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1 M2-M5

The star of this short note is the M2-M5 intersection

0 1 2 3 4 5 6 7 8 9 10

M2 : • • •
M5 : • • • • • •

(1.1)

in IR1,10. This setup, which is 1/4-BPS at extremality, is interesting for a variety of reasons.

The (1+1)-dimensional intersection is a self-dual string whose properties underlie many of

the mysteries of the M2 and M5 brane physics and M-theory itself (for a relevant review

we refer the reader to [1]). In the past it has been studied from several points of view:

(1) As a supersymmetric soliton solution of the effective fivebrane worldvolume theory of

a single M5 brane [2]. The solution, which preserves the requisite SO(1, 1)×SO(4)×
SO(4) symmetry, has a non-trivial worldvolume self-dual three-form flux and a single

non-trivial transverse scalar field z := x6 with the profile

z(σ) =
2Qsd

σ2
. (1.2)

σ denotes the radial distance in the directions (2345) transverse to the self-dual string

along the fivebrane worldvolume. Qsd is the electric (equally magnetic) charge of the

self-dual string.
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(2) As a three-funnel solution of the Basu-Harvey equation [3], which has been proposed

as an M-theoretic generalization of the Nahm equations for the BIon. This is an

alternative M2-based description of (1) that refers again to the case of a single M5

brane.

(3) As a 1/4-BPS supergravity solution in the regime of a large number of M2 and M5

branes. There has been considerable work in this direction (see [4–6] for earlier

studies). A fully localized intersection was described in [7], where the solution is

given in terms of two functions that obey a set of differential equations.

In what follows we will describe the M2-M5 intersection from the supergravity perspec-

tive (3) using the blackfold formalism [8–10]. This is an effective worldvolume description

of black brane dynamics which is part of a perturbative expansion scheme of the gravita-

tional equations and belongs conceptually to the same class of ideas as the fluid-gravity

correspondence for AdS black branes [11, 12]. In the present case we will be interested in

the effective fivebrane worldvolume dynamics of the M2-M5 bound state [13–17]. We will

restrict our attention to the leading order form of this effective description assuming small

accelerations in a derivative expansion in a manner very similar in spirit to the zero-th

order approximation typically employed in applications of the Dirac-Born-Infeld action for

standard D-branes in string theory. As in the case of the BIon solution for the F1-D3

system [18], we will see that the zero-th order solution can take us far enough.

Although a perturbative reconstruction of the exact supergravity solution is in principle

possible in this manner, working with an effective worldvolume description —as we will do

here— has some obvious benefits. First, we get very quick access to the supersymmetric

self-dual string soliton solution in a clear intuitive manner that extends the single M5

brane worldvolume description of [2] into the regime of a large number of M5 branes. A

non-trivial profile for a single transverse scalar analogous to (1.2) is immediately derivable

and the scalar charge is determined in terms of the number of both the M2 and M5 branes.

Second, with very little extra effort we get immediate access to non-extremal configurations

describing black M2-M5 intersections, which are currently beyond the technical capability

of the exact solution generating techniques of ref. [7]. The leading order thermodynamic

properties of these solutions can be determined straightforwardly without the need to refer

directly to the full supergravity background. A novel treatment of the self-dual string

soliton in previously inaccessible regimes becomes possible in this way.

We should note that a similar treatment of the BIon solution for the F1-D3 system

was given recently in two beautiful papers [19, 20]. The F1-D3 intersection is U-dual to the

M2-M5 system (1.1) and inevitably the application of the blackfold formalism in [19, 20]

shares several common features with the application in this note.1 Our goal is to highlight

those features that are particularly interesting from an M-theory perspective and contrast

them with the results in the existing literature as a basis for further work in this direction.

1Recall, however, that the direct application of U-dualities in supergravity typically does not produce

fully localized intersections. Regarding the specific relation between the F1-D3 and M2-M5 systems this

point is also noted, and properly taken into account, in [7].
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The basics of the blackfold approach and the elements we need for the present applica-

tion are summarized in section 2. Section 3 presents the main results of this paper, which

include the self-dual string soliton solution and the key properties of related wormhole

solutions. A more detailed and more general treatment of the system will be given in a

companion paper [21]. A brief discussion of the results and future directions appears in

the concluding section 4.

2 M2-M5 blackfold equations

2.1 Planar M2-M5 bound state

Our starting point is a well-known exact solution of the eleven dimensional supergravity

equations of motion that describes the black M2-M5 bound state [13–17]

ds211 < = (HD)−1/3
[

− fdt2 + (dx1)2 + (dx2)2 +D
(

(dx3)2 + (dx4)2 + (dx5)2
)

+H
(

f−1dr2 + r2dΩ2
4

)

]

, (2.1)

C3 = − sin θ(H−1 − 1) cothαdt ∧ dx1 ∧ dx2 + tan θDH−1dx3 ∧ dx4 ∧ dx5 , (2.2)

C6 = cos θD(H−1 − 1) cothαdt ∧ dx1 ∧ · · · ∧ dx5 , (2.3)

H = 1 +
r30sinh

2α

r3
, f = 1− r30

r3
, D−1 = cos2 θ + sin2 θH−1 . (2.4)

C3 is the standard three-form potential of the 11d supergravity action and C6 its Hodge-

dual. The solution, which describes M2 brane charge dissolved into the worldvolume of the

black fivebrane along the (012) plane, is parameterized by the constants r0, α and θ which

control the temperature, the M2 and the M5 brane charge.

The thermodynamic properties of the solution are captured by the following quanti-

ties [16]

ε =
Ω(4)

16πG
r30(4 + 3sinh2α) , T =

3

4πr0coshα
, s =

Ω(4)

4G
r40coshα ,

Q5 = cos θ Q , Q2 = − sin θ Q , Q =
Ω(4)

16πG
3r30sinhα coshα ,

Φ5 = cos θΦ , Φ2 = − sin θΦ , Φ = tanhα . (2.5)

ε denotes the energy density, T the temperature, s the entropy density, Q5 the fivebrane

charge, Q2 the twobrane charge density, and Φ5,Φ2 the corresponding chemical potentials.

We will reserve the notation Q for charges and Q for charge densities. In this notation

Q5 = Q5. A corresponding free energy F can be defined as

F = ε− T s =
Ω(4)

16πG
r30(1 + 3sinh2α) , (2.6)

where Ω(n) denotes the volume of the round n-sphere.

– 3 –



J
H
E
P
0
6
(
2
0
1
2
)
1
7
5

Under the general boost along the fivebrane worldvolume directions the stress-energy

tensor of the above solution takes the form

Tab = T s
(

uaub −
1

3
ηab

)

−
∑

q=2,5

ΦqQq h
(q)
ab , a, b, . . . = 0, 1, . . . , 5 (2.7)

where, following closely the notation of [10], ua denotes a unit 6-velocity field, ηab the

flat induced worldvolume metric, and h
(q)
ab (q = 2, 5) is a projector along the worldvolume

directions of the M2 and M5 branes respectively. In the case of (2.1)–(2.4) h
(2)
ab projects

along the plane (012) and h
(5)
ab = ηab.

2.2 Leading order blackfold equations

One can use the planar solution (2.1)–(2.4) as the zero-th order term in a perturbative ex-

pansion to construct more complicated solutions with inhomogeneous, spinning, and bend-

ing worldvolume geometries. The effective degrees of freedom in such a long-wavelength

description are the parameters r0, α, θ, and the velocities ua that characterize the zero-th

order solution, five transverse scalars that capture the bending of the M5 in its eleven

dimensional ambient space, and a unit three-form that captures the local M2 brane cur-

rent and its distribution within the larger fivebrane worldvolume. The self-dual three-form

field strength of the M5 brane has disappeared in this regime and has been replaced by

corresponding conserved currents.

In analogy to usual practice in the fluid-gravity correspondence for AdS black branes,

one promotes the above parameters to slowly varying functions of the local worldvolume

coordinates σ̂a (a = 0, 1, . . . , 5) and proceeds to solve the gravitational equations perturba-

tively in a derivative expansion. A subset of the gravity equations are constraint equations.

Satisfying them at a given order n is believed to guarantee the existence of a regular so-

lution up to the (n+ 1)-th order in the expansion scheme (see [22] for a recent derivation

of this statement for n = 0 in pure Einstein gravity and [23, 24] for a discussion of higher

derivative corrections).

This is the general framework of the blackfold formalism. In what follows we will

restrict our attention to the leading order constraint equations which are believed to guar-

antee the existence of a regular supergravity solution up to the next-to-leading order in

the expansion. In our case these equations can be formulated as follows (for more details

we refer the reader to [9, 10, 25]).

Intrinsic equations. They comprise of the fluid-dynamical equations

DaT
ab = 0 (2.8)

and the charge conservation equations

d ∗ J3 = 0 , J3 = Q2V̂(3) , (2.9)

d ∗ J6 = 0 , J6 = Q5V̂(6) (2.10)
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for the M2 and M5 brane currents respectively. The latter trivially leads to

∂aQ5 = 0 . (2.11)

In these equations the stress-energy tensor (2.7) is promoted to

Tab = T s
(

uaub −
1

3
γab

)

−
∑

q=2,5

ΦqQq h
(q)
ab , (2.12)

where γab is now the general induced worldvolume metric. V̂(3) denotes a unit volume

3-form along the directions of the M2 brane current and V̂(6) the unit volume form of

the fivebrane worldvolume. The last equation (2.11) shows that Q5 is an overall constant

that participates passively into the dynamics. The M2 brane charge density and its dis-

tribution inside the fivebrane worldvolume, however, are dynamical quantities controlled

by (2.8), (2.9).

Extrinsic equations. These comprise of the remaining set of the stress-energy conser-

vation equations and can be recast into the form

Kab
ρT ab = 0 (2.13)

or equivalently in a more detailed form as

T s ⊥ρ
µ u̇

µ =
1

3
T sKρ+ ⊥ρ

µ

∑

q

ΦqQqK
µ
(q) . (2.14)

Kab
ρ is the extrinsic curvature tensor [9], Kρ the mean curvature vector, ⊥ρ

µ a projector

in directions orthogonal to the fivebrane worldvolume and

K
µ
(q) = hab(q)K

µ
ab . (2.15)

In the following section we are looking for simple static solutions of the above equations.

3 Static S
3-funnel solutions

3.1 Static ansatz

In what follows we will concentrate on a rather restricted simple class of static S3-funnel

solutions that extend the self-dual string soliton of ref. [2] to our context. More general

solutions are possible and will be discussed in a companion paper along with a more detailed

exposition of the relevant steps.

We will make use of the following parametrization of the ambient eleven dimensional

flat spacetime

ds211 = −dt2 + (dx1)2 + dr2 + r2dΩ2
3 +

10
∑

i=6

(dxi)2 (3.1)

using the standard angular coordinates (ψ,ϕ, ω) to express the round three-sphere metric

dΩ2
3 = dψ2 + sin2 ψ(dϕ2 + sin2 ϕdω2) . (3.2)

– 5 –
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We choose the static gauge

t(σ̂a) = σ̂0 , x1(σ̂a) = σ̂1 , r(σ̂a) = σ̂2 := σ ,

ψ(σ̂a) = σ̂3 , ϕ(σ̂a) = σ̂4 , ω(σ̂a) = σ̂5 , x6(σ̂a) = z(σ) (3.3)

activating only one of the transverse scalars x6 := z(σ) in accordance with (1.1). With this

ansatz the induced metric on the effective fivebrane worldvolume is

γabdσ
adσb = −(dσ0)2 + (dσ1)2 + (1 + z′

2
)dσ2 + σ2(dψ2 + sin2 ψ(dϕ2 + sin2 ϕdω2)) . (3.4)

By setting

ua =

(

∂

∂t

)a

, h(2) = diag(−1, 1, 1 + z′
2
, 0, 0, 0) (3.5)

and by demanding that the quantities q2, q5, β, defined as

q2 := − 16πG

3Ω(4)Ω(3)
Q2 = σ3

r30
2
sin θ sinh2α , (3.6)

q5 :=
16πG

3Ω(4)
Q5 =

r30
2
cos θ sinh2α , (3.7)

r0 coshα = β :=
3

4πT
(3.8)

are constants of motion independent of σ̂a, one can show that the intrinsic equa-

tions (2.8), (2.9), (2.11) are fully satisfied. In these relations Q2 and Q5 are the total M2

and M5 brane charges, expressed in terms of the number of M2 and M5 branes (N2, N5) as

Q2 =
N2

(2π)2ℓ3P
, Q5 =

N5

(2π)5ℓ6P
. (3.9)

T is the global constant temperature of the solution and ℓP the Planck scale (in terms of

which 16πG = (2π)8ℓ9P ).

These expressions allow us to determine completely the dynamics of the unknown

functions r0, α, θ. After a minor algebraic computation one finds two solutions (both ac-

ceptable) with

coshα± =
β3√
2q5

√

1±
√

1− 4q2
5

β6

(

1 + κ2

σ6

)

√

1 + κ2

σ6

, (3.10)

r0,± =

√
2q5
β2

√

1 + κ2

σ6

√

1±
√

1− 4q2
5

β6

(

1 + κ2

σ6

)

, (3.11)

tan θ =
κ

σ3
. (3.12)

We are using the convenient definition

κ :=
q2

q5
= − 1

2π2
Q2

Q5
= −4π

N2

N5
ℓ3P . (3.13)
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It is also worth noting that the first expression (3.10) implies an upper bound on the

temperature T

β3 ≥ 2|q5| . (3.14)

The final step requires solving the extrinsic equations (2.13). Inserting the solu-

tions (3.10)–(3.12) into (2.13) we obtain equations of motion exclusively for the transverse

scalars. It has been shown [9, 10, 25] on general grounds for stationary configurations that

these equations can also be obtained from the variation of the action functional

I :=

∫

W6

d6σ
√−γ F , (3.15)

where F is the free energy (2.6) viewed as a functional of the transverse scalars, and the

variation with respect to the transverse scalars is performed keeping the temperature and

corresponding charges fixed. W6 is the six dimensional fivebrane worldvolume. In the case

at hand the action (3.15) becomes

I =
Ω(3)Ω(4)LtLx1

16πG

23/2q35
β6

∫

dσ
√

1 + z′2 F±(σ) , (3.16)

F±(σ) = σ3









1 + κ2

σ6

1±
√

1− 4q2
5

β6

(

1 + κ2

σ6

)









3

2








−2 +
3β6

2q25

1±
√

1− 4q2
5

β6

(

1 + κ2

σ6

)

1 + κ2

σ6









. (3.17)

Lt, Lx1 denote the (infinite) length of the t, x1 directions. We conclude that the corre-

sponding equation of motion for the transverse scalar field z(σ) is

(

z′(σ)F±(σ)
√

1 + z′(σ)2

)′

= 0 . (3.18)

The prime denotes differentiation with respect to σ.

In analogy to the BIon case [18, 19] we will find spike and wormhole solutions to this

equation representing M2 branes ending on M5 branes or M2 branes stretching between

M5 and anti-M5 branes. The leading order approximation is valid as long as the following

condition is met [19, 21]

σ ≫ rc(σ) , r3c = r30 sinhα coshα . (3.19)

where rc is the charge radius of the black brane [10, 25]. Nevertheless, as in the DBI

case [18], and especially in extremal situations, the naive extrapolation of the leading order

result beyond this regime continues to give qualitatively and quantitatively sensible results.

3.2 1/4-BPS spike

Only the + branch in (3.16), (3.17) has a sensible extremal limit. In this limit, where

T → 0 and β → +∞, the action (3.16) simplifies to

I = Ω(3)LtLx1Q5

∫

dσ σ3

√

1 +
κ2

σ6

√

1 + z′2 . (3.20)
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We are looking for a spike solution to the equations of motion of this action with the

natural boundary conditions

lim
σ→+∞

z(σ) = 0 , lim
σ→0+

z′(σ) = −∞ . (3.21)

Such a solution exists and takes the simple analytic form

z(σ) =
|κ|
2σ2

. (3.22)

The validity of approximation (3.19) breaks down when

σ ∼ rc(σ) ⇔ σ ∼ σc =

(

πN5√
2

)1/3
(

1 +

√

1 +
64N2

2

N4
5

)1/6

ℓP , (3.23)

where we made use of (3.7), (3.12).

Irrespective of this breakdown, we observe that the leading order solution is well-

defined for all σ ∈ IR+ and, as we will see in a moment, the naive extrapolation beyond

the strict regime of validity (3.19) continues to give sensible results. We propose that the

solution (3.22) captures the large-(N2, N5) version of the 1/4-BPS M2-M5 intersection and

the corresponding supersymmetric self-dual string soliton.

The energy density of the solution at the center of the soliton, at σ = 0, corroborates

this claim. The energy density can be evaluated from the on-shell value of the integrand

of (3.20). A straightforward computation gives

1

LtLx1

dI

dz

∣

∣

∣

∣

σ=0

= Q2 = N2TM2 (3.24)

reproducing correctly the tension of N2 BPS M2 branes. TM2 denotes the tension of a

single M2 brane.

In addition, the transverse scalar profile (3.22) reproduces the 1
σ2 dependence of the

Howe-Lambert-West result (1.2) in the case of a single M5 brane. The only difference lies

in the scalar charge coefficient: 2Qsd ∼ N2 in the case of [2] and 1
4π2

Q2

Q5
∼ N2

N5
in our case.

This seems to imply that the effective transverse scalar degree of freedom of the blackfold

description is an average over the M5 branes, which is presumably a sign of the impor-

tance of abelian dynamics in the supersymmetric non-thermal case. A similar situation is

encountered in supertubes [26]. It would be useful to obtain a better understanding of the

more general (holographic) relation between the blackfold effective degrees of freedom and

the microscopic degrees of freedom of the multiple M5 brane theory.2 Regardless of the

specifics of this relation it is interesting to note the direct analogies between the way the

known non-gravitational M5 brane worldvolume description works and how the blackfold

description repackages the information of the gravitational solutions. This is one of the

conceptual advantages of the blackfold approach.

2For transverse scalars the origin is common in both descriptions: they are Goldstone bosons associated

with the breaking of translational symmetry. The abelian nature of the classical gravitational description

emerges from the large-N non-abelian nature of the multiple M5 brane theory.

– 8 –
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3.3 Thermal spikes

By adding temperature to the above configuration the corresponding black brane inter-

section becomes non-extremal. Following the general discussion of subsection 3.1 we are

now looking for a spike solution of the + branch equation (3.18) at finite β. However,

unlike the zero-temperature case such a solution does not exist over the full range of σ,

i.e. for σ ∈ IR+. The failure to obtain a sensible solution below a certain value of σ is

immediately obvious from eqs. (3.10), (3.11). For finite β, as we decrease σ we reach a

critical breakdown value, σb, where the term under one of the square roots becomes zero

and then negative. This critical value equals

σb =

(

4q22
β6 − 4q25

)
1

6

. (3.25)

The inequality (3.14) guarantees that the denominator in this expression is non-negative.

From the small temperature expansion of (3.25) at fixed q2, q5,

σb =
(2|q2|)

1

3

β

(

1 +
2

3

q25
β6

+ . . .

)

, (3.26)

and the expression for the critical point of breakdown of the validity of the approximation

for the extremal spike (3.23) we deduce that up to leading order in temperature

σb

σc
=

√
2 |κ|1/3
β

(

1 +

√

1 +
64N2

2

N4
5

)−1/6

≪ 1 . (3.27)

Hence, the breakdown of the leading order thermal spike solution occurs (at least within

the small temperature expansion) well within the region where the leading order blackfold

approximation cannot be trusted. In that sense, the pathological region is automatically

excised and poses no particular concern. The only issue we have to worry about is the

issue of boundary conditions. Which one of the solutions of the differential equation (3.18)

does one pick for a given temperature? We will discuss the more general solutions of the

differential equation (3.18) in the following subsection.

The same issue was encountered for thermal spikes of the F1-D3 system in [20]. The

strategy adopted in that paper was based on finding a matching point where an F1-D3

thermal spike solution could be glued to a non-extremal black F-string at the desired

temperature. More precisely, the thermal spike solution was chosen to reproduce the tension

of a non-extremal black F-string.

An analogous approach can be taken in our case. We can fix the solution of the

differential equation (3.18) by matching the tension of a planar black M2 brane to the

local tension
1

LtLx1

dM

dz

∣

∣

∣

∣

σ=σ0

(3.28)

of the thermal spike at a suitably chosen temperature-dependent σ0. Since many of the

details go in complete analogy with the BIon case of [20] we will not discuss them further

in this note. The resulting solution describes a thermalized self-dual string soliton solution.

– 9 –
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3.4 Wormhole solutions

The most general solution of the differential equation (3.18) with the boundary condition

lim
σ→+∞

z(σ) = 0 (3.29)

is parametrized by a value σ0, which is defined so that

lim
σ→σ+

0

z′(σ) = −∞ . (3.30)

Integrating the differential equation (3.18) with these boundary conditions we find

z±(σ) =

∫ +∞

σ
ds

(

F±(s)
2

F±(σ0)2
− 1

)−
1

2

. (3.31)

In this form the solution extends over the range σ ∈ [σ0,+∞) and one has to decide how

to extend it beyond this domain. In the previous subsection we considered the possibility

of gluing a planar black M2 brane. Another possibility is to glue back at σ0 the same

solution with the opposite orientation. The resulting configuration describes a bi-funnel, or

wormhole-like solution that stretches between a stack of M5 and anti-M5 branes. Analogous

configurations for the BIon were considered in [18, 19]. A configuration at non-zero σ0 can

be extremal but not BPS.

In what follows we summarize some of the main features of the wormhole solutions. It

will be convenient to define the distance between the M5 and anti-M5 stacks as

∆ := 2

∫ +∞

σ0

ds

(

F (s)2

F (σ0)2
− 1

)−
1

2

(3.32)

where F = F±. Notice the scaling property

∆(σ0;T, κ) = κ
1

3 ∆

(

σ0

κ
1

3

;T, 1

)

. (3.33)

A configuration exists only if σ0 > σb.

3.4.1 Extremal wormholes

Once again, only the + branch is relevant for the extremal limit. The solution has an

analytic form for any σ0

z(σ) =

∫ +∞

σ
ds

√

σ60 + κ2

s6 − σ60
=

√

σ60 + κ2

2σ2
2F1

(

1

3
,
1

2
,
4

3
;
σ60
σ6

)

. (3.34)

The corresponding distance ∆ reads

∆ =
Γ
(

1
3

)

Γ
(

1
6

)

6
√
π

√

σ60 + κ2

σ20
≃ 1.402

√

σ60 + κ2

σ20
. (3.35)

Its behavior as a function of σ0 is depicted in figure 1. Analogous wormhole solutions can

be found in the case of a single M5 brane using the fivebrane worldvolume theory [27–29]

or by uplifting to M-theory the BIon solutions of [18].

– 10 –
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Figure 1. Plot of the distance ∆ as a function of σ0 for κ = 1 in the extremal case.
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Figure 2. Plots of ∆ as a function of σ0 for κ = 1. The blue and red lines correspond to the

non-extremal and extremal cases respectively. The left plot is done for T = 0.01 and the right plot

for T = 0.05.

We observe that there is a minimum distance

∆min =
Γ
(

1
3

)

Γ
(

1
6

)

2
4

3

√
3π

κ
1

3 (3.36)

between the two fivebranes that occurs for σ0,min = 2
1

6κ
1

3 . Hence, for a fixed distance

∆ > ∆min there are two possible solutions for σ0. In the large ∆ limit they behave as

(thick throat) σ0 ≃ a∆ ,

(thin throat) σ0 ≃
√

κ

a∆
, a :=

6
√
π

Γ
(

1
3

)

Γ
(

1
6

) ≃ 0.714 . (3.37)

3.4.2 Branch connected to extremal wormholes

For the + branch and finite β the distance ∆ is given by the expression (3.32) with F =

F+. We have not been able to find a closed analytic expression for generic values of the

temperature. The small temperature expansion takes the form

∆ = ∆0 + β−6∆1 +O
(

β−12
)

(3.38)
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Figure 3. Plots of ∆ as a function of σ0 for κ = 1. The blue and red lines correspond again to the

non-extremal and extremal cases respectively. The left plot is done for T = 0.1 and the right plot

for T = 0.15.

where ∆0 is the extremal result (3.35) and

∆1 = −Γ
(

1
3

)

Γ
(

1
6

)

180
√
π

2κ2 + 5σ60
σ140

√

κ2 + σ60 q
2
2 . (3.39)

Accordingly, the minimum we observed before is shifted to

σ0,min = 2
1

6κ
1

3 − 7q25κ
1

3

2
17

6 5
β−6 +O

(

β−12
)

(3.40)

and the corresponding minimum distance reads

∆min =
Γ
(

1
3

)

Γ
(

1
6

)

2
4

3

√
3π

κ
1

3

(

1− q25
10β6

)

+O
(

β−12
)

. (3.41)

Plots of the distance as a function of σ0 appear in figures 2, 3 for different values of

the temperature. A qualitatively new feature of the non-vanishing temperature plots is

the presence of a maximum. This maximum is already visible in the perturbative expan-

sion (3.38). At leading order

σ0,max =

(

7

12

) 1

12

q
1

6

5 κ
1

3β−
1

2 + . . . ,

∆max =
17Γ

(

1
3

)

Γ
(

1
6

)

147
√
π

(

15

7

) 1

3

q
−

1

3

5 κ
1

3β + . . . ≃ 1.254 q
−

1

3

5 κ
1

3β + . . . . (3.42)

Hence, we arrive at the following picture. At non-vanishing temperature the number

of possible solutions for a fixed distance ∆ can vary from zero to three depending on the

range of ∆. For ∆ > ∆max there is a single solution. For ∆min < ∆ < ∆max there can be

two or three solutions. In the vicinity of ∆max there are three solutions. As we lower ∆ the

solution with the lowest value of σ0 disappears if the critical value σb (3.25) is reached. For

∆ < ∆min the existence of a solution depends on whether a value of σ0 > σb is possible.

Analogous features have been observed for the thermal BIon solution [20].
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3.4.3 Wormholes of the neutral branch

The solution based on the F− function connects naturally to the neutral black fivebrane

solution. This can be seen in the following manner.

In the low temperature limit the corresponding solution has the expansion

z(σ) =

(

1 +
3q22

2β6σ60

)

σ30
2σ2

2F1

(

1

3
,
1

2
,
4

3
;
σ60
σ6

)

+O(β−12) . (3.43)

An analogous expression can be obtained by taking the neutral fivebrane limit

q5 → 0 , q2 = finite , β̂ :=
β

κ
1

3

= finite . (3.44)

Expanding in powers of q5 we find

z(σ) =

(

1 +
3q25

2β̂6σ60

)

σ30
2σ2

2F1

(

1

3
,
1

2
,
4

3
;
σ60
σ6

)

+O(q45) (3.45)

that matches (3.43) at leading order.

4 Summary and further work

Extremal and non-extremal black brane intersections are interesting supergravity solutions.

In string/M-theory they contain useful information about the structure of the theory. Un-

fortunately, in many cases the generic complexity of these solutions does not permit to

find fully localized supergravity intersections in closed analytic form. For that reason this

is an opportune context for the application of perturbative effective field theory descrip-

tions like the blackfold approach. Blackfolds provide a tractable and intuitive descrip-

tion of black brane dynamics by repackaging the gravitational information in an effective

worldvolume formalism. The resulting expressions share similarities with the microscopic

non-gravitational worldvolume descriptions of D-branes and M-branes in string/M-theory.

In this paper we have applied this formalism to the basic M2-M5 intersection extending

previous work on the F1-D3 system [19, 20]. Our main purpose has been to demonstrate

how the formalism works in a simple representative situation and to relate the basic results

with previous standard results in the literature of the M2-M5 system. In particular, we

have seen (i) how one recovers the 1/4-BPS self-dual string soliton solution extending the

single M5 brane result of [2] to the regime of many M2 and M5 branes, and (ii) how

one can access the properties of the self-dual string soliton at finite temperature. The

discussion of the supersymmetric self-dual string soliton is directly related to the exact

supergravity analysis of [7]. The non-extremal configurations in this paper provide, to the

best of our knowledge, the first information for this type of black brane intersections in

eleven dimensional supergravity.

The approach can be used to further probe the M2-M5 system in more generic situ-

ations. In a companion paper [21] we discuss M2-M5 intersections at finite temperature

and angular momentum. We present the corresponding solutions and compute their ther-

modynamic properties.
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In this note we have focused on the M2-M5 system in flat space. It is equally possible to

discuss it in other backgrounds, for instance in AdS and within the context of the AdS/CFT

correspondence. Analogous discussions in AdS using the worldvolume description of a

single M5 brane have appeared in [30–32]. Blackfolds in AdS have been analyzed in the

past in [33–35].

Perhaps the most pressing question is whether we can use the approach presented in

this work to obtain new information about some of the currently inaccessible properties of

the self-dual string soliton (and corresponding properties of the M5 brane). The fact that

we can access the system in the regime of many M5 branes (which lies beyond the reach

of most other methods) is encouraging. Since we work in the supergravity regime with

an effective field theory tool the relation with the still illusive microscopic description of

the M5 theory is indirect, however, it is not unreasonable to expect that the information

obtained with our approach can provide new useful clues about the microscopic structure.

Work in this direction is currently underway.
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