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1 Introduction

From the very beginning, corrections to the QED Lagrangian coming from fluctuations of

virtual charged particles in the vacuum have been the subject of a great interest. Such fluc-

tuations give rise to nonlinearity for the electromagnetic fields interaction in the vacuum.

The corrections to the electromagnetic field Lagrangian considering vacuum polariza-

tion in external homogenous field leads to Heisenberg-Euler effective Lagrangian [1]. This

theoretical model takes into account one-loop corrections, which are the lowest order of

coupling between the external field and electron-positron pairs producing at the vacuum

polarization.

The scale parameter for nonlinearities in Heisenberg-Euler electrodynamics (charac-

teristic quantum electrodynamic induction or critical field strength) Bc = Ec = m2c3/e~ =

4.41 · 1013G distinguishes different regimes of the theory. The value of this parameter

may be interpreted as the field strength at which the work done for accelerating a virtual

electron-positron pair, produced from the vacuum, by a Compton wavelength is of the

order of the rest mass energy for the pair. Vacuum nonlinearity became significant when

the electromagnetic field strength is comparable to the critical, that is why this research

this area of the quantum field theory often called strong-field QED or vacuum nonlinear

electrodynamics.

There are two regimes of vacuum nonlinear electrodynamics. The ”perturbative” or

“post-Maxwellian” regime is the low field approximation, when E,B ≪ Ec, Bc which is

take place for the most of the electromagnetic fields available in contemporary labora-

tory. It should be noted that the term “perturbative” also used for the weak-coupling

approximation. To avoid inaccuracies, here we will use the former sense of this term.

Heisenberg-Euler Lagrangian in the perturbative regime can be expanded in power

series of electromagnetic field tensor invariants. In the lowest approximation such expan-

sion reproduce Maxwell electrodynamics. The other terms of higher order of smallness

effectively leads to the power-law nonlinearities in electromagnetic field constitutive rela-

tions in vacuum. The perturbative regime of QED is well understood and many of its
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predictions have been experimentally observed. For instance, electron anomalous magnetic

moment remains a great example of unprecedented correspondence between theoretical

and experimental results [2, 3]. Another manifestation of perturbative QED lies in the

phenomenon of vacuum birefringence when the electromagnetic wave propagates external

field in vacuum. This phenomenon is similar to optical birefringence in crystal except that

it needs the presence of the external field for vacuum polarization and excitation its non-

linearity. For the first time the prediction of the vacuum birefringence was performed for

QED perturbative regime, and was based on similarity between constitutive relations for

the electromagnetic field in vacuum and the constitutive relations of the continuous media

with the cubic nonlinearity.

The new bounds for vacuum birefringence observation were obtained in null-result ex-

periment PVLAS [4, 5], where the weak electromagnetic wave propagated in the dipole

magnetic field with induction Bext = 2.5 · 104G. Under the influence of the external field

electromagnetic vacuum was polarized which leads to the effective dependence of the vac-

uum refractive index for the weak electromagnetic wave on its polarization. The refractive

index for the normal modes polarized along to and orthogonal to the external magnetic field

differs from each other, which leads to the difference of the modes speeds. The measure-

ment of the refractive indexes difference, was based on detecting of the wave polarization

rotation. The results of PVLAS set a new limit on vacuum magnetic birefringence above

the level pointed out by QED [5, 6]. According to the authors, a possible discrepancy could

be explained beyond the Standard Model by interaction with axiones. The experiment also

bounded the coupling constant of axion-like particles and photons [5, 6].

Since the vacuum birefringence is a very small macroscopic quantum effect it’s detection

needs strong enough magnetic field source, which is difficult to obtain in laboratory. At

the same time, usage of compact astrophysical objects as natural magnetic fields sources

provides wide opportunities for vacuum birefringence investigation due to the fact that for

many pulsars and magnetars the magnetic field is close to or even exceeds Bc. Vacuum

birefringence in this case can be detected by measuring X- and gamma- ray polarization

passing the region of the strong magnetic field near the pulsar. Due to the difference in

wave propagation velocities induced by vacuum birefringence the time lag between the

arrival of the fast and the slow mode to the detector is proportional to vacuum refractive

index difference for each polarization mode. The calculations in perturbative QED regime

show the detectability of the effect [7] and give the value for the time lag ∆t ∼ 10−7s. The

results of calculations are valid when the pulsar field B < Bc, however the existence of

pulsars with the overcritical field (for instance B1509-58 with the B ∼ 1.5 ·1014G) provides

an attractive possibility to enhance the estimates for the time lag. Such calculations require

of vacuum birefringence consideration outside the perturbative regime.

Nonperturbative regime of QED arises when we consider external fields which values

are close to or exceed the scale parameter of the Heisenberg-Euler electrodynamics E,B ∼
Ec, Bc. This regime shows one of the most amazing properties — vacuum instability

due to electron-positron pair production. The effect is expected [8] when the electric

field exceeds so-called Sauter-Schwinger limit E > Ec and, although it has never been

observed directly, the advances of high-intensity laser physics and implementation of such
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projects as ELI, XFEL and others [9, 10] give a great promise in this area. In general,

QED in nonperturbative regime is poorly investigated and provides new challenges both

in theoretical and experimental research.

In this paper we will focus on one-loop QED vacuum birefringence in nonperturba-

tive regime. In addition to entirely quantum technic proposed in [11, 12], we represent a

semiclassical approach. The maim aim of our research is to expand vacuum birefringence

predictions for different experiments to values of strong magnetic fields close to character-

istic quantum electrodynamic induction. The paper is organized as follows: in section 2

we derive constitutive relations for QED, section 3 is devoted to the weak electromagnetic

wave propagation in strong magnetic field, in section 4 we discuss QED birefringence ex-

pansion following from obtained dispersion relations and possibilities for it’s observation

and in conclusive section 5 we summarize our results.

2 Constitutive relations for nonperturbative QED

The Lagrangian in QED is represented as a series of corrections to Maxwell electrody-

namics. One-loop QED considers only the first non-vanishing correction which in non-

perturbative regime has the following form [13]:

L1 = −αB2
c

8π2

∞
∫

0

e−s

s3

[

sa cot(sa) · sb coth(sb)− 1− s2

3
(b2 − a2)

]

ds, (2.1)

where α = e2/~c — is a fine structure constant and the parameters a and b are expressed

by the electromagnetic field components:

a = − i√
2Bc

(√
F + iG−

√
F − iG

)

, b =
1√
2Bc

(√
F + iG+

√
F − iG

)

, (2.2)

where the notations F = (B2 − E2)/2 and G = (EB) were used for brevity. Strictly

speaking, the Heisenberg-Euler Lagrange function is valid only for the background fields

which are constant and homogeneous at least at the typical scale of Compton wavelength

λc = h/mc. Therefore eq. (2.1) is also applicable for slowly varying inhomogeneous fields,

whose typical spatial scale of variation v = 1/l is much larger than the Compton wavelength

λc =3.86·10−11 cm. For slowly varying inhomogeneous fields similarly to [14], the deviations

from the corresponding exact result are of O
(

(λc/l)
2
)

. In our case spatial scale of the field

inhomogeneity l coincides with the radius of the neutron star R ∼ 106 cm for which the

condition l ≫ λc is performed with great precision ∼ 10−17.

Also it should be noted that the auxiliary parameters a and b of Heisenberg-Euler

Lagrangian (2.1) are special because ±a and ±b are the eigenvalues of the electromagnetic

field tensor Fik when field value is constant and this makes the problem of QED radiative

corrections exactly solvable [15].

In semiclassical approach Heisenberg-Euler theory can be interpreted as nonlinear elec-

trodynamics of continuous media with special constitutive relations, in which polarization

– 3 –



J
H
E
P
0
5
(
2
0
1
7
)
1
0
5

P and magnetization M induced by the external fields E and B, can be expressed from

the Lagrangian:

P =
∂L1

∂E
, M =

∂L1

∂B
. (2.3)

In order to calculate the explicit values for this vectors, it is useful to introduce some

auxiliary relations:

∂a

∂E
=

∂b

∂B
=

Ea+Bb

2
√
F 2 +G2

,
∂a

∂B
= − ∂b

∂E
=

Eb−Ba

2
√
F 2 +G2

. (2.4)

substitution of which to (2.3) finally leads to constitutive relations for nonberturbative

one-loop QED:

P =
α

8π2(a2 + b2)

[

I1E+ I2B
]

, M = − α

8π2(a2 + b2)

[

I1B− I2E
]

, (2.5)

where for brevity we have used the notations for the integrals:

I1 =

∞
∫

0

{

ab
[

a sinh(2sb)− b sin(2sa)
]

2 sinh2(sb) sin2(sa)
− 2(a2 + b2)

3s

}

e−sds, (2.6)

I2 =

∞
∫

0

{

ab
[

a sin(2sa) + b sinh(2sb)
]

2 sinh2(sb) sin2(sa)
− (a2 + b2)

s
cot(sa) coth(sb)

}

e−sds. (2.7)

It is easy to verify the correspondence to perturbative regime which is take place for

relatively weak fields |E|, |B| ≪ Bc. In this case, QED correction to Lagrangian (2.1)

and the constitutive relations (2.5) can be expanded in a series by the small parameters

a, b ≪ 1. Such expansion leads to:

L1 =
α

8πB2
c

[

η1(E
2 −B2)2 + 2η2(EB)2

]

, (2.8)

P =
ξ

2π

{

η1(E
2 −B2)E+ 2η2(EB)B

}

, M = − ξ

2π

{

η1(E
2 −B2)B− 2η2(EB)E

}

, (2.9)

where ξ = 1/B2
c , η1 = α/45π, and η2 = 7α/180π — so called post-Maxwellian parameters.

As the polarization and magnetization in (2.9) are cubic on external fields, the electromag-

netic waves and charged particles propagation in perturbative QED vacuum will possess

the properties peculiar to crystal optics with cubic nonlinearity. This approach leads to

the predictions for vacuum birefringence and dichroism [16–18], optical non-reciprocity [19],

light-ray bending [20, 21] and Cherenkov-radiation [22, 23] in vacuum at presence of ex-

ternal electromagnetic field. The expansion of these predictions on nonperturbative QED

regime gives a new insight in understanding of vacuum nonlinear electrodynamics and helps

to enforce the expectations in experimental manifestations. In this paper we will focus only

on vacuum birefringence expansion. In order to do this, we will derive the dispersion rela-

tions for electromagnetic wave propagating on background of strong magnetic field.
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3 Electromagnetic wave propagation in strong magnetic field

Let us consider a weak electromagnetic wave ew, bw propagating in strong external mag-

netic field B0. We suppose that the field intensity in the wave is sufficiently weak, so

|ew|, |bw| ≪ Bc, |B0|. As the vacuum nonlinear electrodynamics keeps the superposition

principle, the total field intensities B = B0 + bw and E = ew can be used in (2.2) and

in constitutive relations for nonperturbative QED (2.5). Here we should take into account

the weakness of the wave and decompose these relations up to the leading order by ew and

bw. Such decomposition gives linearized constitution relations:

D = E+ 4πP = ew − 2ξ
{

η1Y1B
2

0ew − 2η2Y2(B0ew)B0

}

(3.1)

H = B− 4πM = B0 + bw − 2ξη1

{

Y1B
2

0bw + 2Y3(B0bw)B0 + Y1B
2

0B0

}

,

where we use linearized relations for the parameters a and b

a =
(B0ew)

BcB0

, b =
B0

Bc

{

1 +
(B0bw)

B2
0

}

, (3.2)

introduce the notations for the integrals:

Y1 = − 45

4b2
0

∞
∫

0

e−z/b0

z2

{

coth(z)− z

sinh2(z)
− 2z

3

}

dz, (3.3)

Y2 =
45

14b2
0

∞
∫

0

e−z/b0

z2

{

2z2 − 3

3
coth(z) +

z

sinh2(z)

}

dz, (3.4)

Y3 = − 45

8b2
0

∞
∫

0

e−z/b0

z2

{

2z2 coth(z)− z

sinh2(z)
− coth(z)

}

dz, (3.5)

and the dimensionless parameter b0 = B0/Bc. The correspondence to the perturbative

regime can be obtained when B0 ≪ Bc. This leads to the asymptotic expansion of the

integrals:

Y1 = 1−6

7
b20+

16

7
b40+· · · , Y2 = 1−26

49
b20+

176

147
b40+· · · , Y3 = 1−12

7
b20+

48

7
b40+· · · . (3.6)

The graphs for an exact (3.3) and an approximate (3.6) Y dependence on magnetic field

strength are represented on figure 1. Approximate functions are marked on the graph

by the gray line. As it can be seen, even in low field values b0 ≪ 1 an approximate

description can cause significant inaccuracies whose rectification will require new terms in

the expansion (3.6).

Also it should be noted that, as the unity is the leading term in all of the listed above

expansions, the linearized constitutive relations (3.1) contain perturbative relations (2.9)

in low field limit. Besides, the transition from the perturbative QED to nonperturba-

tive regime is in replacement of “post-Maxwellian” constants η1 and η2 on the functions

ζ1 = η1Y1(b0), ζ2 = η2Y2(b0), ζ3 = η1Y3(b0) which depend on the external field strength.
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Figure 1. An exact and an approximate Y -functions comparison.

To obtain dispersion relations we use the eikonal approximation and represent the wave

field in form: ew = e exp {iS(r, t)}, bw = b exp {iS(r, t)}, where e and b are the ampli-

tudes and S is the eikonal. As usual for the eikonal approximation, we will suppose that

amplitude variations along the wave propagation ray are small and can be neglected in

calculations. Substitution of ew, bw and constitutive relations (3.1) to the ordinary equa-

tions of continuous media electrodynamics leads to homogeneous equations on wave field

components:

Παβe
β
w = 0, (3.7)

where indexes enumerate the cartesian components of the electric field vector α, β = 1 . . . 3

and Παβ is the polarization tensor:

Παβ =
{(

(∇S)2 − (∂0S)
2

)

δαβ − ∂αS∂βS
}

×
{

1− 2ζ1b
2

0

}

(3.8)

−4ζ3

[

∇Sb0

]

α

[

∇Sb0

]

β
− 4ζ2(∂0S)

2(b0)α(b0)β ,

in which the following notations were used: ∂0 = ∂/∂(ct) and ∂α denotes spatial coordinate

xα derivative, δαβ — is the Kronecker symbol, ∇ — is the gradient operator, b0 = B0/Bc

and the square brackets refer to the vector cross-product. In should be noted that our

result for polarization tensor is close to the similar one obtained in [14]. The existence

of nontrivial solutions of (3.7) requires det‖Παβ‖ = 0 which finally leads to dispersion

relations for the electromagnetic wave at the eikonal approximation:
{

(∇S)2 − (∂0S)
2 + 4ζ3

[

(b0∇S)2 − b20(∇S)2
]

+ 2ζ1b
2

0

[

(∂0S)
2 − (∇S)2

]}

×
{

(∇S)2 − (∂0S)
2 + 4ζ2

[

(b0∇S)2 − b20(∂0S)
2

]

+ 2ζ1b
2

0

[

(∂0S)
2 − (∇S)2

]}

×
{

2ζ1b
2

0 − 1
}

= 0. (3.9)
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Multiplicative structure of obtained dispersion relations points to vacuum birefrin-

gence retention even in case of one-loop nonperturbative QED. The first factor in (3.9)

corresponds to the dispersion law for a normal wave polarized perpendicular to external

magnetic field (⊥-mode), whereas the second multiplier describes the mode polarized along

the field B0 (||-mode). The last factor in (3.9) does not depend on the wave parameters

and its equality to zero is expected at huge magnetic field intensities B0 ∼ Bc exp (1/α).

Just for these values QED vacuum instability induced by magnetic field was predicted [24].

To avoid such a regime in future, we will consider field intensities much closer to Bc.

Now let us investigate the properties of normal waves in more detail, and use the

obtained dispersion relations in strengthening some expectations for vacuum birefringence

detection in experiment.

4 QED vacuum birefringence extension on nonperturbative regime

There are two traditional approaches to the interpretation of the dispersion relations for

vacuum nonlinear electrodynamics. The first one comes from the representation of the

vacuum as a continuous media. The vacuum birefringence in this case is explained by the

normal modes refraction indexes mismatch n⊥ 6= n||. The second approach assumes that

the electromagnetic wave propagates in the space-time with the effective geometry following

from the dispersion relations. This interpretation explains the vacuum birefringence due

to the difference between the effective space-time metric tensors Gik
⊥ 6= Gik

|| for each normal

mode. For completeness, we use each of these approaches in the analysis of obtained

dispersion relations.

For description in terms of refractive indexes one should substitute eikonal S(t, r) =

ωt− (kr) to dispersion relations (3.9), and take into account the relation between the wave

vector k and frequency ω which is ordinary for homogeneous wave in continuous media:

k = ωnq/c, where n is the refraction index and q is the unity vector in wave propagation

direction. Such substitution gives explicit expressions for the normal modes refraction

indexes:

n2

⊥ = 1 +
4ζ3b

2
0
sin2 θ

1− 2b2
0
[ζ1 + 2ζ3 sin

2 θ]
, n2

|| = 1 +
4ζ2b

2
0
sin2 θ

1− 2b2
0
[ζ1 − 2ζ2 cos2 θ]

, (4.1)

where θ is an angle between the wave vector k and the magnetic field B0. These expression

refine the results obtained earlier [25] in which the dependence on angle θ is more simple

and the terms in denominator are neglected:

n2

⊥ ≈ 1 + 4ζ3b
2

0 sin
2 θ, n2

|| ≈ 1 + 4ζ2b
2

0 sin
2 θ, (4.2)

which are close to results of [12, 25] obtained on the basis of a purely quantum approach

with fixed selection of the gauge. As the angle dependance in the exact expressions (4.1) is

different, it becomes possible to figure out are there any conditions under which n⊥ = n||

and the birefringence is suppressed. The equality of the refractive indexes leads to the

relation which is valid for any angle θ:

(ζ3 − ζ2)(1− 2ζ1b
2

0) + 4ζ3ζ2b
2

0 = 0. (4.3)

– 7 –
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Figure 2. The refractive indexes and their difference depending on the magnetic field value

b0 = B0/Bc.

However, the numerical calculations show that there are no solutions for this equation at

any arbitrary magnetic field close to Bc so the vacuum birefringence remains.

To analyze the dependence of refractive indexes on the magnetic field value, we will

choose θ = π/2, which is more valuable for experimental research because in this case

indexes are maximal. As it follows from numerical calculations, the refractive index n||

increases almost linearly in 1 < b0 < 100 and shows nonlinear growth in wider field ranges.

Whereas the n⊥ tends to saturation at the value (n⊥)sat−1 ≈ 4 ·10−4 and ceases to depend

on the field strength. The dependance of n⊥,|| − 1 for b0 < 3 is represented on the left

graph in figure 2. The right graph shows the exact difference n|| − n⊥ coming from (4.1)

and the same difference following from the perturbative QED: n|| − n⊥ ≈ 2(η2 − η1)b
2
0
,

which is marked on the graph with a gray line. Despite the proximity of perturbative

description, there is a good accordance to the exact result up to the field values b0 ≈ 2.

This indicates that more then order discrepancy between perturbative QED birefringence

prediction and the experimental result obtained in PVLAS [4] is not associated with the

inaccuracy of perturbative description and should have a more profound physical reason.

Another traditional approach to the dispersion relations interpretation is based on effective

geometry representation. It assumes that the wave propagates in curved space-time, which

geometry depends on external magnetic field. The dispersion relations (3.9), now are

interpreted as Hamilton-Jacobi equation for a massless particle in the effective space-time

with the metric tensor Gik
⊥,|| correspondent to each normal mode:
[

Gik
⊥

∂S

∂xi
∂S

∂xk

]

×
[

Gmn
||

∂S

∂xm
∂S

∂xn

]

= 0. (4.4)

As it follows from (3.9), the components of the effective metric tensor take the form:

G00

⊥ = g00, Gαβ
⊥ = gαβ +

4ζ3
1− 2ζ1b20

× (b20δ
αβ − bα0 b

β
0
), (4.5)

G00

|| = g00, Gαβ
|| = gαβ +

4ζ2
1− 2ζ1b20 + 4ζ2b20

× (b20δ
αβ − bα0 b

β
0
), (4.6)

– 8 –
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where gik is Minkowski space-time metric tensor and the Greek indexes enumerate the

spatial coordinates, so α, β = 1 . . . 3. It is easy to verify that in low-field limit b0 ≪ 1 the

expressions (4.5) take the form of perturbative QED effective metric tensor obtained in [7]:

Gik
⊥,|| ≈ gik + 4η1,2(b

2

0δ
αβ − bα0 b

β
0
). (4.7)

Such correspondence allows us to extend some predictions for vacuum birefringence mani-

festations obtained on base of perturbative metric tensor (4.7) to non-perturbative region

by simple replacement of parameters:

η1 →
ζ3

1− 2ζ1b20
, η2 →

ζ2
1− 2ζ1b20 + 4ζ2b20

. (4.8)

For instance, such extension is especially actual for the pulsars and magnetars which are

one the most attractive objects for QED regime tests. The magnetic fields of such astro-

physical sources can significantly exceed critical limit b0 = B0/Bc ≫ 1. One of observable

manifestations of the vacuum birefringence in pulsar neighbourhood is related to normal

mode delay for hard X-ray and gamma- radiation pulses passing near the pulsar. Because

of the vacuum birefringence, the propagation velocity of ⊥-mode is greater then ||-mode,

so it will reach to the detector earlier. So the leading part of the pulse coming from the

X-ray source to the detector will be linearly polarized due to the ⊥-mode. This part of the

pulse will have a time duration ∆t. After this time the ||-mode will reach the detector and

the pulse polarization state will change to elliptical. The maximal estimation for the delay

∆t in perturbative QED was obtained in [7]:

∆t =
123π(η2 − η1)b

2
0
Rs

128c
, (4.9)

where Rs is the pulsar radius, and c is the speed of light in Maxwell vacuum. Birefringence

expansion (4.8) allows us to estimate the order of magnitude for the time delay ∆t in

nonperturbative regime:

∆t ≃ b2
0
Rs

c

[

ζ3
1− 2ζ1b20

− ζ2
1− 2ζ1b20 + 4ζ2b20

]

. (4.10)

The dependence of the time delay on magnetic field strength and its estimates for some

pulsars and magnetars are represented on figure 3. For the estimates we use the pulsar

data from McGill [26] and ATNF [27] catalogs and also suppose the pulsar radius equal

to Rs = 10km. The delay value varies in hundredth of microseconds and this is sufficient

for contemporary timing measurements. Furthermore the estimate can be enforced for the

unique object J1808-2024 with the field strength B0 ∼ 2.06 · 1015G for which the delay can

reach ∆t ∼ 0.3µs. Also it should be noted that there is almost linear dependence between

delay and field strength, instead of quadratic, typical for delay in perturbative regime (4.9),

therefore the direct interpolation of perturbative description on the region b0 > 1 will lead

to overestimation for the delay.
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Figure 3. Time delay between ⊥ and ||-modes arrival to detector.

5 Conclusion

In this paper we have investigated expansion of vacuum birefringence on nonperturbative

regime of QED. The obtained constitutive relations (3.1) for weak electromagnetic wave

propagating on background of a strong magnetic field indicate that this expansion consists

of replacing of perturbative constants η1, η2 by three functions ζ1, ζ2, ζ3, which depend on

the external field strength. For vacuum birefringence description we have used a semiclas-

sical approach in terms of the wave field strength which gives gauge independent results

unlike most of the other calculations performed in the fixed gauge selection. In such ap-

proach the polarization tensor (3.8) and dispersion relations (3.9) were obtained and both

interpreted in terms of refractive indexes and the effective space-time geometry. The re-

fractive indexes interpretation confirmed the results obtained earlier by other authors on

the base of quantum field theory methods. The comparison between the perturbative and

nonperturbative refractive indexes, as expected, reveals an insignificant difference at weak

field values b0 ≪ 1, and this indicates that inaccuracy in QED theoretical description can

not be a cause of discrepancy detected in the PVLAS experiment [5]. Another feature

observed in the refractive indexes analysis is the possible saturation of n|| at the strong

external field values b0 ≫ 1. Unfortunately, this feature can not be verified in conditions

of the terrestrial facilities, however the astrophysical sources such as pulsars and magne-

tars provide a wider opportunities in QED features investigations. It is more convenient

to use an effective geometry formalism for vacuum birefringence description in the neigh-

bourhood of such field sources. The dispersion relations interpretation in terms of the

effective geometry (4.5) allowed us to extend the predictions for the normal mode relative

delay in the hard radiation propagating near the pulsar. The estimates for such delay
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for a different pulsars, show its detectability with contemporary experimental technique.

Moreover, it was found out that the dependence between the delay and the field value pre-

dicted by nonperturbative QED is close to linear (figure 3) and can be roughly expressed

as ∆t = (5.8b0 − 7)× 10−3µs for 2 < b0 < 100. This dependence differs from the quadratic

one following from the direct perturbative QED prediction extrapolation to the strong field

region. As the perturbative QED is not valid for such field values, it gives overestimated

result for delay. This feature can be noted in planning of future astrophysical missions

aimed at the QED effects investigation in the pulsar fields, such as XIPE [28].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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