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1 Introduction

In 1978, Wolfenstein firstly pointed out that when neutrinos travel in matter, the coherent

forward scattering of them with electrons and nucleons must be considered and the induced

matter potentials will change the neutrino oscillation behaviors [1]. In 1985, Mikheev and

Smirnov put forward that the effective mixing angle can be significantly amplified in matter

(such as inside the sun) even if the corresponding mixing angle in vacuum is small. This

is the wellknown Mikheev-Smirnov-Wolfenstein (MSW) effects, which successfully explain

the flavor conversion behaviors of solar neutrinos in the sun [2]. Such matter effects have

been proved very important in a number of reactor, solar, atmospheric, accelerator neu-

trino oscillation experiments aiming to accurately extract the intrinsic neutrino oscillation

parameters in vacuum [3]. A lot of efforts have been made to make the neutrino oscilla-

tion probabilities in matter more intuitive [4–17]. The language of renormalization-group

equation was also introduced to describe the effective neutrino masses and flavor mixing

parameters in matter [18–21]. In this paper, we mainly focus on the neutrino flavor mixing

in very dense matter, which has been discussed in refs. [22–25]. We further include the

radiative corrections in this connection.

In the standard three-flavor mixing scheme, the Hamiltonian responsible for the prop-

agation of neutrinos in matter can be expressed as

Hm =
1

2E
U



m2

1 0 0

0 m2
2 0

0 0 m2
3


U † +



Ve 0 0

0 Vµ 0

0 0 Vτ


 ≡ 1

2E
Ũ



m̃2

1 0 0

0 m̃2
2 0

0 0 m̃2
3


 Ũ † , (1.1)
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where E is the neutrino beam energy, mi (for i = 1, 2, 3) and U stand respectively for neu-

trino masses and Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton flavor mixing matrix,

m̃i (for i = 1, 2, 3) and Ũ denote effective neutrino masses and PMNS matrix in matter,

respectively, and Vα (α = e, µ, τ) represent the matter potentials arsing from charged- and

neutral-current coherent forward scattering of να with electrons, protons and neutrons in

matter. Considering the one-loop radiative corrections to Vα, we have [26]

Ve − Vµ =
√

2GFNe ,

Vτ − Vµ = −GF√
2
· 3α

2π sin2 θW
· m

2
τ

m2
W

[(
Np +Nn

)
ln

(
m2
τ

m2
W

)
+

(
Np +

2

3
Nn

)]
, (1.2)

where GF is the Fermi coupling constant, α is the fine-structure constant; Ne, Np and Nn

denote the number density of electrons, protons and neutrons in matter, respectively; mτ

and mW are the masses of τ lepton and W boson, respectively; and sin2 θW ≡ 1−m2
W /m

2
Z

with mZ being the Z boson mass. To be more intuitive, eq. (1.1) can be rewritten as

Hm =
1

2E


U




0 0 0

0 ∆21 0

0 0 ∆31


U † +



A 0 0

0 0 0

0 0 Aε





 ≡ 1

2E


Ũ




0 0 0

0 ∆̃21 0

0 0 ∆̃31


 Ũ † +BI


 ,

(1.3)

where ∆ij ≡ m2
i − m2

j , ∆̃ij ≡ m̃2
i − m̃2

j , A = 2
√

2GFNeE, B = m̃2
1 − m2

1 − 2EVµ, and

I denotes a 3 × 3 identity matrix. According to eq. (1.2) and assuming Ne = Np = Nn,

ε ' 5× 10−5 is a small quantity but matters a lot in dense matter (i.e., A is very big).

On the other hand, given the implications of extra light sterile neutrinos in short-

baseline neutrino oscillation experiments [27], we extend our discussion to the scheme of

(3 + 1) flavor mixing with one more sterile neutrino νs. The corresponding Hamiltonian

describing the propagation of neutrinos in a medium turns out to be

Hsm =
1

2E


V




0 0 0 0

0 ∆21 0 0

0 0 ∆31 0

0 0 0 ∆41


V † +




A 0 0 0

0 0 0 0

0 0 Aε 0

0 0 0 A′







=
1

2E


Ṽ




0 0 0 0

0 ∆̃21 0 0

0 0 ∆̃31 0

0 0 0 ∆̃41


 Ṽ † +BI


 , (1.4)

where V and Ṽ denote the 4 × 4 lepton flavor mixing matrix in vacuum and matter,

respectively, A′ = −2EVµ =
√

2GFNnE, ∆41 = m2
4−m2

1, and ∆̃41 = m̃2
4−m̃2

1 with m4 and

m̃4 being the sterile neutrino mass in vacuum and matter, respectively. The existence of

an extra sterile neutrino can make the neutrino flavor mixing in dense matter very different

from the standard three-flavor mixing scheme.

The remaining parts of this paper are organized as follows. In section 2, we include the

radiative corrections and derive the corresponding expressions of ∆̃ij , |Ũαi|2 and ŨαiŨ
∗
βi in
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matter in the standard three-flavor mixing scheme. The asymptotic behaviors of ∆̃ij and

|Ũαi|2 and neutrino oscillations in dense matter are analytically and numerically investi-

gated in detail. In section 3, we extend our discussion to the (3 + 1) flavor mixing scheme.

Section 4 is devoted to a brief summary.

2 The standard three-flavor mixing scheme

In the standard three-flavor mixing scheme, the exact formulas of ∆̃ij without radiative

corrections have been given in refs. [28–30]. Considering radiative correction effects, we

derive the eigenvalues of Hm in eq. (1.3) and express the two independent effective mass-

squared differences ∆̃ij (for ij = 21, 31) as

∆̃21 =
2

3

√
x2 − 3y

√
3 (1− z2) ,

∆̃31 =
1

3

√
x2 − 3y

[
3z +

√
3 (1− z2)

]
, (2.1)

for the case of normal mass ordering (NMO) with m1 < m2 < m3; or

∆̃21 =
1

3

√
x2 − 3y

[
3z −

√
3 (1− z2)

]
,

∆̃31 = −2

3

√
x2 − 3y

√
3 (1− z2) , (2.2)

for the case of inverted mass ordering (IMO) case with m3 < m1 < m2, where

x = ∆21 + ∆31 +A(1 + ε) ,

y = ∆21∆31 +A
{

∆21

[
1− |Ue2|2 + ε

(
1− |Uτ2|2

)]

+∆31

[(
1− |Ue3|2

)
+ ε
(
1− |Uτ3|2

)]}
+A2ε ,

z = cos


1

3
arccos

2x3 − 9xy + 27d

2

√
(x2 − 3y)3


 (2.3)

with d = A∆21∆31(|Ue1|2 + ε|Uτ1|2) +A2ε(|Uµ2|2∆21 + |Uµ3|2∆31). Taking the trace of Hm

yields

B =
1

3

[
∆21 + ∆31 +A (1 + ε)− ∆̃21 − ∆̃31

]
. (2.4)

The unitarity conditions of Ũ and the sum rules derived from Hm and H2
m, constitute a

set of linear equations of ŨαiŨ
∗
βi (for α, β = e, µ, τ and i = 1, 2, 3):

∑

i

ŨαiŨ
∗
βi = δαβ ,

∑

i

∆̃i1ŨαiŨ
∗
βi =

∑

i

∆i1UαiU
∗
βi +Aαβ −Bδαβ ,

∑

i

∆̃i1

(
∆̃i1 + 2B

)
ŨαiŨ

∗
βi =

∑

i

∆i1 (∆i1 +Aαα +Aββ)UαiU
∗
βi +A2

αβ −B2δαβ , (2.5)
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where Aαβ stand for the (α, β) element of the matter potential matrix A ≡ Diag{A, 0, Aε}.
Taking α = β and solving eq. (2.5), we obtain

|Ũαi|2 =
1

∏
k 6=i

∆̃ik

∑

j

(
F ijα |Uαj |2

)
(2.6)

with

F ijα =
∏

k 6=i

(
∆j1 − ∆̃k1 −B +Aαα

)
, (2.7)

where α = e, µ, τ and i, j, k = 1, 2, 3. Similarly, in the case of α 6= β, ŨαiŨ
∗
βi can be derived

from eq. (2.5):

ŨαiŨ
∗
βi =

1
∏
k 6=i

∆̃ik

∑

m=1,2

(
F imαβUαmU

∗
βm

)
(2.8)

with

F imαβ = ∆3m

(
∆n1 − ∆̃i1 −B +Aγγ

)
, (2.9)

where (α, β, γ) run over (e, µ, τ) and n 6= m = 1, 2. Note that Ũα1Ũ
∗
β1, Ũα2Ũ

∗
β2 and Ũα3Ũ

∗
β3

for α 6= β constitute the effective Dirac leptonic unitarity triangle in the complex plane.

From eq. (2.8), it is straightforward to check that the Naumov relation J̃ ∆̃21∆̃31∆̃32 =

J∆21∆31∆32 [31] still holds, where J and J̃ are the Jarlskog invariants [32] in vacuum

and in matter, respectively,

Im(UαiUβjU
∗
αjU

∗
βi) = J

∑

γ

εαβγ
∑

k

εijk ,

Im(ŨαiŨβjŨ
∗
αjŨ

∗
βi) = J̃

∑

γ

εαβγ
∑

k

εijk , (2.10)

with εαβγ and εijk being three-dimension Levi-Civita symbols. The only difference due

to the radiative corrections in the exact formulas of ∆̃ij , |Ũαi|2 and ŨαiŨ
∗
βi above is the

appearance of the term Aττ = Aε. By setting ε = 0, one can turn off the radiative

corrections and get the corresponding expressions of ∆̃ij , |Ũαi|2 and ŨαiŨ
∗
βi in the previous

literature [30, 33–35]. With the help of eqs. (2.1), (2.2) and (2.8), we can directly write

out the probabilities of the να → νβ (for α, β = e, µ, τ ) oscillations in matter

P̃αβ = δαβ − 4
∑

i<j

Re
(
ŨαiŨ

∗
βiŨ

∗
αjŨβj

)
sin2

(
∆̃jiL

4E

)

+ 2
∑

i<j

Im
(
ŨαiŨ

∗
βiŨ

∗
αjŨβj

)
sin

(
∆̃jiL

2E

)
, (2.11)

where α, β = e, µ, τ ; i, j = 1, 2, 3; and L is the neutrino oscillation length. Note that

the results in eqs. (2.1)–(2.11) are only valid for a neutrino beam. When it comes to an

antineutrino beam, we need to do the replacements U → U∗ and A → −A. According to

the exact expressions of ∆̃ij , |Ũαi|2 and ŨαiŨ
∗
βi in eqs. (2.1), (2.2) (2.6) and (2.8), we study
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the neutrino flavor mixing in dense matter in the standard three-flavor mixing scheme.

Both neutrinos and antineutrinos with the normal or inverted mass ordering (i.e., cases

(NMO, ν), (IMO, ν), (NMO, ν) and (IMO, ν)) will be considered separately. Numerically,

we take the standard parametrization of U ,

U =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23


 , (2.12)

and input the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) in refs. [36, 37]:

• NMO: θ12 = 33.82◦, θ13 = 8.60◦, θ23 = 48.6◦, δ = 221◦, ∆21 = 7.39 × 10−5 eV2 and

∆31 = 2.528× 10−3 eV2;

• IMO: θ12 = 33.82◦, θ13 = 8.64◦, θ23 = 48.8◦, δ = 282◦, ∆21 = 7.39 × 10−5 eV2 and

∆31 = −2.436× 10−3 eV2.

Analytically, we treat ∆21/A, ∆31/A and ε as small quantities and make perturbative

expansions of ∆̃ij and |Ũαi|2. Thus the analytical approximations in this section only

apply to the range A� ∆31.

2.1 (NMO, ν)

Let us first consider the case of a neutrino beam with normal mass ordering. The corre-

sponding evolution of ∆̃ij and |Ũαi|2 with the matter effect parameter A are illustrated

in the upper left panel of figure 1 and figure 2, respectively. We find that the radiative

corrections may significantly affect the values of ∆̃ij and |Ũαi|2 only if A is big enough (for

example, A > 1 eV2). This can be revealed more clearly by expanding the exact expressions

of ∆̃ij and |Ũαi|2 in terms of ∆21/A, ∆31/A and ε. Only keeping the first order of these

quantities, we simplify ∆̃ij in eq. (2.1) as

∆̃21 ' ξ ,

∆̃31 ' A−
1

2

[
Aε+ (1− 3|Ue2|2)∆21 + (1− 3|Ue3|2)∆31 − ξ

]
, (2.13)

with

ξ =
{[(

1− |Ue2|2
)

∆21 +
(
1− |Ue3|2

)
∆31 +Aε

]2 − 4Aε
(
|Uµ2|2∆21 + |Uµ3|2∆31

)

− 4|Ue1|2∆21∆31

}1/2
. (2.14)

According to eq. (2.13), it becomes clear that if A is big enough, ∆̃21 will increase with

A instead of taking a fixed value in the case without radiative corrections. The reason

why the radiation corrections to ∆̃31 are not significant is just that the much smaller Aε

term appears in the next-to-leading order with the leading order being A. By performing

– 5 –
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A (eV2) A (eV2)

(NMO, ν) (NMO, ν)

(IMO, ν) (IMO, ν)

∆̃21, ǫ = 5× 10−5

∆̃21, ǫ = 0

|∆̃31|, ǫ = 5× 10−5

|∆̃31|, ǫ = 0

Figure 1. In the standard three-flavor mixing scheme, the illustration of how the effective neutrino

mass-squared differences ∆̃21 and |∆̃31| evolve with the matter effect parameter A in the cases with

or without radiative corrections, where the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) in refs. [36, 37]

have been input.

perturbative expansions of eq. (2.6) in terms of ∆21/A, ∆31/A and ε and only keeping the

leading order, |Ũαi|2 are approximately expressed as

|Ũe1|2 ' |Ũe2|2 ' |Ũµ3|2 ' |Ũτ3|2 ' 0 , |Ũe3|2 ' 1 ,

|Ũµ1|2 ' |Ũτ2|2 '
1

2
+
Aε+ ∆21

(
|Uτ2|2 − |Uµ2|2

)
+ ∆31

(
|Uτ3|2 − |Uµ3|2

)

2ξ
,

|Ũµ2|2 ' |Ũτ1|2 '
1

2
−
Aε+ ∆21

(
|Uτ2|2 − |Uµ2|2

)
+ ∆31

(
|Uτ3|2 − |Uµ3|2

)

2ξ
. (2.15)

This means that the neutrino flavor mixing in dense matter can be approximately described

by only one degree of freedom, as having been pointed out in ref. [24]:

Ũ
∣∣∣
A�∆31

'




0 0 1

cos θ sin θ 0

− sin θ cos θ 0


 , (2.16)
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A (eV2)A (eV2) A (eV2)

(NMO, ν)

ǫ = 5× 10−5

ǫ = 0

|Ũe1|2

|Ũµ1|2

|Ũτ1|2

|Ũe2|2

|Ũµ2|2

|Ũτ2|2

|Ũe3|2

|Ũµ3|2

|Ũτ3|2

Figure 2. In the standard three-flavor mixing scheme, the illustration of how |Ũαi|2 (for α = e,

µ, τ and i = 1, 2, 3) evolve with the matter effect parameter A in the case (NMO, ν) with or without

radiative corrections, where the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) in refs. [36, 37] have been

input.

where θ ∈ [0, π/2] and

tan2 θ =
|Ũµ2|2

|Ũµ1|2
'

ξ −Aε−∆21

(
|Uτ2|2 − |Uµ2|2

)
−∆31

(
|Uτ3|2 − |Uµ3|2

)

ξ +Aε+ ∆21

(
|Uτ2|2 − |Uµ2|2

)
+ ∆31

(
|Uτ3|2 − |Uµ3|2

) . (2.17)

Similarly, the neutrino oscillation probability P̃αβ in eq. (2.11) can be approximately

written as

P̃ee ' 1, P̃eµ ' 0, P̃eτ ' 0,

P̃µe ' 0, P̃µµ ' 1− sin2 2θ sin2 ∆̃21L

4E
, P̃µτ ' sin2 2θ sin2 ∆̃21L

4E
,

P̃τe ' 0, P̃τµ ' sin2 2θ sin2 ∆̃21L

4E
, P̃ττ ' 1− sin2 2θ sin2 ∆̃21L

4E
, (2.18)

where ∆̃21 is taken from eq. (2.13) and sin2 2θ = 4|Ũµ1|2(1−|Ũµ1|2) with |Ũµ1|2 being taken

from eq. (2.15). Note that eq. (2.18) is similar to eq. (2.4) in ref. [25] except that we include
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< 10−7 10−7 − 10−6 10−6 − 10−5 10−5 − 10−4

10−4 − 10−3 10−3 − 10−2 10−2 − 10−1 > 10−1

L
/
E

(k
m
/G

eV
)

L
/E

(k
m
/G

eV
)

L
/E

(k
m
/G

eV
)

A/∆31 A/∆31 A/∆31

∆P̃ee

∆P̃µe

∆P̃τe

∆P̃eµ

∆P̃µµ

∆P̃τµ

∆P̃eτ

∆P̃µτ

∆P̃ττ

Figure 3. The absolute errors of our analytical approximations in eq. (2.18), where the best-fit

values of (θ12, θ13, θ23, δ,∆21,∆31) in ref. [36, 37] and ε ' 5× 10−5 [26] have been input.

radiative corrections in θ and ∆̃21. In order to numerically test the accuracies, we define

the absolute error of P̃αβ as ∆P̃αβ = |(P̃αβ)Exact−(P̃αβ)Approximate|, where (P̃αβ)Exact stand

for the exact results of P̃αβ and (P̃αβ)Approximate represent the approximate results of P̃αβ .

The absolute errors of P̃αβ in eq. (2.18) with different L/E and A/∆31 are demonstrated

in figure 3. Similar to the case without radiative corrections discussed in ref. [25], the

analytical expressions of P̃αβ in eq. (2.18) are accurate enough in most of the parameter

space. For the upper left part in each subgraph of figure 3, we need to keep higher orders

of ∆21/A, ∆31/A and ε, or just make perturbative expansions in terms of ∆21/A and ε to

improve the accuracies of P̃αβ .
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(NMO, ν) (IMO, ν) (NMO, ν) (IMO, ν)

∆̃21 Aε A(1− ε) A(1− ε) Aε

∆̃31 A −Aε A −A(1− ε)

Ũ




0 0 1

1 0 0

0 1 0







0 1 0

0 0 1

1 0 0







1 0 0

0 0 1

0 1 0







0 0 1

0 1 0

1 0 0




Table 1. In the standard three-flavor mixing scheme, the analytical expressions of ∆̃ij (for ij =

21, 31) and Ũ in the A→∞ limit, where we only show the terms of order O(A) for ∆̃ij .

To be more explicit, if the Aε term is not bigger than the ∆21 term in eq. (2.15), we can

further simplify |Ũαi|2 (for αi = µ1, µ2, τ1, τ2) as |Ũµ1|2 ' |Ũτ2|2 ' |Uτ3|2/(|Uµ3|2 + |Uτ3|2)

and |Ũµ2|2 ' |Ũτ1|2 ' |Uµ3|2/(|Uµ3|2 + |Uτ3|2). This is equivalent to the asymptotic values

of |Ũαi|2 (for αi = µ1, µ2, τ1, τ2) in the A → ∞ limit when radiative corrections are not

taken into account (the blue dashed line in figure 2). As the increase of A, the Aε term in

eq. (2.15) becomes non-negligible. If the Aε term and ∆31 term are of the same order, the

relation
d
(
|Ũµ1|2

)

dA
' −

d
(
|Ũµ2|2

)

dA
'

2
(
1− |Uµ3|2

)
|Uµ3|2ε

∆31

, (2.19)

can be derived. This means θ = arctan(|Ũµ2|/|Ũµ1|) will decrease with the increase of A

due to the existence of the radiative correction parameter ε. In the A→∞ limit, it is easy

to infer from eqs. (2.15) and (2.17) that |Ũαi|2 trivially take 0 or 1 and θ is approaching

zero, implying that all the three flavors do not oscillate into one another. Thus it makes

no sense to discuss lepton flavor mixing in this extreme case. Considering the four cases

(NMO, ν), (IMO, ν), (IMO, ν) and (IMO, ν) separately, we summarize the corresponding

analytical expressions of ∆̃ij (for ij = 21, 31) and Ũ in the A → ∞ limit in table 1 while

the other three cases will be discussed later.

2.2 (IMO, ν)

Given a neutrino beam with inverted mass ordering, the evolution of ∆̃ij and |Ũαi|2 with A

are illustrated in the lower left panel of figure 1 and figure 4, respectively. Note that there

is no intersections between ∆̃21 and ∆̃31 in cases (IMO, ν) and (IMO, ν) in figure 1 with

|∆̃31| = −∆̃31 being shown in fact. In the case (IMO, ν), we also note that ∆̃21 > |∆̃31|
holds when the matter effect parameter A is big enough. Analytically, expanding eq. (2.2)

in ∆21/A, ∆31/A and ε directly leads to

∆̃21 ' A−
1

2

[
Aε+ (1− 3|Ue2|2)∆21 + (1− 3|Ue3|2)∆31 + ξ

]
,

∆̃31 ' −ξ , (2.20)

with ξ being defined in eq. (2.14). Consistent with figure 1, ∆̃31 approaches −Aε instead

of a constant value in the A→∞ limit. To understand the asymptotic behaviors of |Ũαi|2
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A (eV2)A (eV2) A (eV2)

(IMO, ν)

ǫ = 5× 10−5

ǫ = 0

|Ũe1|2

|Ũµ1|2

|Ũτ1|2

|Ũe2|2

|Ũµ2|2

|Ũτ2|2

|Ũe3|2

|Ũµ3|2

|Ũτ3|2

Figure 4. In the standard three-flavor mixing scheme, the illustration of how |Ũαi|2 (for α =

e, µ, τ and i = 1, 2, 3) evolve with the matter effect parameter A in the case (IMO, ν) with or

without radiative corrections, where the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) in ref. [36, 37]

have been input.

in the A→∞ limit shown in figure 4, we expand eq. (2.6) and get

|Ũe1|2 ' |Ũe3|2 ' |Ũµ2|2 ' |Ũτ2|2 ' 0 , |Ũe2|2 ' 1 ,

|Ũµ1|2 ' |Ũτ3|2 '
1

2
−
Aε+ ∆21

(
|Uτ2|2 − |Uµ2|2

)
+ ∆31

(
|Uτ3|2 − |Uµ3|2

)

2ξ
,

|Ũµ3|2 ' |Ũτ1|2 '
1

2
+
Aε+ ∆21

(
|Uτ2|2 − |Uµ2|2

)
+ ∆31

(
|Uτ3|2 − |Uµ3|2

)

2ξ
. (2.21)

So one can use only one parameter to approximately describe lepton flavor mixing,

Ũ
∣∣∣
A�∆31

'




0 1 0

cos θ 0 sin θ

− sin θ 0 cos θ


 , (2.22)
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where θ ∈ [0, π/2] and

tan2 θ =
|Ũµ3|2

|Ũµ1|2
'

ξ +Aε+ ∆21

(
|Uτ2|2 − |Uµ2|2

)
+ ∆31

(
|Uτ3|2 − |Uµ3|2

)

ξ −Aε−∆21

(
|Uτ2|2 − |Uµ2|2

)
−∆31

(
|Uτ3|2 − |Uµ3|2

) . (2.23)

The analytical approximations of P̃αβ in eq. (2.11) turn out to be

P̃ee ' 1, P̃eµ ' 0, P̃eτ ' 0,

P̃µe ' 0, P̃µµ ' 1− sin2 2θ sin2 ∆̃31L

4E
, P̃µτ ' sin2 2θ sin2 ∆̃31L

4E
,

P̃τe ' 0, P̃τµ ' sin2 2θ sin2 ∆̃31L

4E
, P̃ττ ' 1− sin2 2θ sin2 ∆̃31L

4E
, (2.24)

where ∆̃31 comes from eq. (2.20) and sin2 2θ = 4|Ũµ1|2(1 − |Ũµ1|2) with |Ũµ1|2 coming

from eq. (2.21). For simplicity, we do not show the accuracies of eq. (2.24), which are very

similar to the case (NMO, ν) in figure 3. Comparing eq. (2.24) with eq. (2.18), we find that

it is impossible to discriminate the normal mass ordering from the inverted mass ordering

from neutrino oscillations if the matter density is very big.

We also notice that if the ∆21 term and Aε term in eq. (2.21) are of the same or-

der, one can omit them and get |Ũµ1|2 ' |Ũτ3|2 ' |Uτ3|2/(|Uµ3|2 + |Uτ3|2) and |Ũµ3|2 '
|Ũτ1|2 ' |Uµ3|2/(|Uµ3|2 + |Uτ3|2). This corresponds to the fixed values of |Ũαi|2 (for

αi = µ1, µ3, τ1, τ3) in the A → ∞ limit if radiative corrections are not taken into ac-

count (the blue dashed line in figure 4). As the increase of A, the Aε term will gradually

dominate and the neutrino oscillation behaviors can be very sensitive to A. In the limit of

A→∞, θ approaches π/2 and there will be no neutrino oscillation phenomenon.

2.3 (NMO, ν)

Considering an antineutrino beam with normal mass ordering, we make the replacements

A → −A and U → −U∗ in eqs. (2.1) and (2.6), and draw the corresponding evolution

of ∆̃ij and |Ũαi|2 with A in the upper right panel of figure 1 and figure 5, respectively.

Note that we always have ∆̃31 > ∆̃21 in this case although the difference between them is

too small to be shown clearly in figure 1 if A is big enough. The radiative corrections to

both ∆̃21 and ∆̃31 are very small, which can be analytically understood. By performing

perturbative expansions, ∆̃ij (for ij = 21, 31) in eq. (2.1) are reduced to

∆̃21 ' A−
1

2

[
Aε− (1− 3|Ue2|2)∆21 − (1− 3|Ue3|2)∆31 + ξ

]
,

∆̃31 ' A−
1

2

[
Aε− (1− 3|Ue2|2)∆21 − (1− 3|Ue3|2)∆31 − ξ

]
(2.25)

with

ξ =
{ [(

1− |Ue2|2
)

∆21 +
(
1− |Ue3|2

)
∆31 −Aε

]2
+ 4Aε

(
|Uµ2|2∆21 + |Uµ3|2∆31

)

− 4|Ue1|2∆21∆31

}1/2
. (2.26)
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ǫ = 5× 10−5

ǫ = 0
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|Ũµ1|2
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|Ũe3|2

|Ũµ3|2
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Figure 5. In the standard three-flavor mixing scheme, the illustration of how |Ũαi|2 (for α = e,

µ, τ and i = 1, 2, 3) evolve with the matter effect parameter A in the case (NMO, ν) with or without

radiative corrections, where the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) in refs. [36, 37] have been

input.

From eq. (2.25), it is clear that the leading order of ∆̃21 and ∆̃31 is A and the radiative

corrections in the next-to-leading order do not matter a lot. The only difference between

eq. (2.26) (the expression of ξ in the case (NMO, ν)) and eq. (2.14) (the expression of ξ in

the case (NMO, ν)) is the sign of ε. Similarly, |Ũαi|2 can be expanded as

|Ũe2|2 ' |Ũe3|2 ' |Ũµ1|2 ' |Ũτ1|2 ' 0 , |Ũe1|2 ' 1 ,

|Ũµ2|2 ' |Ũτ3|2 '
1

2
−
Aε−∆21

(
|Uτ2|2 − |Uµ2|2

)
−∆31

(
|Uτ3|2 − |Uµ3|2

)

2ξ
,

|Ũµ3|2 ' |Ũτ2|2 '
1

2
+
Aε−∆21

(
|Uτ2|2 − |Uµ2|2

)
−∆31

(
|Uτ3|2 − |Uµ3|2

)

2ξ
, (2.27)

namely,

Ũ
∣∣∣
A�∆31

'




1 0 0

0 cos θ sin θ

0 − sin θ cos θ


 , (2.28)
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where θ ∈ [0, π/2] and

tan2 θ =
|Ũµ3|2

|Ũµ2|2
'

ξ +Aε−∆21

(
|Uτ2|2 − |Uµ2|2

)
−∆31

(
|Uτ3|2 − |Uµ3|2

)

ξ −Aε+ ∆21

(
|Uτ2|2 − |Uµ2|2

)
+ ∆31

(
|Uτ3|2 − |Uµ3|2

) . (2.29)

The corresponding neutrino oscillation probabilities in matter are approximately

P̃ee ' 1, P̃eµ ' 0, P̃eτ ' 0,

P̃µe ' 0, P̃µµ ' 1− sin2 2θ sin2 ∆̃32L

4E
, P̃µτ ' sin2 2θ sin2 ∆̃32L

4E
,

P̃τe ' 0, P̃τµ ' sin2 2θ sin2 ∆̃32L

4E
, P̃ττ ' 1− sin2 2θ sin2 ∆̃32L

4E
, (2.30)

where sin2 2θ = |Ũµ2|2(1 − |Ũµ2|2) and ∆̃32 ' ξ from eq. (2.25). The accuracies of P̃αβ in

eq. (2.30) are similar to the case (NMO, ν) in figure 3.

If A is small enough, we can ignore the smaller terms of ∆21 and Aε in eq. (2.27), and

obtain |Ũµ2|2 ' |Ũτ3|2 ' |Uτ3|2/(|Uµ3|2 + |Uτ3|2) and |Ũµ3|2 ' |Ũτ2|2 ' |Uµ3|2/(|Uµ3|2 +

|Uτ3|2). This is consistent with the fixed values of |Ũαi|2 (for αi = µ2, µ3, τ2, τ3) in the

A → ∞ limit if radiative corrections are not included (the blue dashed line in figure 5).

If the term Aε too big to be abandoned, the neutrino flavor mixing can be significantly

affected by A. In the A → ∞ limit, |Ũαi|2 trivially take 0 or 1 and θ approaches π/2,

leading to no neutrino oscillations.

2.4 (IMO, ν)

Similarly, in the case (IMO, ν), i.e. an antineutrino beam with inverted mass ordering, we

illustrate the evolution of ∆̃ij and |Ũαi|2 in the lower right panel of figure 1 and figure 6, re-

spectively. Through making perturbative expansions, ∆̃ij and |Ũαi|2 can be approximately

expressed as

∆̃21 ' ξ ,

∆̃31 ' −A+
1

2

[
Aε− (1− 3|Ue2|2)∆21 − (1− 3|Ue3|2)∆31 + ξ

]
, (2.31)

and

|Ũe1|2 ' |Ũe2|2 ' |Ũµ3|2 ' |Ũτ3|2 ' 0 , |Ũe3|2 ' 1 ,

|Ũµ1|2 ' |Ũτ2|2 '
1

2
−
Aε−∆21

(
|Uτ2|2 − |Uµ2|2

)
−∆31

(
|Uτ3|2 − |Uµ3|2

)

2ξ
,

|Ũµ2|2 ' |Ũτ1|2 '
1

2
+
Aε−∆21

(
|Uτ2|2 − |Uµ2|2

)
−∆31

(
|Uτ3|2 − |Uµ3|2

)

2ξ
, (2.32)

where ξ has been defined in eq. (2.26). From either figure 1 or eq. (2.31), it is clear that

the radiative corrections to ∆̃21 are very important in this case if the matter density is big
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ǫ = 5× 10−5
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|Ũµ1|2
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Figure 6. In the standard three-flavor mixing scheme, the illustration of how |Ũαi|2 (for α = e,

µ, τ and i = 1, 2, 3) evolve with the matter effect parameter A in the case (IMO, ν) with or without

radiative corrections, where the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) in refs. [36, 37] have

been input.

enough. According to eq. (2.32), the lepton flavor mixing matrix can be approximately

parametrized as:

Ũ
∣∣∣
A�∆31

'




0 0 1

cos θ sin θ 0

− sin θ cos θ 0


 , (2.33)

where θ ∈ [0, π/2] and

tan2 θ '
ξ +Aε−∆21

(
|Uτ2|2 − |Uµ2|2

)
−∆31

(
|Uτ3|2 − |Uµ3|2

)

ξ −Aε+ ∆21

(
|Uτ2|2 − |Uµ2|2

)
+ ∆31

(
|Uτ3|2 − |Uµ3|2

) . (2.34)

The corresponding analytical approximations of P̃αβ are the same as eq. (2.18) except

that ∆̃21 and sin2 2θ = |Ũµ1|2(1 − |Ũµ1|2) should be taken from eq. (2.31) and eq. (2.32),

respectively. Comparing eq. (2.18) and eq. (2.30), we find that it is impossible to discrimi-
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nate between the normal mass ordering and the inverted mass ordering from antineutrino

oscillations if the matter density is very big.

If the ∆21 term and the Aε term in eq. (2.32) are of the same order, we can omit

them and arrive at |Ũµ1|2 ' |Ũτ2|2 ' |Uµ3|2/(|Uµ3|2 + |Uτ3|2) and |Ũµ2|2 ' |Ũτ1|2 '
|Uτ3|2/(|Uµ3|2+|Uτ3|2). This coincides with the fixed values of |Ũαi|2 (for αi=µ1, µ2, τ1, τ2)

in the A → ∞ limit if radiative corrections are not included (the blue dashed line in

figure 6). If the term Aε is too big to be omitted, it will affect the neutrino flavor mixing

a lot. In the A→∞, θ approaches π/2 and no neutrino oscillations between νe, νµ and ντ
will happen.

3 The (3 + 1) flavor mixing scheme

Now we turn to the (3 + 1) flavor mixing scheme with one more light sterile neutrino.

The corresponding Hamiltonian Hsm describing the propagation of neutrinos in matter has

been shown in eq. (1.4). Analogous to ref. [38], the eigenvalues λ of Hsm can be derived by

solving the equation

λ4 + bλ3 + cλ2 + dλ+ e = 0 , (3.1)

where the expressions of the relevant coefficients are as follows

b = −
∑

i

∆i1 −A(1 + ε)−A′ ,

c =
∑

i<j

∆i1∆j1 +A
∑

i

∆i1(1− |Vei|2) + εA
∑

i

∆i1(1− |Vτi|2)

+A′
∑

i

∆i1(1− |Vsi|2) +AA′(1 + ε) +A2ε ,

d = −∆21∆31∆41 −
∑

i,j,k

ε2
ijk

2
∆i1∆j1(A|Vek|2 + εA|Vτk|2 +A′|V 2

sk|)

−AA′
∑

i

∆i1(|Vµi|2 + |Vτi|2)− εA2
∑

i

∆i1(|Vµi|2 + |Vsi|2)

− εAA′
∑

i

∆i1(|Vei|2 + |Vµi|2)− εA2A′ ,

e = ∆21∆31∆41(A|Ve1|2 + εA|Vτ1|2 +A′|Vs1|2) +AA′
∑

i,j,k,l

ε2
ijkl

4
∆i1∆j1C

kl
es

+ εA2
∑

i,j,k,l

ε2
ijkl

4
∆i1∆j1C

kl
eτ + εAA′

∑

i,j,k,l

ε2
ijkl

4
∆i1∆j1C

kl
sτ + εA2A′

∑

i

∆i1|Vµi|2 (3.2)

with i, j, k, l = 1, 2, 3, 4; εijkl being four-dimension Levi-Civita symbol; and

Cijαβ = |VαiVβj − VαjVβi|2 (3.3)

for αβ = es, eτ, sτ . By defining λ1 < λ2 < λ3 < λ4 for the normal mass ordering and

λ3 < λ1 < λ2 < λ4 for the inverted ordering, we have ∆̃ij = λi − λj . After a tedious but
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straightforward calculation, the exact expressions of ∆̃ij (for ij = 21, 31, 41) are [38]

∆̃21 =

√
−4S2 − 2p+

q

S
,

∆̃31 = 2S +
1

2

(√
−4S2 − 2p+

q

S
−
√
−4S2 − 2p− q

S

)
,

∆̃41 = 2S +
1

2

(√
−4S2 − 2p+

q

S
+

√
−4S2 − 2p− q

S

)
(3.4)

for the normal mass ordering (m1 < m2 < m3 < m4) and

∆̃21 = 2S − 1

2

(√
−4S2 − 2p+

q

S
+

√
−4S2 − 2p− q

S

)
,

∆̃31 = −
√
−4S2 − 2p+

q

S
,

∆̃41 = 2S − 1

2

(√
−4S2 − 2p+

q

S
−
√
−4S2 − 2p− q

S

)
(3.5)

for the inverted mass ordering (m3 < m1 < m2 < m4), where

p= c− 3b2

8
, q=

b3

8
− 1

2
bc+d,

S=
1

2

√
−2

3
p+

2

3

√
c2−3bd+12ecos

{
1

3

[
arccos

(
2c3−9bcd+27b2e+27d2−72ce

2(c2−3bd+12e)3/2

)]}
.

(3.6)

Note that the formulas of ∆̃ij in eq. (3.4) are the same as eq. (3.4) in ref. [38] except that

the coefficients b, c, d and e in eq. (3.2) include radiative corrections. By taking the trace

of Hsm, B can be expressed as

B =
1

4

[
∆21 + ∆31 + ∆41 +A(1 + ε) +A′ − ∆̃21 − ∆̃31 − ∆̃41

]
. (3.7)

By considering the unitarity conditions of Ṽ and the sum rules derived from Hsm, (Hsm)2 and

(Hsm)3, we get a full set of linear equations of ṼαiṼ
∗
βi (for i = 1, 2, 3, 4 and α, β = e, µ, τ, s),

∑

i

ṼαiṼ
∗
βi = δαβ ,

∑

i

∆̃i1ṼαiṼ
∗
βi =

∑

i

∆i1VαiV
∗
βi+Aαβ−Bδαβ ,

∑

i

∆̃i1

(
∆̃i1+2B

)
ṼαiṼ

∗
βi =

∑

i

∆i1 (∆i1+Aαα+Aββ)VαiV
∗
βi+A2

αβ−B2δαβ ,

∑

i

∆̃i1

(
∆̃2
i1+3B∆̃i1+3B2

)
ṼαiṼ

∗
βi =

∑

i

[
∆3
i1+

3

2
∆2
i1

(
Aαα+Aββ

)
+∆i1

(
A2
αα

+A2
ββ+AααAββ

)
+A3

αβ

]
VαiV

∗
βi

−B3δαβ+Cαβ , (3.8)
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whereAαβ denotes the (α, β) element of the matter potential matrix A = Diag{A, 0, Aε,A′}
and

Cαβ = −1

2

∑

m,n,γ

∆2
mnVαmV

∗
γmVγnV

∗
βnAγγ (3.9)

with m,n = 1, 2, 3, 4 and α, β, γ = e, µ, τ, s. According to eq. (3.8), one can directly derive

the exact expressions of |Ṽαi|2 and ṼαiṼ
∗
βi, which have been given in refs. [38, 39]. We

rewrite them as

|Ṽαi|2 =
1

∏
k 6=i

∆̃ik

∑

j

(
F ijα |Vαj |2 + Cαα

)
(3.10)

with

F ijα =
∏

k 6=i

(
∆j1 − ∆̃k1 −B +Aαα

)
, (3.11)

and

ṼαiṼ
∗
βi =

1
∏
k 6=i

∆̃ik

∑

j

(
F ijαβVαjV

∗
βj + Cαβ

)
(3.12)

with

F ijαβ =
1

2

[
−
(

∆j1 − ∆̃i1 −B
) (
A2
αα +A2

ββ + 4AααAββ
)

+
∏

k 6=i

(
∆j1 − ∆̃k1 −B +Aαα +Aββ

)
+
∏

k 6=i

(
∆j1 − ∆̃k1 −B

)]
, (3.13)

where α, β = e, µ, τ, s; i, j, k = 1, 2, 3, 4, B is taken from eq. (3.7). Comparing with the

formulas of |Ṽαi|2 and ṼαiṼ
∗
βi in refs. [38, 39], we get rid of the uneasy terms m2

i − m̃2
j

and include the radiative correction effects in eqs. (3.10) and (3.12). With the help of

eqs. (3.4), (3.5) and (3.12), we can directly write out the probability of να → νβ (for

α, β = e, µ, τ, s) in a medium:

P̃αβ = δαβ − 4
∑

i<j

Re
(
ṼαiṼ

∗
βiṼ

∗
αj Ṽβj

)
sin2

(
∆̃jiL

4E

)

+ 2
∑

i<j

Im
(
ṼαiṼ

∗
βiṼ

∗
αj Ṽβj

)
sin

(
∆̃jiL

2E

)
(3.14)

with i, j = 1, 2, 3, 4. Note that the results in eq. (1.4) and eqs. (3.1)–(3.14) only apply to a

neutrino beam propagating in matter. When considering an antineutrino beam, we need to

do the replacements A→ −A, A′ → −A′ and V → V ∗. Similar to the standard three-flavor

mixing scheme, we discuss the (3 + 1) flavor mixing in dense matter by considering the

following four cases separately: case (NMO, ν3+1), case (IMO, ν3+1), case (NMO, ν3+1)

and case (IMO, ν3+1). In the following discussion, Ne = Nn = Np (i.e., A′ = −A/2 and

ε ' 5× 10−5) is assumed and V is parametrized as

V = R34(θ34, δ34) ·R24(θ24, δ24) ·R14(θ14, δ14) · U , (3.15)

where Rij(θij , δij) (for ij = 13, 24, 34) represent the 4 × 4 two-dimension rotation matri-

ces in the (i, j) complex plane with the mixing angle θij and the CP-violating phase δij ,

and U has been defined in eq. (2.12). Numerically, we typically take the best-fit values
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Figure 7. In the (3 + 1) mixing scheme, the illustration of how the effective neutrino mass-squared

differences ∆̃21, |∆̃31| and ∆̃41 evolve with the matter effect parameter A in the case with or without

radiative corrections, where we typically take the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) [36, 37],

and for the active-sterile neutrino mixing part (θ14, θ24, θ34) = (6.66◦, 7.81◦, 0), δ14 = δ24 = δ34 = 0,

∆41 = 1.32 eV2 [40].

of (θ12, θ13, θ23, δ,∆21,∆31) shown below eq. (2.12), and (θ14, θ24, θ34) = (6.66◦, 7.81◦, 0◦),

δ14 = δ24 = δ34 = 0 and ∆41 = 1.32 eV2 [40] for the active-sterile mixing part. Analytically,

we expand the exact expressions of ∆̃ij (for ij = 21, 31, 41) and |Ṽαi|2 (for α = e, µ, τ, s

and i = 1, 2, 3, 4) in eqs. (3.4), (3.5) and (3.10) in terms of ∆21/A, ∆31/A, ∆41/A and ε.

Thus the analytical approximations in this section are only valid for the A� ∆41 range.

3.1 (NMO, ν3+1)

Considering a neutrino beam with inverted mass ordering in the (3 + 1) flavor mixing

scheme, we illustrate how ∆̃ij (for ij = 21, 31, 41) and |Ṽαi|2 (for α = e, µ, τ, s and

i = 1, 2, 3, 4) evolve with the matter effect parameter A in the upper left panel of figure 7

and figure 8, respectively. Note that we always have ∆̃41 > ∆̃31 > ∆̃21 in cases (NMO,

ν3+1) and (NMO, ν3+1), implying that there is no intersection in the upper row of figure 7.

Comparing figure 2 and figure 7, the evolutions of |Ṽαi|2 (for α = e, µ, τ and i = 1, 2, 3)

with A in the (3+1) flavor mixing scheme are similar to those of |Ũαi|2 (for α = e, µ, τ and
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(NMO, ν3+1)

ǫ = 5× 10−5

ǫ = 0

A (eV2) A (eV2) A (eV2) A (eV2)

|Ṽe1|2

|Ṽµ1|2

|Ṽτ1|2

|Ṽs1|2

|Ṽe2|2

|Ṽµ2|2

|Ṽτ2|2

|Ṽs2|2

|Ṽe3|2

|Ṽµ3|2

|Ṽτ3|2

|Ṽs3|2

|Ṽe4|2

|Ṽµ4|2

|Ṽτ4|2

|Ṽs4|2

Figure 8. In the (3 + 1) mixing scheme, the illustration of how |Ṽαi|2 (for α = e, µ, τ, s and i =

1, 2, 3, 4) evolve with the matter effect parameter A in the case (NMO, ν3+1) with or without

radiative corrections, where we typically take the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) [36, 37],

and for the active-sterile neutrino mixing part (θ14, θ24, θ34) = (6.66◦, 7.81◦, 0), δ14 = δ24 = δ34 = 0,

∆41 = 1.32 eV2 [40].

i = 1, 2, 3) in the standard three-flavor mixing scheme if A is not big enough (for example,

A < 10−2 eV2). And it is the same case for ∆̃ij (for ij = 21, 31). However, if the matter

density is very big, the neutrino flavor mixing in (3+1) flavor mixing scheme can be very dif-

ferent from that in the standard three-flavor mixing scheme discussed in the last section. By

making perturbative expansions of eq. (3.4) in terms of ∆21/A, ∆31/A, ∆41/A and ε, we get

∆̃21 ' ξs ,

∆̃31 '
A

2
− 1

2

[
Aε− ξs +

(
1− |Ve2|2 − 3|Vs2|2

)
∆21 +

(
1− |Ve3|2 − 3|Vs3|2

)
∆31

+
(
1− |Ve4|2 − 3|Vs4|2

)
∆41

]
,

∆̃41 ' A−
1

2

[
Aε− ξs +

(
1− 3|Ve2|2 − |Vs2|2

)
∆21 +

(
1− 3|Ve3|2 − |Vs3|2

)
∆31

+
(
1− 3|Ve4|2 − |Vs4|2

)
∆41

]
, (3.16)
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where

ξs =
{ [(
|Vµ2|2 + |Vτ2|2

)
∆21 +

(
|Vµ3|2 + |Vτ3|2

)
∆31 +

(
|Vµ4|2 + |Vτ4|2

)
∆41 +Aε

]2

− 4Aε
(
|Vµ2|2∆21 + |Vµ3|2∆31 + |Vµ4|2∆41

)

− 4
(
∆21∆31C

14
es + ∆21∆41C

13
es + ∆31∆41C

12
es

)}1/2
. (3.17)

From eqs. (3.16) and (3.17), one can see that there are significant radiative corrections to

∆̃21 for the appearance of Aε in the leading order. Thus ∆̃21 will approximately approach

Aε instead of a constant value if A is big enough. We also notice that ∆̃21 has a mini-

mum value by observing the quadratic function of A inside the brace of eq. (3.17). The

corresponding expression of A is

A ' 1

ε

[(
|Vµ2|2 − |Vτ2|2

)
∆21 +

(
|Vµ3|2 − |Vτ3|2

)
∆31 +

(
|Vµ4|2 − |Vτ4|2

)
∆41

]
(3.18)

which can be simplified as A '
(
|Vµ4|2 − |Vτ4|2

)
∆41/ε ' 481 eV2 by considering

∆41 � ∆31 � ∆21 and the numerical input in figure 7.

By expanding eq. (3.10) in terms of ∆21/A, ∆31/A, ∆41/A and ε, we approximately

express |Ṽαi|2 as

|Ṽe1|2 ' |Ṽe2|2 ' |Ṽe3|2 ' 0 , |Ṽs1|2 ' |Ṽs2|2 ' |Ṽs4|2 ' 0 , |Ṽe4|2 ' |Ṽs3|2 ' 1 ,

|Ṽµ1|2 ' |Ṽτ2|2 '
1

2
+

1

2ξs

[
Aε+ ∆21

(
|Vτ2|2 − |Vµ2|2

)
+ ∆31

(
|Vτ3|2 − |Vµ3|2

)

+∆41

(
|Vτ4|2 − |Vµ4|2

)]
,

|Ṽµ2|2 ' |Ṽτ1|2 '
1

2
− 1

2ξs

[
Aε+ ∆21

(
|Vτ2|2 − |Vµ2|2

)
+ ∆31

(
|Vτ3|2 − |Vµ3|2

)

+∆41

(
|Vτ4|2 − |Vµ4|2

)]
,

|Ṽµ3|2 ' |Ṽµ4|2 ' |Ṽτ3|2 ' |Ṽτ4|2 ' 0 . (3.19)

Namely, the neutrino flavor mixing matrix Ṽ can be approximately described by one degree

of freedom,

Ṽ
∣∣∣
A�∆41

'




0 0 0 1

cos θs sin θs 0 0

− sin θs cos θs 0 0

0 0 1 0


 , (3.20)

where θs ∈ [0, π/2] and tan2 θs ' |Ṽµ2|2/|Ṽµ1|2 with |Ṽµ1|2 and |Ṽµ2|2 being taken from

eq. (3.19). The corresponding neutrino oscillation probabilities P̃αβ (for αβ = e, µ, τ, s) in

eq. (3.14) are reduced to

P̃ee' 1, P̃eµ' 0, P̃eτ ' 0, P̃es' 0 ,

P̃µe' 0, P̃µµ' 1−sin2 2θs sin2 ∆̃21L

4E
, P̃µτ ' sin2 2θs sin2 ∆̃21L

4E
, P̃µs' 0 ,

P̃τe' 0, P̃τµ' sin2 2θs sin2 ∆̃21L

4E
, P̃ττ ' 1−sin2 2θs sin2 ∆̃21L

4E
, P̃τs' 0 ,

P̃se' 0, P̃sµ' 0, P̃sτ ' 0, P̃ss' 1 , (3.21)
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< 10−7 10−7 − 10−6 10−6 − 10−5 10−5 − 10−4

10−4 − 10−3 10−3 − 10−2 10−2 − 10−1 > 10−1

L
/
E

(k
m
/
G
eV

)
L
/
E

(k
m
/G

eV
)

L
/E

(k
m
/G

eV
)

L
/E

(k
m
/G

eV
)

A/∆41 A/∆41 A/∆41 A/∆41

∆P̃ee

∆P̃µe

∆P̃τe

∆P̃se

∆P̃eµ

∆P̃µµ

∆P̃τµ

∆P̃sµ

∆P̃eτ

∆P̃µτ

∆P̃ττ

∆P̃sτ

∆P̃es

∆P̃µs

∆P̃τs

∆P̃ss

Figure 9. The absolute errors of our analytical approximations in eq. (3.21), where the best-fit

values of (θ12, θ13, θ23, δ,∆21,∆31) in refs. [36, 37] have been input, (θ14, θ24, θ34) = (6.66◦, 7.81◦, 0),

δ14 = δ24 = δ34 = 0, ∆41 = 1.32 eV2 [40] and ε ' 5× 10−5 [26].

where ∆̃21 has been given in eq. (3.16) and sin2 2θs = |Ṽµ1|2(1 − |Ṽµ1|2) with |Ṽµ1|2 being

derived in eq. (3.19). The absolute errors of P̃αβ are illustrated in figure 9, from which

we can see that eq. (3.21) is a good approximation in a wide range of L/E and A/∆41.

For the upper left part in each subgraph of figure 9, the accuracies are not good enough

and the largest errors in ∆P̃µµ, ∆P̃µτ , ∆P̃τµ and ∆P̃ττ appear around the minimum of

∆̃21 (A/∆41 ∼ 4× 102). This can be improved by keeping higher orders of ∆21/A, ∆31/A,

∆41/A and ε or just making perturbative expansions in terms of ∆21/A, ∆31/A and ε.
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(NMO, ν3+1) (IMO, ν3+1) (NMO, ν3+1) (IMO, ν3+1)

∆̃21 Aε A/2−Aε A/2 A/2−Aε
∆̃31 A/2 −Aε A−Aε −A/2
∆̃41 A A−Aε A A/2

Ṽ




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0







0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0







1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0







0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0




Table 2. In the (3 + 1) mixing scheme, the analytical expressions of ∆̃ji (for ji = 21, 31, 41) and

Ṽ in the A→∞ limit, where we only show the terms of order O(A) for ∆̃ji.

Specifically, if Aε is negligible in eqs. (3.16) and (3.19), one may abandon the smaller

terms of ∆21 and ∆31, and get

∆̃21 '
(
|Vµ4|2 + |Vτ4|2

)
∆41 ,

|Ṽµ1|2 ' |Ṽτ2|2 '
|Vτ4|2

|Vµ4|2 + |Vτ4|2
,

|Ṽµ2|2 ' |Ṽτ1|2 '
|Vµ4|2

|Vµ4|2 + |Vτ4|2
, (3.22)

where |Vµ4|2 = cos2 θ14 sin2 θ24, |Vτ4|2 = cos2 θ14 cos2 θ24 sin2 θ34 from the parametrization

of V in eq. (3.15). This is equivalent to the asymptotic behaviors of ∆̃21 and |Ṽαi|2 (for

αi = µ1, µ2, τ1, τ2) in very dense matter in the case without radiative corrections (i.e. the

blue dashed lines in figure 8). Due to the typical value θ34 = 0 inputted in figure 8, we

get |Ṽµ1|2 ' |Ṽτ2|2 ' 0 and |Ṽµ2|2 ' |Ṽτ1|2 ' 1. By choosing a non-zero value of θ34,

the neutrino flavor mixing can be very different. With the increase of A, the Aε term in

eqs. (3.16) and (3.19) will become dominate. In the A→∞ limit, |Ṽµ1|2 ' |Ṽτ2|2 ' 1 and

|Ṽµ2|2 ' |Ṽτ1|2 ' 0 can be derived from eq. (3.19). Considering this extreme case, we sum-

marize the corresponding analytical expressions of ∆̃ji (for ji = 21, 31, 41) and Ṽ in table 2,

where the four cases (NMO, ν3+1), (IMO, ν3+1), (NMO, ν3+1) and (IMO, ν3+1) are all con-

sidered separately. With |Ṽαi|2 taking 0 or 1 (or θs → 0 or π/2), there will be no neutrino

oscillation between the four flavors and it makes no sense to discuss lepton flavor mixing.

3.2 (IMO, ν3+1)

Given a neutrino beam with inverted mass ordering in the (3+1) flavor mixing scheme, the

evolutions of ∆̃ij (for ij = 21, 31, 41) and |Ṽαi|2 (for α = e, µ, τ, s and i = 1, 2, 3, 4) with A

are demonstrated in the lower left panel of figure 7 and figure 10, respectively. In this case,

∆̃31 < 0 < ∆̃21 < ∆̃41 always holds from figure 7. By making perturbative expansions of
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(IMO, ν3+1)

ǫ = 5× 10−5

ǫ = 0

A (eV2) A (eV2) A (eV2) A (eV2)

|Ṽe1|2

|Ṽµ1|2

|Ṽτ1|2

|Ṽs1|2

|Ṽe2|2

|Ṽµ2|2

|Ṽτ2|2

|Ṽs2|2

|Ṽe3|2

|Ṽµ3|2

|Ṽτ3|2

|Ṽs3|2

|Ṽe4|2

|Ṽµ4|2

|Ṽτ4|2

|Ṽs4|2

Figure 10. In the (3 + 1) mixing scheme, the illustration of how |Ṽαi|2 (for α = e, µ, τ, s and i =

1, 2, 3, 4) evolve with the matter effect parameter A in the case (IMO, ν3+1) with or without radiative

corrections, where we typically take the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) [36, 37], and for

the active-sterile neutrino mixing part (θ14, θ24, θ34) = (6.66◦, 7.81◦, 0), δ14 = δ24 = δ34 = 0,

∆41 = 1.32 eV2 [40].

eq. (3.5), we get

∆̃21 '
A

2
− 1

2

[
Aε+ ξs +

(
1− |Ve2|2 − 3|Vs2|2

)
∆21 +

(
1− |Ve3|2 − 3|Vs3|2

)
∆31

+
(
1− |Ve4|2 − 3|Vs4|2

)
∆41

]
,

∆̃31 ' −ξs ,

∆̃41 ' A−
1

2

[
Aε+ ξs +

(
1− 3|Ve2|2 − |Vs2|2

)
∆21 +

(
1− 3|Ve3|2 − |Vs3|2

)
∆31

+
(
1− 3|Ve4|2 − |Vs4|2

)
∆41

]
, (3.23)

where ξs has been defined in eq. (3.17). From eq. (3.23), it is easy to see that there are

significant radiative corrections to ∆̃31 with the ε term appearing in the leading order.

There are a minimum of ∆̃31 corresponding to A in eq. (3.18). Similarly, eq. (3.10) can be
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reduced to

|Ṽe1|2 ' |Ṽe2|2 ' |Ṽe3|2 ' 0 , |Ṽs1|2 ' |Ṽs3|2 ' |Ṽs4|2 ' 0 , |Ṽe4|2 ' |Ṽs2|2 ' 1 ,

|Ṽµ1|2 ' |Ṽτ3|2 '
1

2
− 1

2ξs

[
Aε+ ∆21

(
|Vτ2|2 − |Vµ2|2

)
+ ∆31

(
|Vτ3|2 − |Vµ3|2

)

+∆41

(
|Vτ4|2 − |Vµ4|2

)]
,

|Ṽµ3|2 ' |Ṽτ1|2 '
1

2
+

1

2ξs

[
Aε+ ∆21

(
|Vτ2|2 − |Vµ2|2

)
+ ∆31

(
|Vτ3|2 − |Vµ3|2

)

+∆41

(
|Vτ4|2 − |Vµ4|2

)]
,

|Ṽµ2|2 ' |Ṽµ4|2 ' |Ṽτ2|2 ' |Ṽτ4|2 ' 0 . (3.24)

This means Ṽ can be approximately parametrized as

Ṽ
∣∣∣
A�∆41

'




0 0 0 1

cos θs 0 sin θs 0

− sin θs 0 cos θs 0

0 1 0 0


 , (3.25)

where θs ∈ [0, π/2] and tan2 θs = |Ṽµ3|2/|Ṽµ1|2 with |Ṽµ1|2 and |Ṽµ3|2 having been shown in

eq. (3.24). One can derive the corresponding approximate neutrino oscillation probability

by substituting ∆̃31 for ∆̃21 in eq. (3.21). Similar to the standard three-flavor mixing

scheme, it is impossible to discriminate between the normal mass ordering and the inverted

mass ordering from neutrino oscillations in the (3 + 1) flavor mixing scheme if the matter

density is very big.

Note that if the Aε term in eqs. (3.23) and (3.24) is negligible, we omit the smaller

terms of ∆21 and ∆31 and obtain

∆̃31 ' −
(
|Vµ4|2 + |Vτ4|2

)
∆41 ,

|Ṽµ1|2 ' |Ṽτ3|2 '
|Vµ4|2

|Vµ4|2 + |Vτ4|2
,

|Ṽµ3|2 ' |Ṽτ1|2 '
|Vτ4|2

|Vµ4|2 + |Vτ4|2
, (3.26)

which is consistent with the asymptotic behaviors of ∆̃31 and |Ṽαi|2 (for αi = µ1, µ3, τ1, τ3)

in very dense matter in the case without radiative corrections (i.e. the blue dashed line

in figure 10). By inputting θ34 = 0 (i.e., |Vτ4|2 = 0), we directly get |Ṽµ1|2 ' |Ṽτ3|2 ' 1

and |Ṽµ3|2 ' |Ṽτ1|2 ' 0 from eq. (3.26). If the limit of A → ∞ is taken, one can infer

from eq. (3.24) that |Ṽµ1|2 ' |Ṽτ3|2 ' 0 and |Ṽµ3|2 ' |Ṽτ1|2 ' 1, leading to no neutrino

oscillations.

3.3 (NMO, ν3+1)

When it comes to a neutrino beam with normal mass ordering in the (3+1) flavor mixing

scheme, the corresponding evolutions of ∆̃ij (for ij = 21, 31, 41) and |Ṽαi|2 (for α = e, µ, τ, s
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(NMO, ν3+1)

ǫ = 5× 10−5

ǫ = 0

A (eV2) A (eV2) A (eV2) A (eV2)

|Ṽe1|2

|Ṽµ1|2

|Ṽτ1|2

|Ṽs1|2

|Ṽe2|2

|Ṽµ2|2

|Ṽτ2|2

|Ṽs2|2

|Ṽe3|2

|Ṽµ3|2

|Ṽτ3|2

|Ṽs3|2

|Ṽe4|2

|Ṽµ4|2

|Ṽτ4|2

|Ṽs4|2

Figure 11. In the (3 + 1) mixing scheme, the illustration of how |Ṽαi|2 (for α = e, µ, τ, s and i =

1, 2, 3, 4) evolve with the matter effect parameter A in the case (NMO, ν3+1) with or without

radiative corrections, where we typically take the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) [36, 37],

and for the active-sterile neutrino mixing part (θ14, θ24, θ34) = (6.66◦, 7.81◦, 0), δ14 = δ24 = δ34 = 0,

∆41 = 1.32 eV2 [40].

and i = 1, 2, 3, 4) with the matter effect parameter A are illustrated in the upper right panel

of figure 7 and figure 11, respectively. Analytically, we perform perturbative expansions of

∆̃ij (for ij = 21, 31, 41) in eq. (3.4) and get

∆̃21 '
A

2
− 1

2

[(
|Ve2|2 − |Vs2|2

)
∆21 +

(
|Ve3|2 − |Vs3|2

)
∆31 +

(
|Ve4|2 − |Vs4|2

)
∆41

]
,

∆̃31 ' A−
1

2

[
Aε+ ξs −

(
1− 3|Ve2|2 − |Vs2|2

)
∆21 −

(
1− 3|Ve3|2 − |Vs3|2

)
∆31

−
(
1− 3|Ve4|2 − |Vs4|2

)
∆41

]
,

∆̃41 ' A−
1

2

[
Aε− ξs −

(
1− 3|Ve2|2 − |Vs2|2

)
∆21 −

(
1− 3|Ve3|2 − |Vs3|2

)
∆31

−
(
1− 3|Ve4|2 − |Vs4|2

)
∆41

]
, (3.27)
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where

ξs =
{ [(
|Vµ2|2 + |Vτ2|2

)
∆21 +

(
|Vµ3|2 + |Vτ3|2

)
∆31 +

(
|Vµ4|2 + |Vτ4|2

)
∆41 −Aε

]2

+ 4Aε
(
|Vµ2|2∆21 + |Vµ3|2∆31 + |Vµ4|2∆41

)

− 4
(
∆21∆31C

14
es + ∆21∆41C

13
es + ∆31∆41C

12
es

)}1/2
. (3.28)

Note that there are no significant radiative corrections to ∆̃21, ∆̃31 and ∆̃41 with the

Aε term appearing in the next-to-leading order or higher order. Similarly, |Ṽαi|2 can be

reduced to

|Ṽe2|2 ' |Ṽe3|2 ' |Ṽe4|2 ' 0 , |Ṽs1|2 ' |Ṽs3|2 ' |Ṽs4|2 ' 0 , |Ṽe1|2 ' |Ṽs2|2 ' 1 ,

|Ṽµ3|2 ' |Ṽτ4|2 '
1

2
+

1

2ξs

[
−Aε+ ∆21

(
|Vτ2|2 − |Vµ2|2

)
+ ∆31

(
|Vτ3|2 − |Vµ3|2

)

+∆41

(
|Vτ4|2 − |Vµ4|2

)]
,

|Ṽµ4|2 ' |Ṽτ3|2 '
1

2
− 1

2ξs

[
−Aε+ ∆21

(
|Vτ2|2 − |Vµ2|2

)
+ ∆31

(
|Vτ3|2 − |Vµ3|2

)

+∆41

(
|Vτ4|2 − |Vµ4|2

)]
,

|Ṽµ1|2 ' |Ṽµ2|2 ' |Ṽτ1|2 ' |Ṽτ2|2 ' 0 . (3.29)

Namely,

Ṽ
∣∣∣
A�∆41

'




1 0 0 0

0 0 cos θs sin θs
0 0 − sin θs cos θs
0 1 0 0


 , (3.30)

where θs ∈ [0, π/2] and tan2 θs = |Ṽµ4|2/|Ṽµ3|2 with |Ṽµ3|2 and |Ṽµ4|2 being expressed in

eq. (3.29). The corresponding approximate formulas of neutrino oscillation probabilities

can be obtained by doing the replacement ∆̃21 → ∆̃43 in eq. (3.21). And we have ∆̃43 ' ξs
from eq. (3.27). If the Aε term is not dominant in eq. (3.27), one can ignore the smaller

terms of Aε, ∆21 and ∆31 and get

|Ṽµ3|2 ' |Ṽτ4|2 '
|Vτ4|2

|Vµ4|2 + |Vτ4|2
,

|Ṽµ4|2 ' |Ṽτ3|2 '
|Vµ4|2

|Vµ4|2 + |Vτ4|2
, (3.31)

which are equivalent to the fixed values of |Ṽαi|2 (for αi = µ3, µ4, τ3, τ4) in the A → ∞
limit when the radiative corrections are not included. By inputting θ34 = 0 (i.e., |Vτ4|2 =

0), eq. (3.31) turns into |Ṽµ3|2 ' |Ṽτ4|2 ' 0 and |Ṽµ4|2 ' |Ṽτ3|2 ' 1. In the A → ∞
limit, we also have the same results: |Ṽµ3|2 ' |Ṽτ4|2 ' 0 and |Ṽµ4|2 ' |Ṽτ3|2 ' 1 with

ξs → Aε in eq. (3.29). Thus there will be no neutrino oscillations in the A→∞ limit with

θs ' arctan(|Ṽµ4|/|Ṽµ3|) ' π/2. Note that there is no distinguishable difference between

the cases with or without radiative corrections in figure 11. However, by inputting a non-

zero value of θ34, one may see significant radiative corrections to neutrino flavor mixing

matrix elements, especially to Ṽαi (for αi = µ3, µ4, τ3, τ4) when A is big enough.
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(IMO, ν3+1)

ǫ = 5× 10−5

ǫ = 0

A (eV2) A (eV2) A (eV2) A (eV2)

|Ṽe1|2

|Ṽµ1|2

|Ṽτ1|2

|Ṽs1|2

|Ṽe2|2

|Ṽµ2|2

|Ṽτ2|2

|Ṽs2|2

|Ṽe3|2

|Ṽµ3|2

|Ṽτ3|2

|Ṽs3|2

|Ṽe4|2

|Ṽµ4|2

|Ṽτ4|2

|Ṽs4|2

Figure 12. In the (3 + 1) mixing scheme, the illustration of how |Ṽαi|2 (for α = e, µ, τ, s and i =

1, 2, 3, 4) evolve with the matter effect parameter A in the case (IMO, ν3+1) with or without radiative

corrections, where we typically take the best-fit values of (θ12, θ13, θ23, δ,∆21,∆31) [36, 37], and for

the active-sterile neutrino mixing part (θ14, θ24, θ34) = (6.66◦, 7.81◦, 0), δ14 = δ24 = δ34 = 0,

∆41 = 1.32 eV2 [40].

3.4 (IMO, ν3+1)

Similarly, let us discuss the case of an antineutrino beam with inverted mass ordering in

the (3+1) flavor mixing scheme. The evolutions of ∆̃ij (for ij = 21, 31, 41) and |Ṽαi|2 (for

α = e, µ, τ, s and i = 1, 2, 3, 4) with the matter effect parameter A in this case are illustrated

in the lower right panel of figure 7 and figure 12, respectively. Expanding eq. (3.5) in terms

of ∆21/A, ∆31/A, ∆41/A and ε, we arrive at

∆̃21 '
A

2
− 1

2

[
Aε+ ξs −

(
1− |Ve2|2 − 3|Vs2|2

)
∆21 −

(
1− |Ve3|2 − 3|Vs3|2

)
∆31

−
(
1− |Ve4|2 − 3|Vs4|2

)
∆41

]
,

∆̃31 ' −
A

2
+
(
|Ve2|2 − |Vs2|2

)
∆21 +

(
|Ve3|2 − |Vs3|2

)
∆31 +

(
|Ve4|2 − |Vs4|2

)
∆41 ,

∆̃41 '
A

2
− 1

2

[
Aε− ξs −

(
1− |Ve2|2 − 3|Vs2|2

)
∆21 −

(
1− |Ve3|2 − 3|Vs3|2

)
∆31

−
(
1− |Ve4|2 − 3|Vs4|2

)
∆41

]
, (3.32)
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with ξs being defined in eq. (3.28). According to figure 7 and eq. (3.32), we always have

∆̃31 < 0 < ∆̃21 < ∆̃41 and in the A → ∞ limit, |∆̃31| ' ∆̃41 > ∆̃21 holds. Similarly, the

analytical approximations of |Ṽαi|2 read as

|Ṽe1|2 ' |Ṽe2|2 ' |Ṽe4|2 ' 0 , |Ṽs2|2 ' |Ṽs3|2 ' |Ṽs4|2 ' 0 , |Ṽe3|2 ' |Ṽs1|2 ' 1 ,

|Ṽµ2|2 ' |Ṽτ4|2 '
1

2
+

1

2ξs

[
−Aε+ ∆21

(
|Vτ2|2 − |Vµ2|2

)
+ ∆31

(
|Vτ3|2 − |Vµ3|2

)

+∆41

(
|Vτ4|2 − |Vµ4|2

)]
,

|Ṽµ4|2 ' |Ṽτ2|2 '
1

2
− 1

2ξs

[
−Aε+ ∆21

(
|Vτ2|2 − |Vµ2|2

)
+ ∆31

(
|Vτ3|2 − |Vµ3|2

)

+∆41

(
|Vτ4|2 − |Vµ4|2

)]
,

|Ṽµ1|2 ' |Ṽµ3|2 ' |Ṽτ1|2 ' |Ṽτ3|2 ' 0 , (3.33)

which implies

Ṽ
∣∣∣
A�∆41

'




0 0 1 0

0 cos θs 0 sin θs
0 − sin θs 0 cos θs
1 0 0 0


 , (3.34)

where θs ∈ [0, π/2] and tan2 θs = |Ṽµ4|2/|Ṽµ2|2 with |Ṽµ2|2 and |Ṽµ4|2 being expressed

in eq. (3.33). One can directly write out the corresponding approximations of neutrino

oscillation probability by replacing ∆̃21 in eq. (3.21) with ∆̃42 ' ξs from eq. (3.32). If the

smaller terms of Aε in eq. (3.33) is negligible, we obtain

|Ṽµ2|2 ' |Ṽτ4|2 '
|Vτ4|2

|Vµ4|2 + |Vτ4|2
,

|Ṽµ4|2 ' |Ṽτ2|2 '
|Vµ4|2

|Vµ4|2 + |Vτ4|2
(3.35)

after throwing out the smaller terms of ∆21 and ∆31. By inputting θ34 = 0 taken in

figure 12, eq. (3.35) turns out to be |Ṽµ2|2 ' |Ṽτ4|2 ' 0 and |Ṽµ4|2 ' |Ṽτ2|2 ' 1. In the

A → ∞ limit, we get |Ṽµ2|2 ' |Ṽτ4|2 ' 0 and |Ṽµ4|2 ' |Ṽτ2|2 ' 1 no matter which value

θ34 takes. Thus no neutrino oscillations between the four flavors will happen with θs '
arctan(|Ṽµ4|/|Ṽµ2|) ' π/2. Note that the neutrino flavor mixing with radiative corrections

can be very different from the case without radiative corrections if θ34 is non-zero.

4 Summary

With the coming of the precision measurement era of neutrino physics, we are committed

to digging the underlying physics behind the lepton flavor mixing [41] and on the other

hand to conducting cosmological and astronomical researches with neutrinos being a good

probe. As preliminarily discussed in ref. [25], it is possible to explore the density and size

of a hidden compact object in the universe by observing its effects on the neutrino flavor
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mixing. In this paper, we point out that radiative corrections to the matter potentials can

significantly affect the neutrino flavor mixing in dense matter. Considering the standard

three-flavor mixing scheme with radiative corrections, we derive the exact expressions of the

effective neutrino mass-squared differences ∆̃ij , the moduli square of the nine lepton flavor

mixing matrix elements |Ũαi|2, the vector sides of the Dirac leptonic unitarity triangles

ŨαiŨ
∗
βi in a medium. From these exact formulas, the neutrino flavor mixing in dense

matter are numerically and analytically discussed. Different from the fixed value of |Ũαi|2
in dense matter in the case without radiative corrections, |Ũαi|2 can be very sensitive to

the value of A and trivially approach 0 or 1 in the A→∞ limit if radiative corrections are

taken into account. When it comes to the (3 + 1) flavor mixing scheme, the neutrino flavor

mixing will be very different from the standard three-flavor scheme if A is big enough but

not infinite. However it is meaningless to discuss the lepton flavor mixing in both schemes

in the A→∞ limit.
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