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1 Introduction

The objective of this paper is to revisit the problem of the gauge theory description of D3-

branes probing a D7-O7 system on smooth asymptotically-locally-Euclidean (ALE) spaces.

Let us first recall what the difficulty was.

It is by now well-known that the open-string description of k Dp-branes probing flat

D(p + 4)-branes, with or without O(p + 4)-plane, realizes the ADHM construction of the

moduli space of instantons. When the (p + 4)-branes are put on an orbifold C2/Z2, the

world-volume theory of Dp-branes becomes a quiver gauge theory. Without any O(p+ 4)-

plane in place, the gauge group is of the form U(k)×U(k′), and the blow-up parameters of

the orbifold are given by the FI terms of the theory. This reproduces Kronheimer-Nakajima

construction [1, 2] of unitary instantons on the ALE space C̃2/Z2, as first shown in [3].

There is a problem with an O(p+ 4)-plane, however. The gauge group of the system,

which can be found by quantizing open strings on the orbifold, is now USp(2k)×USp(2k′),

for which we cannot add any FI terms. Still, it is clear geometrically that we can still

blow up the orbifold. We would like to understand this process better in the gauge theory

language and to find a way to describe the moduli space of orthogonal instantons on smooth

ALE spaces.
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+ O(p+4)-plane     

D(p+4)-branes
+ O(p+4)-plane     

Figure 1. Dp-branes probing D(p+ 4)-branes on C2/Z2, with and without an orientifold.

When p = 2, the gauge theory is three dimensional with N = 4 supersymmetry. FI

terms cannot be added directly to the USp × USp gauge theory, but we can use the 3d

mirror description (see e.g. [4–6] for recent discussions), where the blow-up parameters are

visible as hypermultiplet mass terms. The moduli space of orthogonal instantons on a

smooth ALE space is then given as the quantum-corrected Coulomb branch of this mirror

theory. In general, describing the Coulomb branch of 3d N = 4 theories is a difficult

problem, and therefore this construction does not yet tell us much about the moduli space

of orthogonal instantons on the smooth ALE spaces.

When p = 5, the gauge theory is six dimensional with N = (1, 0) supersymmetry.

Here, as noticed first in [7], the blow-up parameters are a part of hypermultiplets involved

in the transition between the tensor branch and the Higgs branch, about which not much

is understood yet either.

In this paper, we take p = 3, so that the gauge theory is four dimensional with

N = 2 supersymmetry. In the last few years, a significant progress has been made in the

understanding of the duality of such systems. We will see that, at least for SO(8) instantons

with a particular holonomy at infinity, we can go to a dual description of the original gauge

theory, where we can add appropriate FI terms. This method will give a description of the

moduli space of such instantons as a hyperkähler quotient of a flat space times the Higgs

branch of a particular class S theory. When the instanton number is sufficiently small, the

moduli space reduces to a hyperkähler quotient of a flat space times a nilpotent orbit.

In the next section, we study SO(8) instantons on the blown-up ALE space C̃2/Z2.

We provide two complimentary approaches leading to the same conclusion: one uses the
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embedding to string theory directly, and the other uses a field-theoretical infrared duality

recently discussed in [8, 9]. In section 3, a generalization to C̃2/Z2n will be described. We

conclude with a discussion in section 4, where we speculate how we can extend the analysis

to larger SO groups and to ALE spaces of other types.

2 SO(8) instantons on C̃2/Z2

2.1 Basic mathematical facts

Let us first recall the quiver description of the moduli space of SO(N) instantons on the

orbifold C2/Z2, with the holonomy at infinity given by

diag(+ + · · ·+︸ ︷︷ ︸
N+ times

−− · · ·−︸ ︷︷ ︸
N− times

) (2.1)

where N = N+ +N−. Note that N− is even.1

The moduli space is given by the Higgs branch of a USp(2k+)×USp(2k−) gauge theory,

with N+, N− fundamental half-hypermultiplets for the first and the second gauge factors,

and a bifundamental hypermultiplet of the two USp factors.2 The holonomy at the origin

can be computed by a method explained e.g. in appendix B of [11], and is given by

diag(+ + · · ·+︸ ︷︷ ︸
N ′+ times

−− · · ·−︸ ︷︷ ︸
N ′− times

), (2.2)

where

N ′+ = N+ − 4(k+ − k−), N ′− = N− − 4(k− − k+). (2.3)

Let us next consider the orthogonal instantons on the blown-up ALE space C̃2/Z2,

with the holonomy at infinity given by (2.1). The integral of trF ∧ F in an appropriate

normalization is given by

K = k +
N−
8

(2.4)

where k is an integer, and the dimension3 of the moduli space is

(N − 2)K − N+N−
8

(2.5)

where the second term is the contribution from the η invariant at the asymptotic boundary.

The second Stiefel-Whitney class of the bundle is determined by the holonomy at infinity,

and therefore does not give additional topological data. For more explanations of the facts

in this paragraph, see e.g. section 4 of [12].

When N− is a multiple of four, we see that the dimensions of the moduli spaces on

the orbifold and the smooth ALE space agree when we take k+ = k, k− = k + N−/4.

For unitary instantons on the ALE space, the difference k+ − k− controls the first Chern

1A readable account of the moduli space of SU(N) instantons on the orbifold C2/Γ can be found in [2, 10].
2Our convention is that USp(2) = SU(2).
3We always refer to quaternionic dimensions in this paper.
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NS5

O6+2D6O6+2D6

D4

NS5

O6+2D6O6+2D6

D4

NS5

Figure 2. Type IIA configuration after a T-duality.

class of the bundle, given by 2(k+ − k−) + N−, on the smooth space [1]. For orthogonal

instantons, on the contrary, the difference k+ − k− does not correspond to any data of the

gauge configuration on the smooth ALE space.

2.2 Analysis using string dualities

2.2.1 T-duality to the D4-D6-O6 system

We are going to study this system using D3-branes probing N D7-branes and an O7-plane

on the orbifold or the smooth ALE space. For a techincal reason, we choose N± and k± so

that the resulting four-dimensional supersymmetric gauge theory is conformal or slightly

asymptotically free. This is so that we can apply the field theoretical dualities found in the

last few years, starting in [13]. This choice also facilitates the analysis using branes, since

the bending of NS5-branes will be (almost) absent. Concretely, we choose N+ = N− = 4,

and set

(k+, k−) = (k, k), or (k+, k−) = (k, k + 1) (2.6)

Note that N+ + N− = 8 corresponds to the familiar choice where the dilation tadpole of

the O7-plane is canceled by that of the D7-branes.

We first deform the ALE space to a two-centered Taub-NUT space, around whose S1

fibers we perform the T-duality. The resulting configuration is shown in figure 2. The

spacetime is of the form R3,1 × (C × S1)/Z2 × R3, where Z2 is the orientifolding action.

Every brane fills R3,1. In addition, the NS5-branes, the D4-branes, and the D6-branes

extend along C, S1, and R3, respectively. Each of the two O6-planes has four D6-branes

on top, corresponding to the choice N+ = N− = 4.

Recall that the relative distance along R3 between the NS5-brane and its orientifold

image is the blow-up parameter of the ALE space. This can be nonzero only when the NS5-

brane is on top of the O6-plane, where it meets its mirror image under the orientifolding

action, as shown in the same figure. In terms of the gauge theory describing the dynamics

of the D4-branes, this means that the blow-up parameter can only be introduced when one

of the gauge couplings is extremely strong.

2.2.2 Re-interpretation as a class S construction

Now, let us lift the set-up to M-theory. When k+ = k− = k, this can be done very

easily, since there is no bending of the NS5-brane. The result is shown in figure 3. The
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Figure 3. Lifted M-theory configuration.

×
×

×
×

×
×
× × ×

×
×

FI fixture

Figure 4. The change in the ultraviolet curve under the process. The symbols ×, • are for the

puncture of type [k2] and for the simple puncture, respectively. The symbol ? is for a new type of

puncture introducing FI-like deformation.

spacetime is now of the form R3,1 × (C × T 2)/Z2 × R3; two O6-planes become four Z2

singularities. When the vertical M5-brane (the one not wrapping the M-theory circle) is

on top of a Z2 singularity, we can separate it into two, and each piece can be moved along

R3 independently. Their relative distance is the blow-up parameter.

Let us study this process from the point of view of the class S-theory. We have 2k

M5-branes wrapping S2 ' T 2/Z2, intersected by a vertical M5-brane. Using the standard

rules [13–15], we know that a Z2 singularity is a puncture of type [k2] and an intersection

with a vertical M5-brane is a simple puncture. Then, when the vertical M5-brane comes

very close to the Z2 singularity, we can go to a dual frame, as shown by a white arrow in

figure 4.

We now have a weakly-coupled dual SU(2) gauge group from a long neck. The three-

punctured sphere on the right hand side in the figure, containing a simple puncture and a

puncture of type [k2] corresponds to an empty matter content.4 Putting the vertical M5-

brane on top of the Z2 singularity is to make the coupling of the dual SU(2) gauge group to

be exactly zero. This is not a continuous process in the field theory language. We therefore

represent the process of separating the M5-brane and its mirror image on the Z2 singularity

by gluing in a different sphere on the right hand side, with a new puncture representing the

separated M5-branes on the Z2 singularity. We showed this procedure by a black arrow in

figure 4. Let us call the new contribution on the right hand side of the neck as an FI fixture.

4This is true only when k > 1. When k = 1 a slight modification of the analysis is necessary, since the

three-punctured sphere on the right hand side also gives a trifundamental.
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k D4

k D4
k-1 D4
k-1 D4

Figure 5. Behavior close to the M-theory Z2 singularity, after reduction to Type IIA.

2.2.3 Identification of the new contribution

To understand what the FI fixture does, we can reduce the system close to the Z2 singularity

to Type IIA theory with a different choice of M-theory circle, such that the Z2 singularity

sits at the tip of the cigar. The result is shown in figure 5. When the vertical M5 is not

exactly on top of the singularity, the outcome of the reduction is an NS5-brane, intersecting

2k D4-branes ending on two D6-branes in equal numbers. When the vertical M5 is exactly

on top of the singularity and separated along R3, the outcome of the reduction is essentially

given by the Hanany-Witten effect: now k− 1 D4-branes end on each D6-brane, and there

are in addition two semi-infinite D4-branes whose boundary condition is given by the

separation along R3. To visualize the very-weak SU(2) group, we can artificially cut the

two D4-branes by introducing four D6-branes, remembering that we need to couple the

two resulting SU(2) flavor symmetries by a gauge symmetry. With this process, we clearly

see the brane realization of the FI fixture.

Luckily, this brane set-up realizing the FI fixture was already studied in [16]. Field

theoretically, it is given by a U(1) gauge theory with two flavors with a FI term, and its

Higgs branch is just C̃2/Z2. Coming back to figure 4, we replaced the empty matter content

on the right hand side with a one-dimensional Higgs branch. Therefore, the process shown

by the black arrow there adds one dimension to the Higgs branch.

2.3 Summary of the procedure

Let us summarize the process described so far in a field theoretical language, see the first

three rows of figure 6.

• We start from a USp(2k)×USp(2k) gauge theory, with two fundamental hypermul-

tiplets for each USp group and a bifundamental hypermultiplet. The dimension of

the Higgs branch is 6k. We want to make the right USp(2k) very strongly coupled.

• We go to an S-dual frame on the right USp(2k) gauge group: this involves a three-

punctured sphere with a full puncture, a puncture of type [k2], and another puncture

of type [(k − 1)212]. The last puncture has a flavor symmetry SU(2) associated to

the parts 12 of the last puncture, to which the SU(2) gauge multiplet couples weakly.
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USp(2k)

SU(2)SO(4) USp(2k) [12k]

[k2]

[(k-1)212] U(1)

SO(4) USp(2k) USp(2k) SO(4)

SU(2)SO(4) USp(2k) [12k]

[k2]

[(k-1)212]

SO(4) USp(2k+2) SO(4)

Figure 6. Summary of the gauge-theoretic operations. Infrared-free gauge groups are shaded.

• We take a U(1) gauge theory with two flavors with a FI term ξ, and couple its

SU(2) flavor symmetry to the SU(2) gauge multiplet we already have. Note that the

SU(2) gauge multiplet is now infrared free. The dimension of the Higgs branch is

6k + 1. This is the correct dimension of the moduli space of SO(8) instantons with

the holonomy at infinity diag(+,+,+,+,−,−,−,−).

The Higgs branch M̃k,ξ of this final system, from our chain of string dualities, should

give (a component of) the moduli space of SO(8) instantons on the smooth ALE space

C̃2/Z2 with the prescribed holonomy at infinity. Here k is the instanton number and ξ is

the blow-up parameter of the smooth ALE space.

For general k, it is a hyperkähler quotient of a flat space times the Higgs branch of the

class S theory on a three-punctured sphere. This is unfortunately not very explicit yet.5

For k = 1 and k = 2, the construction becomes completely explicit. For k = 1, we need

to make a small modification as was mentioned in the last footnote: the rightmost SU(2)

is coupled to another three-punctured sphere. Then the theory is an SU(2) × SU(2) ×
U(1) gauge theory, with bifundamental hypermultiplets for consecutive gauge groups, and

5Ginzburg and Kazhdan have an unpublished manuscript in which the Higgs branch of these theories

are constructed as holomorphic symplectic varieties [17].
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additional two flavors for each SU(2) factor. The Higgs branch is a hyperkähler quotient of

a vector space. For k = 2, the Higgs branch of the three-puncture sphere with punctures

[14], [14] and [22] is the minimal nilpotent orbit of E7. Then the Higgs branch of the total

system is the hyperkähler quotient of the minimal nilpotent orbit of E7 times a vector

space by USp(4)× SU(2)×U(1). In both cases, the blow-up parameter of the ALE space

is given by the value of the moment map for U(1).

2.4 A more field-theoretical approach

This final gauge theory we arrived at after a lengthy analysis using string theory dualities

can also be directly obtained field-theoretically, starting from the choice (k+, k−) = (k, k+1)

in (2.6). The gauge theory which we use as the new starting point is shown in the fourth

row of figure 6. Note that the USp(2k) gauge multiplet is infrared free with 2k+ 4 flavors,

while USp(2k + 2) gauge multiplet is asymptotically free with 2k + 2 flavors.

2.4.1 The infrared dual of the USp(2k + 2) theory

Let us first focus on the asymptotically free part. The strongly-coupled dynamics of

USp(2k + 2) with 2k + 2 flavors was analyzed in [9], as an extension of the work [8].

Here we quote the results of [9], with additional comments on the Higgs branch.

The case k = 0 is the familiar SU(2) theory with Nf = 2. Classically, the Higgs branch

has two components, each of which is C2/Z2, joined at the origin. Quantum mechanically,

we have two singular points on the Coulomb branch, at which a Higgs branch component

emanates. The two components of the Higgs branch, together with the two singular points

on the Coulomb branch where they touch, are exchanged under the parity of the flavor

symmetry O(4).

For general k, the Higgs branch classically is the nilpotent orbit of O(4k + 4) of type

[22k+2]. (For a discussion of the nilpotent orbits of orthogonal groups, see e.g. [18].) This

is a very even orbit, and consists of two components, exchanged by the parity of O(4k+4).

Quantum mechanically, on the Coulomb branch, we have two most singular points, at

which each of the two components of the Higgs branch touches. There, the infrared limit

is captured by the following system:

• First, take a class S theory of type SU(2k) on a sphere with three punctures, of type

[12k], [k2] and [(k − 1)212], respectively. Let us call this the matter sector A. This

has an SU(2) flavor symmetry associated to the parts 12 of the last puncture.

• Second, take two free hypermultiplets and couple them to U(1) gauge multiplet with

zero FI term. This has SU(2) flavor symmetry. Let us call this the matter sector B.

• We then couple the matter sectors A and B by an SU(2) gauge multiplet.

At this stage, we realized a very-even nilpotent orbit [22k+2] of SO(4k+ 4) in terms of

a hyperkähler quotient by SU(2) × U(1). Note that we can introduce the FI term for the

U(1) gauge multiplet; this should deform the nilpotent orbit to a nearby coadjoint orbit of

the same dimension.
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2.4.2 The infrared dual of the total system

We can then carry over this result to analyze the strongly-coupled physics of the USp(2k)×
USp(2k+2) gauge theory we are interested in, by just adding the USp(2k) gauge multiplet

together with two flavors for it. The result is, again, given by the theory shown in the third

row of figure 6, albeit with zero FI term for the U(1) gauge multiplet. We denote the Higgs

branch of the theory on the third row by M̃k,ξ, where ξ is the FI parameter. The discussion

above shows that the Higgs branch of the USp(2k) × USp(2k + 2) theory, i.e. the moduli

space of SO(8) instantons on C2/Z2 with a holonomy at infinity diag(+,+,+,+,−,−,−,−)

and with a trivial holonomy at the origin, is given by two copies of Mk,0.

At present, the author does not have a good argument purely within this second

approach why the FI term for the U(1) gauge group in the infrared dual description can

be identified with the blow-up parameter of the ALE space. Once such an explanation

is given, the approach here would give a much quicker way to derive the moduli space of

SO(8) instantons on the smooth ALE space.

3 SO(8) instantons on C̃2/Z2n

In the string-theoretic approach taken in section 2.2, we can generalize fairly easily the

analysis in the last section to SO(8) instantons on the smooth ALE space C̃2/Z2n with the

holonomy at infinity diag(+,+,+,+,−,−,−,−). The result, when viewed from a field-

theoretical approach in section 2.4, gives a slightly new class of infrared dual description

of supersymmetric gauge theories. This section is mainly meant to describe this latter

field-theoretical phenomenon.

3.1 String-theoretic analysis

We start by considering the gauge theory with gauge group USp(2k)×U(2k)2n−2×USp(2k),

bifundamental matter fields between two consecutive gauge factors, and two additional

fundamentals for each of USp(2k) gauge factors. This is the gauge theory describing k

D3-branes probing four D7-branes and one O7-plane on C2/Z2n, with the holonomies at

infinity and at zero both given by diag(+,+,+,+,−,−,−,−).

We follow the same steps as we did in section 2. First, we take the T-dual, and we

lift the resulting configuration to M-theory. The system is described by a class S theory of

type U(2k), put on a sphere with four punctures of type [k2] and n simple punctures. The

process of putting all n vertical M5-branes on top of the Z2 singularity can be decomposed

into two steps. Namely, we first bring all n − 1 simple punctures to one puncture of type

[k2], and then replace it with a FI fixture, see figure 7. We assume k > n for simplicity.

The nature of the FI fixture can be found by reducing the system to a Type IIA setup

around the Z2 singularity, as shown in figure 8. One finds that the FI fixture can be thought

of as a theory with gauge group U(2n − 1) × U(2n − 2) × · · · × U(1), with bifundamental

hypermultiplets between two consecutive gauge groups, and with additional 2n flavors for

the first U(2n−1) group. This theory has 2n−1 Fayet-Iliopoulos parameters ~ξ. When they

are all zero, the Higgs branch is the nilpotent orbit NA2n−1 of sl(2n), and when they are

– 9 –
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Figure 7. The change in the ultraviolet curve. Here we took n = 2.

send to ∞n NS5

k D4
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couple 
via gauge f.

FI fixture
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n D4

k-n D4
k-n D4

Figure 8. Behavior close to the M-theory Z2 singularity, after reduction to Type IIA.

turned on, the Higgs branch is a semisimple orbit O
A2n−1,~ξ

of sl(2n). The 2n− 1 complex

FI parameters control the conjugacy class of the orbit, and therefore there is an action of

the Weyl group of SU(2n) on the 2n − 1 FI parameters. This matches the number of the

blow-up parameters for C2/Z2n, and the action of the Weyl group of SU(2n) on them.

Let us summarize the process described so far in a field theoretical language, see the

first three rows of figure 9.

• We start from a USp(2k)×U(2k)n−1×USp(2k) gauge theory, with two fundamental

hypermultiplets for each USp group and a bifundamental hypermultiplet for each

consecutive gauge groups. The dimension of the Higgs branch is 6k.

• We go to an S-dual frame. Using the standard techniques of the class S analysis, we

find that the resulting theory consists of

– USp(2k) group coupled to two fundamentals,

– which is coupled further to a class S theory of type SU(2k) on a sphere with

three punctures, of type [12k], [k2], and [(k − n)212n],

– whose SU(2n) symmetry associated to the parts 12n of the last punctureis cou-

pled via an SU(2n) gauge multiplet,

– to another gauge theory with gauge group U(2n− 2)×U(2n− 4)× · · · ×U(2),

with bifundamental hypermultiplets between two consecutive gauge groups, and

with additional 2n flavors for the first U(2n− 2) group.

• We now replace the last item, namely the U(2n−2)×· · ·×U(2) gauge theory, with the

gauge theory representing the FI fixture. This is, as explained above, given by a gauge
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Figure 9. Summary of the gauge-theoretic operations.

theory with U(2n−1)×U(2n−2)×· · ·×U(1), with bifundamental hypermultiplets be-

tween two consecutive gauge groups, and with additional 2n flavors for the first group.

The Higgs branch of the last theory is of dimension 6k + n, which agrees with

the dimension of the moduli space of SO(8) instantons with the holonomy at infinity

diag(+,+,+,+,−,−,−,−) on the smooth ALE space C̃2/Z2n.

3.2 Field-theoretic analysis

Let us instead consider the quiver gauge theory with gauge group USp(2k)×U(2k + 2)×
U(2k + 4) × · · · × U(2k + 2n − 2) × USp(2k + 2n), with bifundamental hypermultiplets

between consecutive gauge groups and additional two flavors for each of USp groups. This

is shown in the last row of figure 9.

The Higgs branch is the moduli space of SO(8) instantons on C2/Z2n, with the

holonomy at infinity given by diag(+,+,+,+,−,−,−,−), and a trivial holonomy at the

origin. The dimension of the Higgs branch is 6k+ n, which agrees with that of the moduli

space of SO(8) instantons on the smooth ALE space C̃2/Z2n with the same holonomy at

infinity. Then it is likely that the gauge theory we obtained in the stringy approach will

arise as an infrared description close to the most singular points on the Coulomb branch

of this fourth theory, as in section 2.4.
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Here we show it is indeed the case. The coupling of the leftmost USp(2k) gauge factor

is infrared free, so we just neglect them and consider the U(2k+ 2)× · · ·U(2k+ 2n− 2)×
USp(2k + 2n) gauge theory, with bifundamental hypermultiplets between two consecutive

gauge groups and additional 2k, 2 flavors for U(2k + 2) and USp(2k + 2n), respectively.

Its Seiberg-Witten curve is known with all mass parameters turned on [19], but the

form is somewhat unwieldy. When the SO(4) mass parameters are zero, the curve can

be embedded into an orbifold of the (v, t) space under the action (v, t) → (−v, 1/t). The

equation of the curve is given by

Pn(v) + c1(tPn−1(v) + t−1Pn−1(−v)) + · · ·+ cn(tnP0(v) + t−nP0(−v)) = 0 (3.1)

with the standard Seiberg-Witten differential λ = vdt/t. Here, Pj(v) is a polynomial of

degree 2k + 2j whose highest coefficient is one, and Pn(v) = Pn(−v). The coefficients of

Pn(v) are the Coulomb branch parameters of USp(2k + 2n) gauge multiplet, and those of

Pj(v) for j = 1, . . . , n − 1 are the Coulomb branch parameters of U(2k + 2j), and finally

those of P0(v) are the mass parameters for the U(2k) flavor symmetry. The coefficients c1

to cn encode the gauge coupling parameters.

By tuning all the Coulomb branch parameters, we can make the Seiberg-Witten curve

singular at the orbifold fixed point t = ±1. Let us choose t = 1 for concreteness. Say

Pn(v) = v2k+2n +Uv2k+2n−2 + · · · where U is the dimension-2 Coulomb branch parameter

of USp(2k + 2n) theory. Then, in (3.1), the coefficient of the v2k+2n−2 is c1(t + t−1) + U ,

and the choice U = −2c1 makes the curve more singular. We can continue this process,

and make the curve very singular there.

Expanding t ∼ 1+s with very small s, the local form of the curve close to (v, s) = (0, 0)

is given as

0 = v2k+2n + c′1s
2v2k+2n−2 + · · ·+ c′ns

2nv2k +
∑

ui,js
ivj (3.2)

where the summation is over the following pairs (i, j) of non-negative integers:

i+ j ∈ 2Z, i+ j < 2k + 2n, i ≤ 2n. (3.3)

We perform the identification (s, v) ' (−s,−v). The differential is vds. In (3.2), the

coefficients c′i encode (a remnant of) the original gauge couplings. Among ui,j , those with

i = 2n and i = 2n − 1 are the mass parameters for U(2k), and the rest are the Coulomb

branch parameters. They are displayed in figure 10, for k = 4, n = 2.

Now we look for an appropriate way to scale the parameters, as in [8, 9], so as to keep

the mass parameters for the non-Abelian flavor symmetry to have canonical dimensions,

and to keep as many terms as possible. Given a very small number ε, a consistent way is

to take

ui,j ∼

{
ε2k−j if j − i ≤ 2k − 2n,

εk+n−(i+j)/2 if j − i ≥ 2k − 2n.
(3.4)

Note that when j − i = 2k − 2n, the two scalings given above both give u2n−l,2k−l ∼ εl.
Then we find three regions on the Seiberg-Witten curve:
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Figure 10. Terms in the Seiberg-Witten curves in the singular limit, for k = 4 and n = 2. The

symbols •, ◦, � represent the couplings, the Coulomb branch parameters, and the mass terms,

respectively. Powers of ε in (3.4) is also given at each points. The three regions shaded or enclosed

are for j − i > 2k − 2n, j − i = 2k − 2n, j − i < 2k − 2n. The symbols [s] and [v] are the scaling

dimensions of s and v.

• In the region s ∼ 1, v ∼ ε, only the terms in (3.2) with j − i ≤ 2k − 2n survive.

As the differential is ∼ sdv, we can assign ε scaling dimension 1. The same

curve arises when we study the strongly-coupled limit of the superconformal

USp(2k)×U(2k)n−1 ×USp(2k) theory we treated earlier. We can thus identify this

theory as the class S theory of type SU(2k), on a sphere with three punctures of type

[12k], [k2], and [(k − n)212n]. The parameters u2n−l,2k−l are the mass parameters for

the flavor symmetry U(2n) associated to the parts 12n of the last puncture. Let us

call this the matter sector A.

• In the region s ∼ ε1/2, v ∼ ε1/2 , only the terms in (3.2) with j− i ≥ 2k− 2n survive.

Again, we find ε has scaling dimension 1. The resulting curve has the form

Q2n(z) + yQ2n−1(z) + · · ·+ y2n−1Q1(z) + y2n = 0 (3.5)

in terms of the invariant coordinates x = s2, y = v2 and z = sv, with the differential

given by λ = zdy/y. Here, Qj(z) is a polynomial of degree (at most) j. From our con-

struction, we see that the coefficient of zj of Qj(z) encodes a coupling. This coefficient

is zero when j is odd. The coefficients of Q2n(z) is the mass parameter for SU(2n)

flavor symmetry, and the coefficients of other Qj(z) are Coulomb branch parameters.

This is the standard Seiberg-Witten curve of a quiver gauge theory with gauge group

U(2n− 1)×U(2n− 2)×· · ·×U(1), with bifundamental hypermultiplets between two

consecutive gauge groups, and 2n additional flavors for the U(2n− 1) group, with a

special choice of the coupling constants. Let us call this the matter sector B.

– 13 –
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• In the region ε1/2 � |s| � 1, only the coefficients u2n−l,2k−l survive. The curve is

simply

z2n + u2n−1,2k−1z
2n−1 + · · ·+ u0,2k−2n = 0 (3.6)

with the differential λ = zds/s. This tube generates an SU(2n) gauge multiplet,

connecting the SU(2n) flavor symmetries of the two sectors A, B given above.

From this, we find that the physics at the singularity is given by an infrared free SU(2n)

gauge theory coupled to the matter sector A and B.

We can also turn on the SO(4) mass parameters in the analysis. They are the mass

terms for the flavor symmetry SU(2) × SU(2) for the parts k2 and (k − n)2 of the two

punctures of the matter sector A. We can check that the SO(4) mass parameters do

not modify the matter sector B. One of the two mass parameters deform the orbifold

singularity at t = −1, which clearly does not affect the sector B. The other mass parameter

µ deform the singularity at t = 1, and modify the relations between the variables x, y,

z introduced above to xy = z2 + µ. The curve (3.5) of the sector B is written purely in

terms of y and z, and the differential is still λ = zdy/y. Therefore the mass parameter µ

does not affect the sector B either.

By coupling USp(2k) gauge multiplet and two additional fundamental hypermultiplets

to the matter sector A via the flavor symmetry SU(2k) associated to the puncture [12k], we

realize the theory shown in the third row of figure 9. This is what we wanted to demonstrate.

4 Conclusions and speculations

In this paper, we considered k D3-branes probing four D7-branes and an O7-plane on the

orbifold C2/Z2n and on the smooth ALE space C̃2/Z2n. For technical reasons, we chose

the holonomy at infinity to be diag(+,+,+,+,−,−,−,−).

On the orbifold, the worldvolume theory on the D3-branes is a 4d N = 2 supersym-

metric theory with gauge group USp(2k+)×
∏n−1
i=1 U(ki)× USp(2k−) with bifundamental

hypermultiplets between two consecutive gauge groups, and two fundamental hypermulti-

plets for each of the two USp groups. We chose in particular the case

USp(2k)×U(2k)× · · · ×U(2k)×USp(2k) (4.1)

which corresponds to the holonomy at the origin diag(+,+,+,+,−,−,−,−), and the case

USp(2k)×U(2k + 2)× · · · ×U(2k + 2n− 2)×USp(2k + 2n) (4.2)

which corresponds to the holonomy at the origin diag(+,+,+,+,+,+,+,+).

In the former case (4.1), we analyzed the system using string duality, and found that

the blow-up parameters can be introduced only in a strongly-coupled limit. There, we

have weakly-coupled dual gauge multiplets of the form U(2n) × U(2n − 2) × · · · × U(2).

We argued that giving non-zero blow-up parameters requires that we replace this chain of

gauge multiplets with another chain, U(2n)×U(2n− 1)×· · ·×U(1), and that the blow-up

parameters are the FI parameters for these gauge multiplets. The result is shown in the

third row of figure 9.
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In the latter case (4.2), we analyzed the system field theoretically, along the line

of [8, 9]. One of the gauge group, USp(2k + 2n), is asymptotically free, and at one of two

most singular points on the Coulomb branch, we can find an infrared dual description,

which is again the theory shown in the third row of figure 9. Here the author does not

currently have a direct argument to show that the FI terms of the unitary gauge multiplets

correspond to the blow-up parameters.

As a result, we have a description of the moduli space of SO(8) instantons on the

smooth ALE space C̃2/Z2n with the holonomy at infinity being diag(+,+,+,+,−,−,−,−)

in terms of a hyperkähler quotient of a flat space times the Higgs branch of a class S theory.

As a holomorphic symplectic manifold, this construction is mathematically completely

explicit, assuming the result in an unpublished work [17]. When k is sufficiently small, we

can give an explicit description even without assuming the content of [17].

Let us discuss how we might extend our analysis to larger SO groups. Our first method

which used the string dualities is not very adequate, as our argument relied on the fact

that the gauge theory is superconformal and there is no bending of the NS5-branes. Our

second method which used the field-theoretical duality should be applicable, although we

do not have a direct way to show that the FI terms in the infrared dual description are

the blow-up parameters. The field-theoretical duality employed is the one studied in [8, 9],

and is not currently developed sufficiently enough to allow us to analyze this general case.

Hopefully this will change in the near future.

A natural question is whether class-S technique can be used to study instanton moduli

spaces of groups other than SO groups on smooth ALE spaces. The unitary groups might

look easier than the orthogonal groups, for example. The standard quiver gauge theories

describing unitary instantons on the ALE spaces have all the FI parameters corresponding

to the blow-up parameters of the ALE space; but one can still ask if the class S technique

would shed new light on the system. Unfortunately, these quiver gauge theories often

have gauge nodes that are very infrared-free, and class S constructions are at present

not immediately applicable here, as they are developed thus far mainly for systems that

are conformal or slightly ultraviolet-free. We need to wait until the class S technique is

extended to infrared free systems.

Finally, let us speculate how we might study the moduli space of orthogonal instantons

on ALE spaces of type D and E. Note that at least for SO(8) and with the holonomy at

infinity diag(+,+,+,+,−,−,−,−), we found the following structure:

M̃
A2n−1,k,~ξ

= (XAn−1,k ×OA2n−1,~ξ
) ///SU(2n) (4.3)

where M̃
A2n−1,k,~ξ

is the moduli space of SO instantons on the ALE space of type

A2n−1, with the blow-up parameter ~ξ, XA2n−1,k is a certain fixed hyperkähler mani-

fold, and O
A2n−1,~ξ

is the semisimple orbit of SU(2n) with the parameter ~ξ, and /// de-

notes the hyperkähler quotient construction. The dimension of O
A2n−1,~ξ

for generic ξ is

(dim SU(2n)−rank SU(2n))/2. Therefore, XAn−1,k has (dim SU(2n)+rank SU(2n))/2 more

quaternionic dimensions than M̃
A2n−1,k,~ξ

.
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When ~ξ is set to 0, lim~ξ→0
O
A2n−1,~ξ

= NA2n−1 is the nilpotent orbit of SU(2n), and we

have

(XA2n−1,k ×NA2n−1) ///SU(2n) =MA2n−1,k = VA2n−1,k ///GA2n−1,k (4.4)

where MA2n−1,k is the moduli space of instantons on the orbifold C2/Z2n with a trivial

holonomy at the origin, and (VA2n−1,k, GA2n−1,k) is a known pair of a vector space and a

group realizing this moduli space as a hyperkähler quotient of a flat space.

It is noticeable that the objects involved, namely O
A2n−1,~ξ

, NA2n−1 , SU(2n) are all

naturally associated to the type of the ALE space. So, for other ALE spaces of type

Γ = Dn and En, the author would speculate that we might have the same structure, where

the semisimple orbits and the nilpotent orbits involved are replaced with those of the Lie

algebra of type Γ:

M̃
Γ,k,~ξ

= (XΓ,k ×OΓ,~ξ
) ///Γ, MΓ,k = (XΓ,k ×NΓ) ///Γ. (4.5)

In particular, XΓ,k would have (dim Γ + rank Γ)/2 more quarternionic dimensions than

M̃
Γ,k,~ξ

.
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