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1 Introduction

Four-point correlation functions of half-BPS operators are important quantities in maxi-

mally supersymmetric N = 4 Yang-Mills theory. They encode the nontrivial dynamics of

the theory and have been intensively studied in the past in connection to the AdS/CFT

duality. Correlation functions receive quantum corrections which can be separated at weak

coupling into perturbative and non-perturbative (instanton) ones. The latter corrections

are exponentially suppressed in the planar limit but they are expected to play a crucial

role in restoring S−duality.

In N = 4 SYM with the SU(N) gauge group, this symmetry implies invariance under

SL(2,Z) modular transformations acting on the complexified coupling constant [1–3]

τ =
θ

2π
+

4πi

g2
. (1.1)

One of the consequences of S−duality is that the above mentioned correlation functions

should, in principle, depend on the θ−angle, through non-perturbative instanton correc-

tions. Understanding the modular properties of correlation functions requires taking into

account instanton effects. This problem still awaits its solution.
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The leading instanton corrections to correlation functions can be computed semiclas-

sically by replacing all fields by their classical expressions on the instanton background

and neglecting quantum fluctuations. In this approximation, the correlation functions are

given by finite-dimensional integrals over the collective coordinates of the instantons, see

e.g. [4, 5]

〈O(1) . . . O(n)〉inst =

∫
dµphys e−Sinst O(1) . . . O(n) , (1.2)

where all operators on the right-hand side are evaluated at the instanton field configuration.

In the simplest case of SU(2) gauge group the integration measure for the one-instanton

sector takes the form∫
dµphys e−Sinst =

g8

234π10

∫
d4x0

∫ ∞
0

dρ

ρ

∫
d8ξ

∫
d8η̄ , (1.3)

where the bosonic collective coordinates (ρ, x0) parametrize the size and location of the

instanton and 16 fermion coordinates ξAα and η̄Aα̇ (with α, α̇ = 1, 2 and A = 1, . . . , 4)

arise due to the N = 4 superconformal symmetry. For the integral (1.2) to be different

from zero, the product of operators O(1) . . . O(n) should soak up all 16 fermion modes.

The corresponding correlations functions are called minimal. In this case, it is possible

to generalize (1.2) to the SU(N) gauge group and, in addition, take into account the

contribution of an arbitrary number of instantons at large N [6].

In this paper we focus on instanton effects in four-point correlation functions of half-

BPS operators O20′(x, Y ) made out of scalar fields

O20′(x, Y ) =
1

g2
YABYCD tr(φABφCD) , (1.4)

where YAB is an antisymmetric tensor satisfying εABCDYABYCD = 0. The oper-

ator O20′(x, Y ) belongs to the 20′ representation of the SU(4) R−symmetry group

and its scaling dimension is protected from quantum corrections. Having computed

〈O20′(1) . . . O20′(4)〉, we can apply the OPE and decompose it over conformal partial waves

corresponding to various conformal primary operators with R−charges in the tensor prod-

uct 20′×20′. In what follows we shall restrict our consideration to conformal operators in

the singlet representation of SU(4) with low scaling dimension. They include the Konishi

operator with bare dimension 2

K(x) =
1

g2
tr(φ̄ABφ

AB), (1.5)

and four quadrilinear operators with bare dimension 4

A1 =
1

g4
tr
(
φ̄ABφ

CD
)

tr
(
φ̄CDφ

AB
)
, A2 =

1

g4
tr
(
φ̄ABφ

AB
)

tr
(
φ̄CDφ

CD
)
,

A3 =
1

g4
tr
(
φ̄ABφ

CDφ̄CDφ
AB
)
, A4 =

1

g4
tr
(
φ̄ABφ

ABφ̄CDφ
CD
)
, (1.6)

where φ̄AB = 1
2εABCDφ

CD. At quantum level, the operators Ai mix with each other and

the conformal operators are given by specific linear combinations of those.
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The definition of the operators (1.4), (1.5) and (1.6) involves additional powers of

the inverse coupling constant, one per each scalar field. This reflects our choice for the

Lagrangian of N = 4 SYM. Computing instanton corrections it proves convenient to

choose it in the form L = 1/g2 tr(−1
2F

2
µν − 1

2D
µφABDµφ̄AB + . . . ). In this case, the

corresponding equations of motion are coupling independent but free scalar propagator

contains an additional factor of g2 (see (A.1)). The operators (1.4), (1.5) and (1.6) are

defined in such a way that their correlation functions do not depend on the coupling

constant in the Born approximation.

By virtue of conformal symmetry, the contribution of the operators (1.5) and (1.6)

to the four-point correlation function 〈O20′(1) . . . O20′(4)〉inst can be expressed in terms

of the scaling dimensions and OPE coefficients defined by the following two- and three-

point functions

〈O20′O20′K〉inst , 〈KK〉inst , 〈O20′O20′Ai〉inst , 〈AiAj〉inst . (1.7)

In the semiclassical approximation, these correlation functions can be computed using (1.2).

Since the operators (1.4), (1.5) and (1.6) are built from scalar fields, we only need the

expression for the scalar field on the instanton background in N = 4 SYM. It takes the

following general form for one-instanton solution

φAB = φAB,(2) + φAB,(6) + . . . , (1.8)

where φAB,(n) denotes the contribution containing n fermion modes. The leading term

has been worked out in [5], while the subleading term has been worked out only re-

cently [7, 8]. Notice that φAB does not depend on the coupling constant due to our choice

of the Lagrangian.

Replacing the scalar fields in (1.4), (1.5) and (1.6) with (1.8) we find the instanton

profile of the operators

O20′ =
1

g2
O

(4)
20′ , K =

1

g2
K(8) + · · · , Ai =

1

g4
A(8)
i + · · · , (1.9)

where for the Konishi operator the expansion starts with 8 modes due to vanishing of the

leading term, K(4) = 0. Substituting these relations into (1.7) and applying (1.2) we find

that the correlation functions (1.7) are different from zero but have different dependence

on the coupling constant

〈O20′O20′K〉inst = O(g2q) , 〈KK〉inst = O(g4q) ,

〈O20′O20′Ai〉inst = O(q) , 〈AiAj〉inst = O(q) , (1.10)

where q = exp(2πiτ) comes from e−Sinst evaluated at the one-instanton configuration. The

fact that the expressions in the first line are suppressed by a power of the coupling constant

compared to those in the second line, implies that the contribution from the Konishi

operator to 〈O20′O20′O20′O20′〉inst is subleading. The leading O(q) instanton contribution

only comes from the quadrilinear operators (1.6). Note that expansions (1.9) also imply

that the instanton contribution to the four point correlators involving the Konishi operator,

namely 〈O20′O20′KK〉inst and 〈KKKK〉inst, vanish at leading O(q) order.

– 3 –
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The leading instanton contribution to the correlation function of four half-BPS opera-

tors was first computed in [4] and its OPE decomposition was further analysed in [9]. Later

on, the mixing matrix 〈AiAj〉inst was computed in [10] and found to be in conflict with

the OPE analysis performed in [9]. A possible reason for such a disagreement could be

the fact that instanton corrections to correlators involving unprotected operators involve

ultraviolet divergent integrals that need to be regularized, e.g. by going slightly away from

four dimensions in the integral over the position of the instanton in (1.3). Although the

contribution of the quadrilinear operators to 〈O20′O20′O20′O20′〉inst should be finite and

regularization scheme independent, it is not clear a priori that this procedure does not

introduce any subtleties.

The main aim of the present paper is to resolve this puzzle. We do so by revisiting

the computation of 〈AiAj〉inst and going through a careful OPE analysis. The instanton

corrections affect the mixing matrix of the quadrilinear operators and modify the form

of the conformal primary operators. We compute the leading instanton contribution to

scaling dimensions of these operators and their OPE coefficients in the product of operators

O20′(1)O20′(2) andK(1)K(2). We show that our results are fully consistent with the known

expressions for all relevant four point correlators 〈O20′O20′O20′O20′〉inst, 〈O20′O20′KK〉inst

and 〈KKKK〉inst. This not only solves the puzzle mentioned above, but also justifies the

regularization procedure that we employed to compute instanton corrections to correlators

involving unprotected operators. Furthermore, as a byproduct of our analysis, we determine

the leading instanton contribution to the scaling dimension of twist-four operators.

This paper is organised as follows. In section 2 we review known results regarding in-

stanton corrections to four-point correlation functions of half-BPS operators. In section 3

we compute the leading instanton corrections to correlators involving the quadrilinear op-

erators (1.6). In section 4 we show that the results obtained in section 3 are fully consistent

with the OPE decomposition of four-point correlation functions. Section 5 contains con-

cluding remarks. In addition, in appendix A we include formulae for various correlations

functions in the Born approximation. In appendix B we discuss regularization of divergent

integrals arising in the computation of the instanton corrections. We show in appendix C

that such integrals, after non-trivial cancelations, lead to finite OPE coefficients.

2 Four-point correlation functions

In this section we review known results regarding instanton corrections to four-point cor-

relators. Furthermore, we perform an OPE analysis focusing on the contribution from the

twist four operators mentioned in the introduction.

We start by considering the four-point correlator of half-BPS operators

G4 = 〈O20′(x1, Y1)O20′(x2, Y2)O20′(x3, Y3)O20′(x4, Y4)〉 . (2.1)

It can be decomposed into six terms, corresponding to the irreducible components in the

tensor product of two SU(4) representations 20′ × 20′ = 1 + 15 + 20′ + 84 + 105 + 175

G4 =
(N2 − 1)2

4(4π2)4

(y2
12y

2
34)2

(x2
12x

2
34)2

∑
R∈20′×20′

GR(u, v) , (2.2)
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where x2
ij = (xi − xj)

2. Harmonic variables y2
ij = εABCDY

AB
i Y CD

j keep track of the

R−charge dependence of the correlator while the x−dependent prefactor carries the con-

formal weight of the operators. Here GR describes the contribution of all operators in the

OPE of O20′(1)O20′(2) that have R−charge corresponding to the SU(4) representation R.

It depends on the cross ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, (2.3)

as well as harmonic variables. We do not display the Y−dependence for simplicity.

The quadrilinear operators Ai, defined in (1.6), are SU(4) singlets and, therefore, they

contribute to GR(u, v) with R = 1. The general expression for G1(u, v) in N = 4 SYM is

G1(u, v) = 1 +
2u(v + 1)

3 (N2 − 1) v
+
u2
(
3N2

(
v2 + 1

)
− 3v2 + 4v − 3

)
60 (N2 − 1) v2

(2.4)

+
u2 − 8u(v + 1) + 10

(
v2 + 4v + 1

)
60(N2 − 1)v2

A(u, v) ,

where the contribution from the identity operator is exactly 1 due to our choice of the

normalization factor in (2.2). The first line on the right-hand side of (2.4) describes the

Born level contribution whereas the function A(u, v) encodes all quantum corrections, both

perturbative and non-perturbative. To leading order in both we have [11, 12]

A(u, v) = −2auvD̄1111(u, v) + q Qu2v2D̄4444(u, v) + . . . , (2.5)

where a = g2N/(4π2) is the ’t Hooft coupling constant, q = e2πiτ is the instanton induced

expansion parameter and1

Q =
120√

π(N2 − 1)

Γ
(
N − 1

2

)
Γ(N − 1)

. (2.6)

The dots on the right-hand side of (2.5) denote subleading corrections suppressed by powers

of a and q. The nontrivial u and v dependence is described by the D̄-functions

D̄∆∆∆∆(u, v) =

∫ i∞

−i∞

dj1dj2
(2πi)2

uj1vj2Γ2(−j1)Γ2(−j2)Γ2(j1 + j2 + ∆) . (2.7)

The anti-instanton contribution to (2.5) is given by the complex conjugated expression that

we do not display for simplicity.

Let us now consider the conformal partial wave expansion of the singlet channel con-

tribution to (2.2)

G1(u, v) =
∑
∆,`

c2
∆,` u

∆−`
2 g∆,`(u, v) , (2.8)

where the sum runs over conformal primaries with scaling dimension ∆ and Lorentz spin `

transforming in the singlet of SU(4). The contribution of each conformal primary is given

by the product of the square of the structure constant c∆,` and the conformal block

g∆,`(u, v) =

(
−1

2

)` 1

z − z̄

[
z`+1k∆+`(z)k∆−`−2(z̄)− z̄`+1k∆+`(z̄)k∆−`−2(z)

]
, (2.9)

1This differs from the instanton correction considered in [9] by an overall factor of (4π)3.
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where kβ(z) = 2F1(β/2, β/2, β; z) and the auxiliary z, z̄ variables are defined as u = zz̄ and

v = (1− z)(1− z̄).

Matching (2.4) and (2.8) we can determine the structure constants and the scaling

dimensions of the conformal primary operators. The prefactor u(∆−`)/2 on the right-hand

side of (2.8) indicates that the small u behaviour is controlled by the twist of the operator,

τ = ∆ − `. As follows from (2.4) and (2.5), the leading instanton correction to G1(u, v)

scales at small u as u2D̄4444(u, v) = O(u2). This implies that the operators of twist two

do not receive instanton corrections at O(q) order [12]. Indeed, as was shown in [7], the

leading instanton correction to twist-two operators of spin two scales as O(g2q) whereas

for higher spin it is suppressed at least by the power g2.

In this paper, we are interested in the contribution to (2.8) from intermediate operators

of twist four and spin zero that we shall denote as ΣI . Their scaling dimension takes the

form ∆I = 4+γI where the index I enumerates the operators (which are degenerate in the

free theory) and the anomalous dimensions γI depend on the two expansion parameters

a and q. At small u, the contribution of these operators to (2.8) scales as u2+γI/2 =

u2(1 + 1
2γI lnu+ . . . ). To determine the structure constants cI and anomalous dimensions

γI , we substitute (2.4) into (2.8) and match term by term in a small u, 1 − v expansion.

Twist-four spin zero operators contribute at order u2(1 − v)0 and u2 lnu(1 − v)0 on both

sides of (2.8). Contributions from descendants of twist-two operators, which have the same

form, are automatically taken into account by the conformal blocks of the corresponding

primaries. In this way, we obtain

∑
I

c2
I =

3N2 − 1

30 (N2 − 1)
+ . . . ,

∑
I

c2
IγI = − 1

N2 − 1

(
2

5
a+

18

35
q Q

)
+ . . . , (2.10)

where the sum runs over conformal primary operators of twist four and spin zero. Here

the dots denote terms suppressed by powers of a and q. To verify the relations (2.10), it

is sufficient to know cI and γI at the lowest order in a and q. In what follows, we shall

compute both quantities and demonstrate the validity of (2.10).

As already mentioned in the introduction, the instanton contribution to four-point

functions involving the Konishi operator vanishes at the semi-classical level. As we will

see, this result is also consistent with our expressions for correlation functions (1.7), but in

a rather non-trivial way.

3 Instanton corrections to scalar operators

To define the conformal primary operators of twist-four and spin zero, ΣI , we examine the

two-point correlation function of quadrilinear operators Ai defined in (1.6). To leading

order in a = g2N/(4π2) and q = e2πiτ , it has the following general form

〈Ai(x)Aj(0)〉 =
16

(4π2)4(x2)4

(
H

(0)
ij − aH

(1)
ij log x2 − qH(inst)

ij log x2 + · · ·
)
. (3.1)
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The first two terms inside brackets describe the one-loop correction to the correlation

function. They were computed in [13] and the explicit expressions for the matrices H
(0)
ij

andH
(1)
ij can be found in appendix A. Later in this section we compute the leading instanton

correction H
(inst)
ij and compare it with analogous expression found in [10].

The twist-four conformal primary operators ΣI are given by a linear combination of

the quadrilinear operators Ai and satisfy the defining relation2

〈ΣI(x)ΣJ(0)〉 = δIJ
16(N2 − 1)2

(4π2x2)4

(
1− γI log x2 + . . .

)
. (3.2)

The anomalous dimensions γI are given at leading order in a and q by the eigenvalues of

the mixing matrix

Γ = (H(0))−1
[
aH(1) + qH(inst)

]
. (3.3)

The corresponding eigenstates define the coefficients of the expansion of ΣI in the basis of

Ai (see (4.1) below).

3.1 Results for SU(2)

We start by computing the leading instanton correction to (3.1) for the SU(2) gauge group.

Applying (1.2), we have to evaluate the product of operators Ai(x)Aj(0) in the instanton

background and, then, integrate it over the collective coordinates of instantons with the

measure (1.3).

The operators (1.6) are built from scalars fields. For the one-instanton configuration

in N = 4 SYM, these fields take the form (1.8) with the leading term given for the SU(2)

gauge group by

φ
AB,(2)
ij (x) =

f(x)

2
√

2
ζ

[A
i ζ

B]
j , (3.4)

where ζAα (x) = ξAα + xαα̇η̄
α̇A is a specific x−dependent linear combination of the fermion

zero modes and the instanton profile f(x) is

f(x) =
16ρ2

((x− x0)2 + ρ2)2
. (3.5)

The field (3.4) carries the SU(2) indices i, j = 1, 2 and the SU(4) indices A,B = 1, . . . 4.

We start by considering the one-instanton profile of the half-BPS and the Konishi

operators, O20′(x, Y ) andK(x), defined in (1.4). These operators admit the expansion (1.9)

with the leading term given by [7, 8]

O20′(x, Y ) =
1

g2

128ρ4

[ρ2 + (x− x0)2]4
YABYCD

(
ζ2
)AC (

ζ2
)BD

,

K(x) = − 1

g2
32 × 215 × ρ6

[ρ2 + (x− x0)2]6
[ζ(x)]8 + . . . , (3.6)

where
(
ζ2
)AC

= ζαAζCα and [ζ(x)]8 =
∏
A,α ζ

A
α .

2The spectrum of twist four scalar operators in the singlet representation of SU(4) also includes operators

build up from gauginos and the field strength. They will not, however, mix with the quadrilinear operators

Ai at the order we are considering.
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Let us now consider the operators (1.6) on the instanton background. For the particular

case of the SU(2) gauge group the resulting expressions for Ai are not linearly independent

A3 = A1 −
1

2
A2 , A4 =

1

2
A2 . (3.7)

Since the expansion of a single scalar field (1.8) is at least quadratic in fermion modes, the

quadrilinear operators will have expansions starting at order eight, Ai = A(8)
i +A(12)

i +A(16)
i .

To compute the correlation function 〈Ai(1)Aj(2)〉inst using (1.2), we have to retain only

terms containing 16 fermion modes in the product of two operators

〈Ai(x1)Aj(x2)〉inst =

∫
dµphysA

(8)
i (x1)A(8)

j (x2) . (3.8)

For the operator A1 we have

A(8)
1 =

1

g4
tr(φAB,(2)φ̄

(2)
AB) tr(φCD,(2)φ̄

(2)
CD) , (3.9)

where φ̄
(2)
AB = 1

2εABCDφ
(2),CD. For the operator A2 we find using (1.4) and (1.6) that

A2 = K2. Then, it follows from (1.9) that A(8)
2 = 0. As a result, for the SU(2) case only

〈A1(1)A1(2)〉inst is different from zero.

Substituting (3.9) into (3.8) and performing the integration over the Grassmann vari-

ables we obtain

〈A1(x1)A1(x2)〉inst =
22 × 34 × 52

π10
e2πiτ

∫
d4x0

∫
dρ

ρ5

(x2
12)4ρ16

(ρ2 + x2
10)8(ρ2 + x2

20)8
. (3.10)

As expected the integral over bosonic collective coordinates develops a logarithmic diver-

gence from the integration region ρ ∼ x2
i0 ∼ 0. This signals that A1 acquires an anomalous

dimension at order O(q). To evaluate the integral (3.10) we have to introduce a regular-

ization. To this end we modify the integration measure over the center of the instanton,∫
d4x0 →

∫
d4−2εx0. From (3.10), we use the relation (B.2) to obtain

〈A1(1)A1(2)〉inst = −1350

7π8
(x2

12)−4−ε e2πiτ
(1

ε
+O(ε0)

)
=

log x2
12

(x2
12)4

1350

7π8
e2πiτ + · · · , (3.11)

where in the second relation we retained only the term containing log x2
12. It is this term

that contributes to the matrix H(inst) in (3.1).

We would like to emphasize that the above mentioned regularization is different from

the conventional dimensional regularization. To implement the latter, one should start with

N = 4 SYM in D = 4− 2ε dimensions and construct the instanton solution depending on

ε. This proves to be a nontrivial task given the fact that conformal symmetry of the theory

is broken for ε 6= 0. One may wonder however whether the coefficient in front of log x2
12

in (3.11) depends on the choice of regularization. To show universality of this coefficient,

we can apply the dilatation operator D = x1∂x1 +x2∂x2 +8 to the right-hand side of (3.10).

The resulting integral is finite and it yields the coefficient in front of log x2
12 in (3.11).

– 8 –
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Finally, we combine together the relations (3.11) and (3.7), match them into (3.1) and

identify the mixing matrix defining the leading instanton correction to 〈Ai(x)Aj(0)〉 for

the SU(2) gauge group

H
(inst)
SU(2) = −κ2


1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

 , (3.12)

with κ2 = 21600/7. Before proceeding, let us make the following remark. The same

mixing matrix was also computed in [10]. Our expression (3.12) differs from the one

presented there.3

The same analysis can be carried out for the three-point functions 〈K(1)K(2)Ai(3)〉
and 〈O20′(1)O20′(2)Ai(3)〉. In the first case, the correlation function vanishes in the semi-

classical approximation since the product of three operators has 8 × 3 fermion modes at

least and gives zero upon integration over fermion modes,

〈K(1)K(2)Ai(3)〉inst = 0× e2πiτ . (3.13)

In the second case, the calculation runs along the same lines as before. We replace operators

by their expressions on the instanton background, eqs. (1.9) and (3.9), and integrate them

over the collective coordinates with the measure (1.3) to obtain

〈O20′(1)O20′(2)A1(3)〉inst = (y2
12)2 34 × 5

π10
e2πiτ

×
∫
d4x0

∫
dρ

ρ5

(x2
13x

2
23)2 ρ16

(ρ2 + x2
10)4(ρ2 + x2

20)4(ρ2 + x2
30)8

. (3.14)

For the operator A2 the same correlation function vanishes in the semiclassical approxima-

tion,

〈O20′(1)O20′(2)A2(3)〉inst = 0× e2πiτ . (3.15)

For the operators A3 and A4 the answer is a linear combination of (3.14) and (3.15), by

virtue of (3.7). The integral (3.14) is divergent and needs to be regularized. As before, we

do it by modifying the integration measure over x0

〈O20′(1)O20′(2)A1(3)〉inst = − 135

28π8
e2πiτ (y2

12)2

(x2
13x

2
23)2

(
1

ε
+O(ε0)

)
(3.16)

The details of the calculation can be found in appendix B. We also show in appendix C

that (3.14) leads to a finite contribution to the relevant OPE coefficients.

3.2 Generalisation to SU(N)

So far our results are only valid for the SU(2) gauge group. As explained in detail in [14, 15],

to leading order in the instanton expansion it is straightforward to generalise these results

to the gauge group SU(N). In this case the instanton has 8N fermion modes. These modes

split into 16 exact modes, whose contribution is identical to the one for the SU(2) case,

3The expression for H(inst) found in [10] is not consistent with the linear relations (3.7) for the SU(2)

gauge group. Furthermore, as we show below, the instaton corrections defined by (3.12) are consistent with

the OPE.
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plus 8(N−2) non-exact modes. The contribution from the non-exact modes factorises into

a N−dependent factor. More precisely

〈O(1) · · ·O(n)〉1−inst, SU(N) =
κN
κ2
〈O(1) · · ·O(n)〉1−inst, SU(2) , (3.17)

where

κN =
3Γ2(6)Γ(N − 1

2)

7
√
πΓ(N − 1)

=
360

7
(N2 − 1)Q . (3.18)

In particular, applying (3.17) to the relation (3.11), we find that the mixing matrix for the

quadrilinear operators Ai at the instanton level is given by

H
(inst)
SU(N) =

κN
κ2
H

(inst)
SU(2) , (3.19)

where H
(inst)
SU(2) is given in (3.12).

4 Consistency with higher point correlators

In a generic CFT the operator product expansion allows us to write higher point correlation

functions in terms of data appearing in lower order correlators. Given instanton corrections

to two, three and four-point functions, a natural question is whether these results are

consistent with the structure of the OPE. By performing a careful analysis we will answer

this question affirmatively.

4.1 Solving the mixing problem

In the previous section, we computed the leading instanton correction to the mixing ma-

trix (3.3). Diagonalizing this matrix we can construct the conformal primary operators ΣI

and determine their anomalous dimensions γI to leading order in a and q

Γij ψi,I = γIψi,I , ΣI(x) = ψi,IAi(x) , (4.1)

where the index I enumerates the eigenstates ψi,I . The normalization of the eigenstates

ψi,I is fixed by relation (3.2). It is straightforward to verify, with the help of (3.1), that ΣI

defined in this way satisfies (3.2) provided that the eigenstates are normalized as

ψi,IH
(0)
ij ψj,I = δIJ(N2 − 1)2 . (4.2)

The diagonalization of the mixing matrix (3.3) is very cumbersome for general N . In the

following we consider two separate cases. First the case N = 2 and then the expansion in

1/N around large N .

SU(2) gauge group. In this case, the analysis is particularly simple since there are

only two linearly independent operators, see (3.7). Substituting (3.12), (A.8) and (A.9)

into (3.3) we check that for N = 2 the mixing matrix has rank 2 indeed. Its eigenvalues

are given at leading order by

γ1 = −3

2
a− qκ2

95
, γ2 = 8a− qκ2

1710
. (4.3)
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Higher order corrections to these relations, proportional to q2, a2, qa, etc, will not be rele-

vant for our discussion. Applying the second relation in (4.1), we find the explicit expres-

sions for the operators Σi. They are given at leading order by

Σ1 = N1

[
3A1 −A2 −

κ2

570

q

a
A1

]
,

Σ2 = N2

[
2A1 − 7A2 −

4κ2

1995

q

a
A1

]
, (4.4)

with the normalization factors 1/N 2
1 = 16(95 − 7qκ2/(57a)) and 1/N 2

2 = 16(760 +

64qκ2/(399a)).

Higher order corrections to (4.4) are proportional to q, a, etc. Note a very important

point. Instanton effects induce corrections to the conformal operators (4.4) (as well as to

their OPE coefficients) that are proportional to q/a. At the same time, such corrections

are absent on the right-hand side of the sum rules (2.10). This implies that, for consistency

with the operator algebra, O(a/q) terms should cancel against each other in the sum over

conformal primary operators on the left-hand side of (2.10). Furthermore, we will see that

such corrections are actually crucial for consistency with the OPE.

Large N . In this case, the eigevalues of the mixing matrix (3.3) are given by

γ1 = a

(
− 10

N2
+ · · ·

)
+ q

(
− κN

10N4
+ . . .

)
,

γ2 = a
(
6 + · · ·

)
+ q

(
− κN

2N6
+ . . .

)
,

γ± = a

(
13

4
±
√

41

4
+ · · ·

)
+ q

(
−κN
N4

(
7

120
∓ 9

40
√

41

)
+ . . .

)
, (4.5)

where dots denote corrections suppressed by powers of 1/N2. Notice that the eigenvalues

satisfy the following relation at weak coupling

γ1 < γ− < γ+ < γ2 . (4.6)

Viewed as eigenvalues of the dilatation operators, the functions γi(a) cannot cross each

other. This implies that the same relation holds for an arbitrary coupling a. For large

values of a and N it has been argued, see [13], that Σ2 and Σ± acquire a large anoma-

lous dimension, while Σ1 is dual to a multiparticle supergravity state and has a finite

scaling dimension.

As for the eigenstates of the mixing matrix, following a tedious but otherwise standard

procedure we find from (4.1)

Σ1 = N1

[
−6A1 +A2 −

qκN
160aN4

(59A3 + 6A4)
]
,

Σ2 = N2

[
A2 −

qκN
120aN5

(−6A1 +A2 − 15A3 + 18A4)
]
,

Σ± = N±

[
5∓
√

41

4
A3 +A4 −

43∓ 7
√

41

8N
A1

−
(

53∓ 9
√

41
) qκN

640aN4

(
A1 −

A2

6
+

319± 59
√

41

492
A3 +

206± 6
√

41

492
A4

)]
, (4.7)
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with normalization factors 1/N 2
1 = 5760, 1/N 2

2 = 288 and 1/N 2
± = 2(369 ∓ 51

√
41).

Subleading corrections to (4.7) are suppressed by powers of a, q and 1/N . Higher powers

in 1/N are not explicitly shown, since they are not particularly enlightening, but they are

necessary for consistency with the OPE.

As before, the instaton corrections to Σi induce terms proportional to q/a. They are

crucial for consistency with the OPE. The anti-instanton corrections to (4.5) and (4.7) are

given by complex conjugated expressions with q → q̄.

4.2 Consistency conditions

Let us now perform the comparison with the results in section 2. In order to proceed, we

compute the canonically normalised OPE coefficients between two half-BPS operators O20′

and the conformal operators ΣI

c2
I =

〈O20′O20′ΣI〉2

〈O20′O20′〉2〈ΣIΣI〉
, (4.8)

where the dependence on the coordinates of operators is neglected. The two-point functions

entering the denominator are given by (3.2) and (A.4). To find the three-point function in

the numerator, we use (4.1) to get

〈O20′O20′ΣI〉 = ψi,I〈O20′O20′Ai〉 , (4.9)

where the correlation functions on the right-hand side are given in the Born approximation

by (A.5).

Given the explicit form of the operators, eqs. (4.4) and (4.7), the OPE coefficients

admit an expansion of the form

cI = c
(0)
I +

q

a
c

(inst)
I + · · · , (4.10)

where c
(0)
I is the Born level approximation and c

(inst)
I defines the leading instanton cor-

rection. Here the dots denote corrections suppressed by powers of q and a, they will not

be relevant for our discussion. It is easy to see that the dependence of the OPE coeffi-

cients (4.8) on q/a only comes from the expansion coefficients ψi,I in (4.9), the leading

corrections to 〈ΣIΣI〉 and 〈O20′O20′Ai〉 are linear in a and q. Therefore, computing the

leading correction to (4.10), we are allowed to replace these correlation functions by their

Born level expressions, eqs. (3.2) and (A.5).

The OPE coefficients (4.8) together with the anomalous dimensions γI obtained in

section 4.1 lead to the following results:

Gauge group SU(2). For the SU(2) gauge group there are only two conformal opera-

tors (4.4). At leading order we obtain

c2
1 =

20

171
− 4κ2

308655

q

a
+ · · · ,

c2
2 =

1

190
+

4κ2

308655

q

a
+ · · · . (4.11)
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Combining these results with the anomalous dimensions (4.3) we obtain∑
I=1,2

c2
I =

11

90
,

∑
I=1.2

c2
IγI = − 2

15
a− q κ2

900
. (4.12)

Large N . The same procedure can be carried out for the large N expansion. In this case

we obtain from (4.5) and (4.7)∑
I

c2
I =

1

10
+

1

15N2
+

1

15N4
+ · · · ,

∑
I

c2
IγI = a

(
− 2

5N2
− 2

5N4
+ · · ·

)
− qκN

(
1

100N4
+

1

50N6
+ · · ·

)
. (4.13)

The relations (4.12) and (4.13) have to be compared to (2.10). Using the explicit

expression for κN given in (3.18), we observe a perfect agreement in both cases, for N = 2

and at large N . We would like to stress that the corrections to the eigenstates of the

form q/a are crucial in these comparisons. Finally, since the OPE coefficients and the

anomalous dimensions on the left-hand side of the last two relations were found from two-

and three-point correlation functions, this result represents a nontrivial consistency check

of the approach to computing instanton corrections that we employed in this paper.

4.3 Four-point correlators involving the Konishi operator

We can perform a similar analysis for four-point correlation functions involving the Konishi

operator, 〈KKKK〉 and 〈O20O20KK〉. The main difference with the four-point correla-

tion function of half-BPS operators (2.1) is that they do not receive instanton corrections

at the leading order O(q). Indeed, as follows from (1.9), the product of Konishi and

half-BPS operators contains more than 16 fermion modes and vanishes upon integration

in (1.2). On the other hand, the twist-four conformal operators ΣI arise in the OPE of

Konishi operators,

K(x)K(0) ∼
∑
I

kI ΣI(0) + . . . (4.14)

and, therefore, contribute to the above mentioned correlation functions.

The OPE coefficients kI receive instanton corrections and have the same general form

as (4.10). Then, the vanishing of the leading instanton corrections to 〈KKKK〉 and

〈O20O20KK〉 implies that the O(q/a) terms should cancel in the following combinations∑
I

k2
I ,

∑
I

k2
IγI/a ,

∑
I

kIcI ,
∑
I

kIcIγI/a . (4.15)

The structure constants cI and the anomalous dimensions γI were computed in the begin-

ning of this section. Using the results of appendix A (see eq. (A.5)) we can compute the

OPE coefficients kI ∼ 〈KKΣI〉 =
∑
ψi,I〈KKAi〉 to leading order in q/a.

For instance, for the case of SU(2) gauge group we use (4.4), (A.5) and (A.4) to find

k2
1 =

5

684
− κ2

61731

q

a
+ · · · ,

k2
2 =

5

38
+

κ2

61731

q

a
+ · · · . (4.16)
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Combining these relations together with (4.3) and (4.11), we verify that the leading instan-

ton corrections disappear in all four sums (4.15). This is a rather non-trivial result since

each individual term in the sums does depend on q/a.

Thus, we conclude that the approach followed in this paper leads to expressions for

the OPE coefficients and the anomalous dimensions of quadrilinear operators (1.6) that

are fully consistent with the structure of the OPE.

5 Conclusions

In this paper we have revisited the computation of instanton effects to various correlation

functions in N = 4 SYM and resolved a controversy existing in the literature regarding

their consistency with the OPE and conformal symmetry.

Since instantons preserve conformal invariance of N = 4 SYM, the obtained expres-

sions for instanton corrections to correlation functions should be consistent with conformal

symmetry. To check this property, we examined the conformal partial wave decomposition

of four-point correlators involving combinations of the half-BPS operator O20′ and the

Konishi operator K and isolated the contribution from the conformal primary operators

built from the twist-four quadrilinear operators (1.6). We demonstrated that the leading

instanton correction to this contribution is indeed consistent with the conformal symmetry

and computed the corresponding corrections to the OPE coefficients and the scaling di-

mensions of the quadrilinear operators. Although the latter corrections are perfectly finite,

their computation involves divergent integrals over the collective coordinates of instantons

which need to be regularised. We do this by dimensionally regularizing the integral over

the position of the instanton. Our computation shows that this regularization procedure

yields expressions for the OPE coefficients and anomalous dimensions which are in perfect

agreement with conformal symmetry.

There are several directions which can be pursued. The spectrum of the dilatation

operator in N = 4 SYM is believed to be invariant under modular S−duality transforma-

tions. At weak coupling, the Konishi operator K and quadrilinear operators ΣI are the

lowest eigenstates of this operator in the SU(4) singlet sector. One of the byproducts of our

analysis is the determination of the leading instanton correction to the scaling dimension

of the later operators, ∆ΣI
= 4 + γI(q, q̄) with γI given by (4.3) and (4.5). For the Konishi

operator, ∆K = 2+γK(q, q̄), the analogous correction has been computed in [7, 8]. It would

be interesting to understand the modular properties of ∆ΣI
(q, q̄) and ∆K(q, q̄). S−duality

suggests that they should be modular invariant functions. A related question is that of

level crossing (or avoidance) of the first two levels of the dilatation operator of the theory,

namely ∆K(q, q̄) and ∆Σ1(q, q̄). We expect instanton corrections to play a fundamental

role in whatever mechanism is at play.4

It would be also interesting to compute subleading O(aq) instanton corrections to

four-point correlation functions (2.1). Although this would require taking into account

4Although there has been some progress understanding this issue for large R−charges [16], at large

N [17] and for operators with large spin [17, 18], the general case with no large parameters remains to

be understood.
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quantum fluctuations around the instanton background, some pieces of the answer can be

deduced from our analysis. For instance, in a small u expansion, the terms of the form

O(u2 log2 u) are fixed by the conformal symmetry up to the factor
∑

I c
2
Iγ

2
I , which can be

exactly computed from the results in this paper.
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A Correlation functions in the Born approximation

Free propagators of scalar fields φAB = φABa T a are given by

〈φABa (x1)φCDb (x2)〉 = g2D(x12)εABCDδab , (A.1)

where a, b = 1, · · ·N2 − 1 denote color indices in the adjoint representation of the SU(N)

gauge group D(x) = 1/(4π2x2) and x12 = x1−x2. Propagators involving conjugated scalar

fields φ̄AB = 1
2εABCDφ

CD can be deduced from the one above. The SU(N) generators are

normalised as

tr
(
T aT b

)
=

1

2
δab, tr 1 = N . (A.2)

Traces involving a higher number of generators can be simplified using the identities

tr (T aA) tr (T aB) =
1

2
tr (AB)− 1

2N
trA trB ,

tr (T aAT aB) =
1

2
trA trB − 1

2N
tr (AB) . (A.3)

We now present the results for various correlators in the Born approximation. For the

bilinear scalar operators (1.4) we have

〈O20′(1)O20′(2)〉 =
1

2
(N2 − 1)(y2

12)2D2(x12) ,

〈K(1)K(2)〉 = 12(N2 − 1)D2(x12) , (A.4)

where y2
12 = εABCDY1,ABY2,CD.

Next we consider three-point correlators between two bilinear operators (1.4) and

quadrilinear scalar operators (1.6). For correlators involving two half-BPS operators we

obtain in the Born approximation

〈O20′(1)O20′(2)Ai(3)〉 = 8ai(N
2 − 1)(y2

12)2D2(x13)D2(x23),

〈K(1)K(2)Ai(3)〉 = 48bi(N
2 − 1)D2(x13)D2(x23) , (A.5)
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with the coefficients ai and bi given by

a1 = N2 , a2 = 2 , a3 = 2(N2 − 1)/N , a4 = (N2 − 2)/N ,

b1 = N2 + 6 , b2 = 2(3N2 − 2) , b3 = 2(N2 − 4)/N , b4 = (7N2 − 8)/N . (A.6)

Finally, the two-point correlation functions of the operators (1.6) are given perturbatively

by [13]

〈Ai(1)Aj(2)〉 = 16D4(x12)
[
H

(0)
ij − aH

(1)
ij +O(a2)

]
, (A.7)

where a = g2N/(4π2) is the ’t Hooft coupling constant and the matrix H
(0)
ij takes the form

H(0) = 3(N2 − 1)


1
2

(
7N2 + 2

)
N2 + 6 7N2−8

N
9N2−16

2N

N2 + 6 2
(
3N2 − 2

) 2(N2−4)
N

7N2−8
N

7N2−8
N

2(N2−4)
N

3N4−8N2+24
N2

N4−16N2+48
2N2

9N2−16
2N

7N2−8
N

N4−16N2+48
2N2

7N4−32N2+96
4N2

 . (A.8)

For completeness, we also present one-loop correction to (A.7) found in [13]

H(1) = −3

2
(N2 − 1)


13− 2N2 −6

(
2N2 + 7

)
21N2+16

N
32−53N2

2N

−6
(
2N2 + 7

)
−12

(
6N2 + 1

) 6(N2+16)
N −3(33N2−32)

N

21N2+16
N

6(N2+16)
N

−11N4+96N2−128
N2

3N4+112N2−256
2N2

32−53N2

2N −3(33N2−32)
N

3N4+112N2−256
2N2

−59N4+64N2−512
4N2

 .
(A.9)

B Dimensionally regularized integrals

The instanton correction to two-point correlation function (3.10) involves the follo-

wing integral

Iα(x1, x2) =

∫
d4−2εx0

∫
dρ

ρ5

(x2
12)αρ2α

(ρ2 + x2
10)α(ρ2 + x2

20)α

= −1

ε
(x2

12)−επ2−εΓ(α− 2)Γ(α+ ε)Γ2(1− ε)
Γ2(α)Γ(1− 2ε)

, (B.1)

evaluated for α = 8. Here in the first relation we dimensionally regularized the integral over

the position of the instanton. Divergences appear as poles in ε and come from integration

over the small size instantons ρ→ 0 located close to external points, x2
10 → 0 or x2

20 → 0.

Expanding (B.1) around small ε we get for α = 8

I8(x1, x2) =
π2

42

(
−1

ε
+ lnx2

12 + . . .

)
. (B.2)

Let us consider the integral (3.14) defining the leading instanton correction to three-point

functions

I8(x1, x2, x3) =

∫
d4−2εx0

∫
dρ

ρ5

(x2
13x

2
23)4ρ16

(ρ2 + x2
10)4(ρ2 + x2

20)4(ρ2 + x2
30)8

. (B.3)
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A simple power counting shows that for ε→ 0 the integral develops a logarithmic divergence

for ρ → 0 and x2
30 → 0. As before, it appears as a pole in ε. To find the residue at this

pole, we examine the contribution to (B.3) coming from the region of small ρ and x2
30 that

we denote as Ω

I8(x1, x2, x3) ∼
∫

Ω
d4−2εx0′

dρ

ρ5

ρ16

(ρ2 + x2
0′)

8
, (B.4)

where x′0 = x30. In the similar manner, the divergent contribution to (B.1) coming from

ρ→ 0 and x2
10 → 0 or x2

20 → 0 is given by

I8(x1, x2) ∼ 2

∫
Ω
d4−2εx0′

dρ

ρ5

ρ16

(ρ2 + x2
0′)

8
. (B.5)

Comparing the last two relations we deduce that the divergences cancel in the difference of

integrals I8(x1, x2, x3)− 1
2I8(x1, x2) = O(ε0) . Together with (B.2) this immediately leads to

I8(x1, x2, x3) = − π2

84ε
+O(ε0) . (B.6)

Substituting (B.3) and (B.6) into (3.14) we arrive at (3.16).

C Finiteness of instanton corrections to structure constants

According to (3.11) and (3.16), the instanton contribution to the correlation functions

contains ultraviolet divergences. They appear as poles 1/ε in the parameter of dimensional

regularization and produce corrections to the scaling dimensions of unprotected operators.

We verify in this appendix that ultraviolet divergences cancel in the expression for the

OPE coefficients (4.8).

We start with the three-point functions 〈O20′O20′ΣI〉. As follows from (4.9), it is

given by a linear combination of three-point functions of quadrilinear operators (1.6). To

the lowest order in a and q the later functions have the following form

〈O20′(x1)O20′(x2)Ai(0)〉 =
8(N2 − 1)(y2

12)2

(4π2)4(x2
1x

2
2)2

[
f

(0)
i +

1

ε

(
af

(1)
i + qf

(inst)
i

)
+ . . .

]
, (C.1)

where the Born level contribution f
(0)
i = ai is defined in (A.5). The one-loop and instanton

corrections are described by f
(1)
i and f

(inst)
i , respectively. Substituting (C.1) into (4.9) we

find that 〈O20′O20′ΣI〉 can be factor out into the product of UV divergent and regular con-

tributions

〈O20′O20′ΣI〉 = 〈O20′O20′ΣI〉R

[
1 +

1

ε

(
a

(ψ, f (1))

(ψ, f (0))
+ q

(ψ, f (inst))

(ψ, f (0))

)
+ . . .

]
, (C.2)

where we use a shorthand notation for (ψ, f) = ψifi. For the two-point correlation function

〈ΣI(x)ΣI(0)〉 we find from (3.2) in the similar manner

〈ΣIΣI〉 = 〈ΣIΣI〉R
(

1 +
γI
ε

+ . . .
)
, (C.3)
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where we took into account that ln x2 term on the right-hand side of (3.2) originates from

the small ε expansion of (x2)−ε/ε.

Combining together (C.2), (C.3) and (4.8) we find that the OPE coefficients cI remain

finite for ε→ 0 provided that

a(ψ, f (1)) + q(ψ, f (inst)) =
1

2
γI(ψ, f

(0)) =
1

2
(Γψ, f (0)) , (C.4)

where in the second relation we took into account (4.1). Replacing the mixing matrix

Γ with its explicit expression (3.3) and matching the coefficients in front of a and q, we

arrive at

f
(1)
i =

1

2

[
H(1)(H(0))−1

]
ij
f

(0)
j ,

f
(inst)
i =

1

2

[
H(inst)(H(0))−1

]
ij
f

(0)
j . (C.5)

These relations fix the UV divergent part of the correlation function (C.1).

Let us verify relations (C.5) for the SU(2) gauge group. In this case, we use the explicit

expressions for the mixing matrices (3.12) and (A.8)5 together with f
(0)
j = (4, 2) to get

f
(inst)
1 = −κ2

60
, f

(inst)
2 = 0 . (C.6)

Substituting these expressions into (C.1) and putting N = 2 we reproduce (3.15) and (3.16).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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