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1 Introduction

It is well known that near horizon geometries typically preserve more supersymmetries than

the original black hole solutions. This has been demonstrated for many supersymmetric

black holes and branes, see eg [1], and it is believed that it may be a universal property

of black hole solutions, at least in the theories without higher curvature corrections. This

supersymmetry enhancement is instrumental in understanding the topology and geometry

of black hole horizons as additional supersymmetries will impose additional restrictions

on the topology and geometry of horizon sections, and this may lead to new insights into

higher dimensional supersymmetric black holes, see eg [2]–[15] for some historical and
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more recent references in the subject. Furthermore, supersymmetry enhancement at the

horizons has applications in the investigation of properties of black hole systems like the

entropy microstate counting, see eg [16], and in AdS/CFT [17]. If near horizon geometries

of black holes exhibit supersymmetry enhancement, then they should preserve at least two

supersymmetries. Although there are many partial results, a general understanding of

which black holes exhibit such supersymmetry enhancement near the horizons is not yet

available.

In this paper we shall demonstrate that under some smoothness assumptions1 the near

horizon black hole geometries of minimal 5-dimensional gauged supergravity preserve at

least half of the supersymmetry. In addition, if the near horizon geometries preserve a

larger fraction of supersymmetry, then they are locally isometric to AdS5 and the 2-form

field strength F vanishes. Furthermore a similar argument to that presented in detail in [18]

implies that all half-supersymmetric 5-dimensional gauged supergravity horizons admit an

sl(2,R) symmetry subalgebra.2

Our proof is topological in nature and relies on the compactness of the horizon sections.

The analysis begins with the identification of independent field equations and Killing spinor

equations3(KSEs) after appropriately integrating along the lightcone directions. Next, the

Killing spinors are related to the zero modes of two horizon Dirac operators which are

constructed from the supercovariant derivative of the supergravity theory appropriately

restricted on the horizon sections. This relation is demonstrated via the proof of Lich-

nerowicz type theorems for the two horizon Dirac operators, utilizing the compactness of

horizon sections. After this, we count the number of supersymmetries preserved by the

near horizon geometries using the vanishing of the index of one of the two horizon Dirac

operators, and establish our result. The index of the horizon Dirac operator vanishes be-

cause it has the same principal symbol as the U(1) twisted Dirac operator and it is defined

on the horizon sections which are 3-dimensional manifolds [21].

Although several steps of our proof rely on details of minimal gauged 5-dimensional

supergravity, we believe that it is likely that odd-dimensional supergravity near horizon

geometries preserve at least two supersymmetries. Supporting evidence for this comes from

a similar calculation for M-horizons which have been shown to preserve an even number of

supersymmetries [18].

This paper is organized as follows. In section two, we describe the near horizon fields of

minimal gauged 5-dimensional supergravity and establish the independent field equations.

In section three, we integrate the KSEs along the lightcone directions and present the inde-

pendent KSEs. In section four, we describe some geometric properties of the backgrounds.

In section five, we prove the two Lichnerowicz type theorems. In section six, we prove our

1The smoothness assumptions are necessary as the near horizon geometry of the NS5-brane preserves

the same number of supersymmetries as the NS5-brane and so there is no supersymmetry enhancement.

But the NS5 brane exhibits a singular dilaton at the horizon.
2The sl(2,R) symmetry of 5-dimensional horizons has been explored from a different point of view in [19].
3Unlike most previous investigations of near horizon geometries, however see [20], we do not impose the

bi-linear matching condition, i.e. we do not identify the stationary Killing vector field of a black hole with

the vector Killing spinor bilinear.
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result using the vanishing of the index for the horizon Dirac operators. In section seven, we

examine the sl(2,R) symmetry of the half-supersymmetric solutions, and in section eight

we give our conclusions.

2 Near-horizon geometry and field equations

The near horizon geometries of black holes with an active 2-form field strength can be

expressed in Gaussian Null co-ordinates [22, 23] as

ds2 = 2e+e− + δije
iej ,

F = −
√

3

2
Φ e+ ∧ e− −

√
3

2
re+ ∧ dhΦ +

1

2
dBij ei ∧ ej (2.1)

where dhΦ = dΦ− hΦ, and we have used the frame

e+ = du , e− = dr + rh− 1

2
r2∆du , ei = eiJdy

J , (2.2)

i, j = 1, 2, 3, u, r are the lightcone coordinates, and h,∆,Φ, B and ei depend only on the

coordinates yI , I = 1, 2, 3, transverse to the lightcone. The black hole stationary Killing

vector field is identified with ∂u. The 1-form gauge potential associated to F is

A =

√
3

2
rΦdu+B . (2.3)

Our smoothness assumption asserts that ∆,Φ, h, and dB are globally defined scalars, 1-

form and a closed 2-form on the horizon section S given by r = u = 0. Clearly the induced

metric on S is

ds2S = δije
iej (2.4)

and S is taken to be compact, connected without boundary. We denote the Levi-Civita

connection of S by ∇̂.

The bosonic action is [27]

S =
1

4πG

∫ (
1

4
(R+

12

`2
) ? 1− 1

2
F ∧ ?F − 2

3
√

3
F ∧ F ∧A

)
, (2.5)

F = dA is a U(1) field strength and ` is a real nonzero constant, using the same conventions

as in [28]. The equations of motion are

Rαβ − 2FαγF
γ
β +

1

3
gαβ(F 2 +

12

`2
) = 0 , (2.6)

and

d ? F +
2√
3
F ∧ F = 0 , (2.7)

where F 2 ≡ FαβFαβ. The orientation is specified by

ε5 = e+ ∧ e− ∧ ε3 (2.8)
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where ε5 is the 5-dimensional volume form, and ε3 is the volume form on S. The Hodge

dual on S is denoted by ?3.

Before proceeding with the analysis of the supersymmetry, we consider the bosonic

field equations. From the gauge field equations one obtains the conditions:

d ?3 dB +

√
3

2
?3 dhΦ− h ∧ ?3dB − 2ΦdB = 0 (2.9)

and

−dh ∧ ?3dB −
√

3

2
h ∧ ?3dhΦ +

√
3

2
d ?3 dhΦ− 2dhΦ ∧ dB = 0 (2.10)

however we remark that (2.9) implies (2.10). In components (2.9) and (2.10) are equiva-

lent to

∇̂m(dB)mi + (dB)imh
m + 2Φ(?3dB)i −

√
3

2
(dhΦ)i = 0 (2.11)

and

−1

2
dhmndB

mn −
√

3

2
hi(dhΦ)i +

√
3

2
∇̂i(dhΦ)i − εijk(dhΦ)idBjk = 0 .

(2.12)

Next we consider the Einstein field equations. The +− and ij components of the

Einstein equations are

1

2
∇̂ihi −∆− 1

2
h2 + Φ2 +

1

3
dBmndB

mn +
4

`2
= 0 (2.13)

and

R̂ij = −∇̂(ihj) +
1

2
hihj + 2dBimdBj

m − 1

3
δij
(
− 3

2
Φ2 + dBmndB

mn +
12

`2
)

(2.14)

respectively, where R̂ij denotes the Ricci tensor of S. In addition, the +i and ++ compo-

nents of the Einstein equations are

1

2
∇̂jdhij − dhijhj − ∇̂i∆ + ∆hi +

3

2
Φ(dhΦ)i +

√
3(dhΦ)jdBi

j = 0 (2.15)

and

1

2
∇̂2∆− 3

2
hi∇̂i∆−

1

2
∆∇̂ihi + ∆h2 +

1

4
dhijdh

ij − 3

2
(dhΦ)i(dhΦ)i = 0 .

(2.16)

However, the +− and ij components of the Einstein equations (2.13) and (2.14) together

with the gauge equations (2.9) imply both (2.15) and (2.16); (2.15) is obtained by evalu-

ating the Bianchi identity associated with (2.14), and (2.16) is then found by taking the

divergence of (2.15). To summarize, the independent bosonic field equations are (2.9),

(2.13) and (2.14).
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3 Supersymmetric near-horizon geometries

3.1 Integrability of the lightcone directions

The KSE of minimal 5-dimensional gauged supergravity is[
∇µ −

i

4
√

3
F ν1ν2ΓµΓν1ν2 +

3i

2
√

3
Fµ

νΓν +
2
√

3

`
(

1

4
√

3
Γµ +

i

2
Aµ)

]
ε = 0 .

(3.1)

where ∇ is the Levi-Civita connection of spacetime and ε is a Dirac spinor. The rep-

resentation of Cliff(4, 1) used is specified in appendix B, along with other conventions,

including the decomposition of ε = ε+ + ε− where ε+, ε− are chiral spinors with respect

to Γ+−. Observe that the KSE is linear over the complex numbers. So the supersymmet-

ric configurations always admit even number of supersymmetries as counted over the real

numbers.

We shall first integrate (3.1) along the lightcone directions r and u. Then we shall

establish the independent KSEs on the horizon section S. For this, we shall make an

extensive use of the bosonic field equations listed in the previous section where appropriate.

To begin, consider the µ = − component of (3.1), this can be integrated to obtain:

ε+ = φ+

ε− = rΓ−
(
(
1

4
h+

1

2
√

3
?3 dB)iΓ

i − i

2
Φ− 1

2`

)
φ+ + φ− (3.2)

where

∂rφ± = 0 . (3.3)

Next we consider the µ = + component of (3.1). On evaluating this component at r = 0,

one obtains

φ+ = uΓ+

(
(
1

4
h− 1

2
√

3
?3 dB)iΓ

i +
i

2
Φ− 1

2`

)
η− + η+

φ− = η− (3.4)

where

∂rη± = ∂uη± = 0 . (3.5)

The remaining content of the µ = + component can be written as(
2
(
(
1

4
h− 1

2
√

3
?3 dB)iΓ

i − i

2
Φ +

1

2`

)(
(
1

4
h+

1

2
√

3
?3 dB)jΓ

j − i

2
Φ− 1

2`

)
+

1

2
∆ +

3i

2`
Φ +

( i
4
?3 dhi −

i

4
(dhΦ)i

)
Γi
)
φ+ = 0 (3.6)

and(
2
(
− (

1

4
h+

1

2
√

3
?3 dB)iΓ

i − i

2
Φ− 1

2`

)(
(
1

4
h− 1

2
√

3
?3 dB)jΓ

j +
i

2
Φ− 1

2`

)
−1

2
∆ +

3i

2`
Φ +

(
− i

4
?3 dhi −

3i

4
(dhΦ)i

)
Γi
)
φ− = 0 (3.7)
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and ((3i

2`
Φ +

( i
4
?3 dhi +

3i

4
(dhΦ)i

)
Γi
)(

(
1

4
h+

1

2
√

3
?3 dB)jΓ

j − i

2
Φ− 1

2`

)
+

1

4
(∆hi − ∇̂i∆)Γi

)
φ+ = 0 . (3.8)

Next, consider the µ = i component of (3.1). Evaluating this component at r = 0 one

obtains

∇̂iφ+ +

(
− 1

4
hi −

i

4
ΦΓi −

1

2
√

3
(?3dB)i +

i√
3
dBijΓ

j +

√
3i

`
Bi +

1

2`
Γi

)
φ+ = 0 (3.9)

and

∇̂iφ− +

(
1

4
hi +

i

4
ΦΓi +

1

2
√

3
(?3dB)i +

i√
3
dBijΓ

j +

√
3i

`
Bi +

1

2`
Γi

)
φ− = 0 (3.10)

and the remaining content of the µ = i component of (3.1) is

∇̂i
((

(
1

4
h+

1

2
√

3
?3 dB)jΓ

j − i

2
Φ− 1

2`

)
φ+

)
+

(
− 3

4
hi −

i

4
ΦΓi +

1

2
√

3
(?3dB)i −

i√
3
dBijΓ

j +

√
3i

`
Bi −

1

2`
Γi

)
×
((1

4
h+

1

2
√

3
?3 dB)kΓ

k − i

2
Φ− 1

2`

)
φ+

+

(
− 1

4
dhijΓ

j − i

4
Γi(dhΦ)jΓ

j +
3i

4
(∇̂iΦ− Φhi)

)
φ+ = 0 . (3.11)

This concludes the analysis of the integrability of the KSEs along the lightcone directions.

3.2 The KSEs (3.6), (3.7) and (3.11) are not independent

To find the supersymmetric solutions of supergravity theories, it is customary to first solve

all the KSEs and then impose the field equations which are not implied as integrability

conditions of the KSEs. However, here we shall adopt a different strategy. We shall use

the field equations to identify the independent KSEs on the horizon section S. To proceed,

note that (3.9) implies that

1

2
R̂jkΓ

kφ+ = Γi(∇̂i∇̂j − ∇̂j∇̂i)φ+

=

(
Γi
(1

4
dhij +

1

2
√

3
(∇̂i ?3 dBj + ∇̂j ?3 dBi)−

√
3i

`
dBij

)
+
i

4
∇̂iΦΓij −

i

2
∇̂jΦ +

i√
3
∇̂idBij − 4

( i
4

Φ− 1

2`

)2
Γj

+
( i

4
Φ− 1

2`

)( 4√
3
?3 dBj +

2i√
3
dBjkΓ

k
)

+
2

3
dBj

idBkiΓ
k

)
φ+ . (3.12)

On contracting (3.12) with Γj and using (2.14) and (2.13) to rewrite the Ricci scalar

of S in terms of ∆, one obtains after making use of (2.9), the condition (3.6). Hence we

find that (3.6) is implied by the bosonic field equations and (3.9).

– 6 –



J
H
E
P
0
6
(
2
0
1
4
)
0
2
0

Similarly, we find that (3.10) implies that

1

2
R̂jkΓ

kφ− = Γi(∇̂i∇̂j − ∇̂j∇̂i)φ−

=

(
− Γi

(1

4
dhij +

1

2
√

3
(∇̂i ?3 dBj + ∇̂j ?3 dBi) +

√
3i

`
dBij

)
+
i

2
∇̂jΦ +

i

4
∇̂iΦΓj

i +
i√
3
∇̂idBij − 4

( i
4

Φ +
1

2`

)2
Γj

+
( i

4
Φ +

1

2`

)( 4√
3
?3 dBj −

2i√
3
dBjkΓ

k
)

+
2

3
dBj

idBkiΓ
k

)
φ− . (3.13)

On contracting (3.13) with Γj and using (2.14) and (2.13) to rewrite the Ricci scalar of S in

terms of ∆, one obtains after making use of (2.9) the condition (3.7). Hence the condition

(3.7) is implied by the bosonic field equations together with (3.10). In addition, it is

straightforward to see that the u-dependent part of (3.9) (as we recall that φ+ contains a

term linear in u as given in (3.4)), is in fact equivalent to (3.13). This follows on substituting

(3.9) and (2.9) into the u-dependent part of (3.9).

Next consider (3.11). This condition can be rewritten, using (3.9), as:(
1

2
√

3
∇̂i ?3 dBjΓj −

1

8
hihjΓ

j − i

4
Φhi +

i

8
ΦΓi

jhj −
i

4
Γi
j∇̂jΦ

− 1

4
√

3
(h ∧ ?3dB)ijΓ

j − i

2
√

3
dBijh

j +
1

12
dBmndB

mnΓi −
1

6
dBimdBj

mΓj

+
(
−
√

3

4
Φ +

i√
3`

)
dBijΓ

j − 1

2
√

3
(iΦ +

2

`
) ?3 dBi +

1

`
(
i

2
Φ +

1

2`
)Γi +

1

4
∇̂jhiΓj

)
φ+ = 0 .

(3.14)

However, this condition is equivalent to (3.12) on making use of the Einstein equations

(2.14) and the gauge equation (2.9). Hence we also find that (3.11) is implied by the

bosonic field equations and (3.9).

It remains to consider the condition (3.8). We shall show in the remaining part of this

section that (3.8) is also implied by the bosonic field equations and (3.9), although in order

to establish this, we shall make use of global properties of S.

3.3 The KSE (3.8) is not independent

3.3.1 Maximum principle

To proceed with the analysis of the conditions on the spinors imposed by the compactness of

S, we shall assume that the Killing spinor is sufficiently regular so that all gauge-invariant

spinor bilinears constructed from φ± are smooth forms on S.

It is useful to compute, using (3.9)

∇̂i〈φ+, φ+〉 = 〈φ+,
(1

2
hi +

1√
3
?3 dBi −

1

`
Γi
)
φ+〉 . (3.15)

– 7 –
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Next (2.13) implies that

∇̂i∇̂i〈φ+, φ+〉 −
(
hi − 2√

3
?3 dB

i
)
∇̂i〈φ+, φ+〉

=

(
∆− 1

`2
− Φ2 +

1

4
h2 +

1√
3
hi ?3 dBi +

1

3
(?3dB)2

)
〈φ+, φ+〉 . (3.16)

Moreover, (3.6) (which we recall follows from (3.9) together with the bosonic condi-

tions), implies that

〈φ+,∆φ+〉 = 〈φ+,
(
− 1

4
h2 +

1

3
(?3dB)2 +

1

`2
+ Φ2 − 2√

3`
?3 dBiΓ

i
)
φ+〉 , (3.17)

where to obtain this identity, we have taken the real part of the inner product of (3.6) with

φ+. On combining (3.15), (3.16) and (3.17), one then obtains

∇̂i∇̂i〈φ+, φ+〉 − hi∇̂i〈φ+, φ+〉 = 0 , (3.18)

and hence an application of the maximum principle implies that

〈φ+, φ+〉 = F(u) , (3.19)

where F is a quadratic in u with constant coefficients.

A similar argument, using (3.10) and (3.7) yields the condition

∇̂i∇̂i〈φ−, φ−〉+
(
hi − 4√

3
?3 dB

i
)
∇̂i〈φ−, φ−〉

=

(
− 1

2
h2 + 2 ?3 dBi ?3 dB

i +
2√
3
hi ?3 dBi +

6

`2

)
〈φ−, φ−〉 . (3.20)

It follows from Lemma 2 of [15] that if φ− vanishes at any point then φ− = 0 everywhere

on S.

3.3.2 Solutions with φ+ = 0 everywhere on S

To proceed, first consider the special case for which φ+ = 0 everywhere on S. Then (3.4)

implies that (
(
1

4
h− 1

2
√

3
?3 dB)iΓ

i +
i

2
Φ− 1

2`

)
φ− = 0 (3.21)

and on substituting this into (3.7) one further obtains(
− 1

2
∆ +

3i

2`
Φ− i

4
?3 dhiΓ

i − 3i

4
(dhΦ)iΓ

i

)
φ− = 0 (3.22)

and hence

∆〈φ−, φ−〉 = 0 . (3.23)

– 8 –
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However, recall that if φ+ = 0 everywhere, then φ− can never vanish anywhere, for if it

did, then both φ+ = 0 and φ− = 0 everywhere, which implies the Killing spinor vanishes

everywhere. We discard this case. Hence it follows that

∆ = 0 . (3.24)

Next consider (3.21) which implies that

〈φ−,
(1

2
hi −

1√
3
?3 dBi −

1

`
Γi
)
φ−〉 = 0 , (3.25)

and together with (3.10) give that

∇̂i〈φ−, φ−〉 = −hi〈φ−, φ−〉 . (3.26)

As φ− is nowhere vanishing, this implies that

dh = 0 (3.27)

and the Einstein equation (2.16) further implies that

dhΦ = 0 (3.28)

and then (3.22) implies that

Φ = 0 (3.29)

as well. Furthermore, on substituting all these conditions back into the Einstein equation

(2.13) one finds

∇̂i∇̂i〈φ−, φ−〉 =

(
2

3
dBmndB

mn +
8

`2

)
〈φ−, φ−〉 . (3.30)

This leads to a contradiction, because the integral of the l.h.s. over S vanishes, whereas

the integral of the r.h.s. is positive. Hence it follows that there are no solutions for which

φ+ = 0 everywhere on S.

3.3.3 Solutions for which φ+ 6≡ 0

Having established that there are no solutions with φ+ ≡ 0, we note that as ∇̂i〈φ+, φ+〉 = 0,

(3.16) implies

∆− 1

`2
− Φ2 +

1

4
h2 +

1√
3
hi ?3 dBi +

1

3
(?3dB)2 = 0 (3.31)

and (3.15) also implies that

〈φ+, φ+〉(
1

2
hi +

1√
3
?3 dBi) =

1

`
〈φ+,Γiφ+〉 . (3.32)

On taking the norm of both sides of this expression, one finds(1

2
h+

1√
3
?3 dB

)2
=

1

`2
, (3.33)
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and on substituting this condition back into (3.31) one also obtains

∆ = Φ2 . (3.34)

To continue, we remark that (3.32) is equivalent to((1

2
h+

1√
3
?3 dB

)
i
Γi − 1

`

)
φ+ = 0 . (3.35)

The condition (3.8) has not been used at any stage of this analysis. Furthermore, on

substituting (3.35) into both (3.6) and (3.8) it is straightforward to see that (3.8) is implied

by (3.6). It therefore follows that (3.8) is implied by the bosonic field equations and (3.9).

3.4 The independent Killing spinor and field equations

We have proven that all of the algebraic conditions on φ±, i.e. (3.6), (3.7), (3.8) and (3.11)

are implied by the bosonic field equations and the reduced on S gravitino KSEs (3.9) and

(3.10). We have also proven that the u-dependent part of (3.9) is implied by (3.10) and the

bosonic field equations. Therefore we have demonstrated that the necessary and sufficient

conditions for a near-horizon geometry to be a supersymmetric solution of minimal gauged

supergravity are the identifications

∆ = Φ2 , (3.36)

and (1

2
h+

1√
3
?3 dB

)2
=

1

`2
. (3.37)

In addition, the background has to satisfy the bosonic field equations (2.9), (2.13) and

(2.14) together with the horizon section KSEs

∇±i η± ≡ ∇̂iη± + Ψ±i η± = 0 , (3.38)

where

Ψ±i = ∓(
1

4
hi +

1

2
√

3
?3 dBi) +

(
∓ i

4
Φ +

1

2`

)
Γi +

i√
3
dBijΓ

j +

√
3i

`
Bi , (3.39)

and the spinors η± are u, r-independent. The Killing spinor ε is then constructed from η±
using (3.2) and (3.4). Therefore, the number of supersymmetries preserved by the near

horizon geometries is equal to the number of linearly independent ∇±-parallel spinors.

These conditions, together with (2.13), also imply that there are no solutions with h = 0

everywhere on S.

We can take, without loss of generality, η+ 6= 0. To see this, note that if η+ = 0, then

η− 6= 0. Moreover, we have shown that the spinor

η′+ =
∂φ+
∂u

= Γ+

(
(
1

4
h− 1

2
√

3
?3 dB)iΓ

i +
i

2
Φ− 1

2`

)
η− , (3.40)
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also satisfies ∇+η′+ = 0 in (3.38). Furthermore, we must take η′+ 6= 0, because if both

η′+ = 0 and η+ = 0, then φ+ = 0, and we have proven that this leads to a contradiction.

Thus ∇+η+ = 0 in (3.38) always admits a non-vanishing solution and so we take

η+ 6= 0. Without loss of generality, we set

〈η+, η+〉 = 1 . (3.41)

4 Conditions on the geometry

Before continuing to examine the number of supersymmetries preserved by near horizon

geometries, we briefly present the conditions imposed on the geometry of S from the results

obtained so far. It will be convenient to define

Zi = 〈η+,Γiη+〉 . (4.1)

It follows from (3.35) that

1

2
h+

1√
3
?3 dB =

1

`
Z , (4.2)

and note that

Z2 = 1 . (4.3)

Then on taking the covariant derivative of Z using (3.38), one obtains

∇̂iZj =

(
− 3

`
+ hmZm

)
δij +

3

`
ZiZj − Zihj −

1

2
Φ(?3Z)ij (4.4)

and hence, in particular,

?3dZ = −`Φ(
1

2
h+

1√
3
?3 dB)− 1√

3
`ihdB . (4.5)

Then, on taking the exterior derivative of (4.2), and making use of the gauge field equation

(2.9), one finds the condition

?3dh = dΦ− 2Φh− 2
√

3Φ ?3 dB . (4.6)

Moreover, on substituting (4.6) into (2.10), one obtains

∇̂i∇̂iΦ +
(
− 2
√

3 ?3 dB − 2h
)i∇̂iΦ + Φ

(
8√
3
hi ?3 dBi +

16

3
?3 dBi ?3 dB

i +
8

`2

)
= 0 .

(4.7)

We remark that the conditions (3.36), together with (4.1), (4.2), (4.3), (4.4), (4.6),

(4.7) and the expression for the Ricci scalar given in (2.14), are equivalent to the con-

ditions previously obtained on S when one identifies the Killing vector generated by the

Killing spinor ε with the Killing vector ∂
∂u . Here, we have not made this identification.

Nevertheless, we obtain the same conditions as a consequence of the compactness of S.
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4.1 AdS5 solutions with F = 0

It is useful to briefly revisit the special case of AdS5 with F = 0, previously considered

in [28]. Assuming that there is a way to write AdS5 in Gaussian null co-ordinates with

regular near-horizon data on a compact horizon section S, supersymmetry implies that4

S = H3, ∆ = dh = 0. However, this is a contradiction as either S is non-compact, or if

one makes identifications then either the data are not smooth, or there is a boundary.

As a consequence, AdS5 cannot be written in this fashion, such that our assumptions

about the smoothness and compactness of S are simultaneously satisfied.

5 Lichnerowicz type identities

A key step in counting the number of supersymmetries preserved by the near horizon

geometries of minimal gauged supergravity is to identify the Killing spinors of (3.38) with

the zero modes of the associated horizon Dirac equations. The Killing spinors are parallel

Dirac Spinc(3) spinors on S and so are zero modes of the associated Dirac equations. The

main objective is to establish the converse. Such a result arises from a Lichnerowicz type

theorem.

The classical Lichnerowicz theorem states that on any spin closed manifold M ,∫
M
〈Γi∇iε,Γj∇jε〉 =

∫
M
〈∇iε,∇iε〉+

∫
M

R

4
〈ε, ε〉 , (5.1)

where here ∇ is the Levi-Civita connection, and R is the Ricci scalar of M . So if R = 0

it follows that if ε is a zero mode of the Dirac equation, then ε is parallel with respect

to the Levi-Civita connection. A similar theorem has been demonstrated for near horizon

geometries in 11-dimensional supergravity [26].

To begin, first recall that the KSEs (3.38) are

∇±i η± = 0 . (5.2)

The associated horizon Dirac equations are

D±η± ≡ Γi∇̂iη± + Ψ±η± , (5.3)

where

Ψ± = ∓(
1

4
hiΓ

i −
√

3

2
?3 dBiΓ

i) + 3
(
∓ i

4
Φ +

1

2`

)
+

√
3i

`
BiΓ

i . (5.4)

Clearly if η± satisfy (5.2), then they are zero modes of the horizon Dirac equations, i.e.

D±η± = 0 . (5.5)

4The conditions S = H3 and dh = 0 follow directly from considering the integrability conditions of (3.9)

and (3.10) with Φ = dB = 0. (3.33) then implies that h2 = 4
`2

and (3.31) implies ∆ = 0. We have made

use of compactness, as a maximum principle has been used to establish ∇̂i〈φ+, φ+〉 = 0.
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To prove the converse, we define

I± =

∫
S

(
〈∇±i η±,∇

±iη±〉 − 〈D±η±,D±η±〉
)
. (5.6)

In order to compute I± it is useful to split I± into three terms. First, note that(
(Ψ±i )†Ψ±i −Ψ†Ψ

)
η± =

(
±
(√3

`
ΦBiΓ

i +
1

2`
hiΓ

i −
√

3

`
?3 dBiΓ

i
)

− 1

`
BidBijΓ

j −
√

3

2`
Bihjε

ijkΓk +
1√
3
hi ?3 dBi

− 3

8
Φ2 − 3

2`2

)
η± .

(5.7)

Also∫
S
〈∇̂iη±, ∇̂iη±〉 − 〈Γi∇̂iη±,Γj∇̂jη±〉 =

∫
S
−∇̂i〈η±,Γij∇̂jη±〉+

∫
S
〈η±,Γij∇̂i∇̂jη±〉

=

∫
S
−∇̂i〈η±,Γij∇̂jη±〉

+

∫
S
−1

4

(
− ∇̂ihi +

1

2
h2 + dBmndB

mn

+
3

2
Φ2 − 12

`2

)
〈η±, η±〉 . (5.8)

Note that in the above expression the first term on the r.h.s. is a surface term, this has

been retained because the expression being differentiated in this term is not U(1) gauge-

invariant. Furthermore, we have used the Einstein equations (2.14) in order to compute

the Ricci scalar of S.

The remaining term contributing to I± is∫
S
〈∇̂iη±,Ψ±iη±〉+ 〈Ψ±i η±, ∇̂

iη±〉 − 〈Γi∇̂iη±,Ψ±η±〉 − 〈Ψ±η±,Γi∇̂iη±〉 . (5.9)

On performing a partial integration, one finds that this expression can be rewritten as∫
S
〈η±, ∇̂i(ΓiΨ± −Ψ±i)η±〉+ 〈η±,

(
(Ψ±i − ΓiΨ±)† − (Ψ±i − ΓiΨ±)

)
∇̂iη±〉

+

∫
S
∇̂i
(
〈η±, (Ψ±i − ΓiΨ±)η±〉

)
. (5.10)

Again, a surface term has been retained, as the term in the parentheses in the second line

is not U(1) gauge invariant. Note in particular that∫
S
∇̂i
(
〈η±, (Ψ±i − ΓiΨ±)η±〉

)
=

∫
S
∇̂i
(
〈η±,−

√
3i

`
BjΓ

ijη±〉
)
. (5.11)

In order to compute the remainder of (5.10) note that

Re

(
〈η±, ∇̂i(ΓiΨ± −Ψ±i)η±〉

)
= ±
√

3

`
〈η±, ?3dBiΓiη±〉 . (5.12)
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In addition,((
Ψ±i − ΓiΨ

±)− (Ψ±i − ΓiΨ
±)†)∇̂iη± =

(
− i

2
hjεi

jkΓk −
i√
3
dBijΓ

j ± iΦΓi

)
∇̂iη± .

(5.13)

The contribution to I± obtained from this term is evaluated using the following identity

then

Re〈η±, iXijΓ
j∇̂iη±〉 = −1

2
Re〈η±, iXijΓ

ijΓk∇̂kη±〉 ±
1

2
?3 X

i∇̂i〈η±, η±〉 , (5.14)

where X is any real 2-form on S. Setting X = −1
2 ?3 h+ 1√

3
dB, one finds that (5.10) can

be rewritten as∫
S
∇̂i
(
〈η±,−

√
3i

`
BjΓ

ijη±〉
)
±
√

3

`
〈η±, ?3dBiΓiη±〉 ∓

1

4
hi∇̂i〈η±, η±〉

±Re

(
〈η±,

(
− iΦ +

1

2
hjΓ

j − 1√
3
?3 dBjΓ

j
)
Γi∇̂iη±〉

)
. (5.15)

To compute I±, we take the sum of (5.7), (5.8) and (5.15), and observe that the sum of

the two surface terms in (5.8) and (5.10) vanishes. Next, rewrite the Γi∇̂iη± term arising

in (5.15) in terms of the Dirac operator Γi∇̂iη± + Ψ±η± and Ψ±η±. One then obtains

I± = Re

(∫
S
〈η±,

(1

`
± (−iΦ +

1

2
hjΓ

j − 1√
3
?3 dBjΓ

j)
(
Γi∇̂iη± + Ψ±η±

)
〉
)

+

∫
S

1

4
∇̂ihi〈η±, η±〉 ∓

1

4
hi∇̂i〈η±, η±〉 . (5.16)

We remark that to establish the above identity the only bosonic field equation which was

utilized in the above analysis was the trace of (2.14) and was used to evaluate the Ricci

scalar of S. The relations (3.36) and (3.37) amongst the fields were not used as they follow

from the KSEs.

It is straightforward to observe that for the zero modes of D± to be parallel with respect

to ∇± and so Killing spinors, the integrals I± must vanish. It is clear that if D−η− = 0,

then I− = 0 and so ∇−η− = 0. All the zero modes of the horizon Dirac operator D−

are Killing spinors. Next let us turn to I+. If D+η+ = 0, then I+ does not vanish unless

one imposes the condition 〈η+, η+〉 = const. Thus we have established the following two

statements

∇+
i η+ = 0⇐⇒ D+η+ = 0 and 〈η+, η+〉 = const , (5.17)

and

∇−i η− = 0⇐⇒ D−η− = 0 . (5.18)

This concludes the proof of the Lichnerowicz type theorems for the horizons of minimal

gauged supergravity.
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6 Supersymmetry of near horizon geometries

Before we proceed to identify the number of supersymmetries preserved by the near hori-

zon geometries of minimal gauged supergravity, we shall first examine in more detail the

spinors on S. The spinors that enter into the KSEs of minimal gauged 5-dimensional su-

pergravity (3.1) are Dirac Spinc(4, 1) = Spin(4, 1) · U(1) spinors and so sections of the

bundle5 S ⊗ L, where S is the spin bundle and L is a U(1) bundle on the spacetime.

When these are restricted on S, S ⊗ L decomposes as S ⊗ L = S+ ⊗ L ⊕ S− ⊗ L, where

the signs are referred to the projections Γ± and S± ⊗ L are Spinc(3) bundles. We have

identified L with its restriction on S. Furthermore, the horizon Dirac operators act as

D± : Γ(S± ⊗ L)→ Γ(S± ⊗ L), where Γ(S± ⊗ L) are the smooth sections of S± ⊗ L.

Next let us return to examine the number of supersymmetries preserved by the near

horizon geometries. We have established that if a near horizon geometry is supersymmetric,

there must exist at least one non-vanishing spinor η+ such that ∇+
i η+ = 0. Since on S

there can be up to two linearly independent ∇+-parallel spinors, there are two cases to

investigate. First suppose that there are strictly two ∇+-parallel spinors. In this case, one

can show that the near horizon geometry is AdS5 with F = 0. This follows directly from

the algebraic condition (3.6), together with the conditions on the geometry in section 4.

Indeed note that on expanding out (3.6), the vanishing of the term zeroth order in gamma

matrices implies that

Φ = 0 (6.1)

and hence

∆ = 0 (6.2)

as a consequence (3.36). Then (4.6) implies that

dh = 0 . (6.3)

Returning to (3.6), the remaining conditions imply that

dB = 0 . (6.4)

Hence F = 0, and it is straightforward to show that the remaining conditions on the

geometry listed in the previous section imply that the solution is AdS5.

It remains to investigate the horizons which admit strictly one linearly independent

∇+-parallel spinor. In such a case, we have6 dimC KerD+ ≥ 1. To proceed, we shall

demonstrate that

dimC KerD+ = dimC KerD− . (6.5)

5Typically in Spinc structures the bundles S and L may not be well-defined but their product is. We

shall not expand on this and we shall assume that both S and L are well-defined bundles.
6D+ may have more than one zero mode as it is not a priori necessary for all zero modes to satisfy the

normalization condition 〈η+, η+〉 = 1.
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To see this, first observe that the adjoint of D+, (D+)† : Γ(S+ ⊗ L) → Γ(S+ ⊗ L). Since

D+ has the same principal symbol as a U(1) twisted Dirac operator, and as it is defined

on the odd dimensional manifold S, the index vanishes, Index(D+) = dimC KerD+ −
dimC Ker (D+)† = 0. As a result, we obtain

dimC KerD+ = dimC Ker (D+)† . (6.6)

It remains to relate the kernels of (D+)† and D−. First observe that

(D+)† = −Γi∇̂i − (
1

4
hiΓ

i −
√

3

2
?3 dBiΓ

i) + 3(
i

4
Φ +

1

2`
)−
√

3i

`
BiΓ

i . (6.7)

Next set

η− = Γ−η
′
+ , (6.8)

which induces an isomorphism between Γ(S+ ⊗ L) and Γ(S− ⊗ L), and observe that

D−η− = Γ−(D+)†η′+ (6.9)

which establishes (6.5).

The Lichnerowicz type theorem we have shown for the D− horizon Dirac equation

(5.18) identifies the ∇−-parallel spinors with the zero modes of D−. First suppose that

dimC KerD− = 2. In such a case, there are two ∇−-parallel spinors and so the near horizon

geometries preserves 3/4 of the supersymmetry. It has been shown that all such solutions

are locally isometric to AdS5 with vanishing flux F = 0, [24, 25]. The remaining case is

dimC KerD− = 1. In this case, the horizons preserve 1/2 of the supersymmetry.

To summarize, we have demonstrated that the near horizon geometries of minimal

gauged 5-dimensional supergravity preserve at least half of the supersymmetry. If they

preserve a larger fraction of supersymmetry, then they are locally isometric to AdS5 and

F = 0.

7 The sl(2,R) symmetry

In this section, we prove that the half-supersymmetric near-horizon geometries admit a

sl(2,R) symmetry. The analysis closely follows that performed for M-horizons in [18]. To

proceed, we first note that the most general Killing spinor can be written as

ε = η+ + uΓ+Θ−η− + η− + rΓ−Θ+η+ + urΓ−Θ+Γ+Θ−η− (7.1)

where

Θ± =
(1

4
h± 1

2
√

3
?3 dB

)
i
Γi ∓ i

2
Φ− 1

2`
. (7.2)

Hence, for exactly 1/2 supersymmetric solutions, we can without loss of generality take the

two linearly independent Killing spinors to be

ε1 = η− + uη+ + ruΓ−Θ+η+, ε2 = η+ + rΓ−Θ+η+ (7.3)
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where

η+ = Γ+Θ−η− . (7.4)

The condition (3.35) is equivalent to

Θ+η+ = − i
2

Φη+ . (7.5)

The two Killing spinors ε1, ε2 can then be further simplified to

ε1 = η− + uη+ −
i

2
urΦΓ−η+, ε2 = η+ −

i

2
rΦΓ−η+ . (7.6)

Next we define three 1-form spinor bilinears K1,K2,K3 by

K1 = Re

(
B
(
ε1,Γµε2

))
eµ

K2 = B
(
ε2,Γµε2

)
eµ

K3 = B
(
ε1,Γµε1

)
eµ , (7.7)

where B is the Spin(4, 1) × U(1) invariant inner product defined in (B.7). Then from the

analysis in appendix B, it follows that K1,K2,K3 are associated with vector fields which

are isometries that also preserve F .

We proceed to compute the components of K1,K2,K3: one obtains

K1 =

(
r2u∆ ‖ η+ ‖2 +r∆ ‖ η− ‖2

)
e+ − 2u ‖ η+ ‖2 e− + Vie

i

K2 = r2∆ ‖ η+ ‖2 e+ − 2 ‖ η+ ‖2 e−

K3 =

(
2 ‖ η− ‖2 +2ru∆ ‖ η− ‖2 +r2u2∆ ‖ η+ ‖2

)
e+ − 2u2 ‖ η+ ‖2 e− + 2uVie

i ,

(7.8)

where

Vi = Re 〈Γ+η−,Γiη+〉 . (7.9)

We remark that in order to obtain (7.8) we have made use of the identities

Re 〈Γ+η−,−iΦη+〉 = ∆ ‖ η− ‖2 , (7.10)

〈Γ−η+, η−〉 − 〈η−,Γ−η+〉 = −2iΦ ‖ η− ‖2 . (7.11)

The vector fields dual to the 1-forms in (7.8) are

K1 = −2u ‖ η+ ‖2 ∂u + 2r ‖ η+ ‖2 ∂r + V i∂̃i

K2 = −2 ‖ η+ ‖2 ∂u

K3 = −2u2 ‖ η+ ‖2 ∂u +

(
2 ‖ η− ‖2 +4ru ‖ η+ ‖2

)
∂r + 2uV i∂̃i (7.12)
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where to obtain these vector fields we have made use of the condition

hiVi = ∆ ‖ η− ‖2 −2 ‖ η+ ‖2 . (7.13)

The vector fields listed in (7.12) are (formally) identical to those obtained from the corre-

sponding 11-dimensional calculation given in [18]. In particular, on imposing the Killing

condition LKag = 0, one finds that

∇̂(iVj) = 0, LV ∆ = 0, LV h = 0 (7.14)

together with the condition

d ‖ η− ‖2 +V+ ‖ η− ‖2 h = 0 . (7.15)

This further implies that

LV ‖ η− ‖2= 0 . (7.16)

Making use of these conditions, it is straightforward to show that the vector fields

given in (7.12) satisfy

[K1,K2] = 2 ‖ η+ ‖2 K2, [K2,K3] = −4 ‖ η+ ‖2, [K3,K1] = 2 ‖ η+ ‖2 K3 . (7.17)

So the half-supersymmetric near-horizon geometries admit a sl(2,R) symmetry subalgebra.

7.1 Solutions with V = 0

In the special case V = 0, the conditions (7.15) and (7.13) imply that

d∆−∆h = 0 . (7.18)

with ∆ 6= 0. Hence dh = 0. The ++ component of the Einstein equations then implies

that

∆h2 = 0 . (7.19)

As ∆ 6= 0, we obtain h = 0 and so ∆ is constant. However, the +− component of the

Einstein equations then implies that

1

3
(dB)mn(dB)mn +

4

`2
= 0 . (7.20)

Hence, there are no solutions with V = 0.

8 Conclusions

We have proven that the near-horizon geometries of minimal 5-dimensional gauged super-

gravity preserve at least half of the supersymmetry. Moreover, if near-horizon geometries

preserve a larger fraction, then they are locally isometric to AdS5 and the 2-form field
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strength F vanishes. An application of these results is that all half-supersymmetric 5-

dimensional horizons admit an sl(2,R) symmetry algebra which follows from a similar

argument to that in [18].

The proof of this result utilizes in an essential way the compactness of the horizon

sections. The analysis proceeds by first identifying the independent field and Killing spinor

equations after integrating the latter along the lighcone directions. Next, we have used

these to relate the Killing spinors of the near horizon to the zero modes of two Dirac

operators defined on horizon sections, which is done by proving two Lichnerowicz type

theorems. To establish our result, one has to count the number of zero modes of the

horizon Dirac operators, which in turn counts the number of supersymmetries preserved

by near horizon geometries. For this, we have used the vanishing of the index of one of the

two horizon Dirac operators.

Although many steps in the proof appear to depend on the details of minimal 5-

dimensional gauged supergravity, like its field and KSEs, this may not be the case. It is

likely that near horizon geometries of odd-dimensional supergravities, without higher cur-

vature corrections, generically preserve at least two supersymmetries. This is in agreement

with the recently established property that M-horizons preserve an even number of super-

symmetries [18]. It is also likely that our results extend to the near horizon geometries

of even-dimensional supergravities. However, there are some differences. For example,

the index of the horizon Dirac operators is not expected to vanish. This may lead to an

expression for the number of supersymmetries preserved in terms of the index of a Dirac

operator. In turn, this will relate the number of supersymmetries preserved by a near

horizon geometry to the topology of the horizon sections.
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A Spin connection and curvature

The non-vanishing components of the spin connection in the frame basis (2.2) are

Ω−,+i = −1

2
hi , Ω+,+− = −r∆, Ω+,+i =

1

2
r2(∆hi − ∂i∆),

Ω+,−i = −1

2
hi, Ω+,ij = −1

2
rdhij , Ωi,+− =

1

2
hi, Ωi,+j = −1

2
rdhij ,

Ωi,jk = Ω̂i,jk , (A.1)
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where Ω̂ denotes the spin-connection of the 3-manifold S with basis ei. If f is any function

of spacetime, then frame derivatives are expressed in terms of co-ordinate derivatives as

∂+f = ∂uf +
1

2
r2∆∂rf , ∂−f = ∂rf , ∂if = ∂̃if − r∂rfhi . (A.2)

The non-vanishing components of the Ricci tensor is the basis (2.2) are

R+− =
1

2
∇̂ihi −∆− 1

2
h2 , Rij = R̂ij + ∇̂(ihj) −

1

2
hihj

R++ = r2
(1

2
∇̂2∆− 3

2
hi∇̂i∆−

1

2
∆∇̂ihi + ∆h2 +

1

4
(dh)ij(dh)ij

)
R+i = r

(1

2
∇̂j(dh)ij − (dh)ijh

j − ∇̂i∆ + ∆hi
)
, (A.3)

where R̂ is the Ricci tensor of the horizon section S in the ei frame.

B Supersymmetry conventions

We first present a matrix representation of Cliff(4, 1) adapted to the basis (2.2). The space

of Dirac spinors is identified with C4 and we set

Γi =

(
σi 0

0 − σi

)
, Γ− =

(
0
√

2 I2
0 0

)
, Γ+ =

(
0 0√
2 I2 0

)
(B.1)

where σi, i = 1, 2, 3 are the Hermitian Pauli matrices σiσj = δijI2 + iεijkσk. Note that

Γ+− =

(
−I2 0

0 I2

)
, (B.2)

and hence

Γ+−123 = −iI4 . (B.3)

It will be convenient to decompose the spinors into positive and negative chiralities with

respect to the lightcone directions as

ε = ε+ + ε− , (B.4)

where

Γ+−ε± = ±ε±, or equivalently Γ±ε± = 0 . (B.5)

With these conventions, note that

Γijε± = ∓iεijkΓkε±, Γijkε± = ∓iεijkε± . (B.6)

The Dirac representation of Spin(4, 1) decomposes under Spin(3) = SU(2) as C4 =

C2 ⊕ C2 each subspace specified by the lightcone projections Γ±. On each C2, we have

made use of the Spin(3)-invariant inner product 〈, 〉 which is identified with the standard
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Hermitian inner product. On C2 ⊕ C2, the Lie algebra of Spin(3) is spanned by Γij ,

i, j = 1, 2, 3. In particular, note that (Γij)
† = −Γij .

It will also be useful to introduce a non-degenerate Spin(4, 1) × U(1) invariant inner

product B by

B(ε, η) = 〈
(
Γ+ − Γ−

)
ε, η〉 . (B.7)

It is straightforward to show that

B(ε,Γµη) + B(Γµε, η) = 0

B(ε,Γµνη) + B(Γµνε, η) = 0

B(ε,Γµνρη)− B(Γµνρε, η) = 0 . (B.8)

In addition, if ε1, ε2 are Killing spinors, and if

Kµ = B(ε1,Γµε2) (B.9)

then the KSE (3.1) implies that

∇νKµ = B
(
ε1,

(
− i

2
√

3
F ρσΓνµρσ −

2i√
3
Fνµ +

1

`
Γνµ

)
ε2

)
. (B.10)

Hence

∇(µKν) = 0 . (B.11)

Furthermore, one also obtains from (3.1)

dB(ε1, ε2) =
2i√

3
iKF (B.12)

and hence

LKF = 0 . (B.13)

So one obtains isometries, which also preserve F , from such 1-form spinor bilinears.
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any medium, provided the original author(s) and source are credited.
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