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1 Introduction

For an isolated quantum statistical system, we will assign a time-independent Hamiltonian

H. If we have a global symmetry Q, then we have

[H,Q] = 0 (1.1)

thus, Q will help to decompose the eigenspace of Hamiltonian into multiple subspaces,

characterized by different eigenvalues of Q. If we call Q as the charge operator, different

eigenspaces could be called as charge sectors.

If the system is in a thermal bath with inverse temperature β, one could assign a

partition function

Z(β) = Tr
(
e−βH

)
(1.2)
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However, if the system also has a fixed chemical potential φ,1 one could study the system

as a grand canonical ensemble

Z(β|φ) = Tr
(
e−βH+iφQ

)
(1.3)

One can transform the partition function, from grand canonical ensemble with fixed β

and φ, to canonical ensemble with fixed β and µ. Here, a fixed µ means that we are only

considering the subspace where Q’s eigenvalue is restricted to µ. Namely, we are addressing

the partition function in a single charge sector.

The roles of µ and φ are simply related by Fourier conjugations. Let us take U(1)

charge as an example, where we have

Z(β, µ) =

∫ 2π

0

dφ

2π
e−iφµZ(β|φ) (1.4)

In this paper, we will apply this basic knowledge to a specific system, the Sachdev-Ye-

Kitaev(SYK) model associated with a global, continues symmetry G. The discovery of

SYK model [1–6] opens a novel research direction towards quantum chaos in quantum

gravity (see also [7–15]). The SYK model is nearly conformal and maximal chaotic in

certain limit, which is conjectured to reflect some features in the near AdS2 gravity and

black hole physics. A concrete and complete study of this model and related generalizations

(for instance, supersymmetric generalization in [13]) is believed to provide some mysterious

features in quantum gravity and holography.

In SYK model (or more generally, its various generalizations), the 1/N fluctuations

above the saddle point solution is captured by an effective action. The action has a

Schwarzian derivative

Sϕ[ϕ] = − 1

g2
c

∫ 2π

0
dτSch

{
tan

ϕ

2
, τ
}

(1.5)

where ϕ(τ) is the fluctuation field above the saddle point, where the Schwarzian derivative

is defined as

Sch (f, z) =
f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

(1.6)

and 1/g2
c is the coupling scales as N/βJ , where J is the randomness of the model, β is the

inverse temperature, and N is number of fermions in the model.

The Schwarzian action is significant in the sense of giving a maximal chaotic exponent.

One can evaluate the partition function of this action and compute thermodynamical vari-

ables in the low energy limit by computing the one loop determinant. The discovery

of Stanford-Witten localization [16] shows that this partition function is one-loop exact.

Namely, one can trust the calculation even in the strong coupling case. The dependence

with the temperature in the one loop partition function could be obtained in the density

of states, and also the spectral form factor [17–21].

1We follow the notation [16] here, while in another convention we may not introduce the imaginary

unit i. The notation we use will be convenient when performing transformation between canonical and

grand canonical ensemble, where we could use Fourier transform instead of Laplace transform.
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In this paper, we are interested in the case where the SYK model is associated with

a global symmetry G. In the simplest case, we will discuss a direct product between the

Schwarzian part and the sigma model corresponding to the group G. The structure of the

action is discussed briefly in section 3.2 in [16]. In this case, the whole action is written as

a sum of the Schwarzian part and the phase field capturing the global symmetry G, which

is free moving in the group manifold and is known to be one-loop exact [22–24]. Because it

is a direct product among two manifolds when performing the path integral, the one-loop

localization follows trivially and rigorously for the whole theory.

One famous example for the symmetrized SYK model is the complex SYK model

(the Sachdev-Ye model, see [1, 13], and some recent studies [25–27]), where G = U(1).

In this theory, the free action on U(1) [28–30]2 will contribute some extra effects to the

Schwarzian part, and create a new temperature dependence [15]. One can also construct

some more generic Lie groups [31–33], and various global symmetries may also appear

in tensor model, an analog of SYK without disorder but with similar large N dynamics

(see [14, 34–40] for reference).

Why we need extra symmetries? The original SYK model is very successful in the

sense of maximal chaos, and capture part of near horizon physics in AdS2. However, such

a quantum mechanical example in one dimension is special, and it is not completely clear

how a full semi-classical dual theory with all sectors including gravitational sector, should

emerge from such a theory. On the one hand, deeper insights in near AdS2 geometry are

needed, but on the other hand, one may consider constructing and studying deeper alter-

native models that could capture features we learn from SYK (for instance, easy to solve

and maximal chaotic), and could have a more clear dual picture and work for higher di-

mensions. Sometimes, extra symmetries are hard to avoid in those generalizations, due to

more complicated symmetries of the dual black hole horizon we need, or due to our current

limited understanding about holography (for instance, supersymmetry). Moreover, other

symmetries may lead to interpretations of symmetry and charge in gravity, and some previ-

ous discussions about Kerr/CFT [41, 42]. Although we didn’t study any specific models in

this paper, we interpret the current study as the first step towards more detailed features

among the current and future SYK-like models. Moreover, this paper only studies global

continuous symmetries. For discrete symmetries (in general chaotic systems see [43]) and

supersymmetry (for instance, see [16, 44–46]), it might be valuable to study deeper follow-

ing similar spirit, using technologies from condensed matter physics, quantum information

and quantum gravity (for recent discussions about symmetries in quantum field theory and

quantum gravity, see [47–50]. For quantum circuits and black hole thought experiments

with U(1) symmetry, see [51–53]).

In this paper, we will systematically discuss the symmetrized effective action, keeping

G to be general. We will compute the expressions Z(β, µ) and Z(β|φ) explicitly with various

examples (as a summary, see section 4.5), and study their predictions on the chaotic and

thermodynamical observables (as a sketch, see tables 1 and 2).

2We thank Douglas Stanford in a private communication with JL, where he teaches us many aspects

of the single charge sector results in U(1). The U(1) calculation is basically followed from the calculation

done in section 3.3 of [16]. There are some related talks, for instance http://qpt.physics.harvard.edu/talks/

kitp18.pdf, http://online.kitp.ucsb.edu/online/chord c18/tarnopolsky.
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The paper is organized as the following. In section 2 we will provide a simple review

of the SYK model and their generalizations. In section 3 we will discuss the computation

of the partition function mostly in the free theory in detail. In section 5 we will discuss

predictions in SYK-like models. In section 6 we arrive at a conclusion and discussion.

2 About SYK model

The (majorana) SYK model is a one-dimensional condensed matter model with N majorana

fermions. The model has a disorder average over non-local coupling,

H =
∑

i<j<k<l

Jijklψ
iψjψkψl (2.1)

(we write the four-local case for simplicity as the simplest example) where i, j, k, l is ranging

from 1 to N , and ψs are majorana fermions. The coupling is a Gaussian random variable

〈Jijkl〉 = 0
〈
J2
ijkl

〉
=

6J2

N3
(2.2)

where J is a positive constant which sets the scale where the dimensionless coupling is

βJ . In the large N and IR limit 1 � βJ � N , one can show that the large N solution

of the two point function has the SL(2,R) covariance. In the strict IR limit, the theory

has the reparametrization symmetry (diff(S1)), so the space of Nambu-Goldstone bosons

is diff(S1)/SL(2,R).

One can study the effective field theory for reparametrization mode ϕ ∈
diff(S1)/SL(2,R). The theory is described by the Schwarzian action

Sϕ[ϕ] = − 1

g2
c

∫ 2π

0
dτSch

{
tan

ϕ

2
, τ
}

(2.3)

where 1
g2c

= 2πNα
βJ , and α is a constant that has been computed numerically. The partition

function of this action is shown to be one-loop exact. The one-loop partition function is

written as

Zϕ(β) ∼ 1

(βJ)3/2
exp

(
π

g2
c

)
(2.4)

The dependence 1/(βJ)3/2 determines the speed of scrambling in the observables like an-

alytic continued partition function and the spectral form factor of the theory. (Several

recent papers address the study of the Schwarzian action, see [54–58].)

Now we wish to understand how a global symmetry will change the scaling of the

partition function. Although we wish to discuss a general symmetry group, the U(1) case

will be the simplest example. It will show up in the complex SYK model, which is defined as

H =
∑

1≤i1<i2≤N

∑
1≤i3<i4≤N

Ji1.i2,i3,i4f
†
i1
f †i2fi3fi4 (2.5)

– 4 –
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where fs are Dirac fermions, and Js satisfy

Ji1.i2,i3,i4 = J∗i3,i4,i1.i2

〈
|Ji1.i2,i3,i4 |

2
〉

=
4J2

N3
(2.6)

In this model, there is an U(1) symmetry and the charge is conserved. One can define the

fermionic charge

Q =
1

N

∑
i

(
f †i fi −

1

2

)
[Q, H] = 0 (2.7)

The paper [15] studies the model in detail. Here we will briefly describe its effective field

theory. The effective action is written as

S = Sψ + Sϕ

Sψ =
K

4

∫ β

0
dτ

(
∂τ φ̃+

2πiE
β

∂τϕ

)2

Sϕ = − γ

4π2

∫ β

0
dτSch

{
tan

πϕ

β
, τ

}
(2.8)

where K and γ are some thermodynamical quantities which could be computed numerically

and they scale as N/J . Here we notice that Sϕ is the same for the Schwarzian action of the

majorana SYK model. Here ϕ(τ) = τ + δϕ(τ) is the reparametrization, and φ̃ is a phase

field capturing the U(1) symmetry, and it has the periodicity φ̃ ∼ φ̃+ 2π. The constant E
is a thermodynamical quantity that is defined as

2πE =
dS(Q)

dQ
(2.9)

where S is the entropy, and we could define a shift of the field

ψ = φ̃+
2πiE
β

ϕ (2.10)

So we have

Sψ =
K

4

∫ β

0
dτ(∂τψ)2 (2.11)

The periodicity for ψ is still 2π. One can send τ → 2πτ/β, such that these integrals become

Sψ =
Kπ

2β

∫ 2π

0
dτ(∂τψ)2

Sϕ = − γ

2πβ

∫ 2π

0
dτSch

{
tan

ϕ

2
, τ
}

(2.12)

For symmetry groups more general than U(1), models are precisely constructed in, for

instance, [31–33]. In those models, the form of the effective action is generic: a Schwarzian

mode for reparametrization symmetry, and a phase field moving in a group manifold.

– 5 –
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In this paper, we will study the one-loop partition function given from the following

action

S = Sf + Sϕ

Sf = −Kπ
2β

∫ 2π

0
Tr(f−1∂τf)2dτ

Sϕ = − γ

2πβ

∫ 2π

0
dτSch

{
tan

ϕ

2
, τ
}

(2.13)

where f is a phase field moving in a generic group G. We will study general G with certain

assumption: compact semisimple. For non-semisimple case, similar technologies could be

used, and we will discuss U(M) as examples. The goal of us is to understand the partition

function generated by the above action, in the grand canonical and canonical ensembles,

and to understand their relations, which is highly relying on the classic study of free sigma

model moving on a Lie group.

For the range of β, the validity of the effective action for the SYK-like theory is βJ � 1.

In this paper, we are mostly interested in two possible ranges, 1 � βJ � N , and βJ � N

(namely, K � β or K � β.)

3 Studying the sigma model

3.1 U(1) as a warmup

As a pedagogical example, we will start from U(1) [28–30]. U(1) is not a semisimple group,

and it has two different spin structures. In the complex SYK model, only trivial spin

structures would present, while for N = 2 supersymmetric SYK model [13, 16], the spin

structure depends on if the total number of particles is even or odd.

Using the complex SYK model notation in the previous section, we write down the

sigma model for U(1) as

Sψ =
Kπ

2β

∫ 2π

0
dτ(∂τψ)2 (3.1)

By solving the equation of motion, we could have infinite number of saddle points

ψn̂ = n̂τ (3.2)

with the corresponding action

Sψ =
Kπ

2β

∫ 2π

0
dτ(∂τ (n̂τ))2 =

n̂2π2K

β
(3.3)

Now we start to compute the one-loop partition function. We study the perturbation

around the saddle point

ψn̂ = n̂τ + δψ

δψ =
∑
p̂

ψp̂e
ip̂τ (3.4)

– 6 –
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Thus we get

Kπ

2β

∫ 2π

0
dτ(∂τδψ)2 = −Kπ

2

β

∑
p̂∈Z

p̂2ψp̂ψ−p̂ (3.5)

Using the zeta-function regularization, and cutting out the zero mode p = 0, we would get

logZψ ∼ −
∑
p̂∈Z+

log

(
−Kπ

2

β
p̂2

)
∼ −1

2
log

(
K

β

)
(3.6)

Thus, a single saddle point parameterized by n̂ will contribute the partition function by

Zψ,n̂ ∼
(
K

β

)1/2

exp

(
−Kπ

2n̂2

β

)
(3.7)

U(1) has two spin structures: the trivial one σ0, and the Möbius σ1. Those correspond to

even and odd particles. Using this, we could compute the whole partition function, with

zero chemical potential, by

Zσ0(β|φ = 0) =
∑
n̂

Zn̂ ∼
∑
n̂

(
K

β

)1/2

exp

(
−Kπ

2n̂2

β

)

∼
(
K

β

)1/2

ϑ3

(
0, exp

(
−π

2K

β

))
∼
(
β

K

)1/2

ϑ3

(
0, exp

(
− β
K

))
Zσ1(β|φ = 0) =

∑
n̂

(−1)n̂Zn̂ ∼
(
K

β

)1/2∑
n̂

(−1)n̂ exp

(
−Kπ

2n̂2

β

)

∼
(
K

β

)1/2

ϑ4

(
0, exp

(
−π

2K

β

))
∼
(
β

K

)1/2

ϑ4

(
0, exp

(
− β
K

))
(3.8)

where ϑa(u, q) is the elliptic theta function

ϑ3(u, q) =
∑
n

qn
2

exp(2niπz) ≡
∑
n

qn
2
ηn =

∑
n

exp
(
n2πiτ

)
exp(2niz)

ϑ4(u, q) =
∑
n

(−1)nq2 exp(2niπz) =
∑
n

(−1)nqn
2
ηn

ϑ2(u, q) =
∑
n

q(n+1/2)2 exp((2n+ 1)iπz) =
∑
n

q(n+1/2)2ηn+1/2 (3.9)

And we have used the Jacobi identity for elliptic theta function to obtain the final formula

of those expressions

ϑ3

(
z

τ
,−1

τ

)
= (−iτ)1/2 exp

(π
τ
iz2
)
ϑ3(z, τ)

ϑ2

(
z

τ
,−1

τ

)
= (−iτ)1/2 exp

(π
τ
iz2
)
ϑ4(z, τ) (3.10)

For the whole partition function with the chemical potential φ, we have [16]

Zn̂(β, φ) = Zn̂+φ/2π(β, φ = 0) (3.11)

– 7 –
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Thus we obtain

Zσ0(β|φ) =
∑
n̂

Zn̂+φ/2π(β, φ = 0)

∼
(
K

β

)1/2∑
n̂

exp

(
−π

2K(n̂+ φ/2π)2

β

)
∼
(
β

K

)1/2

ϑ3

(
φ

2
, exp

(
− β
K

))
Zσ1(β|φ) =

∑
n̂

(−1)n̂Zn̂+φ/2π(β, φ = 0)

=

(
K

β

)1/2∑
n̂

(−1)n̂ exp

(
−π

2K(n̂+ φ/2π)2

β

)
=

(
β

K

)1/2

ϑ2

(
φ

2
, exp

(
− β
K

))
(3.12)

Now we apply the Poisson resummation formula to obtain the partition function in the

single charge sector. It is easily shown that

∑
n̂

∫ 2π

0

dα

2π
exp(−iαm)f

(
n̂+

α

2π

)
=

∫
R

exp(−2πimu)f(u)du for integer m

∑
n̂

∫ 2π

0

dα

2π
exp(−iαm)f

(
n̂+

α

2π

)
(−1)n =

∫
R

exp(−2πimu)f(u)du for half integer m

(3.13)

Thus, the Fourier transformation formula gives

Z(β, µ) ∼ exp

(
−µ

2β

K

)
(3.14)

The above computation shows a toy example about partition functions in various cases.

Now we could make some simple analysis on those results.

For K � β, firstly, for the single charge sector results, we will see that for µ�
(
K
β

)1/2
,

the partition function is nearly

Z(β, µ) ∼ 1 (3.15)

while for µ ∼
(
K
β

)1/2
or even larger, the result will start to get exponential decaying when

β increases as

Z(β, µ) ∼ exp

(
−µ

2β

K

)
(3.16)

Note that there is no leading polynomial dependence on β.

Secondly, for the whole charge sector with a chemical potential, we have two cases.

Firstly, if φ/2π = nφ is an integer, the dominated result is simply given by

Z(β|φ) ∼
(
K

β

)1/2

(3.17)

– 8 –
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for both spin structures. If φ/2π is not an integer, we write Round(x) as integer closest to

x, then we have

Zσ(β|φ) ∼
(
K

β

)1/2

e
− K

4β
(φ−2πRound( φ

2π ))
2

(3.18)

With similar but more technical analysis, we will generalize the above computations in a

general semisimple compact group G.

We also notice that for K � β, both canonical and grand canonical ensemble results

give constant contribution O(1) [59]. Namely, we could not observe any features from global

symmetry sectors. Going back to SYK-like models, we will recover the Schwarzian theory.

Thus, this indicates that in the single charge sector one could obtain random matrix theory

classification. In case of complex SYK model, it is worked out in [17] by level statistics,

and in N = 2 supersymmetric SYK model the classification is addressed in [45].

3.2 A generalized Peter-Weyl theorem

Now we will study sigma models on the group manifold G.3 The sigma model on a group

manifold with a fixed spin structure is described by the Lagrangian

Sf [f ] = −Kπ
2

∫ 2π

0
Tr(f−1∂tf)2dt (3.19)

with respect to the boundary condition that f̃(2π) = f̃(0)g. Here f is a group element of

G, and f̃ is the lift of f from G to universal cover G̃, and g is a central element in G̃ such

that σ(g) = 1 in Z2.

More precisely, g lives in the kernel of G̃ → G, which is a discrete normal subgroup.

We claim that

Theorem 3.1. g lives in the center of G̃.

Proof. Every element of form hgh−1 is in the kernel of G̃→ G, connect h with the identity

element of G̃ via a path h(t) with h(0) = 1
G̃

and h(1) = h, then the path h(t)gh(t)−1

connects g and hgh−1, but the kernel of G̃→ G is finite, hence g and hgh−1 are equal, i.e.

g is central.

Furthermore, g can be identified with an element of the fundamental group of G via

connecting the identity of G̃ with g by a path and projecting down to G, the projection of

that path is a loop because the head and tail are mapped to the same point (identity of G).

We alos note that preimage of central element in G is still central, in fact since Z(G) is

normal dicrete so is its preimage. Conversely the image of central element in G̃ is obviously

central. Thus there is a surjective homomorphism Z(G̃)→ Z(G), with the same kernel as

G̃→ G, which is naturally identified with the fundamental group π1(G)

π1(G) ∼= Ker(Z(G̃)→ Z(G)) (3.20)

3For related mathematics, see [60, 61].
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The partition function tr(e−βH) is the same as the propagator of quantum mechanics

on G with Hamiltonian H̃ = −∆/2Kπ, moving from identity element of G to g, with

duration 2πβ,

Zσ(β) = 〈e−βH〉 =

∫
f̃(0)=f̃(2π)

[Df ]e−2πβH̃(f) = 〈1G|e−2πβH̃ |1G〉 (3.21)

where ∆ is the Laplace-Beltrami operator on G associated to the Killing metric hµν ,4

defined in the usual way

∆f =
1√

det(h)
∂µ

(√
det(h)∂µf

)
(3.22)

Note that the Laplace-Beltrami operator acts on the bundle of twisted functions, i.e. the

function f in (3.22) should be a local section of the complex line bundle Lσ coming from

the spin structure σ ∈ H1(G,Z2).5 The propagator is calculated by decomposing into

eigenfunctions of H̃,

〈1G|e−2πβH̃ |1G〉 =
∑
i

ψi(1G)ψ̄n(1G)e−2πβEi (3.23)

where ψi is the eigenfunction of H̃ with eigenvalue Ei. To give a description of these

eigenfunctions, let’s first assume that the spin structure is trivial so that the line bundle Lσ
is trivial and functions are ordinary, i.e. not twisted. Recall the famous Peter-Weyl theorem:

Theorem 3.2. [Peter-Weyl] Let G be a compact Lie group equipped with the Haar measure,

then the Hilbert space of square-integrable functions on G is a unitary representation of G

by the action π(g)

π(g) : f(h) 7→ f(g−1h)

and has decomposition into finite dimensional irreducible representations:

L2(G) =
⊕

λ∈P (G)∩P+

V
⊕ dim(Vλ)
λ (3.24)

Here Vλ is the unitary irreducible representation of highest weight λ, and P (G) is the weight

lattice of G,6 and P+ is the dominant part of weight space P (G)⊗Z R.7 This isomorphism

4Killing metric is defined at the tangent space of identity to be 〈X,Y 〉 = Tr(ad(X)ad(Y )), then pushfor-

ward to the tangent space at each element g by left multiplication Lg (or equivalently right multiplication

Rg, because Killing metric at identity is invariant under adjoint action).
5More precisely, an element σ in H1(G,Z2) ∼= Map(G,BZ2) determines a real line bundle, and tensoring

with C gives rise to a complex line bundle. Equivalently, the representative of that complex line bundle in

H2(G,Z) is the image of σ under the Bockstein homomorphism.
6Weight lattice P (G) is a lattice that labels all possible weights in the representations of G.
7Tensor over Z means forming a tensor product Z-bilinearly, here P (G)⊗ZR embeds the P (G) lattice into

a real linear space whose the dimension equals to the rank of the lattice. Dominant part P+ is the domain

in the weight space such that ∀λ ∈ P+, 〈λ, αi〉 ≥ 0, where αi runs through all positive roots. Dominant

weights P (G) ∩ P+ are one to one correspond to unitary irreducible representations of G.

– 10 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
9

is given by taking the matrix coefficients of each irreducible representation, more precisely,

let λ be a weight, and πλ : G→ U(Vλ) be the associated unitary irreducible representation

with highest weight λ, {ei} be an orthonormal basis of Vλ with Hermitian metric (−,−),

then following functions on G

πλij(g) :=
√

dim(Vλ)(πλ(g)ei, ej) (3.25)

constitute an orthonormal basis for the direct summand V
⊕ dim(Vλ)
λ in the decomposi-

tion (3.24).

Consider a left invariant vector fields X acting on L2(G), its Lie derivative on a function

f is by definition the infinitesimal generator of Lie group action on function f , thus it agrees

with the action of Lie algebra element X(1G)

LXf = π(X(1G))f

and by associativity of the Lie algebra action, every differential operator D which is con-

structed from left invariant vector fields (where n is the dimension of the group)

D = X1X2 · · ·Xn

acts on functions by

Df = π(X1(1G)⊗X2(1G)⊗ · · ·Xn(1G))f

here X1(1G)⊗X2(1G)⊗ · · ·Xn(1G) is regarded as an element in the universal enveloping

algebra U(g). As a corollary, the Laplace-Beltrami operator ∆, which equals to∑
i

XiXi

where {X1, X2, · · · , Xn} is an orthonormal basis (under Killing metric) for left invariant

vector fields, acts on functions by

∆f =
∑
i

π(Xi(1G)⊗Xi(1G))f

but {X1(1G), X2(1G), · · · , Xn(1G)} is an orthonormal basis (under Killing metric) for the

Lie algebra g, so
∑

iXi(1G)⊗Xi(1G) is the second order Casimir operator in U(g), and it

acts on irreducible representation Vλ by a scalar C2(λ) which equals to

〈λ, λ+ 2ρ〉 (3.26)

where ρ is one half of the sum of positive roots, and the inner product is the one induced

from the Killing metric.

Now eigenfunction ψi(g) in the expansion formula (3.23) is an one-to-one correspon-

dence to πλij , thus the (3.23) reads

Zσ=0(β) =
∑

λ∈P (G)∩P+

dim(Vλ)∑
i,j=1

πλij(1G)π̄λij(1G)e−βC2(λ)/K

=
∑

λ∈P (G)∩P+

dim(Vλ)∑
i,j=1

dim(Vλ)|(πλ(1G)ei, ej)|2e−βC2(λ)/K (3.27)
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Note that πλ(1G) is nothing but identity matrix in vector space Vλ, hence

(πλ(1G)ei, ej) = (ei, ej) = δij (3.28)

and (3.27) reduces to

Zσ=0(β) =
∑

λ∈P (G)∩P+

dim(Vλ)2e−βC2(λ)/K (3.29)

Now we need to remove the assumption on the triviality of spin structure, i.e. the

Hilbert space of the quantum mechanics on G should be square integrable global sections

of a nontrivial complex line bundle Lσ. One expects that there should be a decomposition

of the Hilbert space into direct sum of irreducible representations of G, similiar to the

Theorem 3.2. However this is not the case because there is no self-consistent action of G on

the Hilbert space L2(G,Lσ) such that it’s compatible with the translation Lg−1 : h 7→ g−1h,

i.e. Lσ is not a G-equivalent line bundle. Assume that there is a action of G on L2(G,Lσ)

compatible with translation, then it’s represented by an isomorphism

ag : L∗g−1Lσ ∼= Lσ

let g run through the whole group and it amounts to an isomorphism between line bundles

on G×G

a : m∗Lσ ∼= p∗2Lσ (3.30)

in which m is the multiplication map (g1, g2) 7→ g1g2 and p2 is the projection to the second

coordinate (g1, g2) 7→ g2. Restricting to G× {1G} ⊂ G×G, there is an isomorphism

a|G×{1G} : Id∗GLσ ∼= 1∗GLσ (3.31)

1G means collapsing G to a point followed by embedding into the identity element 1G.

This is an isomorphism between Lσ and trivial bundle, a contradiction to the fact that Lσ
is nontrivial.

This drawback is rescued by considering the G̃-equivalent structure of Lσ. In fact,

the line bundle Lσ carries a canonical flat connection which comes from the construction:

σ ∈ Hom(π1(G),Z2) determines a Z2-principal bundle which is obviously flat (there is no

vertical direction), Z2’s action on C gives rise to a associated complex line bundle with

a flat connection inherited from the Z2-principal bundle. Now we can define the action

of G̃ on Lσ by connecting an element g ∈ G̃ with the identity element 1
G̃

via a smooth

path g(t), and let the horizontal lift of the left multiplication Lg(t) be the action of g, this

does not depend on the choice of path because G̃ is simply-connected and the connection

is flat. This is obviously a group action because composition of any two elements g1 and

g2 amounts to gluing path from 1
G̃

to g2 and path from g2 to g1g2, which is a path from

1
G̃

to g1g2.

Pull-back of Lσ to G̃ is the trivial line bundle whose square integrable global sections

have decomposition into irreducible representations

L2(G̃) =
⊕

λ∈P (G̃)∩P+

V
⊕dim(Vλ)
λ (3.32)
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A question to be answered is: which L2(G̃) function comes from a global section of Lσ on

G? A necessary condition is that f(g−1h) = σ(g)f(h), ∀h ∈ G̃ and ∀g ∈ Ker(G̃→ G). This

comes from the monodromy that of any loop γ(t) in G is σ([γ(t)]) ∈ Z2, and g is canonically

identified with an element in π1(G) by connecting it with 1
G̃

via a path and the monodromy

generated the image of this path (which is a loop) is by definition the action of g on the

section. It turns out that this is also sufficient. Let Ker(G̃ → G) acts on the trivial

bundle via g(h, u) = (gh, σ(g)u), ∀h ∈ G̃ and u ∈ C, then this action is compatible with

left multiplication of Ker(G̃ → G) on G̃, and it also preserve the trivial connection, thus

the trivial bundle descends to a line bundle L′σ on G with a flat connection. Monodromy

of L′σ is exactly σ, so L′σ and Lσ have the same monodromy, indicating that they are

isomorphic, since line bundles on G are classified by Map(G,BU(1)) ∼= Hom(π1(G),U(1)),

i.e. monodromy.

We know that Ker(G̃ → G) is a subgroup of the center of G̃, so their action on

irreducible representation Vλ are scalars (Schur’s Lemma), it remains to pick out those λ’s

such that these scalars are exactly σ(g). It’s attempting to extend the definition of σ and

let it act on the whole group G̃ so that it corresponds to a weight, it turns out that this is

possible, modulo weight lattice P (G):

Lemma 3.3. There is a canonical isomorphism

Hom(π1(G),Z2) ∼= (P (g) ∩ 1

2
P (G))/P (G) (3.33)

so any spin structure lifts to a weight in (P (g) ∩ 1
2P (G), also denoted by σ, defined up to

P (G), such that its action on π1(G) is σ.

Proof. In fact there are isomorphisms

Hom(π1(G),Z2) ∼= Hom(Ker(Z(G̃)→ Z(G)),Z2)

∼= Hom((P (g)/P (G))∗,Z2)

∼= (P (g) ∩ 1

2
P (G))/P (G) (3.34)

Here the dual group (P (g)/P (G))∗ is defined as the Pontryagin dual

Hom(P (g)/P (G),Q/Z). The first isomorphism comes from (3.20), the second iso-

morphism can be proved as following: it’s well-known that maximal tori are conjugated

with each other and they cover the whole group [60], in particular every element in the

center of G̃ lies in the intersection of maximal tori (because it belongs to at least one

maximal torus, then adjoint action take this particular maximal torus to other maximal

tori). Now pick one maximal torus T , then Z(G̃) ⊂ T , and ∀x ∈ T , x can written

as x = e2πiX for X ∈ g, note that X is defined modulo P (G̃)∗ since ∀λ ∈ P (G̃) and

∀t ∈ P (G̃)∗, we have e2πi〈t,λ〉 = 1. x ∈ Z(G̃) if and only if the adjoint action Ad(e2πiX) is

trivial, or equivalently ∀α in the root system of g, 〈α,X〉 ∈ Z, hence we can identify Z(G̃)

with Q∗/P (G̃)∗, where Q denotes the root lattice and Q∗ is its dual. The same argument

applies to Z(G), and there is identification Z(G) ∼= Q∗/P (G)∗. Now

Ker(Z(G̃)→ Z(G)) ∼= Ker(Q∗/P (G̃)∗ → Q∗/P (G)∗) ∼= (P (G̃)/P (G))∗ (3.35)
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Obviously P (G̃) ⊂ P (g), and since G̃ is simply conncted every Lie algebra representation

g → gln gives rise to a Lie group representation G̃ → GLn, thus P (G̃) = P (g), and we

arrives at Ker(Z(G̃) → Z(G)) ∼= (P (g)/P (G))∗, which implies the second isomorphism.

For the third isomorphism, notice that there is a short exact sequence

0 Z2 Q/Z Q/Z 02

which implies that Hom((P (g)/P (G))∗,Z2) is the kernel of multiplication by 2 on the

group Hom((P (g)/P (G))∗,Q/Z), and the latter is identified with P (g)/P (G) by Pontryagin

duality. The kernel of multiplication by 2 is calculated by elementary group theory to be

(P (g) ∩ 1
2P (G))/P (G).

Thus we have established the following generalization of Peter-Weyl theorem 3.2:

Theorem 3.4. The same notation as above, then square integrable twisted sections of the

line bundle Lσ has a decomposition into finite dimensional irreducible representations of G̃:

L2(G,Lσ) =
⊕

λ∈(σ+P (G))∩P+

V
⊕ dim(Vλ)
λ (3.36)

This isomorphism is given by taking the matrix coefficients of each irreducible represen-

tation, more precisely, let λ be a weight, and πλ : G → U(Vλ) be the associated unitary

irreducible representation with highest weight λ, {ei} be an orthonormal basis of Vλ with

Hermitian metric (−,−), then following twisted functions on G

πλij(g) :=
√

dim(Vλ)(πλ(g̃)ei, ej) (3.37)

constitute an orthonormal basis for the direct summand V
⊕ dim(Vλ)
λ in the decomposi-

tion (3.36), where g̃ is a lift of g to G̃.

Accordingly, the summation of (3.29) should be replaced by dominant weights in the

lattice σ + P (G) and one arrives at

Zσ(β) =
∑

λ∈(σ+P (G))∩P+

dim(Vλ)2e−βC2(λ)/K (3.38)

A more explicit form of (3.38) can be deduced from the Weyl dimension formula. Recall

that the Weyl dimension formula

dim(Vλ) =
∏
α∈R+

〈α, λ+ ρ〉
〈α, ρ〉

(3.39)

relates the dimension of an irreducible unitary representation Vλ with the highest weight

λ and positive roots α ∈ R+. Plug it into (3.29) and one arrives at

Zσ(β) =
∑

λ∈(σ+P (G))∩P+

∏
α∈R+

〈α, λ+ ρ〉2

〈α, ρ〉2
e−β〈λ,λ+2ρ〉/K (3.40)

This corresponds to the whole partition function with trivial chemical potential.
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3.3 The single charge sector

One can also get the single charge sector contribution by applying the chemical potential

trick to the partition function

Zσ(β|φ) := 〈e−βH+iφQ〉 = 〈eiφ|e−2πβH̃ |1G〉 (3.41)

where φ is an element in Lie algebra g. Note that this is related to charge sectors by

Zσ(β|φ) :=
∑

µ∈P (G)

Zσ(β, µ)ei〈µ,φ〉 (3.42)

Similiar to the last section, one expands the Hamiltonian H̃ with respect to its eigenfunc-

tions which have been fully classified by the Peter-Weyl theorem (3.36), and concludes that

Zσ(β|φ) =
∑
i

ψi(e
iφ)ψ̄i(1G)e−2πβEi

=
∑

λ∈(σ+P (G))∩P+

dim(Vλ)∑
i,j=1

πλij(e
iφ)π̄λij(1G)e−βC2(λ)/K

=
∑

λ∈(σ+P (G))∩P+

dim(Vλ)∑
i,j=1

dim(Vλ)(πλ(eiφ)ei, ej)(πλ(1G)ei, ej)e
−βC2(λ)/K (3.43)

πλ(1G) is just the identity matrix on Vλ, which gives a δij in the summation and turns

(πλ(eiφ)ei, ej) into a trace Tr
(
πλ(eiφ)

)
, and by definition this is the character χλ(φ) of

representation Vλ thus the partition function with chemical potential reads

Zσ(β|φ) =
∑

λ∈(σ+P (G))∩P+

dim(Vλ)χλ(φ)e−βC2(λ)/K (3.44)

On the other hand, the basis of Vλ can be chosen to be weight vectors such that the

action of eiφ is through ei〈µ,φ〉 for each weight µ so the character χλ(φ) can be represented

by weight space decomposition

χλ(φ) =
∑

µ is a weight in Vλ

ei〈µ,φ〉 (3.45)

Bring (3.44) and (3.45) together and plug them into the definition of charge sectors (3.42),

one can write down the partition function for a single charge µ

Zσ(β, µ) =
∑

λ∈(σ+P (G))∩P+

dim(Vλ)dimµ(Vλ)e−βC2(λ)/K (3.46)

dimµ(Vλ) is the dimension of subspace of Vλ with weight µ. Weyl’s dimension formula

produces an explicit form of dim(Vλ), and recall the Kostant’s dimension formula

dimµ(Vλ) =
∑
w∈W

(−1)|w|P(w(λ+ ρ)− (µ+ ρ)) (3.47)
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W is the Weyl group acting on weights, |w| is the length of the elemnt w, i.e. the small-

est number of α’s such that w can be generated as multiplication of reflections w =

sα1 · · · sα|w| ,8[61], P is the function that for each ν ∈ P (g), P(ν) is the number of nonneg-

ative integer solution {kα}α∈R+ to the equation

ν =
∑
α∈R+

kαα (3.48)

With the help of these fomulas, Zσ(β, µ) can be more explicit

Zσ(β, µ) =
∑

λ∈(σ+P (G))∩P+

∏
α∈R+

〈α, λ+ ρ〉
〈α, ρ〉

∑
w∈W

(−1)|w|P(w(λ+ ρ)− (µ+ ρ))e−βC2(λ)/K

(3.49)

Since ∀w ∈ W , dimµ(Vλ) = dimw(µ)(Vλ), one can always conjugate µ to a dominant one

without changing the partition function, so the assumption that µ is dominant can be

made. Another inspection is that w can written as reflections w = sα1 · · · sα|w| , sα1 turns

α1 into −α1 and permutes other αi’s so∏
α∈R+

〈α, sα1 · · · sα|w|(λ+ ρ)〉 = −
∏
α∈R+

〈α, sα2 · · · sα|w|(λ+ ρ)〉

= · · · = (−1)|w|
∏
α∈R+

〈α, λ+ ρ〉 (3.50)

Plug this equation into (3.49) and simplifies it into

Zσ(β, µ) =
∑

λ∈(σ+P (G))∩P+

∑
w∈W

∏
α∈R+

〈α,w(λ+ ρ)〉
〈α, ρ〉

P(w(λ+ ρ)− (µ+ ρ))e−βC2(λ)/K

(3.51)

Since P function counts nonnegative solutions {nα} to the equation

w(λ+ ρ) = µ+ ρ+
∑
α∈R+

nαα = µ+ ρ+ ~n · ~α (3.52)

it makes no harm to replace w(λ + ρ) by µ + ρ + ~n · ~α. On the other hand one can also

replace the summation over λ and w by summation over ~n ∈ Zp≥0, in which p is the number

of positive roots, i.e. the number of elements in R+. We claim that this is possible, i.e

Zσ(β, µ) =
∑
~n∈Zp≥0

∏
α∈R+

〈α, µ+ ρ+ ~n · ~α〉
〈α, ρ〉

e−β(|µ+ρ+~n·~α|2−|ρ|2)/K (3.53)

To prove this equation, it suffices to show the equivalence between two index sets, i.e.

∀~n ∈ Zp≥0, there exists a unique combination λ and w such that w(λ+ ρ) = µ+ ρ+ ~n · ~α.

This statement is equivalent to that µ+ρ+~n·~α lies in the interior of some Weyl chamber: it’s

8sα is the reflection of the root plane with respect to the axis α.
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necessary because λ+ρ is inside the interior of the dominant Weyl chamber and Weyl group

permutes interior of the Weyl chambers. It’s also sufficient because there is a unique Weyl

group element w0 sending it to the interior of dominant Weyl chamber, i.e. its coordinates

under the Dynkin basis are all positive intergers, so λ0 := w0(µ+ρ+~n ·~α)−ρ ∈ P (g)∩P+.

The only thing remains to verify is that λ0 ∈ σ + 1
2P (G), this is done by observing that

w0(~n · ~α) ∈ Q ⊂ P (G)

∀β ∈P (g), w0(β)− β ∈ Q ⊂ P (G) (3.54)

so λ0 ∈ µ + P (G), but µ ∈ σ + 1
2P (G), whence λ0 ∈ σ + 1

2P (G). However it’s totally

possible that µ + ρ + ~n · ~α lies in the boundary of some Weyl chamber, take SU(3) for

example, α1 and α2 are two simple roots of it, then ρ = α1 + α2 and ρ + α2 is in the

boundary of dominant Weyl chamber, because 〈ρ+α2, α1〉 = 0. Nevertheless, this does not

affect the summation because some α ∈ R+ kills µ+ ρ+ ~n · ~α and the product term in the

summation is automatically zero, i.e. the only survivals are those µ+ ρ+ ~n · ~α lying in the

interior of some Weyl chamber, and the equivalence between two index sets is established.

One finally arrives at

Zσ(β, µ) =
∑
~n∈Zp≥0

F (µ+ ρ+ ~n · ~α),F (ν) = e−β(|ν|2−|ρ|2)/K
∏
α∈R+

〈α, ν〉
〈α, ρ〉

(3.55)

In the current stage, we may observe that when β � K, the formula simply gives a constant,

Zσ(β, µ) ∼ O(1). In this limit, there is no contribution from the symmetry sector purely

from the partition function. However, when β � K, we would still expect some interesting

dependence over temperature.

3.4 Partition function with fixed chemical potential

We have already derived the total partition function (3.40) for the fixed chemical potential

φ = 0. For generic chemical potential, an easy way is to use the resummation formula

given in the appendix of [23], based on the single charge sector result. In this section we

will show that the partition function with given chemical potential is given by

Zσ(β|φ) = c

(
K

4πβ

)n/2
e
nβ
24K Θσ(β, φ) (3.56)

c is a constant depending on G, which is computed by

c = (2π)p+r(det C)1/2
∏
α∈R+

〈α, ρ〉−1 (3.57)

where r is the rank of G, i.e. dimension of Cartan subalgbra, C is the Cartan matrix.

Θσ(β, φ) is the theta function defined by

Θσ(β, φ) ≡
∑

µ∈Λ(G)

∏
α∈R+

〈α, φ+ 2πµ〉
2 sin(〈α, φ+ 2πµ〉/2)

e2πi〈σ+ρ,µ〉e
− K

4β
〈φ+2πµ,φ+2πµ〉

(3.58)
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In particular, if φ is taken to be zero, then this gives the partition function

Zσ(β) = c

(
K

4πβ

)n/2
e
nβ
24K Θσ(β, 0) (3.59)

First of all, we apply the Weyl character formula and Weyl dimension formula to ex-

pand (3.44) concretely:

Zσ(β|φ) =
∑

λ∈(σ+P (G))∩P+

e−βC2(λ)/K

 ∏
α∈R+

〈α, λ+ ρ〉
〈α, ρ〉


×

 ∏
α∈R+

1

2i sin(〈α, φ〉/2)

∑
w∈W

(−1)|w| exp(i〈w(λ+ ρ), φ〉)

 (3.60)

Recall the definition of constant c = (2π)p+r(det C)1/2
∏
α∈R+

〈α, ρ〉−1 and plug it into

the formula:

Zσ(β|φ) =
c

(2π)p+r(det C)1/2

∑
λ∈(σ+P (G))∩P+

e−βC2(λ)/K

×

 ∏
α∈R+

〈α, λ+ ρ〉
2i sin(〈α, φ〉/2)

∑
w∈W

(−1)|w| exp(i〈w(λ+ ρ), φ〉)

 (3.61)

Since the second Chern number of representation λ is C2(λ) = 〈λ + ρ, λ + ρ〉 − 〈ρ, ρ〉,
and according to strange formula of Freudenthal and de Vries, i.e. 〈ρ, ρ〉 = n/24, where

n = dim(G), we can rewrite the formula as

Zσ(β|φ) =
c · exp(nβ/24K)

(2π)p+r(det C)1/2

∑
λ∈(σ+P (G))∩P+

∑
w∈W

×

 ∏
α∈R+

〈α,w(λ+ ρ)〉
2i sin(〈α, φ〉/2)

 ei〈w(λ+ρ),φ〉−β〈w(λ+ρ),w(λ+ρ)〉/K

(3.62)

It’s obvious that when λ runs though all lattice points in (σ + P (G)) ∩ P+ and w runs

through all group elements in W, w(λ+ ρ) runs through all lattice points in σ+ ρ+ P (G)

with multiplicity one except possibly for those lying on the boundary of Weyl chambers,

but those weights annihilate at least one α ∈ R+, hence the formula doesn’t change if we

simply add them to the summation by hand, i.e. we have

Zσ(β|φ) =
c · exp(nβ/24K)

(2π)p+r(det C)1/2

∑
λ∈σ+ρ+P (G)

 ∏
α∈R+

〈α, λ〉
2i sin(〈α, φ〉/2)

 ei〈λ,φ〉−β〈λ,λ〉/K (3.63)

Using Poisson resummation formula, we can rewrite it as the summation over the dual

lattice of P (G), which is be denoted by Λ(G):

Zσ(β|φ) = c

(
K

4πβ

)n/2
e
nβ
24K

∑
µ∈Λ(G)

∏
α∈R+

〈α, φ+ 2πµ〉
2 sin(〈α, φ+ 2πµ〉/2)

e2πi〈σ+ρ,µ〉e
− K

4β
〈φ+2πµ,φ+2πµ〉

(3.64)

which is exactly (3.56).
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We also comment here on a harder way to derive this formula. If we wish to directly

use the φ = 0 result, we should write (3.40) in the form of

Zσ(β) = c

(
K

4πβ

)n/2
e
nβ
24K

∑
µ∈Λ(G)

∏
α∈R+

〈α, 2πµ〉
2 sin(〈α, 2πµ〉/2)

e2πi〈σ+ρ,µ〉e
− K

4β
〈2πµ,2πµ〉

(3.65)

where in this form, pole cancellation happens and thus it will turn a summation formula in

a single term. Then we could apply the argument similar in U(1) to shift 2πµ by φ+ 2πµ,

which will give (3.56).

Similarly, we also observe that with fixed chemical potential, the partition function

has no contribution when β � K. Thus, in the following examples, we will give analysis

in detail in the limit where β � K.

4 Examples and properties

4.1 Example: SU(M + 1)

Single charge sector. In this section we are going to evaluate

Zσ(β, µ) =
∑
~n∈Zp≥0

F (µ+ ρ+ ~n · ~α) F (ν) = e−β(|ν|2−|ρ|2)/K
∏
α∈R+

〈α, ν〉
〈α, ρ〉

(4.1)

for SU(M + 1). Here all the inner products are defined over the ωi basis, where

ωi = ei − ei+1 (4.2)

for i = 1, 2, · · · ,M . Here we have

R+ = {αi = ei − ej , i < j} (4.3)

So |R+| = 1
2M(M + 1) = p. In this basis, we have

ρ = ρiωi ρi = i× (M − i+ 1)/2 (4.4)

And we define the inner product

〈a, b〉 = Cijaibj a = aiωi b = biωi (4.5)

and the Cartan matrix

Cij =


2 i = j

−1 |i− j| = 1

0 others

(4.6)

Thus

|ρ|2 = 〈ρ, ρ〉 =
1

12
M(M + 1)(M + 2) (4.7)
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The charge sector µ is taken from P (G). For SU(M + 1), P (G) is expanded by κ basis,

we have

P (G) = {κj : 〈ωi, κj〉 = δij} (4.8)

and Λ(G) is expanded by ω basis

Λ(G) = {ωj} (4.9)

we could write down κ in teams of ω

κi = Xijωj

Xij =

{
i(M+1−j)
M+1 i < j

j(M+1−i)
M+1 i ≥ j

(4.10)

Let us firstly consider M = 1. In this case the charge sector is taken as µ ∈ Z/2. In the

proof we make the dominate assumption, thus we take the non-negative µ. So the partition

function is

Zσ(β, µ) =
+∞∑
n=0

(1 + µ+ n) exp

(
−2β

K

(
(n+ µ+ 1)2 − 1

))
(4.11)

Considering that K � β, one can estimate the result by the following integral

Zσ(β, µ) ∼
∫ +∞

1+µ
exp

(
−2β

K

(
x2 − 1

))
xdx =

K

4β
e−

2βµ(µ+2)
K (4.12)

We could make the following estimations here

• If µ�
(
K
β

)1/2
then the partition function is simply scales as

Zσ(β, µ) ∼ K

β
(4.13)

Here it means that µ is sufficiently closed to ρ. In this case, for small n each expo-

nential term in the sum is sufficiently closed to 1, then the sum is effectively

Zσ(β, µ) ∼
n2≈K

β∑
n=0

n ∼ K

β
(4.14)

while for n2 > K
β the terms are close to zero so we truncate the sum. This explain

the result of the direct integral.

• If µ ∼
(
K
β

)1/2
and even larger, the partition function will exponentially decay towards

zero as β increases. The exponential decay could be explained by the following. Since

µ is sufficiently large, the terms in the sum decay very fast, so the result is dominated

by the first term in the sum

Zσ(β, µ) ∼ exp

(
−2β

K
µ2

)
(4.15)

and the power law decaying factor is no longer important.
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Motivated by the discussions in SU(2), we could make a generic estimation on the SU(M+1)

result. Firstly take a look on the structure of F (ν), the set R+ contains M(M+1)
2 terms,

and each term in

〈α, ν〉
〈α, ρ〉

(4.16)

is a linear sum of νi. So we could write the partition function as

Zσ(β, µ) ∼ exp

(
β

K
|ρ|2
)∑
{q}

c{q}
∏M(M+1)/2

i=1

(∫
νi>ρ+µ

dνiν
qi
i exp

(
− β
K
ν2
i

))
(4.17)

where c{q} are coefficients for set {qi} satisfying

qi ∈ Z≥0

M(M+1)/2∑
i=1

qi ≤
M(M + 1)

2
(4.18)

Thus here it is convenient to define the following function

gq(t, z) =

∫ +∞

z
xq exp

(
−x

2

t

)
dx =

1

2
z1+qE(1−q)/2

(
z2

t

)
(4.19)

where En(z) is the standard exponential integral function

En(z) =

∫ +∞

1

e−zt

tn
dt (4.20)

So we have

Zσ(β, µ) ∼ exp

(
β

K

M(M + 1)(M + 2)

12

)∑
{q}

c{q}
∏

i
gqi

(
K

β
, ρi + µi

)
(4.21)

Here we could make the following treatment, and there are three following numbers that

are possibly large: K
β , M and µ.

• Large K
β , relatively small M and µ. Here we use the expansion

gq(z, t) ∼
1

2
t
q+1
2 Γ

(
q + 1

2

)
(4.22)

Thus larger qi means a dominated decaying rate. So we take

M(M+1)/2∑
i=1

qi =
M(M + 1)

2
(4.23)

where for thus terms we have

M(M+1)/2∑
i=1

qi + 1

2
=
M(M + 1)

2
(4.24)

So we get

Zσ(β, µ) ∼
(
K

β

) (M+1)M
2

(4.25)
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• Large K
β , M is kept to be small, but some µi is sufficiently large, µ2

i ∼ K
β , then that

will cause a fast exponential decay. We have

Zσ(β, µ) ∼ e−#×βµ
2
i

K (4.26)

• For poly(M) ∼ K
β � 1, the decaying rate will increase dramatically. For small µ

case, the Gamma function will provide exponential decay about polynomials of M .

Moreover, the exponential decaying part will be M -fold. For large µ case, we also

get a M -fold exponential decaying.

Whole sector. Now we take a look at the whole sector. The result is given by

Zσ(β|φ) = c

(
K

4πβ

)M(M+2)/2

e
M(M+2)β

24K Θσ(β, φ) (4.27)

where

c = (2π)p+r(detC)1/2
∏
α∈R+

1

〈α, ρ〉
(4.28)

and

Θσ(β, φ) =
∑

µ∈Λ(G)

e2πi〈σ+ρ,µ〉e
− K

4β
〈φ+2πµ,φ+2πµ〉 ∏

α∈R+

〈α, φ+ 2πµ〉
2 sin(〈α, φ+ 2πµ〉/2)

(4.29)

Thus in SU(M + 1), we have

detC = M + 1

p =
1

2
M(M + 1) r = M

c = (2π)M(M+3)/2(M + 1)1/2 1

2M2 (4.30)

In SU(M + 1), since it is simply connected, thus σ is taking on arbitrary element from

P (G). Thus, the result is not actually related to the spin structure

Θσ(β, φ) =
∑

µ∈Λ(G)

e2πi〈ρ,µ〉e
− K

4β
〈φ+2πµ,φ+2πµ〉 ∏

α∈R+

〈α, φ+ 2πµ〉
2 sin(〈α, φ+ 2πµ〉/2)

(4.31)

Moreover, since 〈ρ, µ〉 is always integer, the phase term should also be removed and the

result is

Θσ(β, φ) =
∑

µ∈Λ(G)

e
− K

4β
〈φ+2πµ,φ+2πµ〉 ∏

α∈R+

〈α, φ+ 2πµ〉
2 sin(〈α, φ+ 2πµ〉/2)

(4.32)

For SU(2) we have the fact that φ and σ are numbers.∏
α∈R+

〈α, φ+ 2πµ〉
2 sin(〈α, φ+ 2πµ〉/2)

=
φ+ 2πµ

sinφ
(4.33)
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where µ is integer. So we get

Θσ(β, φ) =
∑
µ∈Z

e
− K

2β
(φ+2πµ)2

(φ+ 2πµ)
1

sin(φ)
(4.34)

Now we notice that, if φ = 2πZ, let’s say φ = 2πnφ where nφ is an integer. Then we say

that most terms in the sum cancel except µ = −nφ, which gives

Θσ(β, φ) = 1 (4.35)

So the result is simply

Zσ(β|φ) ∼
(
K

β

)3/2

e
β

12K ∼
(
K

β

)3/2

(4.36)

Another case is that φ is not in 2πZ, then write Round(x) the integer closest to x, then

the sum is dominated by

Θσ(β, φ) ∼ e−
K
2β

(φ−2πRound( φ
2π ))

2
(
φ− 2πRound

(
φ

2π

))
1

sin(φ)

∼ e−
K
2β

(φ−2πRound( φ
2π ))

2
(
φ− 2πRound

(
φ

2π

))
1

sin(φ)
(4.37)

Thus, in general, the result will get an exponential decay

Zσ(β|φ) ∼
(
K

β

)3/2

e
− K

2β
(φ−2πRound( φ

2π ))
2

(4.38)

Now we consider generic SU(M + 1) case. The result is similar. We have

• For given φ, If there exists µ ∈ Λ(G) and α ∈ R+ such that

〈α, φ+ 2πµ〉 = 0 (4.39)

then there might be multiple solutions of α and µ for that given φ. Find all of them,

and we get a set of allowed µ. Then the partition function scales as

Zσ(β|φ) ∼
(
K

β

)M(M+2)/2

e
M(M+2)β

24K e
− K

4β
Minallowedµ(〈φ+2πµ,φ+2πµ〉)

(4.40)

It is possible that we could have

Minallowed µ (〈φ+ 2πµ, φ+ 2πµ〉) = 0 (4.41)

where in this case we get

Zσ(β|φ) ∼
(
K

β

)M(M+2)/2

e
M(M+2)β

24K (4.42)

• If it does not exist such µ, we have

Zσ(β|φ) ∼
(
K

β

)M(M+2)/2

e
M(M+2)β

24K e
− K

4β
Minµ(〈φ+2πµ,φ+2πµ〉)

(4.43)
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Thus, there is an interesting bound we could find for every possible φ. Since we know that

−O(1)×M / −Minµ (〈φ+ 2πµ, φ+ 2πµ〉) / 0 (4.44)

Where O(1) means a numerical constant. Thus we know that(
K

β

)M(M+2)/2

e
M(M+2)β

24K e
−KM

4β
×O(1) / Zσ(β|φ) /

(
K

β

)M(M+2)/2

e
M(M+2)β

24K (4.45)

The bound in the r.h.s. could appear in any M . In fact, in SU(M + 1), we consider φ to be

zero, one can show that there is one single µ = 0 to make the function 〈φ+ 2πµ, φ+ 2πµ〉
to get minimized at zero according to the assumption that existing α and µ such that

〈α, φ+ 2πµ〉 = 0. This term gives the contribution to the Θ function O(1), thus we get

Zσ(β|φ) ∼
(
K

β

)M(M+2)/2

e
M(M+2)β

24K (4.46)

4.2 SO(2M + 1)

SO(3). The most simplest case, SO(3), is very similar with SU(2), where we have com-

puted before, and thus it is slightly different from the general SO(2M+1) case with M ≥ 2.

So we discuss it separately.

Firstly, the similarities are that we have the same ω basis

ω1 = e1 − e2 (4.47)

and the same matrix C

C11 = 2 (4.48)

and we have Λ(G) = ω1Z, φ ∈ R. We also have the same R+, R+ = {ω1}, |R+| = 1 = p,

and ρ = ω1/2, r = 1, so the constant c = 2
√

2π2. And P (G) should be the dual lattice of

Λ(G), namely

P (G) =
1

2
Zω1 (4.49)

and µ ∈ P (G) + σi where we assume µ is dominate (non-negative), and depending on the

spin structure σi. There are two spin structures:

σ0 = 0 σ1 =
1

4
ω1 (4.50)

The single charge sector result is exactly the same as SU(2)

Zσ(β, µ) ∼ K

4β
e−

2βµ(µ+2)
K (4.51)

although the choice of µ is different. Moreover, since

Θσ0(β, φ) =
∑
µ∈Z

e
− K

2β
(φ+2πµ)2

(φ+ 2πµ)
1

sin(φ)

Θσ1(β, φ) =
∑
µ∈Z

(−1)µe
− K

2β
(φ+2πµ)2

(φ+ 2πµ)
1

sin(φ)
(4.52)

– 24 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
9

Thus we see that the non-trivial spin structure only brings the phase factor, and thus in

the limit we are interested in, those two spin structures are both approximately give the

same expressions as the whole sector formula of SU(2).

Single charge sector. We will list the necessary data for SO(2M + 1) here.

ωi =

{
ei − ei+1 i = 1, · · · ,M − 1

eM i = M

R+ = {αi = ei ± ej , i < j : for i, j = 1, 2, · · · ,M} ∪ {ei : for i = 1, 2, · · · ,M}
|R+| = M2 = p

ρ = (2(M − i) + 1)ei

Cij =


2 i = j < M

−1 |i− j| = 1, i 6= M

−2 i = M, j = M − 1

0 others

|ρ|2 = 〈ρ, ρ〉 =
1

12
M(M + 1)(4M − 1) (4.53)

The lattice is defined as

Λ(G) =


M∑
j=1

λjωj : λj ∈ Z


P (G) =


M∑
j=1

λjej : λi ∈ Z/2, λi − λj ∈ Z

 (4.54)

and φ ∈ RM and µ ∈ P (G) + σi (where µ is chosen to be dominate). In any M , we have

two possible spin structures, σ0 = 0 and σ1 = ωM−1/2.

The result for single charge sector is pretty similar with SU(M + 1) case. We have

• Large K
β , relatively small M and µ. Since we know that

M2∑
i=1

qi = M2 (4.55)

thus

M2∑
i=1

qi + 1

2
= M2 (4.56)

So we get

Zσ(β, µ) ∼
(
K

β

)M2

(4.57)
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• Large K
β , M is kept to be small, but some µi is sufficiently large, µ2

i ∼ K
β , we have

Zσ(β, µ) ∼ e−#×βµ
2
i

K (4.58)

• Large M will provide even faster decaying rate.

Whole sector. The corresponding data is

detC = 2 n = (2M + 1)M

p = M2 r = M

c = (2π)M
2+M
√

2

(∏M−1

k=0
((2k + 2)(2k + 3))M−1−k

)−1

(4.59)

We could write down the Θ function as

Θσi(β, φ) =
∑

µ∈Λ(G)

e2πi〈ρ+σi,µ〉e
− K

4β
〈φ+2πµ,φ+2πµ〉 ∏

α∈R+

〈α, φ+ 2πµ〉
2 sin(〈α, φ+ 2πµ〉/2)

(4.60)

There are some differences between the SO(2M+1) case and the SU(M+1) case we discuss

above. Since it has two different spin structures, they may change signatures in different

terms of partition function sum. Let us take a look on M = 2 case for example. In this

case, we assume φ = 2πηiωi and µ = µiωi. We have

2πi 〈ρ+ σ0, µ〉 = −2πiµ1 + 5πiµ2 ∼ πiµ2

2πi 〈ρ+ σ1, µ〉 = 4πiµ1 ∼ 0 (4.61)

where here ∼ means modulo 2πiZ. Thus we know that for σ1 the phase is always 1, while

for σ0 it depends on µ2 is even or odd.

Similarly, considering M = 2 and for simplicity we assume σ = σ0. If there is no

solution for the following equation

〈α, φ+ 2πµ〉 = 0 (4.62)

namely, there is no solution for any of the following equations

η2 + µ2 = 0

−2η1 + η2 − 2µ1 + µ2 = 0

−η1 + η2 − µ1 + µ2 = 0

−2η1 + 3η2 − 2µ1 + 3µ2 = 0 (4.63)

then

Zσ(β|φ) ∼
(
K

β

)5

e
5β
12K e

− K
4β

Minµ〈φ+2πµ,φ+2πµ〉
(4.64)
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If there exists solution, for instance, say if η2 ∈ Z, then consider the solution η2 = −µ2

we get ∏
α∈R+

〈α, φ+ 2πµ〉
2 sin(〈α, φ+ 2πµ〉/2)

∼ (π(η1 + µ1))3

sin3(2π(η1 + µ1))

K

4β
〈φ+ 2πµ, φ+ 2πµ〉 =

2K

β
(π(η1 + µ1))2 (4.65)

Then if η2 is not integer we have

Zσ(β|φ) ∼ ±
(
K

β

)5

e
5β
12K e

− 2K
β

(π(η2−Round(η2)))
2

(4.66)

If η2 is an integer, we have

Zσ(β|φ) ∼ ±
(
K

β

)5

e
5β
12K (4.67)

These facts will happen in general, where the generic form is expected to be

Zσ(β|φ) ∼
(
K

β

)(2M+1)M/2

e
(2M+1)Mβ

24K e
− K

4β
Minµ(〈φ+2πµ,φ+2πµ〉)

(4.68)

where if we get poles as described above, the minimizing function will only localized on

those poles. And we also have a similar bound(
K

β

)(2M+1)M/2

e
(2M+1)Mβ

24K e
−KM

4β
×O(1) / Zσ(β|φ) /

(
K

β

)(2M+1)M/2

e
(2M+1)Mβ

24K (4.69)

4.3 SO(2M)

Single charge sector. We list the data we need to use here

ωi =

{
ei − ei+1 1 ≤ i ≤M − 1

eM−1 + eM i = M

R+ = {ei ± ej : i < j} |R+| = p = M(M − 1)

ρ = 2(M − j)ej |ρ|2 =
1

6
(M − 1)M(2M − 1)

Cij =


2 i = j < M

−1 |i− j| = 1, i, j 6= M

−1 (i, j) = (M,M − 2) or (M − 2,M)

0 others

(4.70)

and we know the lattices are

Λ(G) =


M∑
j=1

λjωj : λj ∈ Z


P (G) =


M∑
j=1

λjej : λi ∈ Z/2, λi − λj ∈ Z

 (4.71)

– 27 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
9

and again, we know that φ ∈ RM and µ ∈ P (G)≥0. Moreover, we have four spin structures

σ0 = 0 σ1 =
M∑
i=1

1

2
ωi

σ2 = ω1 σ3 =


−1

2ω1 +
M∑
i=2

1
2ωi M is even

M∑
i=2

3
2ωi M is odd

(4.72)

where when M is even the spin structures form the group Z2 × Z2, while when M is odd

the spin structures form the group Z4.

The above discussion has the restriction that M ≥ 2. For the reduced case M = 1,

SO(2) = U(1), thus it is not semisimple, we will discuss it later.

The generic feature of the result for single charge sector is the same as before. The

only difference is that now for large K
β but relatively small µ and M , since

M(M−1)∑
i=1

qi = M(M − 1) (4.73)

so

M(M−1)∑
i=1

qi + 1

2
= M(M − 1) (4.74)

Thus the partition function in this limit is given by

Zσ(β, µ) ∼
(
K

β

)M(M−1)

(4.75)

Whole sector. The constants are

det C = 4 n = (2M − 1)M

p = M(M − 1) r = M

c= 2(2π)M
2

(
(M − 1)!

∏2M−3

s=1,3,5...
s!

)−1

(4.76)

One of the main differences comparing to previous cases is that now we are four spin struc-

tures. Generically, we conclude that more spin structures may lead to more complicated

cases in the phases of terms for summation.

The form of the partition function is

Zσ(β|φ) ∼
(
K

β

)(2M−1)M/2

e
(2M−1)Mβ

24K e
− K

4β
Minµ(〈φ+2πµ,φ+2πµ〉)

(4.77)

with a similar bound(
K

β

)(2M−1)M/2

e
(2M−1)Mβ

24K e
−KM

4β
×O(1) <

≈ Zσ(β|φ) <≈

(
K

β

)(2M−1)M/2

e
(2M−1)Mβ

24K (4.78)
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4.4 Non-semisimple cases

For non-semisimple case, a standard example is U(M + 1) (M ≥ 0). Formally, the the-

orems above are not applied for generic non-semisimple groups, but since U(M + 1) is a

combination of U(1) and SU(M + 1), we could still use it practically by merging the result

of U(1) and SU(M + 1) together.

We will revisit the single charge sector and the whole sector partition functions for

U(1) in the following, and make some predictions for U(M + 1) in general.

U(1). We revisit our U(1) case in our mathematical framework. As we know, U(1) has

exactly two spin structures: the trivial one σ0, and the Möbius σ1. If one identifies the

weight lattice P (U(1)) of U(1) with Z, and the inner product 〈−,−〉 is just multiplication

of numbers, then σ0 can be chosen to be represented by 1, and σ1 can be chosen to be

represented by 1/2. Note that since there is no semisimple component in U(1), R+ is an

empty set.

Now applying the single charge sector formula we directly obtain

Zσ(β, µ) = exp

(
−βµ

2

K

)
(4.79)

which precisely matches our previous observation. Secondly, for the whole partition func-

tion we have

Zσ0(β|φ) ∼
(
K

β

)1/2∑
µ

e
− K

4β
(φ+2πµ)2

Zσ1(β|φ) ∼
(
K

β

)1/2∑
µ

(−1)µe
− K

4β
(φ+2πµ)2

(4.80)

which matches our results before.

U(M + 1). The spin structures of U(M + 1) are non-trivial. Generically, there are two

spin structures for generic M . In fact, since

π1(U(M + 1)) = π1(U(1)) = Z (4.81)

thus the spin structure for U(M) is

Hom(π1(U(M + 1)),Z2) = Z2 (4.82)

For other group data, we should merge U(1) and SU(M + 1) together. For instance,

consider U(2). The structure of the group is U(2) = SU(2) × U(1)/Z2. Thus, we may

effectively take the products of lattices and Cartan matrices, considering the equivalence

relationship provided by Z2. Thus, for instance, the positive simple roots are given by

R+ = {(ω1, 0)} (4.83)

where ω1 is from SU(2). The Cartan matrix is

C = diag(2, 1) (4.84)
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In the merging procedure we know that for generic M ,

p =
∣∣∣RU(M+1)

+

∣∣∣ =
∣∣∣RSU(M+1)

+

∣∣∣ =
M(M + 1)

2
(4.85)

Thus, the scaling of the partition function in the single charge sector, for U(M + 1), is the

same as SU(M + 1), since
∑

i qi is bounded by the same number. For the whole sector, we

have the bound(
K

β

)(M+1)2/2

e
(M+1)2β

24K e
−KM

4β
×O(1) <

≈ Zσ(β|φ) <≈

(
K

β

)(M+1)2/2

e
(M+1)2β

24K (4.86)

4.5 Generic features

After going through the explicit examples of groups, we could summarize some generic

features of our result.

Product manifolds. For a product manifold M1 ×M2, the partition function is also

a product ZM1×M2 = ZM1ZM2 . This can be seen easily from the fact that the Laplace-

Beltrami operator on the product manifold is the summation:

∆M1×M2 = ∆M1 + ∆M2 (4.87)

so eigenfunctions are products of eigenfunctions and eigenvalues are summations of eigen-

values

ψn,m = ψnψm En,m = En + Em (4.88)

Plugging this into equation (3.23), we get

ZM1×M2 =
∑
n,m

ψn,m(1)ψ̄n,m(1)e−2πβEn,m

=
∑
n,m

ψn(1)ψm(1)ψ̄n(1)ψ̄m(1)e−2πβ(En+Em)

= ZM1ZM2 (4.89)

Those formulas should work for single charge sector partition functions. One could use

resummation formula to obtain the whole sector result as above.

Triviality for K � β. In this limit all partition functions reduce to O(1) constants.

Single charge sector for K � β. Generically we expect the following results,

• For group G with small dimension and rank, and small absolute values of charge sec-

tors, Given the number of positive roots |R+| = p, the partition function is expected

to be

Zσ(β, µ) ∼
(
K

β

)p
(4.90)

Here we should note that U(1) also follows from this formula, since for U(1), p = 0,

and in that limit we have Zσ(β, µ) ∼ 1.

– 30 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
9

• For small M , but some µi is comparable to K
β , we expect an exponential decay

Zσ(β, µ) ∼ exp

(
−#

βµ2
i

K

)
(4.91)

• Large M will make the decay rate larger.

• The result for semisimple group G is not related to spin structure σ.

Whole sector for K � β. Generically we expect the following results,

• Generically, for group G, the result is expected to be,

Zσ(β|σ) ∼
(
K

β

)n/2
e
nβ
24K e

− K
4β

Minµ(〈φ+2πµ,φ+2πµ〉)
(4.92)

where minimization works on the lattice Λ(G), and the dimension of the group is

given by n. In the case that the following equation

〈α, φ+ 2πµ〉 = 0 (4.93)

has solutions, where α is from positive roots R+, the minimization is taken only over

those solutions.

• Thus we generically have a bound(
K

β

)n/2
e
nβ
24K e

−Kr
4β
×O(1) <

≈ Zσ(β|φ) <≈

(
K

β

)n/2
e
nβ
24K (4.94)

• The non-trivial spin structures will change the phase factor in the overall sum. How-

ever, in the dominate large K
β regime it will only give an overall constant.

5 How symmetry plays with chaos

Based on the analysis above, we could obtain some predictions using an effective action

that is simply combined from a Schwarzian theory and a particle on a group theory, which

is called SchG.

5.1 Form factors

Spectral form factor is an important quantity to quantify the discreteness of the spectrum

in a random systems, which could be useful to understand properties of quantum gravity

in the black hole and information scrambling in the quantum many-body system. For

instance, the two point form factor is defined as the product of the analytic-continued

partition function

R2(β, t) = 〈Z(β + it)Z(β − it)〉 (5.1)
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Figure 1. Example of spectral form factor R2(β, t) in SYK model. We take βJ = 1 and N = 24

with 800 random realizations.

This quantity is widely studied recently, especially in the context of SYK model (for in-

stance, see [18, 21]). In the Schwarzian theory of the SYK model, we have the analytic

control in the limit

ϑJ ≡
√
β2 + t2J � 1 (5.2)

In this timescale, we have a specific decaying epoch where (see figure 1)

R2(β, t) ∼ |〈Z(β + it)〉|2 (5.3)

We know that when ϑJ � N , there is no contribution from symmetries, and we simply

obtain the power law,

R2(β, t) ∼ 1

(ϑJ)3
(5.4)

For ϑJ � N we have the following table 1. From this table, we obtain predictions of the

form factors. We will comment on this in the following:

• The group G, if associating with SYK model, will provide extra fruitful dynamics

in form factors. It is relatively easy to observe it with a clean decaying rate in the

single charge sector, where the number of positive roots in the group G will provide

a contribution and make the decay procedure faster. It is also possible to observe it

in the result of the form factor in the whole sector, where the dimension of the group

G will contribute and make the decay faster.

• An exponential decay will happen in the single charge sector if a component of the

sector µi is sufficiently large, and we have

R2 ∼ exp

(
−#µ2ϑ

K

)
(5.5)

• The spin structures σ generically are hard to change the scaling of the spectral

form factor.
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Group Number of Single sector Whole sector

G spin structures small r and µ general form

General G
∣∣H1(G,Z2)

∣∣ 1
(ϑJ)2p+3

e
#nϑJ
N
−#N
ϑJ

Minµ|φ+2πµ|2

(ϑJ)n+3

U(1) = SO(2) 2 1
(ϑJ)3

e−
#N
ϑJ

Minµ|φ+2πµ|2

(ϑJ)4

SU(2) 1 1
(ϑJ)5

e−
#N
ϑJ

Minµ|φ+2πµ|2

(ϑJ)6

SU(M + 1)M≥1 1 1

(ϑJ)M2+M+3

e
#M(M+2)ϑJ

N
−#N
ϑJ

Minµ|φ+2πµ|2

(ϑJ)M
2+2M+3

SO(2M + 1)M≥1 2 1

(ϑJ)2M2+3

e
#(2M+1)MϑJ

N
−#N
ϑJ

Minµ|φ+2πµ|2

(ϑJ)2M
2+M+3

SO(2M)M≥1 4 1

(ϑJ)2M2−2M+3

e
#(2M−1)MϑJ

N
−#N
ϑJ

Minµ|φ+2πµ|2

(ϑJ)2M
2−M+3

U(M + 1)M≥1 2 1

(ϑJ)M2+M+3

e
#(M+1)2ϑJ

N
−#N
ϑJ

Minµ|φ+2πµ|2

(ϑJ)M
2+2M+4

Table 1. The spectral form factor for SchG in the window 1� ϑJ � N .

5.2 Partition function and density of states

We briefly comment on the thermodynamical implications of the partition function result

in this section.

Generically the partition function over the given chemical potential φ is given by

Z(β|φ) = Tr(e−βH+iφQ) (5.6)

where Q is the charge operator. In the grand canonical ensemble, the density matrix is

given by

ρden(β|φ) =
e−βH+iφQ

Zσ(β|φ)
(5.7)

One can do the low temperature expansion of the partition function, and we obtain

Z(β|φ) = exp

(
−βH0(φ) + iφQ0(φ) + S0(φ) +

c0(φ)

2β
+ corrections

)
(5.8)

where for observable X, we define

X0 = Tr(Xρ(β = 0|φ)) (5.9)

Namely, H0, S0, Q0, c0 are energy, entropy, charge, specific heat in the state with chemical

potential φ and zero temperature.

The last term, corrections, is obtained from the effective actions. Generically, we would

say that for SchG with dimension dimG = n, we have

corrections ∼ n+ 3

2
log βJ (5.10)

– 33 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
9

We perform the Fourier transform to obtain the partition function in the single charge

sector by (here we take U(1) for simplicity)

Z(β, µ) =

∫ 2π

0

dφ

2π
e−iφµZ(β|φ) (5.11)

In canonical ensemble, we have a similar low temperature expansion in the single charge

sector

Z(β, µ) = exp

(
−βHµ + Sµ +

cµ
2β

+ corrections′
)

(5.12)

where we define Xµ to be the operator X in zero temperature, and charge sector µ. Namely,

Hµ, Sµ, Qµ, cµ are energy, entropy, charge, specific heat in the state with charge sector µ

and zero temperature. For corrections, in the single charge sector case, for U(1) we have

corrections′ ∼ 3

2
log βJ (5.13)

which is the same as the Schwarzian theory, while in general, we have

corrections′ ∼ 2p+ 3

2
log βJ (5.14)

where p = |R+|, the number of positive roots in G.

In general, the quantities X0(φ) and Xµ, could be computed by numerical analysis.

We look forward to seeing those developments in the future.

There is another interesting thermodynamical observable we could look at, which is the

density of states. The density of states is given by the Laplace transform of the temperature

ρ(E|φ) ∼ 1

2πi

∫
γ+iR

dβZ(β|φ) exp

(
βE +

#

β

)
ρ(E,µ) ∼ 1

2πi

∫
γ+iR

dβZ(β, µ) exp

(
βE +

#

β

)
(5.15)

where γ is an arbitrary real constant. Using saddle point approximation, we know that in

general, setting Z ∼ β−α, for small E we have∫
dβ

1

βα
exp

(
βE +

c

β

)
∼
(
eE

α

)α ∫
dβ exp

(
1

2

E2

α
β2

)
∼ Eα−1 (5.16)

while for large E we have∫
dβ

1

βα
exp

(
βE +

c

β

)
∼
(
E

c

)α/2
e2
√
cE

∫
dβ exp

(
1

2

E3/2

√
c

(β − β0)2

)
∼ e2

√
cEEα/2−3/4 (5.17)
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Group G Single sector Whole sector Single sector Whole sector

small E small E large E large E

General G (EJ)p+1/2 (EJ)n/2+1/2 (EJ)p/2 (EJ)n/4

U(1) = SO(2) (EJ)1/2 (EJ)1 1 (EJ)1/4

SU(2) (EJ)3/2 (EJ)2 (EJ)1/2 (EJ)3/4

SU(M + 1)M≥1 (EJ)(M2+M+1)/2 (EJ)(M+1)2/2 (EJ)(M2+M)/4 (EJ)(M2+2M)/4

SO(2M + 1)M≥1 (EJ)(2M2+1)/2 (EJ)(2M2+M+1)/2 (EJ)M
2/2 (EJ)(2M2+M)/4

SO(2M)M≥1 (EJ)(2M2−2M+1)/2 (EJ)(2M2−M+1)/2 (EJ)(M2−M)/2 (EJ)(2M2−M)/4

U(M + 1)M≥1 (EJ)(M2+M+1)/2 (EJ)(M2+2M+2)/2 (EJ)(M2+M)/4 (EJ)(M+1)2/4

Table 2. The density of states for SchG.

Thus, with our previous result, we know that for small E we have

ρ(E|φ) ∼ (EJ)n/2+1/2

ρ(E,µ) ∼ (EJ)p+1/2 (5.18)

while for large E we have

ρ(E|φ) ∼ (EJ)n/4

ρ(E,µ) ∼ (EJ)p/2 (5.19)

For reader’s convenience, we will list the energy dependence on E in the following table 2.

5.3 A short comment on thermodynamics

Here we briefly discuss other thermodynamical quantities of the theory. Here we will focus

on the canonical ensemble. In our current language, the free energy in the thermodynamical

limit is defined by

dF = dU − 1

β
dS +

i

β
φdµ (5.20)

where here S is the entropy, U is the internal energy, and φdµ is understood as the inner

product over lattice vectors in general. Thus, the chemical potential in equilibrium is

defined by

φ = −iβ
(
∂F

∂µ

)
β

(5.21)

where the partial derivative here is understood as derivatives on each component of µ. One

might also define the grand potential

Ω(φ, β) = F (φ, β)− iφµ(φ, β) (5.22)
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In the above discussions, we know that

Z(β, µ) = exp

(
−βHµ + Sµ +

cµ
2β

+ corrections′
)

(5.23)

wherein this work we show that the correction terms are generically logarithmically de-

pending on βJ . The free energy is given by

F (β, µ) = − 1

β
logZ(β, µ) = Hµ −

1

β
Sµ −

cµ
2β2

+
corrections′(β)

β
(5.24)

in the zero temperature expansion. And from those quantities we could predict other

thermodynamical quantities.

In the above expressions, the terms Hµ, Sµ and cµ depend on, generically, the model

itself, while the correction is from the Schwarzian theory SchG, the low energy effective

action that describes the conformal symmetry breaking in the SYK-like models. In the

work [13], it is discovered that Hµ is not universal, while Sµ is universal in the complex

SYK model; namely, it only cares about the scaling dimension and the IR information,

without high energy details. The observation of universality is definitely, an important

ingredient that is from the property of conformal symmetry of the SYK-like models. In

our work, since we only compute the correction terms that are logarithmically depending

on the temperature (where the logarithmic piece is generically the effect of symmetry comes

in), the fact of universality is not affected by the higher symmetries. Thus, we expect that

for SYK-like models, the universality property of the zero temperature entropy should

stay the same. The correction terms also cannot encounter the expression of the chemical

potential, since there is generically no dependence for the SchG in the single charge sector,

on the charge itself. Thus, the chemical potential is dominated by conformal contributions.

Since the Schwarzian theory directly describes the perturbations above the saddle

point, we will expect that the theory SchG will be directly related to the physical quantities

that are directly related to perturbations. For instance, the susceptibility matrix of complex

SYK model is studied in [13], which is directly related to two-point correlation functions

of the phase modes and the Schwarzian modes. We expect that we will have similar

situations in the model with more general symmetries. Those physical quantities are again

model dependent, which will be beyond the scope of this work. We leave those studies for

future research.

5.4 Lyapunov exponents

A crucial fact of the SYK-like models is that when computing the out-of-time-ordered

four-point function, the result will have a Lyapunov growth during the early period. The

Lyapunov exponent saturates the chaos bound by Maldacena-Shenker-Stanford [62]

λL ≤
2π

β
(5.25)

Namely, their chaotic features are maximal. This fact indicates a possible holographic dual

of those models (see [63–65] for reference).

– 36 –



J
H
E
P
0
5
(
2
0
1
9
)
0
9
9

We argue that the one-dimensional SYK model with global symmetries will still have

the maximal chaotic exponent.

• The Schwarzian term in the effective action indicates a reparametrization symmetry

in our theory, which means that a dimension two operator h = 2 will appear in the

conformal partial wave expansion of the four-point function. The h = 2 will create

a maximal Lyapunov growth in the chaotic regime. Since the Maldacena-Shenker-

Stanford bound says that the 2π
β Lyapunov exponent is maximal, other contributions

are not possible to increase the h = 2 contribution.

• Like U(1), the charge operator has dimension h = 0, that means that by shadow

transformation h → 1 − h we have h = 1 contribution appear in the four-point

function expansion. However, h = 0 could never contribution any chaotic behavior.

This argument is completely presented in the U(1) case, see [25].

As a conclusion, we expect that generically, the one-dimensional SYK model, attaching

with a global symmetry, should still be maximally chaotic. A more detailed analysis of this

point is left for future work. For concrete evidence, see for instance, [25, 31, 32].

6 Conclusion

In this paper, we study various aspects of partition functions for free theory on the sym-

metry group G, and its implications on the SYK model and chaotic dynamics. Symmetry

group G will provide charge sectors in the Hamiltonians of theory, and thus allow us to

define the canonical and grand canonical ensembles. We study behaviors of partition func-

tions in different ensembles, namely, partition function in specific charge sectors and specific

chemical potentials, and claim that those behaviors will affect some chaotic observables and

related thermodynamics. For instance, those symmetry groups will generically make the

scrambling faster, observed in the spectral form factors.

Some possible future directions could be given as the following,

• It would be interesting to generalize formally how partition function behaves in the

non-semisimple groups.

• It would be interesting to construct specific models corresponding to those symmetry

classes and verify their behavior, analytically and numerically.

• It would be interesting to study more details about thermodynamics in single charge

sectors, and importantly, using Schwarzian theory to compute correlation functions

and make predictions in condensed matter systems, for instance, properties of ther-

moelectric transport.

• It would be interesting to understand the meaning of those results in the dual gravity.

Traditionally, people believe that global symmetry in CFT could be dual to gauge

symmetry in AdS. One may address the dual gravitational theory of SYK-like models

using the predictions from this paper.
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