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1 Introduction

The mechanism of flux compactifications appears to be essential in order to solve the

issue of moduli stabiliazation within the context of dimensional reductions of string and

M-theory. This procedure generically results in a lower dimensional effective supergravity

theory with a non-trivial scalar potential inducing a mass for the excitations around a

maximally symmetric vacuum, possibly with spontaneously broken supersymmetry.

Depending on the value of the effective cosmological constant (Λeff), maximally sym-

metric vacua are divided into AdS (Λeff < 0), dS (Λeff > 0) or Mkw (Λeff = 0). While AdS

vacua may be relevant in the context of the AdS/CFT correspondence, dS vacua describe

accelerated cosmologies modeling dark energy and finally, Mkw vacua might provide candi-

date starting points for phenomenological constructions featuring supersymmetry breaking

(e.g. in the spirit of KKLT [1]).
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Exploring the diversity of the string landscape in a top-down fashion is a problem of

an enormous complexity [2–4], given the wide range of possible choices of geometrical and

topological data of the internal manifolds. A crucial tool to explore large parts of this

parameter space is given by consistent truncations, which allow us to trade this for the

analysis of different lower dimensional effective descriptions in a bottom-up fashion instead.

While the consistency of truncations over a compact manifold generically requires a

case-by-case study, we will mainly focus on a special class of manifolds which enjoy a

group structure. In this particular setup, the consistency of the corresponding truncation

automatically follows from group theoretical arguments. This construction is usually called

twisted dimensional reduction [5].

Another crucial ingredient that will be considered in this work is spacetime filling ori-

entifold planes. The inclusion of such extended objects with negative tension is argued

to be required in order to evade the no-go theorem of [6] at a classical level and leave

the possibility open to obtain a non-negative effective cosmological constant. With fluxes,

internal geometry and sources at hand, the resulting lower dimensional description will

be given by a gauged supergravity where the gauging is induced by the specific choice of

background fluxes. Thanks to the recent developments in understanding and classifying

all the possible consistent gauged supergravities facilitated by the advent of the so-called

embedding tensor formalism [7–9], a bottom-up approach provides extremely fruitful tools

to investigate string vacua. An exhaustive classification of the gaugings of maximal super-

gravities for D ≥ 8 has been done [10–13], whereas for half-maximal theories, the analysis

extends to D ≥ 7 [14, 15].

Gaugings and massive deformations are the unique prescriptions for the deformation

of extended supergravity theories (some comprehensive reviews are found in [16, 17]). The

resulting gauged supergravities admit non-Abelian gauge groups, fermion mass terms, as

well as a scalar potential. The embedding tensor specifies how the gauge group is embedded

into the duality group, and allows us to construct all the possible gauged supergravity

theories in a duality covariant fashion. The embedding tensor should satisfy the linear and

quadratic constraints: the former is required by supersymmetry and the latter comes from

the consistency of the deformation.

In the light of the aforementioned connection between flux backgrounds and gaugings,

one may then be tempted to hope that all the lower dimensional supergravities can be

obtained from a suitable compactification of string/M-theory. Unfortunately, as of now this

still remains an open question. However, various implementations of a duality covariant

formalism in string theory naturally seem to go beyond geometry in a strict sense. Along

these lines the so-called non-geometric fluxes were originally introduced in [18].

Returning to the case of lower dimensional theories with a known higher dimensional

origin, a first substantial progress in understanding the embedding tensor/fluxes dictionary

was made in [19–22] within the context of D = 4 N = 4 supergravities (in the formulation

of [23]) arising from orientifold reductions of type II strings on a twisted T 6 with fluxes.

Subsequently, in [24, 25], the extra conditions obstructing an embedding within N =

8 supergravity were identified with tadpoles for spacetime filling BPS sources. Though

extremely valuable at a conceptual level, the above treatment in four dimensions does not
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permit a systematic exploration of the set of string vacua. This is due to the large number

of flux components, which cause a dramatic increase of the complexity of the problem at

hand. The actual exhaustive vacua scan was only possible within a particular sector of the

theory enjoying SO(3) invariance.

Motivated by this, we will now focus on the very same issue but in the context of

half-maximal supergravities in six dimensions, where we expect far smaller amounts of flux

parameters, due to the presence of smaller global symmetries. This particular setup will

first of all, allow us to classify all inequivalent orientifold projections which are consistent

with (1 + 5)D Lorentz symmetry and within perturbative control. This will yield a subset

of what was found in the classification of [26], where also exotic objects were considered.

Furthermore it will allow for a systematic treatment of the vacua scan.

With this minimal set of compactification ingredients and the embedding tensor tech-

niques as a toolbox, it is technically possible to exhaustively explore this portion of the

string landscape and find new interesting examples of Mkw, (non-)supersymmetric AdS

as well as dS extrema. These will serve as possible tests for our current understanding

of a consistent quantum gravity theory and its rules. One could e.g. test nonperturba-

tive instabilities of non-supersymmetric vacua as envisioned by [27, 28], or question the

(non-)existence of dS vacua as discussed in [29, 30], both at a perturbative and nonpertur-

bative level.

In this paper, we discuss flux compactifications of string/M-theory down to six dimen-

sions with localized sources that explicitly break half the supersymmetry. This includes

various different orientifolds in (massive) Type IIA, as well as Type IIB and M-theory. The

range of inequivalent possibilities is summarized in figure 1. We then give an encyclope-

dic relation between flux elements and embedding tensor components for individual cases.

Considering the configurations of embedding tensor corresponding to the given compacti-

fications, we attempt to systematically find critical points of the scalar potential. In most

cases, our analysis turns out to be exhaustive. We note that in [31, 32], the existence of

six-dimensional AdS solutions preserving some supersymmetry has been studied.

This work is organized as follows. In section 2 we derive the scalar potential arising

from type II and M-theory reductions to six dimensions in the presence of local sources.

In section 3 we introduce N = (1, 1) D = 6 supergravity and its consistent deformations

by following the embedding tensor formalism. Section 4 contains the orientifold compacti-

fications of type II and M-theory shown in figure 1 and a discussion of the critical points

for each case. Finally, in section 5 we present our conclusions and discuss other further

developments. Some technical auxiliary material is collected in appendices A & B.

2 Deriving the scalar potential

In this section we will derive the scalar potential arising from the compactification of the

bosonic sector of type II and M-theory in the presence of local sources. In particular, we

will calculate the contribution of each term in the 10/11-dimensional action to an effective

moduli potential and calculate the functional dependence of the universal moduli.
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M-theory Type IIA Type IIB

N = (2, 0) MO5 NSO5A KKO5B

KKO5A NSO5B

N = (1, 1)
O5

O6

O7

O8

O9

KKO6

NSO9

S1 T

S1
1

S1
2

T

T

T

S

T

T

S

Figure 1. The various type II/M-theory orientifold compactifications that give rise to either

N = (2, 0) or N = (1, 1) supergravity theories and the relation among them: S1 stands for a

compactification on a circle, whereas T and S refer to T- and S-duality, respectively. The NSO9

plane is a solution of heterotic supergravity and has not been discussed in this work.

2.1 Reductions of Type II down to 6D

Let us consider the bosonic part of the action of type II supergravities in the string frame1

SII =

∫
d10x

√
−g(10)

(
e−2Φ

(
R(10) + 4(∂Φ)2 − 1

12
|H(3)|2

)
−
∑
p

1

2p!
|F(p)|2

)
+ SCS ,

(2.1)

where p = 0, 2, 4 for massive type IIA and p = 1, 3, 5 for type IIB theory, while SCS denotes

a topological term whose explicit form is different in the IIA/IIB cases. |F(p)|2 denotes

contraction of all indices with respect to the 10-dimensional metric. In addition, we add

local sources such as spacetime filling Dp-branes and Op-planes, which contribute to the

action via the term

S(Op/Dp) = −Tp
∫
Cp+1

dp+1x

√
−g̃(p+1)e−Φ , (2.2)

where Tp represents the tension of the corresponding extended object, Cp+1 its worldvolume

and g̃(p+1) is the pull-back of the 10-dimensional metric on the worldvolume.

To perform the dimensional reduction down to D = 6, we need to introduce a param-

eterization of the metric g(10) in terms of the 6-dimensional non-compact metric and the

1We retain conventions where 2κ2
10 = 1.
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moduli describing deformations of the 4-dimensional internal metric. By choosing

ds2
(10) = g

(10)
MNdxM ⊗ dxN = τ−2g(6)

µν dxµ ⊗ dxν + ρ ds2
4 , (2.3)

where the internal metric g(4) is normalized such that
∫

d4y
√
g(4) = 1, the so-called uni-

versal moduli ρ and τ are singled out, whereas the other moduli are still sitting inside g(4)

and describe volume preserving deformations of the internal geometry. We introduce local

flat indices m,n as

ds2
4 =Mmne

m ⊗ en , (2.4)

where the matrix Mmn parameterizes the coset SL(4,R)/SO(4) and in particular

detM = 1.

The requirement of obtaining the D = 6 gravity action in the Einstein frame after the

compactification procedure implies the following constraint [33]

ρ2 !
= e2Φτ4 . (2.5)

Therefore, the universal moduli (ρ, τ) fix the internal volume as well as the string coupling.

Let us now consider the dependence of the various contributions to the scalar potential

on (ρ, τ) based on the parameterization we have introduced in (2.3). The 10-dimensional

Ricci scalar reduces to the following leading part (i.e., up to terms involving derivatives of

the moduli)

R(10) −→ τ2R(6) + ρ−1R(4) , (2.6)

whereas the determinant of the metric reduces to√
−g(10) −→ τ−6ρ2

√
g(4)

√
−g(6) . (2.7)

First of all, the reduction of the Einstein term inside (2.1) will give rise to the gravity

action in six dimensions in the Einstein frame plus a first contribution to the scalar potential

which we denote by Vω, where ω represents the metric flux. Calculating this explicitly, we

have∫
d10x

√
−g(10)e−2ΦR(10) −→

∫
d6x

√
−g(6)(τ−4ρ2e−2Φ︸ ︷︷ ︸

=1 see (2.5)

R(6) + τ−6ρe−2Φ︸ ︷︷ ︸
=ρ−1τ−2

R(4))

=

∫
d6x

√
−g(6)

(
R(6) + ρ−1τ−2 R(4)︸ ︷︷ ︸

−Vω

)
, (2.8)

where Vω ≡ −ρ−1τ−2 R(4). The expression of R(4) in twisted toroidal compactifications

can be written as [5]

R(4) = −1

4
MmqMnrMpsωnp

qωrs
m − 1

2
Mnpωmn

qωqp
m , (2.9)

where the matrixMmn denotes the inverse ofMmn and the components ωmn
p represent the

structure constants of the corresponding group manifold chosen for the compactification.
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As such, they must satisfy a unimodularity constraint as well as the Jacobi identities for

closure of the underlying Lie algebra (see appendix B for details)

ωmn
n = 0 , and ω[mn

rωp]r
q = 0 . (2.10)

A further contribution to the scalar potential comes from the H flux; reducing the

corresponding term in the action (2.1) yields∫
d10x

√
−g(10)

(
− 1

12
e−2Φ|H(3)|2

)
−→

∫
d6x

√
−g(6)

(
− 1

12
HmnpH

mnpρ−3τ−2

)
︸ ︷︷ ︸

−VH

,

(2.11)

where VH ≡ 1
12HmnpH

mnpρ−3τ−2 and the contraction on the indices m, n, p is intended

to be w.r.t. the internal metric g(4).

The R-R p-forms contribute to the scalar potential as follows∫
d10x

√
−g(10)

(
− 1

2p!
|F(p)|2

)
−→

∫
d6x

√
−g(6)

(
− 1

2p!
Fm1...mpF

m1...mpρ2−pτ−6

)
︸ ︷︷ ︸

−VFp

,

(2.12)

where VFp ≡ 1
2p!Fm1...mpF

m1...mpρ2−pτ−6.

Finally a last contribution to the scalar potential arises from the reduction of the local

source term in the 10-dimensional action given in (2.2). Such a reduction yields2

−Tp
∫
Cp+1

dp+1x

√
−g̃(p+1)e−Φ −→

∫
d6x

√
−g(6)

(
−Tpρ

p−7
2 τ−4volp−5

)
︸ ︷︷ ︸

−VOp/Dp

, (2.13)

where volp−5 ≡
∫
C̃p−5

dp−5y
√
g̃(p−5) defines the interval volume wrapped by the Op/Dp

system and the contribution to the potential is VOp/Dp ≡ Tpρ
p−7
2 τ−4volp−5.

Since moreover no extra contributions comes from the 10D topological term, the re-

duced D = 6 theory is described by the following effective Lagrangian3

L6 =

√
−g(6)

(
R(6) + 2Lkin − V

)
, (2.14)

where V denotes the full scalar potential

V = VH + Vω +
∑
p

VFp + VOp/Dp . (2.15)

The scalar fields span a R+
ρ ×R+

τ ×SL(4,R)/SO(4) geometry and the corresponding kinetic

Lagrangian reads

Lkin = −(∂ρ)2

2ρ2
− 2(∂τ)2

τ2
+

1

8
Tr(∂M∂M−1) . (2.16)

2Please note that the O-plane and the corresponding D-branes should wrap the non-compact 6-

dimensional space completely (this implies p ≥ 5) in order for 1+5 dimensional Lorentz symmetry to

be preserved.
3We are only considering the scalar terms that are only relevant for vacuum solutions, as for example

scalar-gauge field couplings.
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2.2 Reductions of M-theory down to 6D

Let us now analyze the bosonic action of 11-dimensional supergravity

S11 =

∫
d11x

√
−g(11)

(
R(11) − 1

2 · 4!
|G(4)|2

)
, (2.17)

where |G(4)|2 denotes contraction of all indices with respect to the 11-dimensional met-

ric. The only spacetime filling sources that we will be considering in this case are KK

monopoles. Since these objects are directly sourced by the metric, their contribution al-

ready comes through the 11D Einstein-Hilbert term and no extra source terms are needed

in the 11D action.

To perform the dimensional reduction down to D = 6, we need to introduce a param-

eterization of the metric g(11) in terms of the 6-dimensional non-compact metric and the

moduli describing the 5-dimensional internal metric. We choose

ds2
(11) = g

(11)
MNdxM ⊗ dxN = τ−2g(6)

µν dxµ ⊗ dxν + ρ ds2
5 , (2.18)

where the internal metric g(5) is normalized such that
∫

d5y
√
g(5) = 1, whereas other

volume preserving moduli are still sitting inside g(5). We introduce 5-dimensional local flat

indices m̂, n̂ as

ds2
5 = M̂mnê

m̂ ⊗ ên̂ , (2.19)

where the matrix M̂m̂n̂ parameterizes the coset SL(5,R)/SO(5) and in particular det M̂ =

1. The requirement of having the D = 6 gravity action in the Einstein frame after the

compactification procedure implies

τ−4ρ5/2 !
= 1 , (2.20)

which reduces the set of universal moduli to the only ρ which has the role of fixing the

internal volume.

Let us now consider the dependence of the various contributions to the scalar potential

on ρ based on the parameterization we have introduced in (2.3). The 11-dimensional

Ricci scalar reduces to the following leading part (i.e., up to terms involving derivatives of

the moduli)

R(11) −→ τ2R(6) + ρ−1R(5) , (2.21)

whereas the determinant of the metric reduces to√
−g(11) −→ τ−6ρ5/2

√
−g(6) . (2.22)

First of all, the reduction of the Einstein term inside (2.17) will give rise to the gravity

action in six dimensions in the Einstein frame plus a first contribution to the scalar potential

Vω, associated to the metric flux. Calculating this explicitly, we have∫
d11x

√
−g(11)R(11) −→

∫
d6x

√
−g(6)( τ−4ρ5/2︸ ︷︷ ︸

=1 see (2.20)

R(6) + τ−6ρ3/2 R(5))

=

∫
d6x

√
−g(6)(R(6) + τ−6ρ3/2 R(5)︸ ︷︷ ︸

−Vω

) , (2.23)
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where Vω ≡ −ρ−6 R(5), by virtue of (2.20). The expression of R(5) in twisted toroidal

compactifications can be written as (assuming unimodularity of the group)

R(5) = −1

4
M̂m̂q̂M̂n̂r̂M̂p̂ŝωn̂p̂

q̂ωr̂ŝ
m̂ − 1

2
M̂n̂p̂ωm̂n̂

q̂ωq̂p̂
m̂ , (2.24)

where the matrix M̂m̂n̂ denotes the inverse of M̂m̂n̂ and ωm̂n̂
p̂ represents the structure

constants of the corresponding group manifold chosen for the compactification, which are

therefore still subject to the Jacobi identities.

The 3-form contributes to the scalar potential as follows∫
d11x

√
−g(11)

(
− 1

2 · 4!
|G(4)|2

)
−→

∫
d6x

√
−g(6)

(
− 1

2 · 4!
Gm̂1m̂2m̂3m̂4G

m̂1m̂2m̂3m̂4ρ−3/2τ−6

)
︸ ︷︷ ︸

−VG4

, (2.25)

where VG4 ≡ 1
2·4!Gm̂1m̂2m̂3m̂4G

m̂1m̂2m̂3m̂4ρ−21/4, upon using (2.20).

In summary, the reduced six dimensional Lagrangian takes the form (2.14), where the

kinetic term for the R+
ρ × SL(5,R)/SO(5) scalars is now parameterized as

Lkin = −45

32

(∂ρ)2

ρ2
+

1

8
Tr(∂M̂∂M̂−1) . (2.26)

The potential will be given by

V = Vω + VG4 . (2.27)

We will establish a mapping between flux compactifications of type II and M-theory

with Op/Dp-branes for p ≥ 5 and half-maximal 6-dimensional gauged supergravities. De-

pending on the type of orientifold projection considered, the obtained theory will be either

iia (N = (1, 1), i.e. nonchiral) or iib (N = (2, 0), i.e. chiral). In the diagram of figure 1

we summarize the various compactifications with sources that can be performed, their

relations through string dualities and the supergravity theories that they give rise to.

3 Gauged supergravity formulation

In this section we would like to interpret the orientifold compactifications mentioned above

as supergravity theories in six dimensions subject to embedding tensor deformations. Since

chiral supergravities do not allow for any such deformations, the spacetime filling orientifold

planes that we consider are those that truncate type II/M-theory to a half-maximal iia

supergravity in D = 6 (i.e. N = (1, 1)). This will allow us to match the scalar potentials

derived in (2.15) and (2.27) with a supergravity potential induced by a certain gauging

which involves all the scalars beyond those sitting in the metric.

Type iia half-maximal supergravities in D = 6 enjoy G = R+×SO(4, 4) global symme-

try [34]. General global symmetry transformations inside G include global R+ rescalings
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as well as T-duality transformations. The scalar fields span the coset4

R+︸︷︷︸
Σ

× SO(4, 4)

SO(4)× SO(4)︸ ︷︷ ︸
HMN

, (3.1)

where Σ has charge −1, whereas the scalar matrixHMN is neutral w.r.t. the aforementioned

rescalings. Let us introduce the vielbein VMM such that

VMMVNM ≡ VMmVNm + VMm̂VNm̂ = HMN , (3.2)

where M = (m, m̂) denotes a local SO(4) × SO(4) index and splits into its timelike and

spacelike parts respectively. The kinetic Lagrangian is given by

Lkin = −2Σ−2(∂Σ)2 +
1

16
∂HMN∂HMN . (3.3)

The consistent deformations of the theory can be encoded in the so-called embed-

ding tensor

Θ = 8(+3)
c︸ ︷︷ ︸
p=2

⊕ 8(−1)
c ⊕ 56(−1)

c︸ ︷︷ ︸
p=1

, (3.4)

which comprises a massive deformation (p = 2 type) as well as some gaugings (p = 1 type)

in the R+ and SO(4, 4) part, respectively [34]. To describe the different embedding tensor

irrep’s, let us introduce the following notation

ζM ∈ 8(+3)
c , ξM ∈ 8(−1)

c , f[MNP ] ∈ 56(−1)
c , (3.5)

where f[MNP ] plays the role of generalized structure constants.

The closure of the gauge algebra and the consistency of the massive deformation imply

a set of quadratic constraints (QC) on the embedding tensor which are given by

3fR[MNfPQ]
R − 2f[MNP ξQ] = 0 (35

(−2)
v ⊕ 35

(−2)
s ) , ζ(MξN) = 0 (35

(+2)
c ⊕ 1(−2)) ,

fMNP ζ
P − ξ[MζN ] = 0 (28(+2)) , ξMξ

M = 0 (1(−2)) ,

fMNP ξ
P = 0 (28(−2)) , ζMξ

M = 0 (1(+2)) .

(3.6)

One important consequence of the gauging procedure is that it induces the following

scalar potential (see also [35])

V =
g2

4

[
fMNP fQRSΣ−2

(
1

12
HMQHNRHPS − 1

4
HMQηNRηPS +

1

6
ηMQηNRηPS

)
+

1

2
ζMζNΣ6HMN +

2

3
fMNP ζQΣ2HMNPQ +

5

4
ξMξNHMNΣ−2

]
, (3.7)

4We will denote by M,N, · · · fundamental SO(4, 4) indices, which are raised and lowered by the SO(4, 4)

metric in light-cone coordinates ηMN ≡

(
0 14

14 0

)
.
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where HMN denotes the inverse of HMN and HMNPQ ≡ εmnpqVMmVNnVP pVQq. The

above scalar potential can be obtained as a Z2 truncation of the maximal theory in six

dimensions, i.e., N = (2, 2) [36] and compared to that one of the half-maximal theory in

D = 5 [23] upon a reduction on a circle S1. In particular, in order for an N = (1, 1) gauging

to admit an embedding within the maximal theory, it needs to satisfy the following two

extra QC {
fMNP f

MNP = 0 ,

f[MNP ζQ]

∣∣
SD

= 0 ,
(3.8)

where |SD denotes the self-dual part of a four-form, in analogy with the D = 4 case

(see [24, 37]). We defer the detailed derivation for (3.6) and (3.8) to appendix A.

In what follows, we will be extremizing the scalar potential (3.7) specified for gaugings

which are interpreted as coming from certain orientifold reductions. Once in an extremum

φ0 of V , one needs to discuss its physical properties, such as e.g. its mass spectrum. To

this end, we use the following formula

(m2)αβ = 2Kαγ∂β∂γV |φ0 , Lkin = −1

2
Kαβ∂φ

α∂φβ , (3.9)

where φα (α = 1, . . . , 17) describe the scalar dof’s and Kαβ is the inverse of the target

space metric Kαβ . The overall factor 2 comes from the unconventional definition of the

potential V in (2.14). Here and in the following, the mass eigenvalues will be given in g = 2

units for Mkw vacua, whereas for (A)dS vacua we normalize by the absolute value of the

cosmological constant Λ = 1
2V |φ0 .

4 Orientifold compactifications

In this section we study all the possible compactifications on twisted tori of type II/M-

theory with Op-planes and/or Dp-branes that give rise to 6-dimensional iia gauged su-

pergravities. According to our figure 1, we need to study the following different (and

inequivalent) cases:

• type IIB with O5/D5, O7/D7 or O9/D9,

• (massive) type IIA with O6/D6, O8/D8, or KKO5/KK5,

• M-theory with KKO6/KK6,

thus making a total of 7 cases.

For each case, we will systematically analyze the configuration of the local source

and the truncation of the type II/M-theory fields w.r.t. its induced involution and, where

needed, the extra Z2 projection given by the combination of the fermionic number (−1)FL

and the world-sheet parity Ωp [38]. Upon counting the moduli and the fluxes that survive

the truncation, we will establish two mappings: (i) the relation between the scalar fields

arising from the compactification and the 6-dimensional gauged supergravity ones, and
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(ii) the dictionary between the background fluxes entering the compactification and the

deformation parameters of the 6-dimensional supergravity sitting in the embedding tensor.

Subsequently, by using such mappings, we will fully match the scalar potential arising

from the compactification of type II or M-theory, eqs. (2.15) and (2.27) respectively, with

the scalar potential of the gauged supergravity as written in (3.7). This will enable us to

carry out a systematic study of vacua solutions for each of the 7 cases mentioned above.

4.1 Massive type IIA with O6/D6

Let us start with the class of effective theories obtained by compactifying massive type IIA

supergravity on a twisted torus with one single O6-plane placed as follows:

O6 : ×| × ××××︸ ︷︷ ︸
6D

×−−−︸ ︷︷ ︸
4D

, (4.1)

which defines the following orientifold involution

σO6 :

{
y0 7→ y0 ,

yi 7→ −yi , i = 1, 2, 3 .
(4.2)

Fluxes and moduli. The σO6 involution breaks SL(4,R) covariance into R+ ×
SL(3,R). The fundamental representation of SL(4,R), under which coordinates transform,

branches as

4 −→ 1(+3) ⊕ ��
�HHH

3(−1) , (4.3)

where all the crossed irrep’s are those ones being projected out by the combination of

the orientifold involution σO6, fermionic number (−1)FL and world-sheet parity Ωp. The

decomposition of the scalar irrep of (2.4) reads

15 −→ 1(0) ⊕ ��
�HHH

3(−4) ⊕ ��
�H
HH3′(+4) ⊕ 8(0) . (4.4)

As for the fluxes, we find

Hmnp ∈ 4′ = −→ 1(−3) ⊕ �
��H
HH

3′(+1) ,

ωmn
p ∈ 20 = −→ 3(−1) ⊕ ��

�HHH
3′(−5) ⊕ 8(+3) ⊕ ��

�HHH
6′(−1) ,

F(0) ∈ 1 −→ 1(0) ,

Fmn ∈ 6 = −→
��
�HHH

3(+2) ⊕ 3′(−2) ,

Fmnpq ∈ 1 −→
�
�Z
Z

1(0) .

(4.5)

The decomposition (4.4) implies that the rest of the non-universal moduli which are

consistent with the orientifold involution can be parameterized by the following M matrix

Mmn =

(
σ3

σ−1Mij

)
, (4.6)
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IIA Flux type Flux parameters σO6 (−1)FLΩp Θ components

F(0) F(0) = f0 + + fīj̄k̄ = f0 εīj̄k̄

F(2) F0i = fi − − f1̄j̄k̄ = fi ε
ijk

H(3) Hijk = h εijk − − ζ1̄ = h

ω
ωij

0 = θij ≡ εijk θk + + ζī = θi

ω0i
j = κi

j + + f1̄ij̄ = κi
j

Table 1. The explicit dictionary between type IIA fluxes consistent with the O6 involution and

deformation parameters of N = (1, 1) supergravity in six dimensions.

IIA fields σO6 (−1)FLΩp # physical dof’s

e0
0 ⊕ eij + + 1 + 9− 3 = 7

B0i − − 3

Φ + + 1

Ci − − 3

C0ij + + 3

Table 2. The counting of the total amount of O6 allowed propagating scalar dof’s in type IIA

compactifications down to six dimensions. The complete set of moduli counts 17 dof’s which is

exactly the dimension of the supergravity coset given in (3.1). Note that one needs to subtract

from eij the 3 unphysical directions corresponding to SO(3) generators in order to get the correct

counting.

where Mij parameterizes the SL(3,R)/SO(3) coset. Explicit parameterizations thereof can

be found, e.g., in [11, 13]. Moreover, decompositions (4.5) imply that only the following

flux components are non-zero (see table 1)

Hijk ≡ hεijk, ωij
0 ≡ θij , ω0i

j ≡ κij ,

F(0) ≡ f0, F0i ≡ fi, no F(4) flux, (4.7)

with θij = −θji and κi
i = 0. In what follows, we denote θi ≡ 1

2ε
ijkθjk.

Summarizing, we have a set of 16 fluxes (1 + 3 + 8 + 1 + 3) which induce a scalar

potential for 8 scalars in total (2 universal moduli + 1 SL(3) singlet + 5 scalars from Mij).

The full scalar potential reads

V = VH + Vω + VF0 + VF2 + VO6/D6 , (4.8)

where tadpole cancellation requires T6 ≡ ND6 − 2NO6
!

= f0h− θifi.

Scalar sector and fluxes/embedding tensor dictionary. Let us now explain how the

moduli arising from the type IIA compactification described in section 2.1 are embedded

inside the scalar coset of N = (1, 1) supergravity introduced in (3.1). First of all, let

us count the number of propagating scalar dof’s. From the internal components of the
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N = (1, 1) QC/tadpoles Sources

θi κi
j !

= 0 (Jacobi) KKO5/KK5:
0
−

i
−

j

ISO
k
− (×3)

N = (2, 2) QC/tadpoles Sources

f0 h− θi fi
!
= 0 (BI C(1)) O6/D6:

0
×

i
−

j
−

k
− (×1)

Table 3. Non-vanishing QC (3.6), (3.8) and their higher-dimensional origin for the flux compactifi-

cation of massive type IIA with O6/D6 given in table 1, where BI stands for Bianchi identities and

Jacobi refers to the condition in (2.10). A description of the QC as restrictions for the existence of

additional local sources is given.

following IIA fields

{ emn, Bmn, Φ; Cm, Cmnp } , (4.9)

we need to select those which are even under ZO6
2 ≡ σO6 Ωp(−1)FL . The result of this

counting is presented in table 2. The set of scalars coming from the reduction of the metric

used to derive the scalar potential in section 3 reads
Λ = τ−2 ,

Γ = ρ1/2σ1/2 ,

Σ = ρ−1/4σ3/4 ,

HMN =


ΛΓ−3 0

0 ΛΓMij
0

0
Λ−1Γ3 0

0 Λ−1Γ−1M ij

 . (4.10)

On the other hand, the embedding tensor irrep’s sourced by ζM and fMNP respectively

branch w.r.t. (R+)3 × SL(3,R) ⊂ R+ × SO(4, 4) as follows:

8
(+3)
c → 1 ⊕ 3 ⊕ 1 ⊕ 3′ ,

56
(−1)
c → 6 ⊕ 6′ ⊕ 2× (1 ⊕ 3 ⊕ 3′ ⊕ 8) .

(4.11)

Adopting the following splitting for SO(4, 4) light-cone coordinates

M −→ (1, i, 1̄, ī) , (4.12)

we can write down the explicit dictionary between some embedding tensor components

and type IIA fluxes, thus identifying the subset of consistent deformations which admit a

higher-dimensional origin. The results are collected in table 1.

Using the dictionary presented in table 1, if we restrict the embedding tensor to those

components corresponding to IIA fluxes, the QC in (3.6) reduce to

θiκi
j = 0 , (4.13)

which correspond to the Jacobi identities of the underlying group manifold already found

in (2.10). These can be interpreted as conditions for the absence of KK monopoles [39],

which would further break supersymmetry down to eight supercharges. Furthermore, as

a cross-check, one can derive the form of the extra QC (3.8) required to have a maximal
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Sol # f0 fi h κi
j θi T6 m2

1 α βi α O3 βi α2 − |~β|2
0(×13), (α2 + |~β|2)(×3),

4(α2 + |~β|2)(×1)

2 α 0 α


0 β1 β2

−β1 0 β3

−β2 −β3 0

 0 α2
0(×9), α

2
(×1), 4α2

(×1), |~β|
2
(×2),

4|~β|2(×2), (α2 + |~β|2)(×2)

3 0 0 0


0 α β

0 0 0

0 0 0




0

−β
α

 0
0(×13), (α− β)2

(×3),

4(α− β)2
(×1)

Table 4. Critical points of the scalar potential induced by the compactification of mIIA with

O6/D6. In this case all of the above solutions are Mkw. The solutions can be embedded into

N = (2, 2) theory iff T6 vanishes. Mass eigenvalues are computed in g = 2 units. We use the

notation ~β ≡ (β1, β2, β3).

supergravity description for a gauging arising from a type IIA compactification. We find

that they correspond to the absence of O6/D6 sources, i.e.,

T6 ≡ f0h− θifi = 0 . (4.14)

Further details on the physical interpretation of these constraints are given in table 3.

By inserting the parameterization of the scalars given in (4.10) together with the

embedding tensor/fluxes dictionary of table 1 inside the supergravity potential (3.7), we

exactly reproduce the moduli potential computed in (4.8) from dimensional reduction upon

fixing the gauge coupling to g = 2.

Critical points. Establishing an embedding tensor/fluxes dictionary enables us to study

the critical points of the theory in a systematic way. By applying the going-to-the-origin

(GTTO) method [22], we scan the embedding tensor configurations that allow for critical

points in the potential when the scalar fields take the values at the origin of the scalar

manifold. This amounts to solving a set of quadratic equations, in terms of the embedding

tensor components.

It is worthwhile to stress that, despite that only a subset of the scalar fields of half-

maximal gauged supergravity appear as deformations of the 10D metric (and hence in the

moduli potentials in (2.15)), we must ensure that the equations of motion of all the scalar

dof’s are satisfied, including those modes that appear in the reduction Ansatz of the p-form

potentials which we omitted for simplicity. This is strictly necessary in order to have a

consistent vacuum solution. In this respect, the formulation of the effective theory as a

gauged supergravity simplifies the problem.

The consistency of the compactification of mIIA with O6/D6 allows for the fluxes given

in table 1. When considering the scalar potential that they give rise to, we find 3 families

of critical points. In table 4 we show the embedding tensor (or, using table 1, the fluxes)
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configuration and the corresponding mass eigenvalues for each case. We note the existence

of a critical point for a configuration that only carries metric flux and no gauge fluxes. In

appendix B we discuss the global properties of internal manifolds corresponding to each of

the critical points.

4.2 Massive type IIA with O8/D8

Let us now consider the effective theory obtained when compactifying (massive) type IIA

with O8/D8 planes. When an O8-plane is placed in this form:

O8 : ×| × ××××︸ ︷︷ ︸
6D

×××−︸ ︷︷ ︸
4D

, (4.15)

it defines the following orientifold involution

σO8 :

{
yi 7→ yi , i = 1, 2, 3 ,

y0 7→ −y0 .
(4.16)

Fluxes and moduli. The involution σO8 breaks SL(4,R) covariance into R+× SL(3,R)

and the fundamental and adjoint representations split as in (4.3) and (4.4), respectively.

According to the Z2 truncation induced by σO8 and the world-sheet parity Ωp [38], the

surviving fluxes are given in table 5, and they correspond to

ωij
k ≡ 1

2
θ[iδ

k
j] + εijlκ

(lk) , ωi0
0 ≡ −θi, H0ij ≡ εijk hk ,

Fij ≡ εijk fk , F0ijk ≡ εijkf4 , no F(0) flux . (4.17)

The decomposition (4.4) implies that all the non-universal moduli that are consistent

with the orientifold involution are embedded in the matrix M as follows:

Mmn =

(
σ3

σ−1Mij

)
, (4.18)

where Mij parameterizes the SL(3,R)/SO(3) coset. In summary, we have a set of 18 fluxes

(8 + 3 + 3 + 1 + 3) and 8 scalars (2 + 1 + (8− 3)). Because we find T8 = 0, the term VOp/Dp

that contributes to the scalar potential vanishes, i.e., there are no N = (2, 2) tadpoles.5

Scalar sector and fluxes/embedding tensor dictionary. Let us now discuss the

explicit embeddings of both the moduli arising from Type IIA compactification inside the

scalar coset (3.1) and the fluxes inside the various embedding tensor irrep’s.

The set of scalar propagating dof’s that survive the Ωp projection amounts to 17 and

their higher-dimensional origin is presented in table 6. The explicit mapping between these

fields and the scalar fields of iia supergravity theory is given by
Λ = τ−2 ,

Γ = ρ1/2σ1/2 ,

Σ = ρ−1/4σ3/4 ,

HMN =


ΛΓ−3 0

0 ΛΓMij
0

0
Λ−1Γ3 0

0 Λ−1Γ−1M ij

 . (4.19)

5The suitable configuration of spacetime filling sources enforcing the vanishing of the corresponding flux

tadpole is given by an O8 plane with 8 D8 branes on top.
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IIA Flux type Flux parameters σO8 Ωp Θ components

F(2) Fij = εijk f
k + + f0ij = εijk f

k

F(4) F0ijk = εijk f4 − − fijk = εijk f4

H(3) H0ij = εijk h
k − − f0̄ij = εijk h

k

ω
ωij

k = 1
2θ[i δ

k
j] + εijl κ

(lk) + + fijk̄ = 1
2θ[iδ

k
j] + εijl κ

(lk)

ωi0
0 = −θi + + fi00̄ = 1

2θi

Table 5. The explicit dictionary between type IIA fluxes consistent with the O8 involution and

deformation parameters of N = (1, 1) supergravity in six dimensions.

IIA fields σO8 Ωp # physical dof’s

eij ⊕ e0
0 + + 9− 3 + 1 = 7

B0i − − 3

Φ + + 1

Ci + + 3

C0ij − − 3

Table 6. Counting of the total 17 propagating scalar dof’s allowed by O8-planes in type IIA com-

pactifications down to six dimensions. This is exactly the dimension of the supergravity coset given

in (3.1), once we subtract from eij the 3 unphysical directions corresponding to SO(3) generators.

N = (1, 1) QC/tadpoles Sources

f iθi
!
= 0 (BI C(1)) D6/O6:

0
×

i
−

j
−

k
− (×1)

θiκ
ij !

= 0 (Jacobi) KK5/KKO5:
0
−

i
−

j

ISO
k
− (×3)

Table 7. Non-vanishing QC (3.6), (3.8) and their higher-dimensional origin for the flux compactifi-

cation of type mIIA with O8/D8 given in table 5, where BI stands for Bianchi identities and Jacobi

refers to the condition (2.10). A description of the QC as restrictions for the existence of additional

local sources is given.

On the other hand, the mapping between the fluxes that survive the O8 truncation

and the SL(3,R)-irrep’s of the embedding tensor is given in table 5, where we have used

the notation for the splitting of the SO(4, 4) light-cone coordinates introduced in (4.12).

If we apply this dictionary to the embedding tensor and the previous mapping to the

supergravity scalars in (3.7), we automatically obtain the potential (2.15).

Using the embedding tensor/fluxes dictionary, we can study the QC (3.6) that survive

when we restrict ourselves to the fluxes of table 5. In table 7 we show the set of non-

vanishing constraints and their physical interpretation. In particular, such conditions can

be understood as the N = (1, 1) tadpoles and impose the absence of the various undesired

supersymmetry breaking sources which appear in the table.

Critical points. We are now ready to study the critical points of the scalar potential

when the non-vanishing embedding tensor components are the ones given in table 5. When

we solve the equations of motion of the scalar fields and the QC (3.6), we obtain a unique
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Sol # f4 f i hi θi κij m2

1 0 0 0 0 diag(α, α, 0) 0(×11), α
2
(×4), 4α2

(×2)

Table 8. Critical points of the scalar potential induced by the compactification of mIIA with

O8/D8. In this case, we obtain a 1-parameter family of solutions, which induces a Minkowski-type

universe.

IIA Flux type Flux parameters σKKO5 no extra Z2 Θ components

F(0) F(0) = f0 + + ζ0̄ = f0

F(4) F0ijk = f4 εijk + + ζ0 = f4

F(2) Fmn = fmn + + ζA = 1
2fmn[GA]mn

K K(mn) + + Q̃ij ⊕ Q00

Table 9. The explicit dictionary between type IIA fluxes consistent with the KKO5 involution and

deformation parameters of N = (1, 1) supergravity in six dimensions. The Kmn tensor denotes the

extrinsic curvature of the 4-sphere as explained in [41].

1-parameter family of solutions, which corresponds to a Mkw vacuum. Further details

are given in table 8. In appendix B we show that this solution can be obtained as a

compactification on a globally well defined twisted torus.

4.3 Massive type IIA with KKO5/KK5

We will focus on the class of effective theories obtained by compactifying type IIA super-

gravity with one single KKO5-plane placed as follows:

KKO5 : ×| × ××××︸ ︷︷ ︸
6D

ISO−−−︸ ︷︷ ︸
4D

, (4.20)

which defines the following orientifold involution

σKKO5 : ym 7→ −ym, m = 0, i, j, k . (4.21)

We have split the SL(4,R) index as m = (0, i), i = 1, 2, 3 and denoted the isometry direction

as y0. It is perhaps worth mentioning that this case stands out w.r.t. all the others treated

in this work. Turning on metric flux ωmn
p is not allowed due to parity arguments. However,

in this particular setup, a sphere reduction turns out to be consistent. An explicit evidence

for this is provided by the supersymmetric AdS6 × S4/Zk vacuum originally constructed

in [40] as near horizon limit of a D4 – D8 – KK5 brane system. The underlying gauged

supergravity has gauge group ISO(3) gauge group, and the embedding tensor is associated

with the extrinsic curvature of S4 [35].

Fluxes and moduli. In this case, the involution generated by the KKO5 orientifold as

a local source preserves the SL(4,R) covariance. In addition, this BPS object does not

impose any additional Z2 truncation [38]. In table 9 we show in detail the set of fluxes

that are compatible with the KKO5 orientifold projection. Explicitly, it consists of

Kmn ≡ K(mn) , F(0) ≡ f0 ,

Fmn ≡ fmn , F0ijk ≡ f4 εijk ,
(4.22)

where K(mn) denotes the extrinsic curvature of the S4 [41].
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IIA fields σKKO5 no extra Z2 # physical dof’s

emn + + 16− 6 = 10

Bmn + + 6

Φ + + 1

C(1) − + −
C(3) − + −

Table 10. Counting of the total 17 propagating scalar dof’s allowed by KKO5-planes in type

IIA compactifications down to six dimensions. This is exactly the dimension of the supergravity

coset given in (3.1), once we subtract from emn the 6 unphysical directions corresponding to SO(4)

generators.

In summary, we have 11 scalars (1 + 1 + (15 − 6)) and 18 fluxes (10 + 1 + 6 + 1).

Regarding the term VKKO5/KK5 in the potential, in the next section we will explain its

non-trivial contribution, due to the existence of an N = (2, 2) tadpole.

Scalar sector and fluxes/embedding tensor dictionary. In table 10 we show the

origin of the full set of scalar fields from the type IIA field contents. However, to obtain

the relation between these fields and the supergravity scalars, we need to do a previous

consideration. In this particular situation, the embedding of the four compact internal

directions turns out to be spinorial, which is possible due to the presence of a triality of

SO(4, 4) irrep’s of dimension 8. The isomorphism sl(4,R) ∼= so(3, 3) allows us to construct

a specific mapping between the adjoint of SL(4,R) and the fundamental of SO(3, 3). To

do so, it is convenient to split the SO(4, 4) light-cone coordinates as

M → (0, i, 0̄, ī) , A ≡ (i, ī) , (4.23)

where i = 1, 2, 3 is an SO(3) index and A = 1, 2, 3, 1̄, 2̄, 3̄ is an SO(3, 3) index expressed

in the light-cone basis. Then, the mapping of a vector VA of SO(3, 3) to a 2-form vmn of

SL(4,R) is

VA =
1

2
[GA]mnvmn , (4.24)

where the set of matrices [GA]mn are the so-called ’t Hooft symbols, which explicitly realize

the aforementioned map. Further properties and conventions concerning this map can be

found in appendices of [14, 15].

Then, the mapping relating the propagating scalars that arise from type IIA compact-

ification with KKO5 planes and the gauged supergravity fields is given by

{
Λ = ρ2 ,

Σ = τ−1 ,
HMN =


Λ 0

0 Mij
0

0
Λ−1 0

0 Mīj̄

 , (4.25)

where MAB is given by

MAB =
1

2
[GA]mp[GB]nqMmnMpq . (4.26)
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N = (1, 1) QC/tadpoles Sources

d̃F2
!
= 0 (BI C(1)) D6/O6:

0
−

i
−

j
−

k
× (×3)

d̃F2
!
= 0 (BI C(1)) D6/O6:

0
×

i
−

j
−

k
− (×1)

N = (2, 2) QC/tadpoles Sources

f0Q00
!
= 0 , f4Q̃ij

!
= 0 KK5/KKO5:

0

ISO
i
−

j
−

k
− (×1)

Table 11. Non-vanishing QC (3.6), (3.8) and their higher-dimensional origin for the flux compact-

ification of type mIIA with KKO5/KK5 given in table 9, where BI stands for Bianchi identities and

d̃ ≡ d + ω ∧ . A description of the QC as restrictions for the existence of additional local sources

is given.

In this case, the expression of the vielbein VAIĴ which squares to MAB is given by

VAIĴ =
1

4
√

2
VmmVnn[GA]mn[Γm]αβ̂ [Γ̄n]δ̂γ(σI)α

γ(σĴ)β̂
δ̂ , (4.27)

where I and Î are indices of the fundamental representation of each of two factors of

SO(3) × SO(3) and α and α̂ are indices of the adjoint representation of each of the two

factors of SU(2)×SU(2). Finally, the mapping between the fundamental of SO(3) and the

adjoint of SU(2) is given by the Pauli matrices (σI)α
β , whereas (Γm)αβ̂ are Dirac matrices

in the Weyl representation (cf. [15]).

The embedding tensor/fluxes dictionary will identify the consistent deformations of

supergravity that arise from the compactification with KKO5-planes. The mapping is given

in table 9. The SO(3, 3) 3-form of the embedding tensor fABC ⊂ fMNP , which carries the

metric flux written in terms of the extrinsic curvature, is parameterized as follows:

fABC = 2

(
1

2
δ

[r
[m Qn][p δ

s]
q] +

1

4
εtmn[p Q̃

t[r δ
s]
q]

)
[GA]mn [GB]pq [GC ]rs , (4.28)

where the symmetric matrices Q and Q̃ are the embedding tensor components specified in

table 9 and GA are the ’t Hooft symbols.

If we study the QC (3.6) by restricting ourselves to the above configuration of fluxes,

we obtain some surviving conditions. These conditions can be interpreted as restrictions

for the presence of additional sources and correspond to the N = (1, 1) tadpoles written in

table 11. Regarding the extra QC (3.8), they correspond to an N = (2, 2) tadpole, which

is shown in table 11. The value of T5,1 is given by

T5,1 = f0 Q00 . (4.29)

Then, upon using the parameterization of the fluxes and the scalar fields and choosing

T5,1 = f0 Q00, both the gauged supergravity potential (3.7) and the potential from the

dimensional reduction (2.15) are unambiguously identified.

Critical points. Let us consider the flux configuration given in table 9 and evaluate the

corresponding non-vanishing embedding tensor components in the scalar potential (3.7).
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0
5
(
2
0
2
0
)
0
1
5

Sol # Q̃mn f0 f4 fmn Qmn

1 diag(0, 3α, 3α, 3α) −α α 0 diag(3α, 0, 0, 0)

2 diag(0, α, α, α) −α α 0 diag(α, 0, 0, 0)

3 (3′) O4 α (0) 0 (α) 0 diag(±α, 0, 0, 0)

4 (−5 + 2
√

7) diag(0, α, α, α) α −α 0 (−7 + 2
√

7) diag(α, 0, 0, 0)

5 (5 + 2
√

7) diag(0, α, α, α) −α α 0 −(7 + 2
√

7) diag(α, 0, 0, 0)

6 α
α+βdiag(−α, β, β, β) α β 0 β

α+βdiag(−β, α, α, α)

7 α diag(−1, 7± 4
√

3, 7± 4
√

3, 7± 4
√

3) 0 0 0 α diag(−(7± 4
√

3), 1, 1, 1)

Table 12. Critical points of the scalar potential induced by the compactification of mIIA with

KKO5/KK5. Solution 1 is the supersymmetric AdS vacuum found in [40].

Sol # Λ = 1
2V0 m2

1 − 5
2g

2α2 12
5 (×1)

, 7
5 (×3)

, − 3
5 (×4)

, 3
5 (×5)

, − 2
5 (×1)

, 0(×3)

2 − 1
2g

2α2 2(×1), −1(×8), 1(×4), 0(×4)

3 (3′) 0 4α2
(×1), α

2
(×3), 0(×13)

4 1
2

(
8
√

7− 21
)
g2α2

1
14 (77 + 36

√
7±

√
22057 + 7896

√
7)(×1), 5 + 12√

7 (×3)
,

1 + 8√
7 (×5)

, 2 + 4√
7 (×1)

, −1 + 4√
7 (×3)

, 0(×3)

5 − 1
2

(
8
√

7 + 21
)
g2α2

1
14 (−77 + 36

√
7±

√
22057− 7896

√
7)(×1), −5 + 12√

7 (×3)
,

−1 + 8√
7 (×5)

, −2 + 4√
7 (×1)

, 1 + 4√
7 (×3)

, 0(×3)

6 1
2g

2αβ 0(×3), 1(×5),
(α+β)2±

√
(α+β)4+16α2β2

4|αβ| (×3)
,

λ(i)

2|αβ|(αβ)3 (i = 1, 2, 3)

7 0 32(7± 4
√

3)α2
(×9), 0(×8)

Table 13. Potential and mass eigenvalues for the critical points of the scalar potential induced

by the compactification of mIIA with KKO5/KK5. In this case, we obtain two families of Mkw

vacua, 3 families of AdS vacua, a 1-parameter family of dS solutions and a 2-parameter family of

(A)dS solutions. Solution 1 is the supersymmetric AdS vacuum found in [40]. When the poten-

tial is nonvanishing, the mass eigenvalues are normalized by |Λ|. In D = 6 AdS spacetime, the

Breitenlohner-Freedman bound reads m2
BF = − 5

8 |Λ|.

When we solve the equations of motion of the scalar fields as well as the QC (3.6), we

obtain 7 families of solutions. The flux configuration for the full set of solutions is given

in table 12, whereas the type of vacua that they give rise to and the mass spectrum are

shown in table 13.

Let us note that we obtain a particular solution (Solution 1) which precisely corre-

sponds to the supersymmetric AdS vacuum found in [40], where the residual SU(2) isome-

tries are interpreted as the R-symmetry of the dual N = 1 SCFT5. Other AdS vacua

do not preserve any supersymmetry. A quick way to see this is to check, as a neces-

sary condition, if the mass spectrum fulfills the Breitenlohner-Freedman bound [42]. The

Breitenlohner-Freedman bound is the lowest mass eigenvalue, for which the scalar field in

AdS is stable [43]. Solution 1 satisfies this bound, whereas solutions 2 and 4 do not.

– 20 –



J
H
E
P
0
5
(
2
0
2
0
)
0
1
5

IIB Flux type Flux parameters σKKO5 no extra Z2 Θ components

F(1) Fm = fm + + ζm = fm

H(3) Hmnp = εmnpq h
q + + fmnp = εmnpq h

q

Table 14. The explicit dictionary between type IIB fluxes consistent with the O5 involution and

deformation parameters of N = (1, 1) supergravity in six dimensions.

Solution 6 describes the 2-parameter family of AdS vacua for αβ < 0 and the dS vacua

for αβ > 0. For the mass eigenvalues of Solution 6, the roots λ(i) satisfies the following

cubic equation

f(λ) ≡ λ3 − 2(2α2 + αβ + 2β2)λ2 + 2αβ(α2 + 6αβ + β2)λ+ 12α2β2(α+ β)2 = 0 . (4.30)

On account of f(0) = 12(αβ)2(α + β)2 > 0 and f(−2αβ) = −8(αβ)2(α + β)2 < 0, the

corresponding de Sitter solution is always unstable. For the AdS case, Solution 6 does not

fulfill the Breitenlohner-Freedman bound for generic values of (α, β).

4.4 Type IIB with O5/D5

Let us now consider type IIB compactification on a (twisted) torus in the presence of an

O5 plane, whose configuration is

O5 : ×| × ××××︸ ︷︷ ︸
6D

−−−−︸ ︷︷ ︸
4D

. (4.31)

This setting defines the following orientifold involution

σO5 : ym 7→ −ym, m = 1, 2, 3, 4 . (4.32)

Fluxes and moduli. Because the world-volume of the O5/D5 branes extends along the

6 external dimensions, the SL(4,R) symmetry arising from the compactification remains

unbroken under the σO5 involution. This implies that, in addition to the universal moduli,

the scalar fields arising from the internal components of the supergravity fields are encoded

in the matrix Mmn, which is a representative of the SL(4,R)/SO(4) coset.

Having no additional Z2 parity factors, the set of fluxes that are consistent with the

O5 involution consists of

Fm ≡ fm , Hmnp ≡ εmnpq hq , no F(3) flux ,

no F(5) flux , no ω flux . (4.33)

More details are given in table 14.

In total, we have a set of 8 fluxes (4 + 4) and 11 scalar fields (1 + 1 + (15 − 6)).

Additionally, because of the presence of an N = (2, 2) tadpole due to the presence of

D5/O5 sources, the term VD5/O5 non-trivially contributes to the scalar potential, as the

tension can be identified by T5 ≡ ND5 − NO5 = fmh
m.
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IIB fields σO5 Ωp # physical dof’s

emn + + 16− 6 = 10

Bmn + − −
Φ + + 1

C(0) + − −
C(2) + + 6

C(4) + − −

Table 15. Counting of the total 17 propagating scalar dof’s allowed by O5-planes in type IIB

compactifications down to six dimensions. This is exactly the dimension of the supergravity coset

given in (3.1), once we subtract from emn the 6 unphysical directions corresponding to the compact

SO(4) generators.

N = (2, 2) QC/tadpoles Sources

fmh
m !

= 0 (source) D5/O5:
m
−

n
−

p
−

q
− (×1)

Table 16. Non-vanishing extra QC (3.8) and their higher-dimensional origin for the flux com-

pactification of type IIB with O5/D5 given in table 14, where BI stands for Bianchi identities and

d̃ ≡ d + ω ∧. A description of the QC as restrictions for the existence of additional local sources

is given.

Scalar sector and fluxes/embedding tensor dictionary. Now we will study the

mapping between the scalar fields of the compactification given by the coset SL(4,R)/SO(4)

plus the universal moduli (ρ, τ) and the scalar fields of the gauged supergravity given by

the coset (3.1).

The set of scalar fields that are even under the above orientifold involution is presented

in table 15. The relation between the scalar dof’s of gauged supergravity and the ones

obtained from compactification is{
Λ = ρ4/5τ6/5 ,

Σ = ρ3/10τ−4/5 ,
HMN =

(
Λ Mmn 0

0 Λ−1 Mmn

)
. (4.34)

Regarding the fluxes and the consistent deformation parameters of the supergravity

theory, the embedding tensor/fluxes dictionary is given in table 14. Particularly, if we

study the QC (3.6) by restricting ourselves to the flux configuration of the table, we find

that all of them are straightforwardly satisfied. On the other hand, the QC (3.8) do not

vanish. This implies that the possible critical points are not solutions of the maximal theory.

In particular, the presence of an N = (2, 2) tadpole, which is shown in table 16, precisely

justifies the existence of the spacetime filling O5/D5 source that enters the compactification.

Critical points. An exhaustive search of the critical points of the scalar potential ob-

tained from the compactification of type IIB with O5/D5 sources has been done. The

result consists of a unique 4-parameter family of solutions. The scalar potential evaluated

at the critical points vanishes, thus having a Mkw vacuum. Further details on the values

of the embedding tensor are given in table 17.
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Sol # fm hm m2

1 αm −αm 0(×13), |αm|2(×3), 4|αm|2(×1)

Table 17. Critical points of the scalar potential induced by the compactification of IIB with

O5/D5. In this case, we obtain a unique 4-parameter family of solutions, for which a Mkw vacuum

is found.

IIB Flux type Flux parameters σO7 (−1)FLΩp Θ components

ω

ωij
a = θaεij + + ζa = −εab θb

ωai
j = (κa)i

j + 1
2ηaδi

j

ωab
c = −2η[aδb]

c
+ +

faij̄ = (κa)i
j

ξa = −ηa
fabc̄ = 1

2εabη
c

H(3) Habi = εab hi − − fabk̄ = hk εab

F(1) Fa = fa + + fajk = fa εjk

F(3) Fabi = εab fi − − fabi = fi εab

Table 18. The explicit dictionary between type IIB fluxes consistent with the O7 involution and

deformation parameters of N = (1, 1) supergravity in six dimensions. Raising SL(2,R) indices has

been done via hi = εijhk and ηa = εabηb.

4.5 Type IIB with O7/D7

We study the effective theory arising from the compactification of type IIB theory on

a twisted torus in the presence of an O7/D7 source. The source is extended along the

following directions:

O7 : ×| × ××××︸ ︷︷ ︸
6D

××−−︸ ︷︷ ︸
4D

. (4.35)

This configuration defines the following orientifold involution for the internal coordinates:

σO7 :

{
ya 7→ ya , a = 1, 2 ,

yi 7→ −yi , i = 3, 4 .
(4.36)

Fluxes and moduli. As a consequence, the SL(4,R) covariance of the internal manifold

is broken down to SL(2,R)L×SL(2,R)R by the involution σO7. This implies that, in addi-

tion to the universal moduli, the scalar matrixMmn ∈ SL(4,R)/SO(4) is parameterized as

Mmn =

(
σ2Mab

σ−2M̃ij

)
, (4.37)

where σ is the modulus describing the relative squeezing between the ab & the ij cy-

cles, while Mab and M̃ij parameterize the cosets SL(2,R)L/SO(2) and SL(2,R)R/SO(2),

respectively. Explicit parameterizations can be found, e.g., in [11, 13].

Regarding the fluxes, in addition to the σO7 involution, an additional Z2 parity given by

(−1)FLΩp has to be considered. Then the set of fluxes that are even under the combination
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IIB fields σO7 (−1)FLΩp # physical dof’s

eab ⊕ eij + + 4 + 4− (1 + 1) = 6

Bai − − 4

Φ + + 1

C(0) + + 1

Cai − − 4

Cabij + + 1

Table 19. Counting of the total 17 propagating scalar dof’s allowed by O7-planes in type IIB

compactifications down to six dimensions. This is exactly the dimension of the supergravity coset

given in (3.1), once we subtract from eab and eij the 2 unphysical directions associated to the

SO(2)× SO(2) generators.

of both parities consists of

ωij
a ≡ θaεij , ωai

j ≡ (κa)i
j +

1

2
ηaδi

j , ωab
c ≡ −2η[aδb]

c ,

Habi ≡ εab hi , Fa ≡ fa , Fabi ≡ εab fi , (4.38)

with (κa)i
i = 0. Further details on the components and parity of each field are given in

table 18.

In summary we have a set of 16 fluxes (2 + 6 + 2 + 2 + 2 + 2) and 7 scalar fields

(1 + 1 + 1 + (3 − 1) + (3 − 1)). As for the scalar potential, the term VO7/D7 becomes

non-trivial, as the tension is identified by

T7 ≡ ND7 − 4NO7 = faθ
a , (4.39)

where fa and θa parameterize the F(1) and the metric fluxes, respectively (cf. table 18).

As we will see in the following paragraphs, this is a consequence of an N = (2, 2) tadpole

induced by the O7 plane and possible parallel D7 branes.

Scalar sector and fluxes/embedding tensor dictionary. Now we are going to es-

tablish the functional relation between the set of scalar fields obtained from the compact-

ification, which are given by the universal sector plus the matrix Mmn in (4.37), and the

set of scalar fields of the gauged supergravity.

The scalar fields that survive both (−1)FLΩp and σO7 projections are presented in

table 19. The functional relation between the scalar fields of gauged supergravity and the

ones obtained from compactification reads
Λ = τ2 ,

Γ = ρ ,

Σ = σ ,

HMN =


ΛΓMab 0

0 ΛΓ−1Mij
0

0
Λ−1Γ−1Mab 0

0 Λ−1ΓM ij

 . (4.40)

On the other hand, the consistent deformations of the 6-dimensional gauged theory are

encoded in the embedding tensor. The explicit parameterization of the fluxes inside the

SL(2,R)L × SL(2,R)R ⊂ SO(4, 4) irrep’s of the embedding tensor is given in table 18.
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N = (1, 1) QC/tadpoles Sources

εab
(
ηa(κb)i

j − (κa)i
k(κb)k

j
) !

= 0 (Jacobi) KK5/KKO5:
a
−

b
−

i
−

j

ISO (×2)

ηaθ
b − 1

2δ
b
aηcθ

c !
= 0 (Jacobi) K̃K5/K̃KO5:

a
−

b

ISO
i
−

j
− (×2)

faηbε
ab !

= 0 (BI C(0)) Õ7/D̃7:
a
−

b
−

i
×

j
× (×1)

N = (2, 2) QC/tadpoles Sources

faθ
a !

= 0 (BI C(0)) O7/D7:
a
×

b
×

i
−

j
− (×1)

Table 20. Non-vanishing QC (3.6), (3.8) and their higher dimensional origin for the flux compacti-

fication of type IIB with O7/D7 given in table 18, where BI stands for Bianchi identities and Jacobi

refers to the condition (2.10). A description of the QC as restrictions for the existence of additional

local sources is given.

Sol # fa fi hi θa (κa)i
j ηa m2

1

(
α

0

)
0 0

(
−α
0

) (
0

β

)
⊗

(
0 −1

1 0

)
0

0(×9), α
2
(×1), 4α2

(×1),

β2
(×2), 4β2

(×2), (α2 + β2)(×2)

2 0 0 0

(
α

β

) (
α

β

)
⊗

(
0 1

0 0

)
0 0(×13), (α2 + β2)(×3), 4(α2 + β2)(×1)

3 0 0 0 0

(
α

β

)
⊗

(
0 −1

1 0

)
0 0(×11), (α2 + β2)(×4), 4(α2 + β2)(×2)

Table 21. Critical points of the scalar potential induced by the compactification of IIB with

O7/D7. In this case, we obtain three 2-parameter families of solutions. When evaluated at the

critical points, the scalar potential vanishes, thus giving rise to a Mkw vacuum.

If we study the QC (3.6) by restricting ourselves to such configuration of fluxes, we

observe that some of them are not yet satisfied. These conditions, which can be interpreted

as restrictions for the presence of additional supersymmetry breaking sources, correspond

to the N = (1, 1) tadpoles written in table 20. As far as the extra QC (3.8) are concerned,

they are not satisfied in general. This implies that, if any, some critical points could

genuinely be solutions of the half-maximal theory and not solutions of the maximal one.

Similarly, this indicates the existence of an N = (2, 2) tadpole, which is shown in table 20.

The value of the effective tension appearing in the scalar potential is given by T7 = faθ
a.

Critical points. Let us take a look at the critical points of the scalar potential induced by

the fluxes of table 18. We find three 2-parameter families of solutions. While the traceless

part of the metric flux is turned on for all of them, only one solution carries 1-form flux.

The rest of fluxes vanish. Further details can be found in table 21. In appendix B the

global aspects of the twisted torus compactifications that give rise to each of these vacua

are studied.
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IIB Flux type Flux parameters σO9 Ωp Θ components

ω ωmn
p + + fmnp̄ = ωmn

p

F3 Fmnp = εmnpq f
q + + fmnp = εmnpq f

q

Table 22. The explicit dictionary between type IIB fluxes consistent with the O9 involution and

deformation parameters of N = (1, 1) supergravity in six dimensions.

4.6 Type IIB with O9/D9

In this section we study type IIB compactification on a twisted torus with O9/D9 sources.

These extended BPS object fills the full 10-dimensional space-time

O9 : ×| × ××××︸ ︷︷ ︸
6D

××××︸ ︷︷ ︸
4D

, (4.41)

and defines a trivial orientifold involution

σO9 : ym 7→ ym , m = 1, 2, 3, 4 . (4.42)

Fluxes and moduli. Since our sources completely fill internal space, the SL(4,R) co-

variance emerging from the compactification remains unbroken. Then, in addition to the

universal moduli (ρ, τ), the scalar fields arising from the compactification parameterize a

coset, which we denote by Mmn ∈ SL(4,R)/SO(4).

The set of fluxes that are consistent with Ωp consists of

ωmn
p , Fmnp ≡ εmnpq f

q , no H(3) flux ,

no F(1) flux , no F(5) flux . (4.43)

Further details can be found in table 22. In summary we have a set of 22 fluxes (18 + 4)

and 11 scalar fields (1 + 1 + (15− 6)). On the other hand, in the scalar potential, the term

VO9/D9 does not contribute, due to the identification T9 ≡ ND9 − 16NO9 = 0.6

Scalar sector and fluxes/embedding tensor dictionary. Let us now move to the

mapping between scalar fields of the compactification given by the coset SL(4,R)/SO(4)

and scalar fields of the gauged supergravity given by the coset SO(4, 4)/SO(4) × SO(4).

The set of fields that survive the Ωp projection is presented in table 23. The functional

relation between the scalar fields of gauged supergravity and the ones obtained from com-

pactification is {
Λ = τ2 ,

Σ = ρ1/2 ,
HMN =

(
ΛMmn 0

0 Λ−1Mmn

)
. (4.44)

The dictionary relating the fluxes and the deformation parameters written as compo-

nents of the embedding tensor is contained in table 22. These results and the choice T9 = 0

allows us to unambiguously match the scalar potential (3.7) with the one obtained from

compactification, (2.15).

6This is consistent with the standard setup in type I string theory consisting of an O9 plane with 16

parallel D9 branes yielding an anomaly free SO(32) N = 1 SYM10.
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IIB fields σO9 Ωp # physical dof’s

emn + + 16− 6 = 10

Bmn + − −
Φ + + 1

C(0) + − −
Cmn + + 6

Cmnpq + − −

Table 23. Counting of the total 17 propagating scalar dof’s allowed by O9-planes in type IIB

compactifications down to six dimensions. This is exactly the dimension of the supergravity coset

given in (3.1), once we subtract from emn the 6 unphysical directions corresponding to the compact

SO(4) generators.

N = (1, 1) QC/tadpoles Sources

ω[mn
rωp]r

q !
= 0 (Jacobi) KK5/KKO5:

m

ISO
n
−

p
−

q
× (×4)

Table 24. Non-vanishing QC (3.6) and their higher-dimensional origin for the flux compactification

of type IIB with O9/D9 given in table 22, where Jacobi refers to the condition (2.10). A description

of the QC as restrictions for the existence of additional local sources is given.

Sol # fm ωmn
1 ωmn

2 ωmn
3 ωmn

4 m2

1 0


0 0 0 0

0 0 0 0

0 0 0 α

0 0 −α 0




0 0 0 0

0 0 0 0

0 0 0 β

0 0 −β 0

 O4


0 0 α 0

0 0 β 0

−α −β 0 0

0 0 0 0

 0(×11), (α2 + β2)(×4),

4(α2 + β2)(×2)

Table 25. Some critical points of the scalar potential induced by the compactification of IIB with

O9/D9. In this case, we show a 2-parameter family of solutions, all of them corresponding to

Minkowski vacua.

Upon picking this flux configuration and using the above dictionary, some of the QC

associated to the embedding tensor (3.6) are still not automatically satisfied. These condi-

tions, which resemble the restrictions to the presence of additional sources, correspond to

the N = (1, 1) tadpole written in table 24. Regarding the extra QC (3.8), because they are

straightforwardly zero, we conclude that the hypothetical critical points of the deformed

supergravity will also satisfy the equations of motion of the maximal theory.

Critical points. Before studying the existence of critical points for this configuration,

we will prove two more generic results: for type IIB compactifications with spacetime filling

O9/D9 sources, (i) all critical points are Minkowski, and (ii) on-shell, Fmnp = 0.

To prove (i) we just note that the scalar potential can be written as

V = −1

2
∂ΣV . (4.45)

Then, because a necessary condition for the existence of critical points is precisely ∂ΣV
!

= 0,
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we obtain that

Von-shell = 0 , (4.46)

thus concluding that only Minkowski solutions can exist as critical points. 2

As for the proof of (ii), let us note that the scalar potential can also be written as

V = −1

4
f qf q − ∂ΛV . (4.47)

On-shell, the scalar potential reduces to

Von-shell = −1

4
f qf q , (4.48)

and, using the result (i), we conclude that |Fmnp|2 = 0, which implies the vanishing of the

3-form flux. 2

In table 25 we show a single family of critical points. Since the 3-form flux is required

to vanish on-shell, the solution is sourced only by metric fluxes. In addition to the param-

eterization given in table 25, one may find other solutions. For instance, the following flux

configurations also satisfy the conditions for the critical point and QCs:

ωmn
1 = ωmn

2 = O4 , ωmn
3 =


0 0 0 α

0 0 0 β

0 0 0 0

−α −β 0 0

 , ωmn
4 =


0 0 −α 0

0 0 −β 0

α β 0 0

0 0 0 0

 . (4.49)

Nevertheless, one can show that this flux configuration can be transformed into the solution

in table 25 by the following change of frame

ω′mn
p = Sm

qSn
r(S−1)s

pωqr
s , Sm

n =


0 0 1 0

− β/α√
1+β2/α2

1√
1+β2/α2

0 0

α/β√
1+α2/β2

1√
1+α2/β2

0 0

0 0 0 −1

 . (4.50)

Other solutions that we found turn out to be equivalent to the solution in table 25, which

can be inferred from the degeneracy of mass spectrum. Further details concerning the

global properties of the solutions, such as the periodic identifications that are necessary

to view them as globally well defined compactifications on twisted tori are collected in

appendix B.

4.7 M-theory with KKO6/KK6

Let us finally consider the compactification of 11-dimensional supergravity on twisted tori

in the presence of KKO6/KK6 monopoles,

KKO6 : ×| × ××××︸ ︷︷ ︸
6D

×ISO−−−︸ ︷︷ ︸
5D

. (4.51)
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11D Flux type Flux parameters σKKO6 Θ components

G(4) Gmnpq = g4 εmnpq + ζ0 = g4

ω
ωmn

0 = θmn + ζA = 1
2θmn[GA]mn

ω0m
n = κm

n + f0AB = −κmn[ḠA]np[GB ]pm

Table 26. The explicit dictionary between M-theory fluxes consistent with the KKO6 involution

and deformation parameters of N = (1, 1) supergravity in six dimensions.

This particular configuration induces the following orientifold involution on the internal

coordinates:

σKKO6 :

{
y0 7→ y0 ,

ym 7→ −ym , m = 1, 2, 3, 4 .
(4.52)

We will assume the presence of an isometry direction along one of the xm directions.

Generically, this setting could be related to the cases of type IIA with KKO5/KK5 and

O6/D6 when we turn off the Romans’ mass F(0) = 0, by performing a compactification on a

circle along the directions y0 and yi = ISO, respectively. However, as we will see, the most

general flux configuration is still inequivalent, as some of the 11-dimensional fluxes that

we are going to consider turn out to be lacking a geometric interpretation in perturbative

type IIA.

Fluxes and moduli. The presence of the KKO6 source effectively breaks the SL(5,R)

covariance arising from the dimensional reduction down to R+×SL(4,R). Accordingly, the

index m̂ of the fundamental representation of SL(5,R) introduced in section 2.2 splits as

m̂ = (0,m), with m = 1, · · · , 4 being an index of the 4 of SL(4,R). Consequently, the non-

universal sector of scalar fields that arise from the compactification of the 11-dimensional

theory, parameterize the matrix M̂m̂n̂ ∈ SL(5,R)/SO(5) as follows:

M̂m̂n̂ =

(
σ4 0

0 σ−1Mmn

)
, (4.53)

where σ is a scalar field and Mmn ∈ SL(4,R)/SO(4).

The presence of KKO6/KK6 monopoles does not introduce any additional Z2 par-

ity [38]. Hence, the set of fluxes that are consistent with the above involution σKKO6 is

given by

ωmn
0 ≡ θmn , ω0m

n ≡ κm
n , Gmnpq ≡ g4 εmnpq , (4.54)

where θmn = θ[mn] and κm
m = 0. Further details of the parameterization are collected

in table 26. In summary, we have a set of 22 fluxes (1 + 6 + 15) and 11 scalar fields

(1 + 1 + (15− 6)). In the scalar potential, no extra term VKKO6/KK6 needs to be included,

since KK monopoles are directly sourced by the metric and hence their contribution to the

effective potential directly comes from the 11-dimensional Einstein-Hilbert term.
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11D fields σKKO6 # physical dof’s

e0
0 ⊕ emn + 1 + 16− 6 = 11

A0mn + 6

Table 27. Counting of the total 17 propagating scalar dof’s allowed by KKO6 sources in M-theory

compactifications down to six dimensions. This is exactly the dimension of the supergravity coset

given in (3.1), once we subtract from emn the 6 unphysical directions corresponding to the compact

SO(4) generators.

N = (1, 1) QC/tadpoles Sources

θm[nκm
p] !

= 0 (Jacobi) ?? (no long weights in the 6)

θm(nκm
p) !

= 0 (Jacobi) K̃K6/K̃KO6:
0
×

m

ISO
n
−

p
−

q
− (×4)

Table 28. Non-vanishing QC (3.6) and their higher dimensional origin for M-theory with

KKO6/KK6 given in table 26. Note that the source interpretation for the QC in the first line

is not clear. This is generically the case whenever the corresponding QC transforms in irrep’s which

do not contain long weights [44, 45]. These objects might though correspond to non-trivial bound

states of elementary branes. In the table, we have denoted θmn ≡ 1
2ε
mnpqθpq.

Scalar sector and fluxes/embedding tensor dictionary. Let us firstly study the

dictionary between the scalar fields of the compactification, which are given by the coset

R+×R+×SL(4,R)/SO(4) and the scalar fields of the gauged supergravity parameterizing

the coset R+ × SO(4, 4)/SO(4)× SO(4).

The set of fields that are even under the above involution is presented in table 27. As in

the case of type IIA with KKO5, the mapping relating the scalar fields of each formulation

is spinorial and therefore it may be established by making use of the isomorphism sl(4,R) ∼=
so(3, 3). To do so, we use the same splitting of the SO(4, 4) light-cone coordinates as the

one done in (4.23). Then, the supergravity scalar fields are parameterized as

{
Λ = ρ3σ2 ,

Σ = ρ−3/8σ ,
HMN =


Λ 0

0 Mij
0

0
Λ−1 0

0 Mīj̄

 , (4.55)

where Mij and Mīj̄ are the components of MAB given by (4.26). Similarly, the vielbein

VAIĴ that squares to MAB is the one given by (4.27). Regarding the internal components

of the fields and the compatible deformations of the theory, a detailed dictionary between

the consistent fluxes and the embedding tensor components is spelled out in table 26.

Let us consider the QC (3.6) for the set of fluxes of table 26. We find that some

conditions are not automatically satisfied. Such equations forbid the presence of additional

sources that will not preserve the 16 supercharges of the theory. In particular, these

expressions are written in table 28 and correspond to the tadpoles of the N = (1, 1) theory.

These tadpoles are precisely the long weights of the 10 (4 states), which prohibit the

presence of KKO6/KK6 monopoles.
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Finally, let us consider the extra QC (3.8), which determines whether a deformation of

the half-maximal theory is also consistent in the maximal case. Plugging the non-vanishing

components of the embedding tensor we find that they are all satisfied. This means that

such solutions will also be solutions of the maximal theory.

Type IIA/M-theory duality. As we have mentioned above, upon doing a compacti-

fication on a circle either along the direction of the KKO6 world-volume y0 (S1
0) or the

isometry direction, say y1, (S1
1), a mapping between M-theory and type IIA configurations

can be established.

Let us firstly note that, depending on which compactification circle we pick, S1
0 or S1

1 ,

the KKO6-plane induces two types of local sources:

KKO6 :
0
×

1
ISO

i
−

j
−

k
− =⇒


S1
0−→ KKO5:

1
ISO

i
−

j
−

k
−

S1
1−→ O6:

0
×

i
−

j
−

k
−

. (4.56)

Secondly, using the Kaluza-Klein Ansatz for the dimensional reduction of M-theory

on a circle, we can easily read off the resulting 10-dimensional fields. For example, for

the compactification along the direction y0, the 11-dimensional fields turn on the following

type IIA fluxes:

G1ijk → F1ijk , ω0i
1 → non-geom. , ωij

0 → Fij ,

ω01
i → non-geom. , ω0i

j → non-geom. , ω1i
0 → F1i .

(4.57)

Therefore, following the parameterizations of tables 26 and 9, the fluxes are related as

follows:

g4 = f4 , θmn = Fmn , κm
n = non-geom. . (4.58)

We observe that some 11-dimensional metric fluxes have no geometric analogue in type

IIA, as they would correspond to strong coupling effects within the KKO5 truncation.

Similarly, for the compactification along the isometry direction y1, we obtain the fol-

lowing relations:

G1ijk → Hijk , ω0i
1 → F0i , ωij

0 → ωij
0 ,

ω01
i → non-geom. , ω0i

j → ω0i
j , ω1i

0 → non-geom. .
(4.59)

In this case, the parameterizations of tables 26 and 1 are related as:

g4 = h , θmn =

(
0 non-geom.

non-geom. θij

)
, κm

n =

(
−κ0 non-geom.

fi κi
j ⊕ κ0

)
. (4.60)

As in the previous case, some metric fluxes cannot be mapped to any 10-dimensional

(perturbative) flux, thus making this compactification genuinely 11-dimensional.
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Sol # g4 θmn κm
n m2

1 0


0 β + α2

β 0 0

−β − α2

β 0 0 0

0 0 0 0

0 0 0 0



−α α2

β 0 0

−β α 0 0

0 0 0 0

0 0 0 0

 0(×13), β
−2(α2 + β2)(×3),

4β−2(α2 + β2)(×3)

2 0


0 β + α2

β 0 0

−β − α2

β 0 0 0

0 0 0 0

0 0 0 0




0 0 0 0

0 0 0 0

0 0 α α2

β

0 0 −β −α

 0(×13), β
−2(α2 + β2)(×3),

4β−2(α2 + β2)(×3)

3 0 O4


0 α 0 0

−α 0 0 0

0 0 0 β

0 0 −β 0

 0(×9), 4α2
(×2), 4β2

(×2),

(α+ β)2
(×2), (α− β)2

(×2)

Table 29. Critical points of the scalar potential induced by the compactification of M-theory with

KKO6/KK6. In this case, we show three families of solutions depending on two parameters (α, β),

all of them corresponding to Minkowski vacua.

Critical points. The set of critical points of the scalar potential induced by the fluxes of

table 26 is given in table 29. We find that the 4-form flux vanishes for all families of solutions

that have been found, so the vacua are induced by purely metric flux compactification. In

addition, every family only contains Minkowski extrema. For the solution 2, the Jacobi

identity θm(nκm
p) = 0 fails to be satisfied, this implying the existence of a KKO6 plane.7

For the rest of solutions, the corresponding internal manifold is discussed in appendix B.

5 Conclusions

We have studied various aspects of type-II and M-theory compactifications down to six

dimensions that explicitly break half of the supersymmetry through the presence of space-

time filling orientifold planes. The reduced D = 6 theory admits the gauged N = (1, 1)

supergravity description. Note that such 6D theory is always nonchiral, regardless of the

chirality property of the progenitor theory in ten/eleven dimensions. This is by construc-

tion imposed by our truncation procedure that realizes the supersymmetry halving. In

particular, due to the nonexistence of consistent deformations of N = (2, 0) theory in six

dimensions [34], this enforces the nontriviality of the problem of moduli stabilization when

reducing down to 6D, thanks to the presence of nonvanishing background fluxes.

We have studied various cases obtained by restricting the embedding tensor to compo-

nents admitting a higher dimensional interpretation within different orientifold compacti-

fications. After writing down the corresponding scalar potentials for the wouldbe moduli

fields, we have examined the critical points by using the framework of six dimensional

7The corresponding effective tension turns out to be negative, the associated background geometry being

Atiyah-Hitchin space [46].
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gauged supergravities. In most of the cases under study, the D = 6 theories only admit

Minkowski vacua. An exceptional case is the massive IIA with KKO5/KK5, for which we

possess a rich vacuum structure as displayed in table 13. In particular, there exist de Sit-

ter extrema. Note that the corresponding setup goes beyond the conventional framework

of [6, 47], in which their existence at a classical level is systematically ruled out. However,

consistently with the refined no-go argument of [48] (see also [49]), our de Sitter solutions

suffer from tachyonic instabilities.

All our constructions are based on the presence of spacetime filling orientifold planes

and (possibly) parallel positive tension branes of the same type. Within this context, a very

natural follow-up question is to wonder what happens to the dynamics of the corresponding

compactifications once open string degrees of freedom (i.e. brane position moduli and axions

obtained by reducing gauge fields on internal cycles) and the corresponding fluxes (i.e. non-

Abelian open string gaugings) are included as well. Will there appear new structures in

this portion of the Landscape? Are there any candidate metastable non-supersymmetric

AdS vacua to test swampland conjectures? Can one trust these vacua? We hope to come

back to these issues in the future.
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A A Z2 truncation of maximal gauged supergravity

This appendix presents the prescription for obtaining nonchiral half-maximal gauged su-

pergravity from the maximal gauged supergravity constructed in [36]. The maximal (2, 2)

gauged supergravity possesses an on-shell E5(5) = SO(5, 5) U-duality symmetry [50] and

contains 16 vector fields carrying a chiral spinor representation 16c of SO(5, 5).

The truncation to N = (1, 1) half maximal supergravity has been discussed in [36].

Here we repropose a detailed description of this truncation. Apart from practical utilities,

this was also used for the derivation of the scalar potential presented in (3.7). We would like

to stress that not every N = (1, 1) theory is obtained by truncation of N = (2, 2) theory,

since the N = (1, 1) theory admits a much wider range of possibilities. As a consequence,

an extra set of quadratic constraints on the embedding tensor appear upon truncations,

which we shall discuss in the following.
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A.1 SO(5, 5) branching rules

Let ηMN denote the SO(5, 5) invariant metric in the light cone basis. We split the funda-

mental indices of SO(5, 5) as M → (−, M, +), where M is a fundamental SO(4, 4) index.

Correspondingly the metric becomes

ηMN = ηMN =

 0 0 1

0 ηMN 0

1 0 0

 , ηMN =

(
O4 14

14 O4

)
. (A.1)

The SO(5, 5) algebra is characterized by the generators MMN satisfying

[MMN,MPQ] = 2(ηM[PMQ]N − ηN[PMQ]M) . (A.2)

Let Φ denote any SO(5, 5) field, which transform as

[MMN,Φ] = −MMN(Φ) . (A.3)

In the following, we wish to determine the branching of irrep’s of SO(5, 5) under R+ ×
SO(4, 4).

Vector. In the fundamental representation, the generators can be chosen to be

(MMN)P
Q = −2δQ[MηN]P. Substituting this into (A.3), the SO(5, 5) vector VM obeys

[MMN, VP] = −(MMN)P
QVQ = −2ηP[MVN]. Defining the R+ ' SO(1, 1) generator by

D = M+− , (A.4)

and setting VM = (V−, VM , V+), the above relation decomposes into

[D,V±] = ±V± , [D,VM ] = 0 . (A.5)

This implies that we can assign ±2 R+ weights8 to the two singlets of SO(4, 4) as

10→ 1(+2) ⊕ 1(−2) ⊕ 8(0)
v . (A.6)

Adjoint. The decomposition of adjoint representation can be read off from (A.2). Defin-

ing PM = M+M and KM = M−M , we obtain

[D,PM ] = PM , [D,KM ] = −KM , (A.7)

[PM ,KN ] = −(DηMN +MMN ) , [MMN , PP ] = −2ηP [MPN ] , (A.8)

[MMN ,KP ] = −2ηP [MKN ] , [MMN ,MPQ] = 2(ηM [PMQ]N − ηN [PMQ]M ) ,

(A.9)

while other commutators vanish. It follows that

45→1(0) ⊕ 28(0) ⊕ 8(+2)
v ⊕ 8(−2)

v . (A.10)

8The weight ±2 has been chosen for convenience in such a way that the spinor representation has ±1

R+ weights. See, (A.27).
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Spinor. Let us consider the 32 dimensional SO(5, 5) spinor representation

(MMN)A
B =

1

2
(ΓMN)A

B , [MMN, QA] = −1

2
(ΓMN)A

BQB . (A.11)

where A = 1, . . . , 32 and ΓMN = Γ[M ΓN]. Here, ΓM satisfies the SO(5, 5) Clifford algebra

{ΓM, ΓN} = 2ηMN 132 . (A.12)

We employ the following explicit representation

Γ1 = σ13444 , Γ# = iσ24444 , Γ2 = σ11212 , Γ3 = σ11131 , Γ4 = σ11114 ,

Γ5 = σ11133 , Γ6 = iσ12444 , Γ7 = iσ11312 , Γ8 = iσ11424 , Γ9 = iσ11432 ,

(A.13)

where σijklm = σi⊗ σj ⊗ σk ⊗ σl ⊗ σm and σi = (σ1, σ2, σ3,12). The indices with underbar

are intended to denote the diagonal SO(5, 5) invariant metric ηMN = diag(15,−15). The

transformation to the indices at hand (A.1) can be done via

Γ∓ =
Γ1 ∓ Γ#√

2
, ΓM =

ΓM − ΓM+4√
2

, ΓM+4 =
ΓM + ΓM+4√

2
(M = 2, . . . , 5) . (A.14)

The SO(5, 5) charge conjugation matrix C satisfies

ΓMC = (ΓMC)T , CAB = −CBA . (A.15)

The spinor indices are raised and lowered by CAB and its inverse transpose CAB as QA =

CABQB and QA = QBCBA. Explicitly, we have

CAB =

(
CA

B′

CA
′
B

)
, CAB =

(
CAB′

CA′
B

)
, CAB = CAB = iσ23344 , (A.16)

with CA
C′CC′

B = −δBA and CA
′
CC

C
B′ = −δA′B′ , yielding

QA =

(
QA
QA

′

)
=

(
CB
′
AQB′

CB
A′QB

)
, QA =

(
CAB′Q

B′

CA′
BQB

)
. (A.17)

In this representation, the Majorana spinor is real Q = (CQ̄T ) = C(Γ6789#)TQ∗ = Q∗ and

the SO(5, 5) chiral matrix takes the diagonal form

Γ∗ ≡ Γ1···9# = diag(−116,+116) (A.18)

Therefore, the gamma matrices are chirally decomposed as

(ΓM)A
B =

(
(ΓM)AA′

(ΓM)A
′A

)
, (A.19)

so that

(MMN)A
B =

(
1
2(ΓMN)A

B

1
2(ΓMN)A

′
B′

)
, (A.20)
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where

(ΓMN)A
B =

1

2
[(ΓM)AA′(ΓN)A

′B − (ΓN)AA′(ΓM)A
′B] ,

(ΓMN)A
′
B′ =

1

2
[(ΓM)A

′A(ΓN)AB′ − (ΓN)A
′A(ΓM)AB′ ]. (A.21)

In the hereafter, we focus on (MMN)A
′
B′ , i.e., 16c.

Let us decompose (MMN)A
′
B′ into irrep. of R+ × SO(4, 4). The SO(4, 4) gamma

matrices (ΓM )A
′
B′ can be extracted from Γ2−9 as

ΓM = σ1 ⊗ ΓM−1 (M = 2, . . . , 9) , {ΓM ,ΓN} = 2ηMN116 . (A.22)

The SO(4, 4) chiral matrix is

Γ9 ≡ Γ1···8 = diag(18,−18) , QA
′

=

(
Qα̇

Qα

)
, α, α̇ = 1, . . . , 8 , (A.23)

where the dotted indices α̇, β̇, . . . refer to 8c while undotted indices α, β, . . . refer to 8s.

The SO(4, 4) charge conjugation matrix CA′B′ = CA
B′δAA

′
satisfies

(ΓMC) = (ΓMC)T , C = CT , C =

(
Cα̇β̇

Cαβ

)
, (A.24)

where Cα̇β̇ = −Cαβ = σ344 = diag(14,−14). In the current representation, (M+−)A
′
B′

reads

(M+−)α̇β̇ = −1

2
δα̇β̇ , (M+−)α

β = +
1

2
δα
β , (A.25)

leading to

[D,Qα̇] = +
1

2
Qα̇ , [D,Qα] = −1

2
Qα . (A.26)

One therefore arrives at

16c → 8(+1)
c ⊕ 8(−1)

s . (A.27)

Vector-spinor. We next wish to decompose the SO(5, 5) vector spinor θA
′
M ∈ 144c,

which transforms according to

[MMN, θ
A′

P] = 2θA
′
[MηN]P − (MMN)A

′
B′θ

B′
P . (A.28)

Here θA
′
M is a 16× 10 matrix subjected to

0 = (ΓM)ABθ
BM = (ΓM)AB′θ

B′M , (A.29)

where (ΓM)AB ≡ (ΓM)AB′C
B′
B = (ΓM)BA. In the context of maximal gauged supergravity

in D = 6, θA
′
M describes the embedding tensor and (A.29) corresponds to the linear

constraint, when additional trombone is absent.
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Decomposing θA
′
M → (θα̇M , θ

α̇
±, θαM , θα±), it is straightforward to show

[D, θα̇M ] =
1

2
θα̇M , [D, θα̇+] =

3

2
θα̇+ , [D, θα̇−] = −1

2
θα̇− ,

[D, θαM ] = −1

2
θαM , [D, θα+] = +

1

2
θα+ , [D, θα−] = −3

2
θα− . (A.30)

Note that each of θα̇M and θαM contains 64 components, so that these are reducible. In

the rest of this subsection, we uncover its irreducible components.

To this aim, we note that the SO(4, 4) gamma matrices take the following chiral form

(ΓM )A
′
B′ = (ΓM )A

′BδBB′ =

(
(γM )α̇β

(γM )αβ̇

)
. (A.31)

Spinor indices α, α̇ are raised and lowered by Cαβ , Cα̇β̇ and their inverse matrices, so

that (γM )α̇β = (γM )β
α̇ = (γM )α̇γCγβ . In this representation, the condition (A.29) decom-

poses into

√
2θα
− − (γM )αβ̇θ

β̇M = 0 ,
√

2θα̇+ + (γM )α̇βθβ
M = 0 . (A.32)

This suggests us to define

ϑα̇M ≡ θα̇M −
√

2

8
(γM )α̇βθβ

− , ϑα
M ≡ θαM +

√
2

8
(γM )αβ̇θ

β̇+ , (A.33)

each of which obeys the following eight restrictions

(γM )αβ̇ϑ
β̇M = 0 , (γM )α̇βϑβ

M = 0 . (A.34)

These quantities thus satisfy

[D,ϑαM ] = −1

2
ϑαM , [D,ϑα̇M ] = +

1

2
ϑα̇M . (A.35)

Accordingly, we obtain the following branching rule

144c → (ϑαM ∈ 56(−1)
c )⊕ (ϑα̇M ∈ 56(+1)

s )⊕ (θα+ ∈ 8(+1)
s )

⊕ (θα̇− ∈ 8(−1)
c )⊕ (θα̇+ ∈ 8(+3)

c )⊕ (θα− ∈ 8(−3)
s ) . (A.36)

A.2 Truncation of the quadratic constraints

Let us next move on to the discussion of the quadratic constraints on the embedding

tensor. Supersymmetry for the (2, 2) theory requires the embedding tensor to sit in the

144c representations of SO(5, 5), whose branching under R+×SO(4, 4) was already studied

to discuss the implicationes of the linear constraint in (A.29). Our following task is to obtain

the explicit branching rule for the quadratic constraints on the embedding tensor.

The truncation to N = (1, 1) theory amounts to projecting out the anti-chiral spinor

representations in (A.36)

144c → 56(−1)
c ⊕��

��H
HHH56(+1)
s ⊕��

�H
HH8(+1)
s ⊕ 8(−1)

c ⊕ 8(+3)
c ⊕��

�H
HH8(−3)
s . (A.37)
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Accordingly, three different contributions to the embedding tensor survive the truncation,

which we conventionally label9

fα̇β̇γ̇ ∈ 56(−1)
c , ξα̇ ∈ 8(−1)

c , ζα̇ ∈ 8(+3)
c . (A.38)

fα̇β̇γ̇ represents the gaugings inside SO(4, 4), whereas ξα̇ is related to the gauging of the

scaling symmetry R+. Finally ζα̇ describes instead the massive deformation [51, 52]. We

shall illustrate below how these pieces show up from θA
′
M .

Since ϑαM introduced in (A.33) belongs to 56
(−1)
c , it can be transferred to fα̇β̇γ̇ . One

can achieve this by the following map

f α̇β̇γ̇ ≡ (γMN )α̇β̇(γN )γ̇βϑβ
M , f α̇β̇γ̇ = f [α̇β̇γ̇] , (A.39)

where the second property comes from the linear constraint (γM )α̇βϑβ
M = 0. The rela-

tion (A.39) can be inverted to give

ϑα
M =

1

48
f α̇β̇γ̇(γMN )α̇β̇(γN )αγ̇ =

1

48
f α̇β̇γ̇(γα̇β̇γ̇)α

M , (A.40)

where (γα̇β̇γ̇)α
M ≡ (γMN )[α̇β̇(γ|N )α|γ̇]. It is also useful to record

f α̇β̇γ̇(γMN )α̇β̇ = −16(γ[M )γ̇βϑβ
N ] = −16(γ[MϑN ])γ̇ . (A.41)

For the rest of the components 8
(−1)
c and 8

(+3)
c , the map is simply given by

ξα̇ ≡ 2
√

2θα̇+ , ζα̇ ≡ 2
√

2θα̇− , (A.42)

Quadratic constraints on the embedding tensor in maximal gauged supergravity

read [36]

QAB(1) ≡ ηMNθ
AMθBN = 0 , (A.43a)

QMNP
(2) ≡ θAMθB[N(ΓP])AB = 0 . (A.43b)

The first quadratic constraints (A.43a) split into Qα̇β̇(1) = 0 and Q(1)αβ = 0. The former

reduces to

Qα̇β̇(1) =
1

4
ξ(α̇ζ β̇) . (A.44)

This recovers 35
(+2)
c ⊕ 1(−2) in (3.6). Contraction of Cαβ to Q(1)αβ yields

CαβQ(1)αβ =
1

48

(
f α̇β̇γ̇fα̇β̇γ̇ +

3

2
ξα̇ξ

α̇

)
. (A.45)

9In the body of the text, these terms possess the SO(4, 4) fundamental vector indices, instead of chiral

spinor ones. These indices, however, can be switched at will, thanks to the triality property of SO(4, 4).
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The trace-free part in (α, β) for Q(1)αβ can be computed by the contraction to (γMNPQ)αβ ,

which now becomes

(γMNPQ)αβQ(1)αβ = − 1

256
f µ̇α̇β̇fµ̇

γ̇δ̇(γMNPQ)αβ(γα̇β̇γ̇δ̇)αβ

= − 3

32

(
f µ̇[α̇β̇f γ̇δ̇]µ̇ +

2

3
ξ[α̇f β̇γ̇δ̇]

)
(γ[α̇β̇)[MN (γγ̇δ̇])PQ] , (A.46)

where we have used (γMNPQ)αβ(γα̇β̇γ̇δ̇)αβ = 24(γ[α̇β̇)[MN (γγ̇δ̇])PQ]. Noting that

(γ[α̇β̇)[MN (γγ̇δ̇])PQ] is anti-selfdual in indices α̇β̇γ̇δ̇, we obtain

fµ̇[α̇β̇fγ̇δ̇]
µ̇ − 2

3
f[α̇β̇γ̇ξδ̇]

∣∣∣∣
ASD

= 0 , (A.47)

This is nothing but the piece in the 35
(−2)
v of the QC (3.6).

The second set of the quadratic constraint QMNP
(2) = 0 decomposes into various compo-

nents. A quick computation shows

Q−−+
(2) =

1

4
√

2
ξα̇ζα̇ = 0 , (A.48)

Q+−+
(2) =

1

4
√

2
ξα̇ξα̇ = 0 , (A.49)

yielding 1(+2) and 1(−2) in (3.6). Combined with (A.45), one gets a condition inherent to

the truncation of maximal gauged supergravity [the first of (3.8)]

f α̇β̇γ̇fα̇β̇γ̇ = 0 . (A.50)

Similarly, we have

Q−MN
(2) = − 1

16
√

2

(
fα̇β̇γ̇ζ

α̇ − ξ[β̇ζγ̇]

)
(γMN )β̇γ̇ , (A.51)

i.e., fα̇β̇γ̇ζ
α̇−− ξ[β̇ζγ̇] = 0, which corresponds to 28(+2) in (3.6). Further computations give

rise to

Q(MN)−
(2) =

1

96
√

2
f α̇β̇γ̇ζ δ̇(γα̇β̇γ̇δ̇)

MN . (A.52)

Since (γα̇β̇γ̇δ̇)
MN is self-dual in indices [α̇β̇γ̇δ̇], we obtain

f[α̇β̇γ̇ζδ̇]

∣∣∣
SD

= 0 . (A.53)

This quadratic constraint is also intrinsic to the truncation of maximal gauged supergravity

[see (3.8)]. We obtain also

Q[MN ]+
(2) (γα̇β̇)MN =

1

2
√

2
fα̇β̇γ̇ξ

γ̇ , (A.54)
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yielding 28(−2) in (3.6). Lastly, one finds

Q(MN)+
(2) − 1

8
ηMNηPQQ(PQ)+

(2) = −
√

2

256

(
fµ̇[α̇β̇fγ̇δ̇]

µ̇ − 2

3
f[α̇β̇γ̇ξδ̇]

)
(γα̇β̇γ̇δ̇)MN . (A.55)

Using the self-duality of (γα̇β̇γ̇δ̇)MN , one ends up with the 35
(−2)
s in (3.6),

fµ̇[α̇β̇fγ̇δ̇]
µ̇ − 2

3
f[α̇β̇γ̇ξδ̇]

∣∣∣∣
SD

= 0 . (A.56)

This completes the truncation of the quadratic constraints. Equations obtained here

match exactly the quadratic constraints in N = (1, 1) theory derived by the requirement

of consistent gaugings and massive deformations.

B Global aspects of the vacua

Most of our string/M-theory vacua turn out to correspond to reductions over a 4D(5D)

group manifold (a.k.a. a twisted torus). In this appendix we discuss some details concerning

the global issues that may obstruct viewing the aforementioned manifolds as genuinely

compact. These will determine the global aspects of the flux compactifications yielding the

corresponding vacuum solution.

From the consistency of the dimensional reduction, we must have a set of n globally

defined left-invariant 1-forms σa (a = 1, . . . , n) on the n-dimensional internal manifold

that satisfy

dσa = −1

2
ωbc

a σb ∧ σc , (B.1)

where ωbc
a is the metric flux, which will turn out to encode the structure constants of the

underlying group structure. This condition, together with the constancy of the flux, shows

that the internal space is a group manifold, where the components ωbc
a are actually the

structure constants of the group, and hence satisfy

ωab
c = ω[ab]

c , ω[ab
dωc]d

e = 0 . (B.2)

A necessary condition for the compactification of the group manifold G is that the group

be unimodular, i.e.

ωab
b = 0 . (B.3)

The unimodular group G may then admit a discrete and freely acting subgroup Γ (i.e. free

of fixed points), permitting G/Γ to be compact. If the unimodularity condition has been

dropped, the volume of the internal manifold would vary, prohibiting the compactification.

See e.g., [53] for a comprehensive analysis on this point.

In the following subsections we are going to obtain the explicit Maurer-Cartan 1-

forms and their global identifications for the various vacua solutions that have been found

above in the main text. We shall overall denote the 4D internal type II coordinates by

ym ≡ (τ, x, y, z), while the 5D ones in M-theory will be ym̂ ≡ (τ, x, y, z, w).
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Massive Type IIA with O6/D6. For solution 1 in table 4, the Maurer-Cartan forms

are given by

σ1 = dτ − β3xdy − β1ydz − β2zdx , σ3 = dy , (B.4)

σ2 = dx , σ4 = dz . (B.5)

Then we can do a compactification with the following identifications:

(τ, x, y, z) ' (τ + L0, x, y, z) ' (τ + β3L1y, x+ L1, y, z)

' (τ + β1L2z, x, y + L2, z) ' (τ + β3z, x, y, z + L3) ,
(B.6)

where L0, . . . , L3 are some arbitrary real constants.

For solution 2 in table 4, one can always achieve β2 = β3 = 0 by a suitable O(3)

rotation, for which the Maurer-Cartan forms are given by

σ1 = dτ , σ3 = cos(β1τ)dy − sin(β1τ)dx , (B.7)

σ2 = cos(β1τ)dx+ sin(β1τ)dy , σ4 = dz . (B.8)

This is just flat space, so we can do a compactification with the following identifications:

(τ, x, y, z) '
(
τ +

2π

β1
, x, y, z

)
' (τ, x+ L1, y, z)

' (τ, x, y + L2, z) ' (τ, x, y, z + L3) ,

(B.9)

where L0, . . . , L3 are some arbitrary real constants.

For the 3rd solution of table 4, one can set β = 0 by an O(3) rotation, for which the

Maurer-Cartan forms are given by

σ1 = cos(αx)dτ − sin(αx)dy , σ3 = sin(αx)dτ + cos(αx)dy , (B.10)

σ2 = dx , σ4 = dz . (B.11)

In this case, we also have flat space and the identifications are exactly the same as in the

2nd case, which are given by (B.9) with the replacement β1 → α.

Type IIB with O7/D7. For solution 1 in table 21, we find

σ1 = dτ + αydz , σ3 = cos(βx)dy − sin(βx)dz , (B.12)

σ2 = dx , σ4 = cos(βx)dz + sin(βx)dy . (B.13)

Then we can do a compactification with the following identifications:

(τ, x, y, z) ' (τ + L0, x, y, z) ' (τ, x+ 2π
β , y, z)

' (τ − αL2z, x, y + L2, z) ' (τ, x, y, z + L3) ,
(B.14)

where L0, . . . , L3 are some arbitrary real constants.
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For solution 2 of table 21, we find

σ1 =
1√

α2 + β2

(
βdτ + α cos(

√
α2 + β2 y)dx− α sin(

√
α2 + β2 y)dz

)
, (B.15)

σ2 =
1√

α2 + β2

(
−αdτ + β cos(

√
α2 + β2 y)dx− β sin(

√
α2 + β2 y)dz

)
, (B.16)

σ3 = dy , σ4 = cos(
√
α2 + β2y)dz + sin(

√
α2 + β2y)dx . (B.17)

The manifold may then be made compact by performing the following identifications

(τ, x, y, z) ' (τ + L0, x, y, z) ' (τ, x+ L1, y, z)

' (τ, x, y + 2π/
√
α2 + β2, z) ' (τ, x, y, z + L3) .

For solution 3 of table 21, we find

σ1 =dτ , σ3 = cos(ατ + βx)dy − sin(ατ + βx)dz , (B.18)

σ2 =dx , σ4 = cos(ατ + βx)dz + sin(ατ + βx)dy . (B.19)

Then, defining

u ≡ ατ + βx√
α2 + β2

, v ≡ −βτ + αx√
α2 + β2

, (B.20)

we can do a compactification with the following identifications:

(u, v, y, z) '

(
u+

2π√
α2 + β2

, v, y, z

)
' (u, v + L1, y, z)

' (τ, x, y + L2, z) ' (τ, x, y, z + L3) ,

(B.21)

where L0, . . . , L3 are some arbitrary real constants.

Massive Type IIA with O8/D8. For solution 1 in table 8, we find

σ1 = dτ , σ3 = cos(αz)dy − sin(αz)dx , (B.22)

σ2 = cos(αz)dx+ sin(αz)dy , σ4 = dz . (B.23)

Then we can do a compactification with the following identifications:

(τ, x, y, z) ' (τ + L0, x, y, z) ' (τ, x+ L1, y, z)

' (τ, x, y + L2, z) '
(
τ, x, y, z +

2π

α

)
.

(B.24)

Type IIB with O9/D9. For solution 1 in table 25, we find

σ1 =
1√

α2 + β2

(
βdτ + α cos(

√
α2 + β2 y)dx− α sin(

√
α2 + β2 y)dz

)
, (B.25)

σ2 =
1√

α2 + β2

(
−αdτ + β cos(

√
α2 + β2 y)dx− β sin(

√
α2 + β2 y)dz

)
, (B.26)

σ3 = dy , σ4 = cos(
√
α2 + β2 y)dz + sin(

√
α2 + β2 y)dx . (B.27)
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Then we can do a compactification with the following identifications:

(τ, x, y, z) ' (τ + L0, x, y, z) ' (τ, x+ L1, y, z)

'
(
τ, x, y +

2π√
α2 + β2

, z

)
' (τ, x, y, z + L3) .

(B.28)

For solution 2 of table 25, we find

σ1 = cos(
√
β(α+ β) z)dτ − sin(

√
β(α+ β) z)dy , σ2 = dx , (B.29)

σ3 =

√
β

α+ β

(
cos(

√
β(α+ β) z)dy + sin(

√
β(α+ β) z)dτ

)
, (B.30)

σ4 = dz +

√
−α
α+ β

(
cos(

√
β(α+ β) z)dτ − sin(

√
β(α+ β) z)dy

)
. (B.31)

Then we can do a compactification with the following identifications:

(τ, x, y, z) ' (τ + L0, x, y, z) ' (τ, x+ L1, y, z)

' (τ, x, y + L2, z) '
(
τ, x, y, z +

2π√
β(α+ β)

)
.

(B.32)

For solution 3 of table 25, we find

σ1 = dτ , σ3 = cos(ατ + βx)dy − sin(ατ + βx)dz , (B.33)

σ2 = dx , σ4 = cos(ατ + βx)dz + sin(ατ + βx)dy . (B.34)

This solution is the same as solution 3 of type IIB with O7/D7 in table 21, and the global

identifications are also equal.

M-theory with KKO6/KK6. For solution 1 in table 29, we find

σ1 = cos(αx/β)dτ − sin(αx/β)dy , σ2 =
dx− β cos(αx/β)dy − β sin(αx/β)dτ√

α2 + β2
,

σ3 =
α cos(αx/β)du+ α sin(αx/β)dτ√

α2 + β2
, σ4 = dz , σ5 = dw . (B.35)

We can do a compactification with the following identifications:

(τ, x, y, z, w) ' (τ + L0, x, y, z, w) ' (τ, x+ 2πβ/α, y, z, w)

' (τ, x, y + L2, z, w) ' (τ, x, y, z + L3, w) ' (τ, x, y, z, w + L4) . (B.36)

For solution 3 in table 29, we have

σ1 =dτ , σ2 = cos(ατ)dx+ sin(ατ)dy ,

σ3 = cos(ατ)dy − sin(ατ)dx ,

σ4 = cos(βτ)dz + sin(βτ)dw , σ5 = cos(βτ)dw − sin(βτ)dw . (B.37)

One can assume |β| ≥ |α| without loss of generality. Then, the global compactification is

possible iff β = nα (n ∈ Z) with

(τ, x, y, z, w) ' (τ + 2π/α, x, y, z, w) ' (τ, x+ L1, y, z, w)

' (τ, x, y + L2, z, w) ' (τ, x, y, z + L3, w) ' (τ, x, y, z, w + L4) . (B.38)
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