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1 Introduction

Ricci-flat metrics on Calabi-Yau manifolds are central objects in the study of compactifi-

cations in many string theoretic settings [1, 2]. They frequently appear in a supergravity

limit where curvatures are taken to be small with respect to the string scale and only a

finite number of terms in an α′ expansion have been kept. An assumption that is often

made is that, if we are in a region of moduli space where the overall volume of the manifold

is large and we are not near any singularities, then the values of curvature invariants on

different points of the manifold will not become large and truncating the expansion at some

finite order should be valid.

How do we know if this assumption is justified however? Could there be regions on

the manifold where certain curvature invariants become large compared to the scale set

by the overall volume in a manner that one would not naively expect? There are some

choices of moduli for which such an expansion clearly breaks down. For example, for

Calabi-Yau manifolds constructed as complete intersections in some simple ambient space,

it is often easy to compute loci in moduli space, such as a conifold locus [3–8], where

the variety becomes non-transverse. Near to such singular loci higher order curvature

invariants will not be controlled by the scale set by the overall volume and one would

expect the supergravity approximation to break down. Similar comments could be made

in regions of parameter space where certain cycles become small but non-vanishing.

The general question that may arise, however, is somewhat more difficult to answer.

Say that we have some description of a Calabi-Yau manifold as an algebraic variety with

a specific choice of coefficients in the defining polynomial (perhaps with these having been

determined by some moduli stabilization mechanism). How do we decide if the approxi-

mations made in truncating the α′ expansion are valid in such a case? It is not clear, for

example, if there could be regimes of moduli space corresponding to Calabi-Yau manifolds

exhibiting regions of very high curvature which are nevertheless not near to any singularity.
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One might suspect that if the coefficients appearing in a defining relation are very large

or very small that one might have an issue. More precisely, due to the overall scaling

available in such defining relations, one might be concerned if large hierarchies in the sizes

of coefficients that appeared were present. But how does one know for sure and what does

one say if the coefficients are simply generic looking, seemingly innocuous, values? In this

paper we wish to show that modern numerical methods for determining Ricci-flat metrics

on Calabi-Yau manifolds [9–18] are a practical and efficient tool for deciding such questions

in many cases.

The structure of the rest of this paper is as follows. We will begin, in section 2 with

a review of some modern numerical techniques for finding approximations to Ricci-flat

metrics on Calabi-Yau manifolds. We will also introduce some details of the examples we

will be considering in the rest of the paper. In section 3 we present our procedure for

studying high curvature invariants numerically and apply these methods explicitly to a

number of concrete examples. We demonstrate that we can reproduce expected hierarchies

of curvature scales, associated to the presence of singularities, and describe how these

methods can be used to address the issues described in this introduction. In section 4 we

briefly conclude and discuss possible future directions of research.

2 Numerical computation

In this section we briefly review some of the existing methods for obtaining numerical

approximations to Ricci-flat metrics on Calabi-Yau manifolds [9–18]. This is an evolving

field with new techniques still being developed, notably recently including methods from

Machine Learning [18] (related work on Machine Learning and more general metrics with

SU(3) structure is currently underway [19]). In this section, however, we will focus on the

approach of [15] which is the methodology which will be employed in this paper.

Most of the techniques for numerically computing Ricci-flat metrics on a Calabi-Yau

n-fold X begin with an ansatz for the Kähler potential on that manifold. Following [20],

one can construct an ansatz of the following form.

Kh,k =
1

kπ
ln
(
s̄β̄h

β̄αsα

)
(2.1)

In this expression the sα ∈ H0(X,Lk) are a basis of global holomorphic sections for the

k’th power of some ample holomorphic line bundle L over X. The ansatz (2.1) is labeled

by two quantities, the k of the previous sentence and the h parameters, which we wish to

adjust to make the associated metric as close as possible to Ricci-flat. Kähler potentials of

the form (2.1) can be thought of as a generalization of the Fubini-Study case, where the

powers of the variables involved have been increased and global sections of line bundles

have replaced polynomials in coordinates of Pn in order to obtain a set of functions that

are independent on X. As k is increased there will be more and more global sections to

Lk and thus more freedom in the ansatz, as controlled by the number of h coefficients, to

try and adjust to get close to a Ricci-flat metric. Indeed, it has been shown [9, 21], that

in the limit as k →∞ a choice of the h parameters exists where we approach precisely the

Ricci-flat situation of interest.
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Given an ansatz for the Kähler potential on a Calabi-Yau manifold of the form dis-

cussed in the last paragraph, the next step is to introduce a procedure for adjusting the

parameters that appear in the ansatz to some optimal value where the associated metric

is as close as possible to Ricci-flat. Here there are a couple of options available in the

literature, including implementations of Donaldsons original proposal of the iteration of

a “T-operator” [9, 11–14, 16–18, 21]. In this paper, however, we will use the proposal of

Headrick and Nassar [15], wherein the coefficients in the ansatz (2.1) are optimized using

the minimization of an appropriate functional.

Let us denote the no-where vanishing holomorphic (n, 0) form on X by Ω and the

Kähler form on the same space by ω. One can then define the following top forms.

µΩ = (−i)nΩ ∧ Ω and µω =
ωn

n!
(2.2)

Given that both of these objects are top forms, their ratio yields a function which will be

denoted by η. We can also define the average of this function over X, denoted by 〈η〉,
which is a number.

η =
µω
µΩ

, 〈η〉 =

∫
X η µΩ∫
X µΩ

(2.3)

The functional that we will employ in this paper can then be defined in terms of these

quantities [15].

E(ω) =

∫
X

(η − 〈η〉)2µΩ (2.4)

The idea is that, in many examples of interest, expressions for Ω are known analytically.

One can then use the ansatz (2.1) to compute ω and thus η and E(ω). From there, one

can perform a minimization on E, to find the choice of the parameters h that make that

quantity as small as possible. In the limit k → ∞ there is enough freedom in the Kähler

potential ansatz to set E to zero. Given the positive definite nature of the integrand

in (2.4) this is a global minimum of the functional. At this minimum we have η = 〈η〉 and

thus ωn = (−i)nn! 〈η〉Ω∧Ω. This is precisely the Monge-Ampere equation that should be

solved in order to obtain a Ricci-flat metric. For any finite k we would not expect that

the ansatz (2.1) embodies the flexibility necessary to achieve an exact vanishing of (2.4).

Instead we obtain an approximation to the Ricci-flat Kähler potential at each finite k,

called the optimal metric [15], and simply increase the value of k until a desired precision

is reached.

At this stage it is useful to mention that, as noted in [15], one might expect an ansatz

of the form (2.1) to be most useful for Calabi-Yau manifolds that are smooth and which

do not exhibit a hierarchy of scales of curvature. For example, manifolds which are “close”

in moduli space to a nodal singularity will have highly curved regions in them and it is

not clear that an ansatz of this form will be useful for any finite k corresponding to a

basis sα of computationally manageable size. One of the burdens of this paper will be to

show that (2.1) is indeed practically useful in mapping out where in moduli space such

large curvature regions are occuring and that the above concerns do not prevent us from

achieving useful results.
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2.1 Examples

In this section we continue our review of the relevant pieces of [15], focussing on the setup for

the particular examples we will be considering. For simplicity, in this paper we will discuss

Calabi-Yau n-folds X that are constructed as simple hypersurfaces in projective space. It

is certainly possible to consider examples which are more complex in their description by

utilizing the same methods that we are describing here. Restricting our attention to such

well known examples, however, allows us to demonstrate that hierarchies of curvature scales

can be located in moduli space in cases where there are known results to be compared to.

There are also some specific technical advantages to this choice that we will mention at the

end of this section.

We consider an n-fold which is described as the vanishing locus of a degree n + 2

polynomial, p, in Pn+1.

X =
[
Pn+1 n+ 2

]
(2.5)

For a threefold, for example, this gives us the famous degree 5 quintic hypersurface in P4.

Let us label the homogeneous coordinates of the ambient Pn+1 by {zA}, A = 0, . . . , n + 1.

We will then break Pn+1 up into n+ 1 polydiscs [17]. More precisely we write

Pn+1 =
N⋃
A=0

DA, DA =
{

[w0 : · · · : wA−1 : wA+1 : · · · : wN ]
∣∣∣ |wj | ≤ 1

}
' Dn+1, (2.6)

where the wα = zα/zA with α = 0, . . . , n+1, omitting α = A, are the local affine coordinates

of the polydiscs DA. In other words, given a specified set of homogeneous coordinates we

divide all of the homogeneous coordinates by that with the largest magnitude in order to

get the affine coordinates (and the number 1) for that point on the polydisc where it lives.

Note that a generic point in Pn+1 lies in only one polydisc, the overlaps being a set of

measure zero. In addition the affine coordinates on each polydisc vary over a finite range,

with the modulus being constrained to be less than or equal to one. Given these two facts

we can see that this partitioning of the manifold is well suited to numerical integration

techniques. Let XA be the restriction of DA to X. Obviously, these XA’s then cover

X =
⋃N
A=0XA. On patch XA, the coordinates wα must obey the defining relation of the

Calabi-Yau, expressed in suitable coordinates.

p(w0, . . . , wA−1, wA+1, . . . , wN ) = 0 (2.7)

Solving this equation for one variable, which we will denote as wδ, then leaves us with

n independent coordinates on each polydisc restricted to X, the correct number for a

manifold of this dimension. The remaining independent coordinates on a given patch are

then denoted by {wi}, i = 0, . . . , N − 1.

Over such a space a line bundle can be specified by its first Chern class, and

thus the available L in constructing the ansatz (2.1) are simply given by OX(k) where

c1(OX(k)) = kω. Given that the sα are then simply elements of H0(X,O(k)), they are

given by a basis of the set of all degree k polynomials in quotient ring associated to the

defining relation p. A basis of this space is easily obtained in terms of the ambient space

– 4 –
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coordinates wA. To obtain a metric from the Kähler potential (2.1), however, we must take

derivatives with respect to coordinates on X itself. This is most easily achieved by using

the following manipulations [15].

Taking the sα to be a basis of representatives of the equivalence classes of the coordinate

ring of the right degree, we can, given a hermitian matrix h write down the following metric

on Pn+1.

ĝαβ̄ =
1

kπ
∂̂α∂̂β̄ ln

nk−1∑
α,β̄=0

hαβ̄sαs̄β̄ (2.8)

There is then a simple relationship between this quantity and the metric we desire on X,

gij̄ = ∂i∂̄j̄Kh,k. This is given by the following.

gij̄ = ĝij̄ −
pi
pδ
ĝδj̄ −

p̄j̄
p̄δ̄
ĝiδ̄ +

pip̄j̄
|pδ|2

ĝδδ̄ (2.9)

In this expression the pi and pδ are derivatives of p with respect to the corresponding

coordinates. A direct calculation using the standard expression for the holomorphic three

form for such hypersurfaces [22, 23],

Ω = p−1
δ

N−2∏
i=0

dwi , (2.10)

then shows that,

η =
µω
µΩ

= det(gij̄)|pδ|2. (2.11)

This expression can then be used to evaluate η for any given choice of the parameters h.

To compute the functional (2.4) requires the additional step of performing an integral

over the Calabi-Yau manifold X. This integral can be computed as the sum of integrals

over the individual XA due to the fact that the overlap of these sets is of measure zero in

the total space.

E =

Ns∑
A=0

EA, EA =

∫
XA

(η − 1)2µΩ (2.12)

We will use the Monte Carlo method to compute each EA above: the integrals EA will

be approximated with a sum over a randomly generated set of N points {Pa ∈ XA}Na=1.

EA ≈
VA
N

N∑
a=1

(η(Pa)− 1)2 (2.13)

Here VA =
∫
XA

µΩ is the coordinate volume of the A’th restricted polydisc. To reduce the

error in this approximation, it is useful to sample points in a manner that is uniformly

distributed according to the volume form µΩ of X (see for example [12]). In other words,

an open set U ∈ X, the number of sample points taken in that set should be proportional

to
∫
U µΩ.

Writing out the explicit expressions for inµΩ given (2.10) the following is found.

inµΩ = |pδ|−2
n∏
i=0

dwi ∧
n∏
j̄=0

dw̄j̄ (2.14)
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This can be rewritten in terms of ambient space quantities in the following manner.

inµΩ = δ2(p)

n+1∏
α=0

dwα ∧
n+1∏
β̄=0

dw̄β̄ (2.15)

We can approximate this by spreading out the delta function with a small parameter ε as

follows,

inµΩ ≈
1

ε2
Θ(ε− |p|)

N−1∏
α=0

dwα ∧
N−1∏
β̄=0

dw̄β̄ , (2.16)

so that the volume form now has support on a slab of thickness ε about X. Given (2.16)

one can simply do the following to obtain our set of points {Pa ∈ XA}Na=1. First generate

a sample set of ns points on Pn+2 evenly distributed in the coordinate measure. Second,

discard any points for which |p| > ε. Finally, for the points that remain, project them onto

the Calabi-Yau manifold X using the Fubini-Study metric on Pn+1. In this manner, we

obtain a set of points distributed on X in a good approximation to the measure given by µΩ.

Note that one might think that a simple sampling of this form would not be efficient

when using such techniques to detect regions of moduli space where curvature hierarchies

are occurring. In particular, one might think that some kind of adaptive mesh approach

to point selection, including more points in the sample in regions of high curvature, might

be required [17]. While we have implemented such point selection strategies in a manner

that works for general Calabi-Yau manifolds embedded in simple ambient spaces, in this

paper we will show that the above simple procedure is in fact adequate for the application

being pursued in this work.

With all of the above pieces in place, we can compute the relevant integrals required

to obtain the energy functional (2.4) as a function of the parameters h for fixed k. A

Levenberg-Marquardt minimization procedure (for example) can then be run to find the

values of the h’s that correspond to the optimal metric [15]. This procedure can be repeated

with increasing k until a metric with the desired degree of accuracy is found (for which the

optimized value of the energy functional (2.4) is sufficiently small for example).

Using such methods it is possible to obtain Ricci-flat metrics on Calabi-Yau manifolds

of various types to a high degree of accuracy. In figure 1 we illustrate this, in the case

of the Fermat quartic and quintic Calabi-Yau two and three-folds respectively, by plotting

the value of the functional (2.4), as a measure of the deviation from Ricci-flatness, as a

function of k. We will not show such plots for all of the examples presented in this paper

as the all look extremely similar to figure 1, with exponential convergence of the energy

functional to zero to a high degree of accuracy. For many of the examples considered in

this paper, the freely available code found here [24]1 could be used to obtain the desired

results. We have written our own code as a complement to this work however, which has

been especially useful in studying cases not covered by [24]1 such as the two parameter

example of section 3.2, or in considering the effectiveness of adaptive mesh style point

selection techniques [17].

1Code associated to [15].
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Figure 1. The error measure Ek is simply the value of the functional (2.4) computed for the

optimized metric at a given k for the Fermat quartic (left) and quintic (left). We see that the error

measure approaches zero exponentially.

It should be noted that, practically, there is a serious issue that arises in implementing

a procedure such as that described in this section. As k is increased the dimension of

H0(X,O(k)) increases rather rapidly. Given that h in (2.1) has two indices running over

this range, the number of parameters that the minimization must be performed with respect

to increases even more quickly. In much of the current work on this subject this issue is dealt

with by the imposition of a discrete symmetries. One starts with defining relations that

preserve a large discrete symmetry group Γ (which can exhibit fixed points on X) and only

keep contributions to the ansatz (2.1) which are invariant under these symmetry actions.

For example, for Fermat type defining relations for manifolds of the form (2.5) one could

only keep those contributions which are invariant under the permutation of all ambient

space coordinates and under phase changes of the coordinates by n+2 roots of unity. Such

applications of symmetries dramatically reduce the number of contributions that need be

considered at each k and make the proliferation of parameters more manageable. In this

paper we will impose all such symmetries which are admitted by the defining relations

under investigation. Clearly, in the future development of such numeric techniques, it

would be highly desirable to have a better resolution to this issue that would make it easier

to deal with defining relations admitting no such symmetries.

3 Finding high curvature regions

Once we have a numerical approximation to the Ricci-flat metric on a given Calabi-Yau

manifold, we then wish to address the central question of this paper. Given a set of

defining relations for a Calabi-Yau variety can we determine if the Ricci-flat metric exhibits

curvature scales that are wildly different from that set by the overall volume? To do this

we apply the following procedure.

• Find a numerical approximation to the Ricci-flat metric with Kähler potential of the

form (2.1), as described in the previous section. This metric should be computed

for as high a value of k as possible, and the error measures associated to the metric

should be checked to determine its accuracy.

– 7 –
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• Find a sample of nR points on the Calabi-Yau manifold. Check that the Ricci-

curvature is approximately zero on each of these points.

• Choose a number of derivatives nd and compute all curvature invariants that can

be formed at this order. We consider all curvature invariants rather than just those

appearing in a given α′ expansion in the interests of generality. In addition, a large

curvature appearing in a specific invariant might be a cause for concern, even if

that invariant is not the particular one that appears in a given theory. One would

suspect that such structure might indicate that high curvatures will appear in the α′

expansion at some order, even if it is somehow evaded at the level of the number of

derivatives being considered.

• Evaluate these curvature invariants on the nR sampled points and record the highest

value they attain. Denote this maximal value by RmI max where m = nd/2 denotes

the power of curvature invariants under consideration and I runs over the different

possible invariants. The index I will be dropped in the case of m = 2 where there is

only a single non-vanishing independent invariant.

• Compute the following dimensionless quantities.

τmI = (RmI max)
1

2mV 1/2n
ω (3.1)

In this expression Vω =
∫
X µω. This is the dimensionless ratio of the mass scale set

by the curvature invariant to the mass scale set by the overall volume of X (i.e. the

compactification scale). The quantities RmI max are, of course, a rather meaningless in

isolation as the metric can be multiplied by an arbitrary overall scale while maintain-

ing a Ricci-flat solution, adjusting the curvature invariants in a correlated manner.

The dimensionless quantity encapsulates whether there is a region of anomalously

high curvature compared to the scale set by the size of the manifold. Once more, the

index I will be dropped in the case of m = 2 where there is only a single non-vanishing

independent invariant.

We perform all of the above steps at some fixed k which, following the discussion of the

previous section, is high enough to give a good approximation to the metric. We then

repeat the computations at a much higher k value to check the results do not change. The

small differences between the results obtained in this manner give us a measure of the error

in our results due to the numerical nature of the metric being used. In order to highlight

the errors coming from the accuracy of the numerical metrics that are being used, we have

included error bars associated to this source of uncertainty in the plots of results that will

be presented throughout this section. For a more detailed discussion of the accuracy of

numerical metrics obtained with the methods used in this work, particularly as one nears

curvature singularities in moduli space, see [15].

One might think that in choosing the sample points in the second step in the bul-

leted list above, an adaptive mesh type of selection technique should be used. While we

have indeed implemented such a sampling method to ensure that we are not missing any

– 8 –
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structure, in the examples we have studied this has proven to be unnecessary. No further

high curvature regions are seen in these manifolds upon utilizing such a technique beyond

those already successfully detected by the point sampling method described in the previous

subsection. As such, all of the results presented in this publication were obtained using

this latter technique.

In order to demonstrate that this procedure can indeed isolate regimes in moduli space

where the α′ expansion is breaking down, we apply this methodology to some simple cases

where regions of high curvature, associated to singularity structure, are well understood.

In particular we show we can detect the appearance of high curvatures near both coni-

fold points and large complex structure limits. Given these results we expect that this

methodology can act as a useful probe in deciding such issues more generally.

3.1 Examples 1: one parameter families

We will study several Calabi-Yau manifolds in the family described by (2.5). For the

purposes of illustrating the methodology being proposed in this paper, we simplify our

numerical computations by working on Calabi-Yau manifolds with discrete symmetries of

high degree. We will begin by studying one parameter families of manifolds, in varying

dimension, whose defining relation is of the following form.

pn(ψ) =

n+1∑
i=0

zn+2
i − (n+ 2)ψ

n+1∏
i=0

zi (3.2)

Given such a defining relation, the order of the available symmetry group Γ is

|Γ| = 2(N + 1)(N−1)(N + 1)! for generic values of ψ. This symmetry is enhanced at the

point in moduli space corresponding to the Fermat type defining relation, ψ = 0, where

|Γ| = 2(N + 1)N (N + 1)! [15].

We begin by considering the one parameter family of quartics p2(ψ) in P3. In this

example we utilize ns = 104 points and an accuracy of ε = 0.02 in terms of the parameters

defined in section 2.1. We follow the procedure outlined at the start of this section for a va-

riety of values of ψ and for second order invariants in the curvature tensor. To demonstrate

that we have good numerical control of the higher curvature invariants being computed, we

present in figure 2 some plots for the example of the Fermat quartic ψ = 0. We see that the

maximum value of the Ricci scalar on the nR = 105 sampled points rapidly approaches zero

as we increase the accuracy of the numeric metric by increasing k. The maximum value of

the higher order curvature invariant, by contrast, exponentially approaches a constant value

— indicating that our accuracy is sufficient to trust the numerical result for this quantity.

Obtaining such results for a variety of values of ψ and plotting the invariant τ2 to

obtain a appropriately normalized measure of the size of the higher order curvature terms,

we arrive at figure 3. In compiling this plot we have computed initially with k = 5

and L = O(1) and have checked the level of numerical error in our results by repeating

the calculations at k = 10. The plot in figure 3 has several features that demonstrate

that we can indeed isolate regimes of moduli space leading to higher curvature corrections

correctly using numerical methods. First, the K3 of the form we are discussing has conifold
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Figure 2. The maximum Ricci scalar (left) and magnitude of the curvature squared invariant

(right) on the points sampled for the Fermat K3 in P3 as a function of k. The Ricci scalar approaches

zero exponentially as k is increased while the higher curvature invariant approaches a fixed value.
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Figure 3. The dimensionless measure of the maximum value of second order curvature invariants

on the sampled points, τ2 from (3.1), as a function of ψ for the one parameter family of quartics in

P3 (3.2). The expected features in this plot, given the known location in moduli space of curvature

singularities, are correctly reproduced.

singularities at ψ = ±1. The associated spikes in τ2, which is not infinite because a finite

sampling of points will not land exactly on a singular point in the manifold, can clearly

be seen in figure 3. In addition to this obvious feature, one can also see that τ2 tends

to increase as |ψ| gets larger. This can be seen more clearly in a plot omitting the large

features due to the conifold points, as in figure 4. This corresponds to the increase in

curvature scales appearing in the Ricci-flat metric as the manifold approaches the large

complex structure limit.

Although the above analysis was for an algebraic K3 surface, very similar results can

be obtained for threefolds and indeed higher dimensional varieties. Here we will content

ourselves with presenting analogous results for the quintic Calabi-Yau threefold, using

L = O(1), ns = 104, nR = 105 and ε = 0.02, in order to illustrate a new phenomenon that

occurs in odd dimensions.

In figures 5 and 6 we present the analogous plots to those presented above in the K3

case for quintic Calabi-Yau threefolds in P4 of the form (3.2). It is important to note

that there is only one conifold point in moduli space in these quintic examples, at ψ = 1.

Nevertheless, in figure 6 a definite, albeit smaller, peak can be seen in the plot of τ2 against

complex structure at ψ = −1. The variety is completely smooth at this point. To check

– 10 –
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Figure 4. The same data as presented in figure 3 with the large features associated to the conifold

points omitted from the plot range. The tendency towards a hierarchy of scales between that set

by the overall volume and that by highest value of the second order curvature invariant as the large

complex structure limit is approached can clearly be seen.
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Figure 5. The maximum Ricci scalar (left) and magnitude of the curvature squared invariant

(right) on the points sampled for the Fermat quintic threefold in P4 as a function of k. The

Ricci scalar approaches zero exponentially as k is increased while the higher curvature invariant

approaches a fixed value.
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Figure 6. The measure of second order curvature invariants τ2, as a function of ψ for the one

parameter family of quintics in P4 (3.2). The expected features can be seen in the left hand plot,

given the known location in moduli space of curvature singularities, are correctly reproduced. An

additional small feature is also seen at ψ = −1. This feature is discussed further in the text. The

same data is presented in the right hand plot with the large features associated to the conifold points

omitted from the plot range. The tendency of τ2 to increase as we approach the large complex

structure limit can clearly be seen.
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that this is a real effect one can repeat the computation, at both ψ = −1 and ψ = 1,

with an increased number of points nR = 107. The result at ψ = 1 changes dramatically

when we do this with τ2 changing from 11.2 to 19.0 (recall the error bars in the plots here

represent the uncertainty due to the numerical nature of the metric and do not include

errors due to point sampling in computing curvatures — which are negligible except at the

singular points in moduli space). This is because as we compute the curvature on more

and more points, we will randomly pick out curvatures that are closer and closer to the

singularity, where τ2 diverges. The result at ψ = −1, however, hardly changes at all in

changing nR by two orders of magnitude, with τ2 simply varying from 4.96 to 5.01. In this

case we already have a good approximation to the maximum value of the finite range of

values of τ2 at various points in this smooth manifold.

Although it does not lead to a particularly large hierarchy of scales in this case, this

is naively a feature of the type we were looking to find. The increase in τ2 at ψ = −1

is corresponds to a Ricci-flat metric which exhibits rather large variations in curvature

compared to nearby metrics in complex structure moduli space. Nevertheless, this point

is not near to any singularity in the slice of moduli space obtained by varying ψ over

real values. In [15] a discussion of a potential explanation for an avatar of this structure,

albeit not directly linked to computing higher curvatures, at the point ψ = −1 was given.2

Those authors point out that this point in moduli space is relatively close to two conifold

points, at ψ = e
4πI
5 and ψ = e

6πI
5 , which do not appear in the slice through moduli space

encompassed by the plot in figure 6. We can check if this explanation is correct in our

context, simply by performing a similar plot along a line through moduli space that does

include those singularities. This plot is presented in figure 7.

We see from figure 7 that the slight bump at ψ = −1 is indeed due to the nearby

conifold points. We see that τ2 varies smoothly between the two peaks due to the conifold

points just mentioned, with the value obtained at m = 10, corresponding to ψ = −1,

agreeing with the height of the small bump in figure 6. In [15] relatively poor convergence

of numerical methods was seen at this same point in moduli space. We can see that this is

probably indeed due to the relatively high curvatures that appear on the manifold at that

locus in complex structure moduli space.

Despite the fact that the feature we have observed here has a simple explanation, this

example gives a good demonstration of the utility of these methods. In cases where such

effects are more pronounced, and no explanation of its origins could be found, knowledge

of this type would be vital in understanding where the α′ expansions of string theories are

valid. In addition, in any given case one might not know from analytical methods how close

to a singularity one would have to be in order to see an effect of this type. The numerical

methods being used here can straightforwardly answer such questions.

Note that, in addition to the features described above, it is just as important that

elsewhere in the space of possible ψ we are not seeing hierarchies of higher curvature

scales. Confirming this result, while consistent with naive expectations, was one of the

goals of this research.

2The authors would like to thank the referee and Matthew Headrick for suggesting that we pursue this

explanation explicitly in this context.
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Figure 7. The measure of second order curvature invariants τ2, as a function of m for the one

parameter family of quintics in P4 (3.2) with ψ = ei
πm
10 . The expected features due to the conifold

singularities at m = 8 and m = 12 can clearly be seen in the plot. Note that m = 10 corresponds to

ψ = −1, the value where a small feature was see in figure 6. We can clearly see from this point of

view that there is nothing special about ψ = −1. The value of τ2 at this point is part of a smooth

variation interpolating between the two curvature singularities. This demonstrates that the slight

bump seen in figure 6 is indeed due to the proximity of ψ = −1 to conifold points in parts of the

complex structure moduli space that are not covered by that plot.

3.2 Examples 2: a two parameter family

In order to provide one final example which is not of the “ψ deformed Fermat” type we

will consider a K3 surface embedded inside P3 with a defining relation depending upon

two parameters of the following form.

P2(ψ1, ψ2) = z4
0 + z4

1 + ψ1(z4
2 + z4

3) + ψ2z
2
0z

2
1 (3.3)

In this case, the order of discrete symmetry that is available to simplify our computations is

only |Γ| = 16. This leads to a number of technical complications in completing the analysis

of this example. For example, one can not use symmetry relationships between patches

on the manifold to reduce the number of separate polydiscs that need to be considered.

One also needs to consider more contributions to (2.1) at each given k. Nevertheless, it

is straightforward enough to obtain accurate results in this case where we use L = O(1),

ε = 0.02, ns = 104 and nR = 5× 105.

The reliability of the results in this case can be seen, for example, from the plots in

figure 8. Here we present, for the example case of ψ1 = 1 and ψ2 = 8, that the maximum

value of the Ricci scalar once more goes exponentially to zero with increasing k while the

maximum value of the higher curvature invariant approaches a constant value.

As with previous examples we can now explore the parameter space of the defining

relation (3.3) and show how the normalized measure of the maximum value of the second

order curvature invariant τ2 varies with parameters. Since this example does not yield

any surprises, we will content ourselves with showing a single plot, given in figure 9, that
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Figure 8. The maximum Ricci scalar (left) and magnitude of the curvature squared invariant

(right) on the points sampled for the quartic in P3 given in (3.3), with ψ1 = 1 and ψ2 = 8, as a

function of k. The Ricci scalar approaches zero exponentially as k is increased while the higher

curvature invariant approaches a fixed value.
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Figure 9. The dimensionless measure of the maximum value of second order curvature invariants

on the sampled points, τ2 from (3.1), as a function of ψ2 with ψ1 = 1 for the two parameter family

of quartics in P3 (3.2). The expected features in this plot, given the known location in moduli space

of curvature singularities, are correctly reproduced.

illustrates that our numerical results reproduce the expected structure. The defining rela-

tion (3.3) exhibits singularities at ψ1 = 1 , ψ2 = 2 and as ψ2 → ∞ at constant ψ1. The

singularity at finite parameters is clearly visible just as in previous examples and a steady

increase in τ2 as ψ2 approaches large values is also present as expected.

4 Conclusions and future directions

In this paper we have studied to what extent numerical methods can be utilized to detect

hierarchies of curvature scales appearing in Ricci-flat metrics on Calabi-Yau manifolds

at different locations in moduli space. These hierarchies concern a comparison of the

scale set by the volume of the Calabi-Yau manifold to those determined by higher order

curvature invariants. By illustrating that we can reproduce the expected behavior of such

quantities as the system approaches singular points in complex structure moduli space, we

have demonstrated that such techniques are rather effective in deciding this issue. Indeed,

this is true even if simple point finding strategies for performing numerical integrations on

the Calabi-Yau manifold are used: one does not necessarily need to adopt adaptive mesh

procedures as one might suspect.
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These techniques are a useful tool in deciding where in moduli space α′ expansions, that

are commonly used in constructing effective theories describing string compactifications,

are valid. Already in the case of points in moduli space close to known singularities,

the methods described here can be useful. While it is well known that hierarchies of

curvature scales diverge at the singular points themselves, information about the size of

these quantities at a given distance in moduli space from such loci can be more difficult to

obtain analytically. The size of such hierarchies can easily be obtained in many examples

using the methods presented here. The utility of these methods is only likely to increase

as advances are made in techniques for computing Ricci-flat metrics numerically.

Many future extensions of the type of work carried out here could be envisioned.

One could use numerical approximations to the gauge connection in heterotic theo-

ries [11, 16, 17], for example, to study similar issues in the validity of α′ expansions in those

contexts. One could also study not just the complex structure dependence of hierarchies

of curvature scales, but also their variation with Kähler moduli. In particular, in principle

numerical methods could be used to delineate the boundaries of the Kähler cones of Calabi-

Yau geometries: information which is often quite difficult to obtain (see [25] for just one

recent study where such considerations were the key limiting factor). However, the authors

suspect that such a study would require an improvement in the currently known numerical

techniques for finding approximations to Ricci-flat metrics. To divide the Kähler cone finely

enough to detect the desired structure, one would have to consider polarizations including

rather large numbers. This would lead to issues with computational complexity as the num-

ber of parameters appearing in the standard ansatz for the Kähler potential (2.1) would

become large very quickly as one tried to obtain an accurate approximation to the metric.
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