s2nj |


− (2m1 + |m1 −m2|+ |m1 +m2|)
− (2n1 + |n1 − n2|+ |n1 + n2|) , (4.42)

where m1,m2 and n1, n2 are the monopole charges for the two Sp(2) gauge groups.

Observe that ∆(2, 0; 0, 0) = 0; hence the theory contains a monopole operator of charge

zero. The quiver is a “bad” theory in the sense of [6].

Then we compute the Hilbert series of the Higgs branch of (b′) of figure 18

HH
(b′)(τ, x,y)=1+([0; 1, 0, 1] + [2; 0, 0, 0])τ2+(2[0; 0, 0, 0]+[0; 0, 2, 0]+[0; 1, 0, 1]+[0; 2, 0, 2]

+ 2[2; 1, 0, 1] + 2[4; 0, 0, 0])τ4 + + . . . . (4.43)

Note that we cannot factorize C2/Z2 from this Hilbert series. Setting x = yi = 1, we obtain

HH
(b′)(τ, x=1, {yi=1})=

1

(1−τ2)16(1+τ2)8
(1+10τ2+97τ4+498τ6+1917τ8+4990τ10

+ 10065τ12 + 14784τ14 + 17144τ16 + 14784τ18

+ palindrome + τ32)

= 1 + 18τ2 + 221τ4 + 1898τ6 + 12663τ8 + . . . . (4.44)

Note that this is in agreement with (4.41).

Finally, the Coulomb branch Hilbert series of diagram (b′) in figure 18 is given by

HC
(a)(t,a) =

2∑
α=1

∞∑
mα,1=−∞

mα,1∑
mα,2=−∞

t∆(m)PU(2)(t,mα,1,mα,2)
2∏

α=1

2∏
i=1

a
mα,i
α,i . (4.45)
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where mα,1,mα,2 are the monopole charges associated with the α-th U(2) gauge group,

where α = 1, 2. Here ∆(m,n) is the dimension of the monopole operators:

∆(m) =
1

2

4|m1,1|+ 4|m1,2|+ 2

2∑
i,j=1

|m1,i −m2,j |

− 2∑
α=1

|mα,1 −mα,2| . (4.46)

For simplicity, we set aα,i = 1 and obtain

HC
(b′)(t, {aα,i = 1}) =

1

(1− t2)8 (1 + t2)4 (1 + t2 + t4)3 (1 + 3t2 + 8t4 + 20t6 + 41t8 + 61t10

+ 78t12 + 84t14 + 78t16 + palindrome + t28)

= HH
(a)(t, {aα,i = 1}) (4.47)

This is equal to the Higgs branch Hilbert series of quiver (a).

4.4.2 Framing at a single node of D̂N quivers

Let us first consider the D̂4 quiver with two hypermultiplets on one of its external nodes,

figure 19 (a). We can realize this quiver theory using branes (see figure 9) and S-duality

or the Hanany-Witten realisation [41] to generate the mirror quiver (b) in figure 19. We

cannot be completely satisfied with the (b) picture in figure 19 since the quiver is “bad”

on the unframed Sp(1) node. Inability to find a “good” quiver by formally applying the

S-duality is not an uncommon phenomenon while working with quivers involving Sp and

SO gauge groups [6]. Therefore we expect to be able to find another “good” quiver theory

which flows in the infrared to the same SCFT as theory (b) flows to. We will show in this

section that this is the quiver (b′) in figure 19 from a straightforward application of Abelian

gauging using sphere partition functions.

Partition function approach

Consider the partition functions for the linear quivers shown in the top row of figure 20.

They take the following form

ZA(ma; tα)=

∫ 2∏
α=1

dsα
d2s0

2!

∏2
α=1 e

2πisαηα
∏2
i=1 e

2πisi0η0 sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(s1−si0)

∏2
a=1 coshπ(si0+ma) coshπ(s2−si0)

× 1∏2
a=1 coshπ(s2 +m2+a)

ZB(Mα; t̃a)=

∫ 2∏
α=1

dsα
d2s0

2!

∏2
α=1 e

2πisαη̃α
∏2
i=1 e

2πisi0η̃0 sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(si0−s1)

∏3
a=1 coshπ(si0+Ma) coshπ(s1−s2)

× 1

coshπ(s2 +M4)
(4.48)

where a = 1, 2, 3, 4; α = 1, 2, . . . , 4. In the A-model, the FI parameters are defined as

η1 = t1 − t2, η0 = t2 − t3, η2 = t3 − t4, while for the B-model, these are η̃0 = t̃1 − t̃2, η̃1 =
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1

Sp(1) Sp(1)

SO(8)

2

(a) (b)

Sp(1)

SO(8)

(b’)

1

2

Figure 19. Doubly Framed D̂4 quiver (a), its Hanany-Witten mirror (b), and its “good” mirror

(b′). The Higgs branches of (a), (b) and (b′) are as follows. (a): the moduli space of 1 SU(2)

instanton on C2/D̂4. (b): the moduli space of 1 SO(8) instanton on C2/Z2; see [40]. (b′): the

reduced instanton moduli space of 1 SO(8) instanton on C2 times C2/Z2. The factorisation of the

Higgs branch of quiver (b′) is discussed in [40].

2

2

1 1

2

1

1

1 2

3

1

2

1

1

1

2 1

2

Sp(1)

SO(8)

Figure 20. Mirror linear quivers (top row) and the new mirror pair after the gauging trick (bottom

row).

t̃2 − t̃3, η̃2 = t̃3 − t̃4. Mirror Symmetry implies that ZA(ma; tα) = ZB(Mα; t̃a) up to some

overall phase provided the parameters are related as follows:

Mα = tα

t̃a = ma .
(4.49)
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Now we gauge the left U(2) flavor symmetry in the top left quiver in figure 20 as a

U(1) × U(1), which gives a D̂4 quiver with two hypers on a single boundary node (lower

left quiver in figure 20). The partition function of this theory is

Z̃A(ζ1, ζ2,m3,m4; tα) =

∫
dm1dm2e

2πim1ζ1e2πim2ζ2ZA(ma; tα)

=

∫
dm1dm2e

2πim1ζ1e2πim2ζ2ZB(tα;ma) ,

(4.50)

where the second equality follows from the mirror symmetry of the linear quivers. From

the second equality, completing the integration over m1 and m2 we have

Z̃A(ζ1, ζ2,m3,m4; tα)=

∫
ds2ds1

d2s0

2!

δ(s1
0+s2

0+ζ1)δ(−s1
0−s2

0+s1+ζ2) sinh2 π(s1
0−s2

0)∏
i

∏3
α=1 coshπ(si0 + tα)

× e−2πim3s1∏
i coshπ(si0 − s1)

× e2πi(m3−m4)s2

coshπ(s1 − s2) coshπ(s2 + t4)
(4.51)

Finally, integrating over s1 using the delta function and shifting the remaining integration

variables appropriately, we have

Z̃A(ζ1, ζ2,m3,m4; tα) = e2πim3(ζ1+ζ2)

∫
d2s0
2!

δ(s10 + s20) sinh2 π(s10 − s20)∏
i

∏3
α=1 coshπ(si0 + tα − ζ1

2
)
∏
i coshπ(si0 + ζ1 + ζ2)

×
∫
ds2

e2πi(m3−m4)s2

coshπ(s2 − t4) coshπ(s2 + ζ1 + ζ2)

= Z̃B(Mi,Ma; t̃3, t̃4) (4.52)

The dual theory therefore splits into two parts — an Sp(1) gauge theory with 4 flavors

whose partition function is given by the first line (masses labeled as Mi with i = 1, 2, 3, 4)

and a U(1) gauge theory with 2 flavors whose partition function is given by the second line

(masses labeled as Ma with a = 5, 6).

The mirror map for this mirror pair can then be directly read off from the above

partition function.

Ma = ta +
ζ1

2
, a = 1, 2, 3

M4 =
ζ1

2
+ ζ2

t̃j = mj , j = 3, 4

M5 = t4

M6 = ζ1 + ζ2 .

(4.53)

Note that the number of parameters exactly match on both sides. For the A-model, we

have five independent FI parameters — {t1, t2, t3, t4} with one constraint and {ζ1, ζ2}. This

is matched by the 5 independent mass parameters for the B-model — 6 mass parameters

with the following constraint

M1 +M2 +M3 +M5 = 3(M6 −M4). (4.54)
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Similarly, two mass parameters on the A-model side coincides with the two t̃a param-

eters on the B-model side.

In general, in order to obtain a mirror pair in this class for N > 4 by gauging, we start

from the following linear quivers:

A-model: (1, 0)(2, 1)1(2, 0)2 . . . (2, 0)N−4(2, 1)N−3(1, 2)N−2 and

B-model: (2, N − 1)(1, 0)(1, 1).

One needs to gauge the U(1) flavor symmetries of the nodes (2, 1)1 and (2, 1)N−3 to ob-

tain the appropriately framed D̂N quiver. Proceeding as before, the mirror is found to con-

sist of a Sp(1) gauge theory with N fundamental hypers and a decoupled U(1) gauge theory

with two hypers. The mirror map in this case is an obvious generalization of the D̂4 case.

Ma = ta +
ζ1

2
(a = 1, 2, . . . , N − 1)

MN =
ζ1

2
+ ζ2

t̃j = mj (j = 3, 4)

MN+1 = t4

MN+2 = ζ1 + ζ2 .

(4.55)

Checking mirror symmetry in figure 19 by using Hilbert series

It is instructive to check the result by computing the corresponding Hilbert series and in

particular the fact that the (b′) quiver in figure 19 is indeed a disjoint union of two quivers.

In what follows we compute both Higgs and Coulomb branch series. Note that in the Higgs

branch Hilbert series we use

τ = t1/2 . (4.56)

The Higgs branch Hilbert series of diagram (a) in figure 19 is given by the gluing

technique [22, 42]:

HH
(a)(τ, x) =

(
4∏
i=1

∮
|qi|=1

dqi
2πiqi

)(
1

2

2∏
i=1

∮
|zi|=1

dzi
2πizi

)
(z1 − z2)(z−1

1 − z
−1
2 )×

× χ(1)−[2](τ ; q1;x)
4∏
i=1

χ(2)−(1)i(τ ; qi; z) , (4.57)

where q1, . . . q4 denote the gauge fugacities of the four U(1) gauge groups, z1, z2 denote

the gauge fugacities of the U(2) gauge group, (x, y) denotes the fugacities of the U(2) =

U(1)× SU(2) flavour node, and the contributions from the hypermultiplets are

χ(1)−[2](τ ; q1;x, y) = PE
[
τ(q1x

−1 + q−1
1 x)(y + y−1)

]
,

χ(2)−(1)i(τ ; qi; z) = PE
[
τ(z1 + z2)q−1

i + τ(z−1
1 + z−1

2 )qi
]
, (4.58)

with the plethystic exponential PE of a multivariate function f(a1, a2, . . . , an), with

f(0, 0, . . . , 0) = 0, defined as

PE[f(a1, a2, . . . , an)] = exp

( ∞∑
k=1

1

k
f(ak1, a

k
2, . . . , a

k
n)

)
. (4.59)
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As a result of the integrations, we find that

HH
(a)(τ, y) =

1− τ12

(1− τ4)2(1− τ6)

∞∑
m=0

[2m]yτ
2m (4.60)

This is indeed the Hilbert series of (C2/D̂4) × (C2/Z2) [43]; this is in agreement with the

Coulomb branch of diagram (b′) of figure 19.

The Coulomb branch Hilbert series of diagram (a) in figure 19 is given by

HC
(a)(t,a, b) =

∞∑
m1=−∞

m1∑
m2=−∞

∞∑
n1=−∞

· · ·
∞∑

n4=−∞
PU(2)(t,m1,m2)PU(1)(t)

4
2∏
i=1

amii

4∏
j=1

b
nj
j

(4.61)

where m1,m2 are the monopole charges associated with the U(2) gauge group, and

n1, . . . , n4 are the monopole charges associated with each U(1) gauge group. Here ∆(m,n)

is the dimension of the monopole operators:

∆(m1,m2, n1, . . . , n4) =
1

2

2|n1|+
2∑
i=1

4∑
j=1

|mi − nj |

− |m1 −m2| , (4.62)

and the functions PU(2)(t,m) and PU(1)(t) are defined as

PU(1)(t) =
1

1− t
,

PU(2)(t,m) =

 1
(1−t)2 , m1 6= m2

1
(1−t)(1−t2)

, m1 = m2 .
(4.63)

Setting ai = bj = 1 for all i, j, we obtain

HC
(a)(t, {ai = 1}, {bj = 1}) =

1 + 19t+ 83t2 + 130t3 + 83t4 + 19t5 + t6

(1− t)12

=
(1 + t)2

(
1 + 17t+ 48t2 + 17t3 + t4

)
(1− t)12

. (4.64)

The order of the pole at t = 1 is 12; this is equal to the complex dimension of the Coulomb

branch as expected.

Then we investigate the Higgs branch of diagram (b) in figure 19. The space of F-

term solutions (also known as the F-flat space) of quiver in diagram (b) of figure 19 can be

decomposed into many branches. The branch that leads to the Higgs branch after imposing

the D-term constraints is the 18 complex dimensional branch. The Hilbert series of this

branch can be obtained using Macaulay2 [44]. The closed form is, however, too lengthy to

be reported here; let us present a few terms in the series expansion:

F [(τ ; z1, z2;x,y) = 1 + ([1, 0, 0, 0]y[1]z1 + [1]x[1]z1 [1]z2)τ + . . . , (4.65)
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where z1, z2 are gauge fugacities for each Sp(1) gauge group, x is the global SU(2) fugacity

that transform the chiral fields in hypermultiplet in Sp(1) × Sp(1), and y1, . . . , y4 are the

fugacities of the SO(8) flavour symmetry. The corresponding unrefined Hilbert series is

F [(τ ; z1 = z2 = 1;x = 1, {yi = 1}) =
(1 + τ)3(1 + 3τ)

(1− τ)18
. (4.66)

After implementing gauge invariance, the Higgs branch Hilbert series is given by

HH
(b)(τ, x,y) =

∮
|z1|=1

dz1

2πiz1

1− z2
1

z1

∮
|z2|=1

dz2

2πiz2

1− z2
2

z2
F [(τ ; z1, z2;x,y)

=
∞∑
m=0

[2m]xτ
2m ×

∞∑
n=0

[0, n, 0, 0]yτ
2n . (4.67)

This Hilbert series indicates that the Higgs branch of the diagram (b) of figure 19 is indeed

C2/Z2 ×HSU(2) w/ 4 flv , (4.68)

where HSU(2) w/ 4 flv is the Higgs branch of SU(2) with 4 flavours. Therefore, this agrees

with the Higgs branch of the (b′) quiver in figure 20.

Setting x = 1 and yi = 1, we obtain the unrefined Higgs branch Hilbert series

HH
(b)(τ, x = 1, {yi = 1}) =

1− τ4

(1− τ2)3
×
(
1 + τ2

) (
1 + 17τ2 + 48τ4 + 17τ6 + τ8

)
(1− τ2)10

=

(
1 + τ2

)2 (
1 + 17τ2 + 48τ4 + 17τ6 + τ8

)
(1− τ2)12

= HC
(a)(τ

2, {ai = 1}, {bj = 1}) . (4.69)

Note that this is in agreement with (4.64), thereby providing a very non-trivial check of

the proposed mirror symmetry.

General results

One can easily generalize the above computation to determine the mirror of a D̂N quiver

with M > 2 fundamental hypers on one of the external nodes, as shown in figure 21.

The starting point is the mirror pair consisting of the following linear quivers:

A-model: (1, 0)(2, 1)1(2, 0)2 . . . (2, 0)N−4(2, 1)N−3(1,M)N−2 and

B-model: (2, N − 1)(1, 0)1 . . . (1, 0)M−1(1, 1)M .

Again gauging the U(1) flavor symmetries of the nodes (2, 1)1 and (2, 1)N−3 to ob-

tain the appropriately framed D̂N quiver, we find that the dual theory consists of a

Sp(1) gauge theory with N fundamental hypers and a decoupled quiver gauge theory

(1, 1)1(1, 0)2 . . . (1, 0)M−2(1, 1)M−1. The mirror map is an obvious generalization of the

one obtained for M = 2.
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22
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Sp(1)
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1 1 1

1
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Figure 21. D̂N quiver with M hypermultiplets on the edge node and its mirror. The Higgs branch

of the left quiver is the moduli space of 1 SU(M) instanton on C2/D̂N and that of the right quiver

is the moduli space of 1 SO(2N) instanton on C2/ZM . The latter factorises into C2/ZM times the

reduced instanton moduli space of 1 SO(2N) instanton on C2; see [40].

Sp(k) Sp(k)

SO(6) SO(2)

A1

A2

2k4

1

k

2k

k

k

k

1

(a)

(b)

(c)

Figure 22. Two possible mirrors for D̂4 quiver (a).

4.4.3 Framing at two different nodes of D̂4 quiver

As a final example of this section let us consider a situation presented in figure 22 for D̂4

quiver, when two of the boundary nodes of the tail are framed. Clearly, the D̂4 quiver

shown in figure 22 is somewhat special as it has more symmetries than a generic D̂N

quiver. Below we shall work in detail on two families of doubly framed D̂N quivers shown

in figure 26 and figure 24 which coincide for N = 4 as we have already seen in figure 22

Mirror dual with a unitary gauge group

Consider the mirror theory corresponding to the lower arrow first. The appropriate linear

quiver in this case is (1, 1)(2, 2)(1, 1) (see figure 23). Note that this is a self-mirror. Its

partition functions reads

ZA(ma; ta) =

∫ 2∏
α=1

dsα
d2s0

2!

∏2
α=1 e

2πisαηα
∏2
i=1 e

2πisi0η0 sinh2 π(s1
0 − s2

0)

coshπ(s1 +m1)
∏2
i=1 coshπ(s1 − si0)

∏2
a=1 coshπ(si0 +m1+a)
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Figure 23. Linear A3 quiver with labels (1, 1)(2, 2)(1, 1).

× 1∏2
i=1 coshπ(s2 − si0) coshπ(s2 +m4)

. (4.70)

As before, we define η1 = t1 − t2, η0 = t2 − t3 and η2 = t3 − t4.

The partition function of the mirror dual, which in this case is the same theory, simply

involves the exchange of parameters ma ↔ ta. Up to some overall phase which we will

ignore in this discussion, we have

ZB(Ma; t̃a) = ZA(ta;ma) . (4.71)

Now we gauge the U(2) flavor symmetry of the A-model as a U(1)×U(1), which gives

a D̂4 quiver with two hypers on a single boundary node. The partition function of this

theory is

Z̃A(m1, ζ2, ζ3,m4; ta) =

∫
dm2dm3e

2πim2ζ2e2πim3ζ3ZA(ma; ta)

=

∫
dm2dm3e

2πim2ζ2e2πim3ζ3ZB(ta;ma) ,

(4.72)

where the second equality follows from the mirror symmetry of the linear quivers. From

the second equality, completing the integration over m2 and m3 we have

Z̃A(m1, ζ2, ζ3,m4; ta)=

∫
ds2ds1

d2s0

2!

δ(s1
0+s2

0−s1+ζ2)δ(s1
0+s2

0−s2−ζ3) sinh2 π(s1
0−s2

0)∏
i

∏3
α=2 coshπ(si0+tα) coshπ(si0−s1) coshπ(si0−s2)

× e2πim1s1e−2πim4s2

coshπ(s1 + t1) coshπ(s2 + t4)
. (4.73)

Finally, integrating over s1 and s2 using the delta functions and shifting the remaining

integration variables appropriately, we have

Z̃A(m1, ζ2, ζ3,m4; ta) =

∫
d2s0

2!

e2πi(s10+s20)(m1−m4) sinh2 π(s1
0 − s2

0)∏
i

∏3
α=2 coshπ(si0 + tα) coshπ(si0 + ζ2) coshπ(si0 − ζ3)

× 1

coshπ(s1
0 + s2

0 + ζ2 + t1) coshπ(s1
0 + s2

0 − ζ3 + t4)

= Z̃B(Ma; t̃1, t̃4) . (4.74)

The dual theory is therefore a U(2) gauge theory with 4 fundamental hypers and 2 hypers

in the antisymmetric representation of U(2). The mirror map for this mirror pair can then
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Figure 24. An infinite family of affine D-type quiver with its mirror dual.

be directly read off from the above partition function.

t̃j = mj (j = 1, 4)

M1 = ζ2, M2 = −ζ3

M3 = t2, M4 = t3

MAS
1 = t4 − ζ3

MAS
2 = t1 + ζ2 ,

(4.75)

which implies

MAS
1 +MAS

2 −M1 −M2 +M3 +M4 = 0 . (4.76)

Note that the number of parameters exactly match on both sides. For the A-model, we have

five FI independent parameters - {t1, t2, t3, t4} with one constraint and {ζ2, ζ3}. This is

matched by the five independent mass parameters for the B-model — six mass parameters

with one constraint, namely MAS
1 +MAS

2 −M1−M2 +M3 +M4 = 0. Similarly, two mass

parameters on the A-model side coincides with the two t̃a parameters on the B-model side.

In order to obtain a generic mirror pair in this class (for rank of the quiver N > 4) by

gauging, we start from the following linear quivers:

A-model: (1, 1)(2, 1)1(2, 0)2 . . . (2, 0)N−4(2, 1)N−3(1, 1) and

B-model: (1, 1)(2, N − 2)(1, 1).

One needs to gauge the U(1) flavor symmetries of the nodes (2, 1)1 and (2, 1)N−3 to obtain

the appropriately framed D̂N quiver. Proceeding as before, the mirror is found to consist

of a U(2) gauge theory with N fundamental hypers and two hypers in the antisymmetric

representation of U(2). The mirror map in this case is an obvious generalization of the D̂4

case and is presented in figure 24 The corresponding mirror maps are the following

t̃j = mj (j = 1, 4)

M1 = ζ2, M2 = −ζ3

Mi = ti−1, (i = 3, 4, . . . , N)

MAS
1 = tN − ζ3

MAS
2 = t1 + ζ2 ,

(4.77)
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Figure 25. Attaching two (1, 1) blocks to a (1, 0)(2, 2)(1, 0) theory (left) in order to get the D̂4

quiver with two framings (right).

therefore we get

MAS
1 +MAS

2 −M1 −M2 +

N∑
i=3

Mi = 0 . (4.78)

Mirror dual with symplectic gauge groups

Consider the linear quiver (1, 0)(2, 2)(1, 0). The partition function of this theory is given by

ZA(mi; tj)=

∫ 2∏
α=1

dsα
d2s0

2!

∏2
α=1 e

2πisαηα
∏2
i=1 e

2πisi0η0 sinh2 π(s1
0 − s2

0)∏2
i=1 coshπ(s1−si0)

∏2
a=1 coshπ(si0+ma)

∏2
i=1 coshπ(s2−si0)

.

(4.79)

As before, we define η1 = t1 − t2, η0 = t2 − t3 and η2 = t3 − t4 while m1,m2 are masses

of the fundamental hypers. We now attach two (1, 1) blocks to the globally symmetry of

the quiver as shown in figure 25. At the level of the partition function this operation can

be represented in the following form

Z̃A(a1, a2; tj , ζ1, ζ2) =

∫ 2∏
i=1

dmi
e2πiζimi

coshπ(mi − ai)
ZA(mi; tj) , (4.80)

where Z̃A(a1, a2; tj , ζ1, ζ2) is the partition function of the framed D̂4 quiver of interest

written in terms of the partition function of the (1, 0)(2, 2)(1, 0) theory. Note that ζ1, ζ2

are FI parameters of the attached U(1) nodes and a1, a2 are the masses of the fundamental

hypers charged under those U(1)s.

In order to obtain the correct mirror to this theory, we will need to start with Z̃A and

implement S-duality at the level of the partition function in a fashion similar to [7, 28]. To

see precisely how this works out, let us rewrite Z̃A in the following manner,

Z̃A(a1, a2; tj , ζ1, ζ2) =

∫ 2∏
i=1

dmi

2∏
α=1

dsα
d2s0
2!

1

sinhπ(m1 −m2)

2∏
i=1

e2πiζimi

coshπ(mi − ai)

× sinhπ(m1 −m2) sinhπ(s10 − s20)∏
i,j coshπ(si0 −mj)

× sinhπ(s10 − s20) sinhπ(s1 − s2)∏
i,j coshπ(si0 − sj)

×
∏2
α=1 e

2πisαηα
∏2
i=1 e

2πisi0η0

sinhπ(s1 − s2)

= −
∫ 2∏

i=1

dmidm
′
iduidvidzidxdy

2∏
α=1

dsα
d2s0
2!

tanhπx e2πix(m1−m2)
2∏
i=1

e2πiζimi
e2πi(mi−m

′
i)zi

coshπ(mi − ai)

×

(∑
ρ

(−1)ρ
2∏
i=1

e
2πiui(s

i
0−m

′
ρ(i))

coshπui

)
×

∑
ρ′

(−1)ρ
′

2∏
i=1

e2πivi(s
i
0−sρ′(i))

coshπvi
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× tanhπy e2πiy(s1−s2)
2∏

α=1

e2πisαηα
2∏
i=1

e2πis
i
0η0 , (4.81)

where ρ, ρ′ denote permutations over the labels i = 1, 2.

Going to the second line from the first, we have used Cauchy determinant identity and

Fourier transform of hyperbolic functions to write the partition function in terms of a set

of auxiliary variables {x,m′i, zi, ui, vi, y}. For example

sinhπ(m1 −m2) sinhπ(s1
0 − s2

0)∏
i,j coshπ(si0 −mj)

=
∑
ρ

(−1)ρ
1∏2

i=1 coshπ(si0 −m′ρ(i))

=

∫ 2∏
i=1

dui
∑
ρ

(−1)ρ
2∏
i=1

e
2πiui(s

i
0−m′ρ(i))

coshπui

(4.82)

In addition, we used

1

sinhπ(m1 −m2)
= −i

∫
dx tanhπx e2πix(m1−m2) (4.83)

Implementing S-duality at the level of partition function amounts to carrying out the

integration over the original variables {sα, si0} and writing the partition function exclusively

in terms of the auxiliary fields. Performing the said integrations followed by some trivial

change of variables we have

Z̃A(a1, a2; tj , ζ1, ζ2) =

∫ 2∏
i=1

duidzi tanh (πz1) tanh (πu1)

(∑
ρ

(−1)ρ
2∏
i=1

e2πiai(zi−ζi+uρ(i)+ξρ(i))

coshπ(zi − ζi + uρ(i) + ξρ(i))

)

×

(
δ(z1 + z2)δ(u1 + u2)∏2

i=1 coshπ(ui + ξi) coshπ(ui + ξi + η0)

)
, (4.84)

where ξ1 = η1 + η0 = t1 − t3 and ξ2 = η2 + η0 = t2 − t4.

To perform the sum over permutations in Z̃A, we again need to use Cauchy determinant

identity. However, this can only be done if the phase is independent of ρ, which requires

that the hypermultiplet masses obey the relation

a1 = a2 = a . (4.85)

Imposing this condition and summing over the permutations we obtain

Z̃A(a; tj , ζ1, ζ2)

=

∫
d2u

2

d2z

2

(
sinhπ(z1 − z2) sinhπ(z1 − z2 − ζ1 + ζ2) sinhπ(u1 − u2 + ξ1 − ξ2) sinhπ(u1 − u2)∏

i,j coshπ(zi + uj − ζi + ξj)

)

×

(
e2πia(ξ1+ξ2−ζ1−ζ2)δ(z1 + z2)δ(u1 + u2)∏2

i=1 coshπ(ui + ξi) coshπ(ui + ξi + η0) cosh (πui) cosh (πzi)

)
. (4.86)

To interpret the numerator of the first term in parenthesis as the contribution of a N = 2

vector multiplet, we would need

ζ1 = ζ2 = ζ

ξ1 = ξ2 = ξ ,
(4.87)
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k 1

N-3 nodes

k

2k

k

k

1

2k
Sp(k)

SO(2N-2)

Sp(k)

SO(2)

Figure 26. An infinite family of affine doubly framed D-type quivers with its mirror duals.

which implies

t1 + t4 = 0 , t2 + t3 = 0 . (4.88)

The constraint equations (4.85) and (4.87) together imply that the masses and the FI

parameters obey the Z2 outer automorphism symmetry of the D̂4 quiver. Imposing these

constraints, we finally have

Z̃A(a; tj , ζ) =

∫
d2u

2

d2z

2

(
sinh2 π(z1 − z2) sinh2 π(u1 − u2)∏

i,j coshπ(zi + uj − ζ + ξ)

)

×

(
e4πia(ξ−ζ)δ(z1 + z2)δ(u1 + u2)∏2

i=1 coshπ(ui + ξ) coshπ(ui + ξ + η0) cosh (πui) cosh (πzi)

)
.

(4.89)

This is evidently the partition function of a (Sp(1), 1)(Sp(1), 3) quiver shown in figure 22.

The mirror map can be read off from the above formula.

M1 = t1 + t2

M2 = t1 + t2 − 2t3

M3 = 0

M4 = 0

Mbif = t1 − t3 + ζ .

(4.90)

Note that the number of non-zero mass parameters of the B model exactly match with the

number of independent FI parameters of the A model.

In order to obtain a generic mirror pair in this class (for rank of the quiver N > 4)

by gauging, we start from a linear quiver (2, 2)1(2, 0)2 . . . (2, 2)N−3. Firstly, one needs to

gauge the flavor group U(2)1 as a U(1)× U(1). Then the flavor group U(2)N−3 should be

split as a U(1)× U(1) and a (1, 1) quiver must be attached to each U(1) as we did in the

D̂4 case. The resultant quiver can then be shown to dual to (Sp(1), 1)(Sp(1), N − 1) using

manipulations similar to the example shown above. The details of this computation and

the associated mirror map can be found in [7]. We leave it to the enthusiastic reader as

an exercise to show that, using similar manipulations and attaching (k, 1) blocks as we

did above in the case of k = 1, one can derive the mirror quiver to the doubly framed D̂N

quiver for generic k (figure 26) directly.

– 49 –



J
H
E
P
0
6
(
2
0
1
4
)
0
5
9

SU(3)

6

Figure 27. E6 quiver with one hypermultiplet on the middle node and its mirror. Red number near

the nodes of the E6 quiver enumerate the nodes accruing to the Bourbaki convention. The quiver

on the left can be obtained from gluing T(1,1,1)(U(3)), T(1,1,1)(U(3)), T(2,1)(U(3)) and T(2,1)(U(3))

together via the U(3) group, and the quiver on the right can be realised as as the 6d (2, 0) theory

compactifying on a circle times a Riemann sphere with punctures (1, 1, 1), (1, 1, 1), (2, 1) and (2, 1).

5 Flavored En and Ên quivers

In this section, we study a few examples of framed En quivers (and their affine extensions)

using the framework of Abelian gauging. It was known for some time already [1] (see

also [45, 46]) that balanced Ên quiver theories have non-Lagrangian mirror description and

until recently [23] understanding of Higgs branches thereof was limited. The examples we

are about to discuss here exclusively deal with framed E-type or Ê-type quivers which

have Lagrangian mirrors.

5.1 Framed E6 theory from linear quiver

Consider the mirror pair in figure 27.8 This mirror pair may be obtained by the abelian

gauging technique using S3 partition function in a way similar to the previous sections.

The starting point is again a linear quiver pair

A-model : (1, 0)(2, 0)(3, 2)(2, 0)(1, 0)

B-model : (3, 6) .
(5.1)

We perform the gauging trick on the global U(2) symmetry of the middle node of the left

quiver into U(1) global and U(1) gauge. From the perspective of the parameter space, this

amounts to fixing one of the momenta, say p
(3) 1
µ , which on the mirror side results in taking

out the trace part of U(3). Note also that U(1) flavor symmetries were gauged there to go

between U(N) and SU(N) gauge groups in [47]

Mirror symmetry dictates that the partition functions of the two linear quivers are

related in the following manner up to an overall phase. In [45] the same example was

considered, however, on the A side the quiver had SU(3) group in the middle instead of

U(3) with the overall U(1) factorization. We stress again here that our computation is

the correct one and only with the democratic overall U(1) quotient the mirror map works

8We are using Bourbaki conventions for numbering the nodes of E quiver diagrams.
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correctly.

ZA(ma, tα) = ZB(Mα, t̃a)

ma = t̃a, a = 1, 2.

tα = Mα, α = 1, 2, . . . , 6

(5.2)

Now consider gauging a single U(1) of the U(2) global symmetry in the A-model linear

quiver to obtain the correct framed E6 quiver. The partition function of such a theory is

Z̃A(ζ1,m2, tα) =

∫
dm1e

2πiζ1m1ZA(ma, tα)

=

∫
dm1e

2πiζ1m1ZB(tα,ma)

(5.3)

where the second equality is a direct consequence of mirror symmetry. Therefore, we have

Z̃A(ζ1,m2, tα) =

∫
dm1

d3s

3!

e2πiζ1m1
∏3
i=1 e

2πisi(m1−m2)
∏
i<j sinh2 π(si − sj)∏3

i=1

∏6
α=1 coshπ(si + tα)

=

∫
d3s

3!

δ(s1 + s2 + s3)
∏
i<j sinh2 π(si − sj)∏3

i=1

∏6
α=1 coshπ(si + tα − ζ1

3 )

= Z̃B(Mα)

(5.4)

The theory dual to the E6 quiver with a single fundamental hyper can be read off from the

partition function above -SU(3) with 6 flavors. The mirror map relates the masses of the

fundamental hypers of SU(3) with the FI parameters of the framed E6 quiver.

Mα = tα −
ζ1

3
, α = 1, 2, . . . , 6 (5.5)

As expected, the 6 independent mass parameters of the B-model match with the number

of independent parameters of the A-model - 6 parameters {tα} with one constraint and ζ1.

Another way to realize the mirror pairs in figure 27 is as follows. The quiver on the

left can be obtained from gluing T(1,1,1)(U(3)), T(1,1,1)(U(3)), T(2,1)(U(3)) and T(2,1)(U(3))

together via the U(3) group, and the mirror quiver on the right can be realised as as the

6d (2, 0) theory compactifying on a circle times a Riemann sphere with punctures (1, 1, 1),

(1, 1, 1), (2, 1) and (2, 1) [45]. Indeed, according to [48] and [46],9 such a mirror theory is

the SU(3) gauge theory with 6 flavours.

5.2 Ê7 theory from linear quiver

Now we consider an example of a framed Ê7 quiver, see figure 28. In order to obtain this

mirror pair via Abelian gauging, we start from the following mirror pairs.

A-model : (1, 0)(2, 0)(3, 0)(4, 2)(3, 0)(2, 0)(1, 0)

B-model : (4, 8)
(5.6)

9The diagram on page 16 of [46].
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Figure 28. Ê7 quiver with one hypermultiplet on the branching node and its mirror.

We perform the gauging trick on the global U(2) symmetry of the middle node of the left

quiver into U(1) global and U(1) gauge. From the perspective of the parameter space, this

amounts to fixing one of the momenta, which on the mirror side results in taking out the

trace part of U(4).

Mirror symmetry dictates that the partition functions of the two linear quivers are

related in the following manner up to an overall phase.

ZA(ma, tα) = ZB(Mα, t̃a)

ma = t̃a, a = 1, 2.

tα = Mα, α = 1, 2, . . . , 8

(5.7)

Now consider gauging a single U(1) of the U(2) global symmetry in the A-model linear

quiver to obtain the correct framed Ê7 quiver. The partition function of such a theory is

Z̃A(ζ1,m2, tα) =

∫
dm1e

2πiζ1m1ZA(ma, tα)

=

∫
dm1e

2πiζ1m1ZB(tα,ma)

(5.8)

where the second equality is a direct consequence of mirror symmetry. Therefore, we have

Z̃A(ζ1,m2, tα) =

∫
dm1

d4s

3!

e2πiζ1m1
∏4
i=1 e

2πisi(m1−m2)
∏
i<j sinh2 π(si − sj)∏4

i=1

∏8
α=1 coshπ(si + tα)

=

∫
d4s

3!

δ(s1 + s2 + s3 + s4)
∏
i<j sinh2 π(si − sj)∏3

i=1

∏6
α=1 coshπ(si + tα − ζ1

4 )

= Z̃B(Mα)

(5.9)

The theory dual to the Ê7 quiver with a single fundamental hyper in the middle node can

now be read off from the partition function above - a SU(4) with 8 flavors. The mirror

map relates the masses of the fundamental hypers of SU(4) with the FI parameters of the

framed Ê7 quiver.

Mα = tα −
ζ1

4
, α = 1, 2, . . . , 8 (5.10)

As expected, the 8 independent mass parameters of the B-model match with the number

of independent parameters of the A-model - 8 parameters {tα} with one constraint and ζ1.
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Figure 29. Ê8 quiver with one hypermultiplet on the bifurcating node and its mirror.

Figure 30. The result of complete Abelian gauging on the U(6) node. This quiver is mirror to

another quiver theory: (SU(6), 9)(SU(3), 0).

Another way to realize the mirror pairs in figure 28 is as follows. The quiver on the left

can be obtained from gluing T(1,1,1,1)(U(4)), T(1,1,1,1)(U(4)), T(3,1)(U(4)) and T(3,1)(U(4))

together via the U(4) group, and the quiver on the right can be realized as as the 6d

(2, 0) theory compactifying on a circle times a Riemann sphere with punctures (1, 1, 1, 1),

(1, 1, 1, 1), (3, 1) and (3, 1) [45]. Indeed, according to [46], such a mirror theory is the SU(4)

gauge theory with 8 flavors.

5.3 Ê8 theory from linear quiver

Similarly we can obtain extended E8 graphs by employing Abelian gauging on the following

mirror pair of linear quivers

(2, 0)(4, 0)(6, 3)(5, 0)(4, 0)(3, 0)(2, 0)(1, 0) (6, 9)(3, 0) . (5.11)

By gauging a single U(1) factor on the (6, 3) node of the left quiver above we derive the

new mirror pair, see figure 29. Gauging out another U(1) on the bifurcating node of the left

quiver in figure 29 will transform the mirror dual to (SU(6), 9)(SU(3), 0). Finally, gauging

out the remaining U(1) global symmetry on the same node does not change the mirror,

but the A-model quiver turns into the one depicted in figure 30. Recall that the overall

U(1) gauge factor decouples.

It is instructive at this point to consider the six dimensional realization of the mirror

theory of figure 30. The quiver in figure 30 can be constructed by gluing T(23)(U(6)), 3

copies of T(16)(U(6)), and T(5,1)(U(6)) together via the U(6) group and modding out by

an overall U(1). According to [45], the mirror theory can be realised from the 6d (2, 0)

theories compactified on a Riemann sphere with the following punctures: (16), 3 copies of

(5, 1) and (2, 2, 2). We can decompose the Riemann sphere as in figure 31.
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(5,1) (5,1) (5,1)

(16) (16) (16) (16) (2,2,2)
SU(6) SU(3)

irreg

irreg = {1,2,4,5,6}

(a) (b) (c)

Figure 31. The puncture decomposition of the mirror theory of figure 30. The sequence in the

round brackets corresponds to the Young diagram of the puncture, whereas the sequence in the

curly bracket corresponds to the pole structure used in [46]. The maximal puncture (16) has the

pole structure {1, 2, 3, 4, 5}, the minimal puncture (5, 1) has the pole structure {1, 1, 1, 1, 1}, and the

puncture (2, 2, 2) has the pole structure {1, 2, 2, 3, 4}. The pole structure of the irregular puncture

“irreg” is indicated in the figure.

Fixture # hypers SU(6) SU(3)

(a) 6 6 1

(b) 1 6 3

3 6 1

(c) - - -

Table 5. Matter content of the configuration in figure 31.

Let us follow the prescription in [46]. The gauge group associated with the cylinder

connecting two maximal punctures give rise to the gauge group SU(6), whereas that asso-

ciated with the cylinder connecting the maximal puncture and the irregular puncture has

rank 2. There are two possibilities for the latter; it is either SU(3) or Sp(2). In order to

determine this, we need to compute the number of hypermultiplets associated with each

fixture using eq. (10) of [46]: fixtures (a) and (b) each contains 36 hypermultiplets and fix-

ture (c) contains zero hypermultiplet. Hence we conclude that the gauge group associated

with the cylinder connecting (b) and (c) is SU(3) with the following matter content: The

quiver diagram associated with this construction is therefore

SU(6) SU(3)

3

6

(5.12)

Equivalently, this is

9 SU(6) SU(3)

(5.13)

as obtained using the Abelian gauging procedure.
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1/2 D3

1/2 D5

1/2 NS5

O5-

Figure 32. The brane configuration of Sp(2) with 6 flavors involving an O5-plane.

ON- ON-

Figure 33. The brane configurations of the mirror theory of Sp(2) with 6 flavors involving an

O5-plane. The notation is the same as figure 32, with the dashed vertical line being an ON−

plane. On the left the S-duality is directly applied to figure 32, with the D3-branes reconnected

according to the s-rule such that the number of D3-branes at each interval is preserved. On the

right the D5-brane is moved inside so no D3 branes end on it; in this configuration the quiver data

can be read off from this diagram.

6 Non-Abelian gauging: mirrors of Sp(Nc) theories

In this final section we discuss the construction of mirror duals to Sp(Nc) 3d theories with

Nf flavors by studying parameter spaces of vacua and computing partition functions on

S3 for these theories. From the discussion of [5] and [49] we know that brane construction

of mirror duals may involve O5-planes or O3-planes. In this paper, we focus on the mirror

duals whose brane construction only involves O5 planes; we will refer to those as the “O5

mirrors”.

6.1 Brane construction and S-duality

We have already studied Sp(1) ' SU(2) theories earlier in the paper (see e.g. section 4.1),

so let us immediately proceed to more complicated examples. We will soon see that in order

to understand higher rank Sp theories starting from linear quivers one has to perform the

non-Abelian gauging as opposed to the Abelian gauging which we have used thus far. In

this section we shall elaborate in great details on Sp(2) gauge theory with six flavors.

The brane configuration of the Sp(2) theory with 6 flavors involving an O5-plane is

presented in figure 32 (see [5] for details).

Let us apply the S-duality to the brane construction from figure 32. Upon the S-duality

the D5-branes become NS5-branes and vice versa. The O5− plane becomes the ON− plane.

After all, the S-dual brane configurations is given in figure 33.
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2

2

4

1

3 2 1

Figure 34. The quiver diagram of a mirror theory of Sp(2) with 6 flavors. The Coulomb branch

of this theory is 14 quanternionic dimensional. The Higgs branch of this theory is 2-quanternionic

dimensional.

4

3

2 3 2 1

4

1

2 3 2 1

2

(a)

4

6

2

Sp(2)

SO(12)

(b)

Figure 35. Mirror pairs before (a and b) and after (a′ and b′) the gauging. Dimensions of Coulomb

and Higgs branches for the A-models (left) are 12 and 6 for the top quiver and 14 and 2 for the

bottom quiver.

The quiver of the mirror theory for our problem can be read off directly from the right

diagram of figure 33; this is depicted in figure 34.

6.2 Parameter space description

Let us now try to derive the mirror quiver for Sp(2) theory with six flavors depicted in

figure 34 from parameter spaces of linear quivers. These linear quivers are the following

(see top row in figure 35)

A-model: (2, 0)(4, 3)(3, 0)(2, 0)(1, 0)

B-model: (4, 6)(2, 0) (6.1)

We then gauge the U(2) subgroup of the U(3) global symmetry on the second node of the

A-quiver. This procedure leaves behind U(1) flavor symmetry. Now we need to understand

the consequences of gauging on the mirror side. We see that the dimension of the Higgs

branch of the bottom-left quiver in figure 35 has decreased by 22 = 4, therefore we expect

the same to happen for the Coulomb branch of the mirror quiver. Also adding a U(2)

gauge node on the A-side increases its Coulomb branch dimension by two, therefore the
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Higgs branch of the mirror has to be fourteen-dimensional. Clearly the Sp(2) theory with

six flavors or with SO(12) global symmetry (bottom-right of figure 35) is a good candidate

since the dimensions of branches match perfectly. However, matching of the dimensions

alone is simply not enough to claim victory and a robust derivation of our result is due.

Note that in figure 35 quiver (a′) can be constructed by gluing T(2,2)(U(4)), T(2,2)(U(4)),

T(3,1)(U(4)) and T(1,1,1,1)(U(4)) via the U(4) group and modding out by the overall U(1);

its mirror [45], quiver (b′), can be realized as the 6d (2, 0) theory compactified on S1 times

a Riemann surface with punctures (2, 2), (2, 2), (3, 1) and (1, 1, 1, 1). Note also that this

particular theory belongs to the classification of [46].10 However, [46] classifies theories only

up to rank four, whereas here we are interested in constructing mirrors for any Nc and Nf .

Let us begin with the Bethe equations for the original linear quivers on top of figure 35.

Vacua equations of the U(4) node of the A-model quiver in (6.1) read

τ3

τ2

3∏
a=1

ησ
(2)
i − µ

(2)
a

ηµ
(2)
a − σ(2)

i

·
2∏

a=1

ησ
(2)
i − σ

(1)
a

ησ
(1)
a − σ(2)

i

·
4∏
j 6=i

ησ
(2)
i − η−1σ

(2)
j

ησ
(2)
j − η−1σ

(2)
i

·
3∏

a=1

ησ
(2)
i − σ

(3)
a

ησ
(3)
a − σ(2)

i

= 1 , (6.2)

together with the corresponding momenta

p(2) a
µ = τ1τ2

4∏
j=1

ηµa − σ(2)
j

ησ
(2)
j − µa

, a = 1, 2, 3 . (6.3)

After the gauging an extra node with U(2) gauge group is added to the quiver, let’s call it

0th node. Vacua equations for this node read

4∏
j=1

ησ
(0)
a − σ(2)

j

ησ
(2)
j − σ

(0)
a

·
∏
b6=a

ησ
(0)
a − η−1σ

(0)
b

ησ
(0)
b − η−1σ

(0)
a

= 1 , a = 1, 2 . (6.4)

If we multiply the above two equations for a = 1 and a = 2 we immediately arrive to the

following constraint p
(0) 1
σ p

(0) 2
σ = 1 which can be also written as

p(2) 1
µ p(2) 2

µ = 1 , (6.5)

if we relabel σ(0)s with µs.

Meanwhile, on the mirror side we get

τ∨2
τ∨1

6∏
a=1

η−1σ
∨ (1)
i − µ∨ (1)

a

η−1µ
∨ (1)
a − σ∨ (1)

i

·
4∏
j 6=i

ησ
∨ (1)
i − η−1σ

∨ (1)
j

ησ
∨ (1)
j − η−1σ

∨ (1)
i

·
2∏

a=1

η−1σ
∨ (1)
i − σ∨ (2)

a

η−1σ
∨ (2)
a − σ∨ (1)

i

= 1 ,

τ∨3
τ∨2

4∏
a=1

η−1σ
∨ (2)
i − σ∨ (1)

a

η−1σ
∨ (1)
a − σ∨ (2)

i

·
2∏
j 6=i

η−1σ
∨ (2)
i − ησ∨ (2)

j

η−1σ
∨ (2)
j − ησ∨ (2)

i

= 1 . (6.6)

The mirror analogue of (6.5) is

p∨ 1
τ p∨ 2

τ = 1 , (6.7)

10See top diagram on page 22 of of [46].
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or

τ∨1 (τ∨2 )2 1

σ
∨ (2)
1 σ

∨ (2)
2

= 1 . (6.8)

The latter condition, up to a constant, (which we shall fix soon) provides an embedding of

Sp(1) ⊂ U(2) for the second node of the B-side quiver.

Note that there is an ambiguity in the choice of (6.7) which is due to the breaking of

the U(3) flavor symmetry on the A side, in other words, one needs to chose which masses

(or FI terms on the mirror side) to pick. For a different choice of masses, say µ2 and

µ3 (6.7) would imply

τ∨1 τ
∨
2

1

σ
∨ (1)
1 σ

∨ (1)
2 σ

∨ (1)
3 σ

∨ (1)
4

= 1 (6.9)

instead. In order to provide the remaining constraint to ensure the projection of U(4) onto

Sp(2) we need to solve Bethe equations and express the solution in terms of momenta (6.3).

Thus we put

σ
∨ (2)
1 = ησ

∨ (1)
3 =

η

σ
∨ (1)
2

σ
∨ (2)
2 = ησ

∨ (1)
4 =

η

σ
∨ (1)
1

, (6.10)

and observe that the first equation of (6.6) telescopes down to the Bethe equation for

Sp(2) theory with six flavors.

In general, if one splits a U(2N + 1) flavor symmetry on the A side into two U(N)

gauge groups and U(1) global symmetry, one imposes N constraints in total on momenta

paµ. Those constraints, translated into the mirror side provide a canonical embedding of

Sp(N) gauge group into U(2N) group which appeared in the original mirror construction.

6.3 Partition function description

Let us now derive the mirror of Sp(2) with 6 flavors using the technique of non-Abelian

gauging using, as before, the S3 partition function as a tool. We shall see that working

with partition functions will turn out to be a very powerful tool and can be used in gauging

of arbitrary quiver theories.

Consider again the pair of mirror quivers (6.1). Their partition functions read as follows

ZA (ma, tα) =

∫
d2s1

2!

d4s2

4!

∏
i<j sinh2 π(si1 − s

j
1)
∏
p<l sinh2 π(sp2 − sl2)∏

i,p coshπ(si1 − s
p
2)
∏
p

∏3
a=1 coshπ(sp2 −ma)

×
2∏
i=1

e2πisi1(t1−t2)
4∏
p=1

e2πisp2(t2−t3)ZT (U(4)) (sp2; t3, t4, t5, t6) ,

(6.11)

ZB
(
Mα, t̃a

)
=

∫
d2s1

2!

d4s2

4!

∏
i<j sinh2 π(si1 − s

j
1)
∏
p<l sinh2 π(sp2 − sl2)∏

i,p coshπ(si1 − s
p
2)
∏
p

∏6
α=1 coshπ(sp2 −Mα)

×
2∏
i=1

e2πisi1(t̃1−t̃2)
4∏
p=1

e2πisp2(t̃2−t̃3) .

(6.12)
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The mirror symmetry implies that ZA(ma; tα) = ZB(Mα; t̃a) up to some overall phase

provided the parameters are related as follows:

Mα = tα

t̃a = ma .
(6.13)

Now, we gauge a U(2) subgroup of the U(3) flavor symmetry of the A-model, which gives

the mirror theory of Sp(2) with 6 flavors. The partition function of this theory is

Z̃A(ζ,m3; tα) =

∫
dm1dm2e

2πi(m1+m2)ζ sinh2 π(m1 −m2)ZA(ma; tα)

=

∫
dm1dm2e

2πi(m1+m2)ζ sinh2 π(m1 −m2)ZB(tα;ma) ,

(6.14)

where the second equality follows from the mirror symmetry of the linear quivers. From

the second equality, completing the integration over m1 and m2 we have

Z̃A(ζ,m3; tα) =

∫
d2s1

2!

d4s2

4!

∏4
p=1 e

−2πm3s
p
2
∏
i<j sinh2 π(si1 − s

j
1)
∏
p<l sinh2 π(sp2 − sl2)∏

i,p coshπ(si1 − s
p
2)
∏
p

∏6
α=1 coshπ(sp2 − tα)

×

(
− 2δ

(
ζ+
∑
i

si1

)
δ

(
ζ−
∑
i

si1+
∑
p

sp2

)
+δ

(
ζ+
∑
i

si1+i

)
δ

(
ζ−
∑
i

si1+
∑
p

sp2−i
)

+ δ

(
ζ +

∑
i

si1 − i
)
δ

(
ζ −

∑
i

si1 +
∑
p

sp2 + i

))
≡ T1 + T2 + T3 . (6.15)

It is useful to divide up the partition function into three parts T1, T2, T3 as follows

T1 = −2

∫
d2s1

2!

d4s2

4!
f(si1, s

p
2)g(sp2)δ

(
ζ +

∑
i

si1

)
δ

(
ζ −

∑
i

si1 +
∑
p

sp2

)
,

T2 =

∫
d2s1

2!

d4s2

4!
f(si1, s

p
2)g(sp2)δ

(
ζ+
∑
i

si1+i

)
δ

(
ζ−
∑
i

si1+
∑
p

sp2−i
)
,

T3 =

∫
d2s1

2!

d4s2

4!
f(si1, s

p
2)g(sp2)δ

(
ζ+
∑
i

si1−i
)
δ

(
ζ−
∑
i

si1+
∑
p

sp2+i

)
,

f(si1, s
p
2) =

∏
i<j sinh2 π(si1 − s

j
1)∏

i,p coshπ(si1 − s
p
2)

,

g(sp2) =

∏4
p=1 e

−2πm3s
p
2
∏
p<l sinh2 π(sp2 − sl2)∏

p

∏6
α=1 coshπ(sp2 − tα)

.

(6.16)

Let us consider the term T2 first. Note that the integrand of T2 (like T1 and T3) has

poles at s1
1 = sp2± (2kp− 1) i2 , s

2
1 = sp2± (2kp− 1) i2 with kp ∈ Z+ - the residues of only one

half of these poles contribute to the integral depending on whether one closes the contour

in the upper half plane or the lower half plane.

In order to rewrite the partition function Z̃A(ζ,m3; tα) in a form where the dual gauge

theory can be read off, one needs to remove the imaginary contributions in the delta
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functions which may be done, for example, by shifting the integration variable s1
1 → s1

1− i.
But this amounts to shifting the contour of the s1

1 integration and therefore the integral

after and before the shift will differ by residues of poles which are included (or excluded) by

this change of contour. Keeping this in mind, the matrix integral in T2 may be written as

T2 =−T1

2
+C1

∫
ds1

2

d4s2

4!

coshπ(s2
1−s1

2)δ(2ζ+2s2
1+2s1

2+i)δ(2
∑

p 6=1 s
p
2+2ζ−2s2

1−i)∏
p 6=1 sinhπ(s1

2 − s
p
2) coshπ(s2

1 − s
p
2)

g(sp2) ,

(6.17)

where C1 is a combinatorial and/or phase factor which can be ignored for our discus-

sion. The above expression can be further groomed by shifting the integration variable

s2
1 → s2

1 − i/2. Taking into account the residues of the poles that are affected by this

change of contour, we get

T2 = −T1

2
− C1

∫
ds1

2

d4s2

4!

sinhπ(s2
1 − s1

2)δ(2ζ + 2s2
1 + 2s1

2)δ(2
∑

p 6=1 s
p
2 + 2ζ − 2s2

1)∏
p 6=1 sinhπ(s1

2 − s
p
2) sinhπ(s2

1 − s
p
2)

g(sp2)

+
C2

2

∫
d4s2

222!

δ(s1
2 + s2

2 + ζ)δ(s3
2 + s4

2 + ζ)∏
i=1,2 sinhπ(si2 − s

i+2
2 )

g(sp2) , (6.18)

where C2 is a phase factor. Manipulating with T3 in exactly the same way we obtain

T3 = −T1

2
+ C1

∫
ds1

2

d4s2

4!

sinhπ(s2
1 − s1

2)δ(2ζ + 2s2
1 + 2s1

2)δ(2
∑

p 6=1 s
p
2 + 2ζ − 2s2

1)∏
p 6=1 sinhπ(s1

2 − s
p
2) sinhπ(s2

1 − s
p
2)

g(sp2)

+
C2

2

∫
d4s2

222!

δ(s1
2 + s2

2 + ζ)δ(s3
2 + s4

2 + ζ)∏
i=1,2 sinhπ(si2 − s

i+2
2 )

g(sp2) . (6.19)

Summing up the contributions of T1, T2 and T3 one obtains the following formula for

Z̃A(ζ,m3; tα) (up to some phase factor)

Z̃A(ζ,m3; tα) =

∫
d4s2

222!

δ(s1
2 + s2

2 + ζ)δ(s3
2 + s4

2 + ζ)∏
i=1,2 sinhπ(si2 − s

i+2
2 )

g(sp2)

=

∫
d4s2

222!

δ(s1
2 + s2

2 + ζ)δ(s3
2 + s4

2 + ζ)∏
i=1,2 sinhπ(si2 − s

i+2
2 )

∏4
p=1 e

−2πm3s
p
2
∏
p<l sinh2 π(sp2 − sl2)∏

p

∏6
α=1 coshπ(sp2 − tα)

=

∫
d4s2

222!

sinh2 π(s1
2 − s3

2) sinh2 π(s1
2 + s3

2) sinh2 π(2s1
2) sinh2 π(2s3

2)∏
p=1,3

∏6
α=1 coshπ(sp2 − tα − ζ/2) coshπ(sp2 + tα + ζ/2)

. (6.20)

This is precisely the partition function of a Sp(2) gauge theory with 6 fundamental hypers.

The corresponding mirror map is given by

Mα = tα + ζ/2 . (6.21)

Our analysis can be easily extended to the generic case in figure 36. We refrain from

repeating the partition function analysis for this generic case, however we present the result

and support it by dimension counting. We start with the two linear quivers on top of the

figure and gauge global U(Nc) symmetry on the second node of the left quiver. This

procedure changes the dimensions of the Coulomb and Higgs branches of the left quiver by
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Nf-2Nc-1 

nodes

Nf-2Nc-1 

nodes

2Nc 2Nc

2Nc 2Nc

Nc

Nc

 Nc

Nc 1

1

2Nc-1

2Nc-1

Nf

2Nc 2Nc-2 4 2

Sp(Nc)

SO(2Nf)

Figure 36. Gauging U(Nc) global symmetry of the top-left linear quiver produces framed D-shaped

quiver on the bottom left. As a result on the mirror side the tail of top-right quiver collapses onto

single Sp(Nc) node (bottom-right). Hexagons on the right ends of the two left quivers denote

T [U(2Nc − 1)] tails: (2Nc − 1)− (2Nc − 2)− · · · − (2)− (1).

+Nc and −N2
c respectively. On the mirror side we therefore should see the annihilation of

N2
c parameters on its Coulomb branch. They disappear as a result of the collapse of the

“double tail” (2Nc−2)−(2Nc−4)−· · ·−(4)−(2) of the top-right quiver in figure 36. Let us

count how many Cartan generators this tail has. Indeed, the counting works properly since

2 + 4 + · · ·+ 2Nc − 2 = N2
c −Nc , (6.22)

and the remaining Nc Cartan elements are extracted from the projection of U(2Nc) to

Sp(Nc).

6.4 A remark on non-Abelian gauging

At this point, let us quickly clarify an important issue regarding the program of non-

Abelian gauging which we have demonstrated in the previous subsection for a special case.

Suppose we start with some linear quiver which includes framed nodes. We take one of

those framed nodes, assume it has labels (Ni,Mi) and Mi > 1, so the global symmetry

is genuinely non-Abelian. The node may be connected to other nodes via bifundamental

hypermultiplets, but their existence is irrelevant for the argument we are about to make.

Now we gauge a non-Abelian subgroup of U(Mi), which may also be the U(Mi) itself.

As we discussed in the end of the last computation around formula (6.22), this procedure

decreases the dimension of the Higgs branch by the dimension of that subgroup we have

just gauged. On the mirror side the Coulomb branch will suffer the same loss in dimension.

However, there is a potential obstacle for this to happen — the Coulomb branch of the

mirror quiver may be too small to sustain this deformation!

Framed En quivers, which we have discussed in section 5 provide us with perfect

illustrations of this fact. Consider, e.g. the mirror pair which we used in the construction
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of Ê7 quiver (5.6). Only this time, instead of gauging the U(1) subgroup of the middle

node of the A-model A7 quiver, we shall try to gauge the whole U(2), which has dimension

four, in order to get a fully balanced Ê7 quiver. However, the Coulomb branch of the

mirror U(4) theory is only four-dimensional! Therefore we conclude that the mirror of

the Ê7 cannot be presented as a Lagrangian quiver theory of any kind, which confirms

the fact we know from compactifications of six dimensional (2, 0) theory, viz. all extended

balanced En quivers have non-Lagrangian mirrors.
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A Mirror of Sp(Nc) with Nf flavors: checking the duality

In this section, we present an explicit check for the “O5 mirror” of an Sp(Nc) gauge theory

with Nf flavors for arbitrary Nc and Nf . The quiver diagram for the O5 mirror to the

Sp(Nc) theory with Nf flavors is depicted in figure 37. The Coulomb branch of figure 37

is 2NcNf − 1
2(2Nc)(2Nc + 1) quanternionic dimensional, agreeing with the Higgs branch

of Sp(Nc) with Nf flavors using sphere partition function. The Higgs branch is Nc quan-

ternionic dimensional, agreeing with the Coulomb branch of Sp(Nc) theory with Nf flavors.
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Nc

Nc

2Nc 2Nc 2Nc

2Nc-1

2Nc-2

1

1

...

...

N f -2Nc-1  nodes

Figure 37. The quiver for the mirror theory of Sp(Nc) with Nf flavors involving O5-planes.

The S3 partition functions of the dual theories can be explicitly written (k = Nc in

the following formulae) as functions of the FI parameters and the fundamental masses. For

the A-model, one has

ZA =

∫
dNcs

(2NcNc!)

∏
i<j sinh2 π(si − sj) sinh2 π(si + sj)

∏
i sinh2 π(2si)∏Nc

i=1

∏Nf
a=1 coshπ(si +ma)

∏3
a=1 coshπ(si −ma)

(A.1)

ZB =

∫ 2∏
α=1

dNcsα
Nc!

L∏
β=1

d2Nc s̃β
2Nc!

2Nc−1∏
γ=1

dkγuγ
kγ !

Nc∏
i=1,α

e2πiηαsiα

2Nc∏
p=1,β

e2πiη̃β s̃
p
β

2Nc−1∏
γ=1

kγ∏
p=1

e2πiζγu
p
γ

×
∏
i<j sinh2 π(si1 − s

j
1) sinh2 π(si2 − s

j
2)∏

i,p coshπ(si1−s̃
p
1+m1) coshπ(si2−s̃

p
1+m2)

∏L
β=1

∏
p<l sinh2 π(s̃pβ − s̃

l
β)∏L−1

β=1

∏
p,l coshπ(s̃pβ−s̃lβ+1+M̃β)

× 1∏2Nc
p=1 coshπ(s̃pL +mf )

× 1∏2Nc
p

∏2Nc−1
l coshπ(s̃pL − ul2Nc−1 +M2Nc−1)

×
∏2Nc−1
γ=1

∏kγ
p<l sinh2 π(upγ − ulγ)∏2Nc−2

γ=1

∏kγ
p,l coshπ(upγ − ulγ+1 +Mγ)

(A.2)

In the above equation, the integer L = Nf − 2Nc − 1 > 0 and the set {kγ} =

{k1, k2, . . . , k2Nc−1} = {1, 2, . . . . . . , 2Nc − 2, 2Nc − 1}. For convenience, we set η1 = η2

(which we will label as η̃0) — note that it is not necessary to assume this as the

Nc = 2, Nf = 6 example above demonstrates.

We also label s̃p0 = (si1, s
i
2). Note that all the masses in the partition function ZB can

be eliminated by simply shifting the integration variables by constants. Therefore, we can
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ignore all masses in ZB from here on. One obtains

ZB =
iNc

Nc!Nc!

∫
dNcτ

L+1∏
β=0

d2Nc s̃β
2Nc!

L∏
β=0

d2Nc τ̃β

×
L∏
β=0

2Nc∏
p=1

e2πiη̃β s̃
p
β

(∑
ρ

(−1)ρ
Nc∏
i=1

tanhπτ ie2πiτ i(s̃i0−s̃
k+ρ(i)
0 )

)

×
L−1∏
β=0

∑
ρ̃β

(−1)ρ̃β
2Nc∏
p=1

e2πiτ̃pβ (s̃pβ−s̃
ρ̃β(p)

β+1 )

coshπτ̃pβ

∑
ρ̃L

(−1)ρ̃L
2Nc∏
p=1

e2πiτ̃pL(s̃pL−s̃
ρ̃L(p)

L+1 )

coshπs̃pL


×

2Nc∏
p<l

sinhπ(s̃pL+1 − s̃
l
L+1)ZT (U(2Nc))

(
s̃pL+1, ζγ

)

(A.3)

where we have decomposed the partition function of the B-quiver into two parts –the

truncated D-quiver (+ 1 fundamental hyper) and TU(2Nc) tail with the U(2Nc) flavor

symmetry gauged. The latter contribution ZT (U(2Nc))

(
s̃pL+1, ζγ

)
may be explicitly obtained

in terms of {s̃pL+1, ζγ}. However, it is easier to write the answer in terms {eγ} defined in

the usual way as ζγ = eγ − eγ+1 [50]

ZT (U(2Nc))

(
σ̃pL+1, eγ

)
=

∫ 2Nc−1∏
γ=1

dkγuγ
kγ !

2Nc−1∏
γ=1

kγ∏
p=1

e2πiζγu
p
γ

∏2Nc−1
γ=1

∏kγ
p<l sinh2 π(upγ−ulγ)∏2Nc−2

γ=1

∏kγ
p,l coshπ(upγ−ulγ+1)

× 1∏2Nc
p

∏2Nc−1
l coshπ(s̃pL+1 − ul2Nc−1)

=
∑
ρ̃L+1

(−1)ρ̃L+1
i−Nc(2Nc−1)e2πis̃

ρ̃L+1(p)

L+1 (ep−e2Nc )∏2Nc
p<l sinhπ(s̃pL+1−s̃lL+1)

∏2Nc
p<l sinhπ(ep−el)

. (A.4)

Putting together the two results we have

ZB =
1

Nc!Nc!

∫
dNcτ

L+1∏
β=0

d2Nc s̃β
2Nc!

L∏
β=0

d2Nc τ̃β

×
L∏
β=0

2Nc∏
p=1

e2πiη̃β s̃
p
β

(∑
ρ

(−1)ρ
Nc∏
i=1

tanhπτ ie2πiτ i(s̃i0−s̃
k+ρ(i)
0 )

)

×
L−1∏
β=0

∑
ρ̃β

(−1)ρ̃β
2Nc∏
p=1

e2πiτ̃pβ (s̃pβ−s̃
ρ̃β(p)

β+1 )

coshπτ̃pβ

∑
ρ̃L

(−1)ρ̃L
2Nc∏
p=1

e2πiτ̃pL(s̃pL−s̃
ρ̃L(p)

L+1 )

coshπs̃pL


×

∑
ρ̃L+1

(−1)ρ̃L+1
e2πis̃

ρ̃L+1(p)

L+1 (ep−e2Nc )∏2Nc
p<l sinhπ(ep − el)



(A.5)

Integrating the variables s̃β and imposing the resulting delta functions, we obtain the

following form for ZB after applying Cauchy’s determinant identity

ZB =

∫
d2Nc τ̃0

(2NcNc!)

∏Nc
i=1 sinhπ2τ̃ i0

∏2Nc
p<l sinhπ(τ̃p0 − τ̃ l0)∏2Nc

p=1 coshπτ̃p0 coshπ(τ̃p0 − η̃0) . . . coshπ(τ̃p0 − η̃0 − η̃1 − . . .− η̃L−1)
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× 1∏2Nc
p,l coshπ(τ̃p0 − (el − e2Nc + η̃0 + η̃1 + . . .+ η̃L))

Nc∏
i=1

δ(τ̃ i0 + τ̃k+i
0 )

= ZA . (A.6)

For uniformity of notation, we define η̃i = ti − ti+1 where i = 0, 1, . . . , L. Therefore the

Nf = L+ 1 + 2Nc masses of the A-model can be written in terms of the FI parameters of

the A-model as follows,

ma = ta − t0 (a = 0, 1, 2, . . . , L),

mL+l = el − e2Nc + t0 − tL (l = 1, 2, . . . , 2Nc) .
(A.7)

Note that the mirror map closely resembles that of linear quivers, i.e. up to an additive

constant we have ma ↔ ta, mL+l ↔ el.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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moduli spaces of instantons on C2/Zn, JHEP 01 (2014) 182 [arXiv:1309.0812] [INSPIRE].

[41] M. Porrati and A. Zaffaroni, M theory origin of mirror symmetry in three-dimensional gauge

theories, Nucl. Phys. B 490 (1997) 107 [hep-th/9611201] [INSPIRE].

[42] A. Hanany and N. Mekareeya, Complete intersection moduli spaces in N = 4 gauge theories

in three dimensions, JHEP 01 (2012) 079 [arXiv:1110.6203] [INSPIRE].

[43] S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories:

quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].

[44] D.R. Grayson and M.E. Stillman, Macaulay2, a software system for research in algebraic

geometry, available at http://www.math.uiuc.edu/Macaulay2/.

[45] F. Benini, Y. Tachikawa and D. Xie, Mirrors of 3d Sicilian theories, JHEP 09 (2010) 063

[arXiv:1007.0992] [INSPIRE].

[46] O. Chacaltana and J. Distler, Tinkertoys for Gaiotto duality, JHEP 11 (2010) 099

[arXiv:1008.5203] [INSPIRE].

[47] O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP

07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

[48] P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12

(2007) 088 [arXiv:0711.0054] [INSPIRE].

[49] B. Feng and A. Hanany, Mirror symmetry by O3 planes, JHEP 11 (2000) 033

[hep-th/0004092] [INSPIRE].

[50] S. Benvenuti and S. Pasquetti, 3D-partition functions on the sphere: exact evaluation and

mirror symmetry, JHEP 05 (2012) 099 [arXiv:1105.2551] [INSPIRE].

– 67 –

http://dx.doi.org/10.1007/JHEP06(2011)114
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
http://dx.doi.org/10.1088/1126-6708/2002/11/049
http://arxiv.org/abs/hep-th/0206054
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206054
http://dx.doi.org/10.1016/0550-3213(77)90221-8
http://dx.doi.org/10.1016/0550-3213(77)90221-8
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B125,1
http://dx.doi.org/10.1088/1126-6708/2002/12/044
http://arxiv.org/abs/hep-th/0207074
http://inspirehep.net/search?p=find+EPRINT+hep-th/0207074
http://dx.doi.org/10.1007/JHEP01(2010)110
http://arxiv.org/abs/0906.3008
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3008
http://dx.doi.org/10.1007/JHEP05(2011)015
http://dx.doi.org/10.1007/JHEP05(2011)015
http://arxiv.org/abs/1007.4861
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.4861
http://dx.doi.org/10.1088/1126-6708/2000/01/022
http://arxiv.org/abs/hep-th/9908082
http://inspirehep.net/search?p=find+EPRINT+hep-th/9908082
http://dx.doi.org/10.1007/JHEP01(2014)182
http://arxiv.org/abs/1309.0812
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0812
http://dx.doi.org/10.1016/S0550-3213(97)00061-8
http://arxiv.org/abs/hep-th/9611201
http://inspirehep.net/search?p=find+EPRINT+hep-th/9611201
http://dx.doi.org/10.1007/JHEP01(2012)079
http://arxiv.org/abs/1110.6203
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.6203
http://dx.doi.org/10.1088/1126-6708/2007/11/050
http://arxiv.org/abs/hep-th/0608050
http://inspirehep.net/search?p=find+EPRINT+hep-th/0608050
http://www.math.uiuc.edu/Macaulay2/
http://dx.doi.org/10.1007/JHEP09(2010)063
http://arxiv.org/abs/1007.0992
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0992
http://dx.doi.org/10.1007/JHEP11(2010)099
http://arxiv.org/abs/1008.5203
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.5203
http://dx.doi.org/10.1007/JHEP07(2013)149
http://dx.doi.org/10.1007/JHEP07(2013)149
http://arxiv.org/abs/1305.3924
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3924
http://dx.doi.org/10.1088/1126-6708/2007/12/088
http://dx.doi.org/10.1088/1126-6708/2007/12/088
http://arxiv.org/abs/0711.0054
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.0054
http://dx.doi.org/10.1088/1126-6708/2000/11/033
http://arxiv.org/abs/hep-th/0004092
http://inspirehep.net/search?p=find+EPRINT+hep-th/0004092
http://dx.doi.org/10.1007/JHEP05(2012)099
http://arxiv.org/abs/1105.2551
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2551

	Introduction and main results
	Open questions
	Summary tables

	N=4 quivers, mass deformations and mirror symmetry
	Brane construction and mirror symmetry
	Parameter space of vacua for A(L) quivers
	The partition function on S**3
	The Hilbert series of the Coulomb branch

	Gauging quivers: a basic example
	Parameter space approach
	Partition function approach
	Checking mirror symmetry: the Hilbert series of hatD(4) quiver

	hatD(N) and star-shaped quivers
	Star-shaped quivers via Abelian gauging
	Flavorless hatD(N) quivers
	hatD(N) quivers with single framing
	Framing on an internal node
	Framing on boundary nodes

	hatD(N) quivers with double framing
	Framed hatD(3) quiver
	Framing at a single node of hatD(N) quivers
	Framing at two different nodes of hatD(4) quiver


	Flavored E(n) and hatE(n) quivers
	Framed E(6) theory from linear quiver
	hatE(7) theory from linear quiver
	hatE(8) theory from linear quiver

	Non-Abelian gauging: mirrors of Sp(N(c)) theories
	Brane construction and S-duality
	Parameter space description
	Partition function description
	A remark on non-Abelian gauging

	Mirror of Sp(N(c)) with N(f) flavors: checking the duality

