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1 Introduction

Higher-spin theories provide useful insights into aspects of the holographic principle [1–3].

Particularly three-dimensional higher-spin theories are useful in this context, since they

can be formulated as Chern-Simons theories [4] with specific boundary conditions [5–8].

Developments in three-dimensional higher-spin theories include the discovery of minimal

model holography [9, 10], higher-spin black holes [11–14], non-AdS holography [15–17],

higher-spin holographic entanglement entropy [18, 19] and particularly flat space higher-

spin theories [20, 21], the main topic of the present work.

An interesting and potentially confusing aspect of higher-spin theories is that the met-

ric and associated notions like curvature singularities or horizons are not gauge-invariant

entities. Nevertheless, there are field configurations that most naturally are interpreted as
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(higher-spin) black holes or (higher-spin) cosmologies, i.e., as solutions with some charac-

teristic temperature and entropy. Many of the physical questions inspired by black holes

and cosmologies addressed in spin-2 gravity can also be addressed in a higher-spin con-

text, sometimes in a straightforward way, but quite often with surprising generalizations

and qualitatively new features emerging from the massless higher-spin interactions. In

the present work we focus on one particular issue, namely on “soft hair” in flat space

higher-spin theories in three dimensions.

The notion of “soft hair” was introduced in a spin-2 context in [22] and refers to zero

energy excitations on black hole horizons. To explicitly construct soft hair excitations,

but more generally to address any question that requires the existence of a black hole as

part of the question, it is then useful to have boundary conditions that ensure regular

horizons for all configurations. While these boundary conditions can be re-interpreted as

asymptotic fall-off conditions of Brown-Henneaux type [23], they take their most natural

form if expanded around the horizon. Thus, we shall refer to them as “near horizon

boundary conditions”.

In AdS3 different near horizon boundary conditions were proposed independently

in [24, 25] and [26]. In this work we focus on the latter approach, since it leads to the

simplest symmetry algebras and due to the Chern-Simons formulation used in [26] it is

most suitable for generalizations to higher-spins in AdS3 [27] or flat space [28]. The main

goal of the present work is to further generalize these results to higher-spins in flat space.

Our main results are new boundary conditions suitable for constructing soft higher-spin

hair on flat space cosmologies and a remarkably simple expression for their entropy,

S = 2π
(
J+

0 + J−0
)

(1.1)

where J±0 are the spin-2 zero mode charges. Precisely the same result was found in AdS3

Einstein gravity [26], in higher derivative gravity [29], in AdS3 higher-spin gravity [27] and

in flat space Einstein gravity [28], where the soft hair on black hole horizons is replaced by

soft hair on flat space cosmological horizons. The simplicity and universality of the result

for the entropy (1.1) is intriguing.

This paper is organized as follows. In section 2 we present our near horizon boundary

conditions and the associated symmetries in the Chern-Simons formulation. In section 3

we provide a map from diagonal to highest weight gauge. In section 4 we perform a twisted

Sugawara-like construction to obtain the spin-2 and the spin-3 generators, which span an

FW3 algebra. In section 5 we calculate the entropy of higher-spin flat space cosmologies

and exploit the map from the previous sections to match our simple result for entropy with

the complicated results appearing in the literature. In section 6 we translate from Chern-

Simons into second order formulation and give explicit results for metric and spin-3 field.

Before we conclude we discuss in section 7 the generalization to fields with spin greater

than 3. The appendices provide details on isl(N,R) and ihs[λ] algebras and on the spin-3

field.
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2 Near horizon boundary conditions and symmetries

Asymptotically flat higher-spin gravity in three spacetime dimensions is conveniently for-

mulated in terms of a Chern-Simons theory. Restricting for simplicity to spin-3 gravity,

the action reads

I[A] =
k

4π

∫
〈CS(A)〉 , with CS(A) = A ∧ dA+

2

3
A ∧A ∧A , (2.1)

with Chern-Simons coupling k = 1/(4GN ) and gauge field A valued in isl(3,R). The gener-

ators of isl(3,R) are denoted by Li, Mi, Um, Vm with i ∈ {−1, 0, 1} and m ∈ {−2,−1, 0, 1, 2}.
While Li and Mi generate Lorentz transformations and translations, respectively, Um and

Vm generate associated spin-3 transformations. We refer the reader to appendix A for the

commutation relations satisfied by the generators as well as for the definition of the non-

degenerate invariant symmetric bilinear form 〈. . . 〉. Moreover, we use coordinates (r, v, ϕ),

where r denotes the radial coordinate, v the advanced time and ϕ the angular coordinate.

In order to specify our boundary conditions we first use some of the gauge freedom at

our disposal to fix the radial dependence of the connection A as

A = b−1(a+ d) b , (2.2)

where the radial dependence is encoded in the group element b as [28]

b = exp

(
1

µP
M1

)
exp

(
r

2
M−1

)
. (2.3)

and the connection a reads

a = av dv + aϕ dϕ . (2.4)

We propose the following new near-horizon boundary conditions1

aϕ = J L0 + P M0 + J (3) U0 + P(3) V0 , (2.5a)

av = µP L0 + µJ M0 + µ
(3)
P U0 + µ

(3)
J V0 . (2.5b)

All the functions appearing in (2.5) are in principle arbitrary functions of the advanced

time v and the angular coordinate ϕ. The functions µa are identified as chemical potentials

and thus are fixed in such a way that δµa = 0. The equations of motion

F = dA+ [A,A] = 0 (2.6)

put further constraints on the functions J ,P as well as J (3),P(3) that can be interpreted

as holographic Ward identities. These constraints force the state dependent functions to

obey the following time evolution equations

∂vJ = ∂ϕµP , ∂vP = ∂ϕµJ , ∂vJ (3) = ∂ϕµ
(3)
P , ∂vP(3) = ∂ϕµ

(3)
J . (2.7)

In particular, for ϕ-independent chemical potentials the holographic Ward identities (2.7)

imply conservation of all the state dependent functions.

1The relation to the notation used in [28] is given by a = −µP , ω = J , Ω = µJ , γ = P.
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2.1 Canonical charges and near horizon symmetry algebra

The next step in the asymptotic symmetry analysis is to determine the gauge transfor-

mations δεA = dε + [A, ε] that preserve the boundary conditions (2.2)–(2.5). The gauge

parameters ε that encode such transformations are given by

ε = b−1(εPL0 + εJ M0 + ε
(3)
P U0 + ε

(3)
J V0) b . (2.8)

As a consequence also the infinitesimal transformation behavior of the state dependent

functions takes a particularly simple form

δJ = ∂ϕεP , δP = ∂ϕεJ , δJ (3) = ∂ϕε
(3)
P , δP(3) = ∂ϕε

(3)
J . (2.9)

Moreover, the conserved charges Q [ε] associated to boundary conditions preserving trans-

formations may be computed via the Regge-Teitelboim approach [30], where their variation

is given by

δQ [ε] =
k

2π

∫
dϕ 〈ε δAϕ〉 . (2.10)

Evaluating this expression for our case yields

δQ[ε] =
k

2π

∫
dϕ 〈ε δAϕ〉 =

k

2π

∫
dϕ

(
εJ δJ + εPδP +

4

3
ε
(3)
J δJ (3) +

4

3
ε
(3)
P δP(3)

)
. (2.11)

The global charges may now be obtained by functionally integrating (2.11),

Q[ε] =
k

2π

∫
dϕ 〈εAϕ〉 =

k

2π

∫
dϕ

(
εJJ + εPP +

4

3
ε
(3)
J J

(3) +
4

3
ε
(3)
P P

(3)

)
. (2.12)

After having determined the canonical boundary charges, their Dirac bracket algebra can

be read off from their infinitesimal transformation behavior using

δYQ [X] = {Q [X] , Q [Y ]} . (2.13)

This yields

{J (ϕ),P(ϕ̄)} =
k

2π
∂ϕδ(ϕ− ϕ̄) , {J (3)(ϕ),P(3)(ϕ̄)} =

2k

3π
∂ϕδ(ϕ− ϕ̄) , (2.14)

where all other Dirac brackets vanish. Expanding into Fourier modes

J (ϕ) =
1

k

∑
n∈Z

Jne
−inϕ P(ϕ) =

1

k

∑
n∈Z

Pne
−inϕ (2.15a)

J (3)(ϕ) =
3

4k

∑
n∈Z

J (3)
n e−inϕ P(3)(ϕ) =

3

4k

∑
n∈Z

P (3)
n e−inϕ (2.15b)

(with the usual decomposition of the δ-function, 2πδ(ϕ− ϕ̄) =
∑
e−in(ϕ−ϕ̄)), and replacing

the Dirac brackets by commutators using i{·, ·} → [·, ·] we obtain the following asymptotic

symmetry algebra for the boundary conditions (2.2)–(2.5)

[Jn, Pm] = k n δn+m,0 , [J (3)
n , P (3)

m ] =
4k

3
n δn+m,0 (2.16)
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with all other commutators vanishing. At this point it should also be noted that the

algebra (2.16) can be brought to the same form as in [27] by making the redefinitions

J±n =
1

2
(Pn ± Jn) , J (3)±

n =
1

2
(P (3)

n ± J (3)
n ) . (2.17)

The generators J±n and J
(3)±
n then satisfy

[J+
n , J

+
m] = [J−n , J

−
m] =

k

2
nδn+m,0 , [J+

n , J
−
m] = 0 , (2.18a)

[J (3)+
n , J (3)+

m ] = [J (3)−
n , J (3)−

m ] =
2k

3
nδn+m,0 , [J (3)+

n , J (3)−
m ] = 0 . (2.18b)

In particular, we obtain in total four û(1) current algebras, two of which have level k/2

and the remaining two have level 2k/3.

2.2 Soft hair

In this subsection we show that the states generated by acting with arbitrary combinations

of near horizon symmetry generators (2.16) on some reference state all have the same energy

and thus correspond to soft hair excitations of that reference state. In order to show this

we first determine the Hamiltonian in terms of near horizon variables, then proceed in

building modules using (2.16), and finally show that all states in these modules have the

same energy eigenvalue.

The Hamiltonian is associated to the charge that generates time translations. In

the metric formulation this would correspond to the Killing vector ∂v. Since the gauge

transformations (2.8) are related on-shell to the asymptotic Killing vectors ξµ via ε = ξµAµ,

the variation of the charge associated to translations in the advanced time coordinate v

can be determined via

δH := δQ[∂v] =
k

2π

∫
dϕ 〈ξvAv δAϕ〉 =

k

2π

∫
dϕ 〈Av δAϕ〉

=
k

2π

∫
dϕ

(
µJ δJ + µPδP +

4

3
µ

(3)
J δJ (3) +

4

3
µ

(3)
P δP(3)

)
. (2.19)

This expression can be trivially functionally integrated to yield the Hamiltonian

H =
k

2π

∫
dϕ

(
µJJ + µPP +

4

3
µ

(3)
J J

(3) +
4

3
µ

(3)
P P

(3)

)
. (2.20)

For constant chemical potentials µa and µ
(3)
a the Hamiltonian reduces to

H =

(
µJ J0 + µPP0 +

4

3
µ

(3)
J J

(3)
0 +

4

3
µ

(3)
P P

(3)
0

)
. (2.21)

After having determined the Hamiltonian the next step in our analysis is to build modules

using (2.16). There are two ways of building modules relevant to our analysis. One is via

highest weight representations wheres the other one uses a construction similar to induced

representations.
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We first start with modules built from highest weight representations of (2.16). Assume

that there is a highest weight (vacuum) state |0〉 satisfying

Jn|0〉 = Pn|0〉 = J (3)
n |0〉 = P (3)

n |0〉 = 0, ∀n ≥ 0 . (2.22)

New states can then be constructed from such a vacuum state by repeated application of

operators with negative Fourier mode number as

|ψ({p})〉 ∼
∏
ni>0

J−ni

∏
n
(3)
i >0

J
(3)

−n(3)
i

∏
mi>0

P−mi

∏
m

(3)
i >0

P
(3)

−m(3)
i

|0〉 , (2.23)

where {p} ≡ {ni, n(3)
i ,mi,m

(3)
i }. Since the Hamiltonian is a linear combination of J0, P0,

J
(3)
0 and P

(3)
0 , it is evident that the Hamiltonian commutes with any element appearing in

the asymptotic symmetry algebra (2.16). Thus when acting with H on any |ψ({p})〉 one

obtains the same value for the energy for all possible {p}’s. This proves our claim that the

states |ψ({p})〉 are “soft hair” of the vacuum; similar considerations apply when replacing

the vacuum |0〉 with any other state, such as some flat space cosmology, which can then

be decorated with soft spin-2 and spin-3 hair.

Now we investigate the same issue for modules built from representations that are

similar in spirit to the induced representations found in flat space holography (see e.g. [31,

32]). In the following we consider all “boosted” states that can be built from a “rest frame”

state |Ω〉 via

|ψ({q})〉 ∼
∏
ni

Jni

∏
n
(3)
i

J
(3)

n
(3)
i

|Ω〉, (2.24)

where {q} ≡ {ni, n(3)
i }. For a given “rest frame” state |Ω〉 one can generate [û(1)] “boosted”

states as written in (2.24). In addition this “rest frame” state has to satisfy

Pn|Ω〉 = P (3)
n |Ω〉 = 0, ∀n ∈ Z . (2.25)

One way to argue such representations is via taking an ultra-relativistic limit of the highest

weight representations used in [27]. On the level of generators the ASA2 in [27] and the

one in (2.16) are related via an ultra-relativistic boost that can be incorporated as

J±n =
1

2

(
Pn
ε
± Jn

)
, (2.26)

in the limit ε → 0. By looking at highest-weight representations built from J±n one finds

that in terms of the generators Pn and Jn one has

J±n |Ω〉 =
1

2

(
Pn
ε
± Jn

)
|Ω〉 = 0, ∀n ≥ 0 . (2.27)

In order to satisfy these relations when ε→ 0 one finds that, indeed, acting with Pn on |Ω〉
has to be zero for all values of n, whereas one can act with Jn on |Ω〉 without spoiling (2.27).

2We focus only on the generators Jn and Pn. The argument can be repeated in the exact same way for

J
(3)
n and P

(3)
n .
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One can now again act with the Hamiltonian (2.21) on all states in the module (2.24)

and using the same line of argument as for the highest weight representations one finds

again that all states have the same energy eigenvalue and can thus be interpreted as soft

excitations as well.

Thus, the soft hair property does not depend on whether highest weight or represen-

tations of the form (2.24) are used. Moreover, since the Hamiltonian is an element of the

Cartan subalgebra of isl(3,R), one can even conclude that the soft hair property is inde-

pendent of any representation that can be built via acting on some reference state using

the near horizon symmetry generators.

3 Relating near horizon and asymptotic symmetries

In order to show that the spin-2 and spin-3 charges of higher-spin cosmological solutions in

flat space emerge as composite operators constructed from the û(1) ones, we have to relate

the boundary conditions we presented in this work (2.5) with the boundary conditions that

describe a flat space cosmology with spin-2 and spin-3 hair. Thus it is first necessary to

describe both boundary conditions by the same set of variables.

Flat space cosmologies with spin-2 and spin-3 hair including chemical potentials are

given by the following connection [33]

Ã = b̃−1(ã+ d)b̃ , (3.1)

with b̃ = exp( r2M−1) and

ãϕ = L1 −
M
4
L−1 −

N
2
M−1 +

V
2
U−2 + ZV−2 (3.2a)

ãv = a(0)
v + a(µM)

v + a(µL)
v + a(µV)

v + a(µU)
v (3.2b)

where

a(0)
v = M1 −

M
4
M−1 +

V
2
V−2 (3.3a)

a(µM)
v = µM M1 − µ′M M0 +

1

2

(
µ′′M −

1

2
MµM

)
M−1 +

1

2
V µM V−2 (3.3b)

a(µL)
v = a(µM)

v

∣∣
M→L −

1

2
N µL M−1 + Z µL V−2 (3.3c)

a(µV)
v = µV V2 − µ′V V1 +

1

2

(
µ′′V −MµV

)
V0 +

1

6

(
− µ′′′V +M′µV +

5

2
Mµ′V

)
V−1

+
1

24

(
µ′′′′V − 4Mµ′′V −

7

2
M′µ′V +

3

2
M2µV −M′′µV

)
V−2 − 4V µV M−1 (3.3d)

a(µU)
v = a(µV)

v

∣∣
M→L − 8Z µU M−1 −N µU V0 +

(
5

6
Nµ′U +

1

3
N ′µU

)
V−1

+

(
− 1

3
Nµ′′U −

7

24
N ′µ′U −

1

12
N ′′µU +

1

4
MNµU

)
V−2 . (3.3e)

All functions appearing in (3.2) and (3.3) are free functions of v and ϕ. As such a prime

denotes a derivative with respect to ϕ and a dot a derivative with respect to v. The

– 7 –
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subscript M → L denotes that in the corresponding quantity all generators and chemical

potentials are replaced as Mn → Ln, Vn → Un, µM → µL and µV → µU, i.e.

a(µM)
v

∣∣
M→L = µL L1 − µ′L L0 +

1

2

(
µ′′L −

1

2
MµL

)
L−1 +

1

2
V µL U−2 (3.3f)

a(µV)
v

∣∣
M→L = µU U2 − µ′U U1 +

1

2

(
µ′′U −MµU

)
U0 +

1

6

(
− µ′′′U +M′µU +

5

2
Mµ′U

)
U−1

+
1

24

(
µ′′′′U − 4Mµ′′U −

7

2
M′µ′U +

3

2
M2µU −M′′µU

)
U−2 − 4V µU L−1 .

(3.3g)

The next step is to find an appropriate gauge transformation that maps the connection a

in (2.5) to the connection ã in (3.2) via ã = g−1(a+ d)g. After a fair amount of algebraic

manipulation one can find the following group element that provides the appropriate map

as g = g(1)g(2) with

g(1) = exp [l L1 + m M1 + u1 U1 + v1 V1 + u2 U2 + v2 V2] (3.4a)

g(2) = exp

[
−J

2
L−1 −

J (3)

3
U−1 +

1

6

(
JJ (3) +

J (3)′

2

)
U2 (3.4b)

−J
2
M−1 −

P(3)

3
V−1 +

1

6

(
PJ (3) + JP(3) +

P(3)′

2

)
V−2

]
. (3.4c)

The functions l, m, ua and va depend on v and ϕ only and have to satisfy

l′ = 1 + lJ + 2u1J (3) (3.5a)

m′ = lP + mP + 2u1P(3) + 2v1J (3) (3.5b)

u′1 = u1J + 2lJ (3) (3.5c)

v′1 = u1P + v1J + 2lP(3) + 2mJ (3) (3.5d)

u′2 = −u1

2
+ 2u2J (3.5e)

v′2 = −v1

2
+ 2u2P + 2v2J , (3.5f)

and

µL =
4

3
µUJ (3) − µP l− 2µ

(3)
P u1 + l̇ (3.6a)

µM =
4

3
µUP(3) +

4

3
µVJ (3) − µPm− µJ l− 2µ

(3)
P v1 − 2µ

(3)
J u1 + ṁ (3.6b)

µU = −2µPu2 + µ
(3)
P l2 + µ

(3)
P u2

1 +
1

2
u1 l̇−

1

2
lu̇1 + u̇2 (3.6c)

µV = −2µPv2 − 2µJ u2 + 2lmµ
(3)
P + 2u1v1µ

(3)
P + µ

(3)
J l2 − µ(3)

J u2
1

+
1

2
v1 l̇ +

1

2
u1ṁ−

1

2
mu̇1 −

1

2
lv̇1 + v̇2 . (3.6d)
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Consistency with the on-shell relations (2.7) yields

µP = µLP +
8

3
µUJJ (3) +

4

3
µUJ ′ −

2

3
µ′UJ − µ′L (3.7a)

µJ = µMP +
8

3
µUPJ (3) +

8

3
µUJP(3) +

8

3
µVJJ (3)

+
4

3
µUP ′ +

4

3
µVJ ′ −

2

3
µ′UP −

2

3
µ′VJ − µ′M (3.7b)

µ
(3)
P = µLJ (3) + µUJ 2 − 4

3
µU

(
J (3)

)2
− µUJ ′ −

3

2
µ′UJ +

1

2
µ′′U (3.7c)

µ
(3)
J = µLP(3) + µMJ (3) + 2µUPJ + µVJ 2 − 8

3
µUP(3)J (3) − 4

3
µV

(
J (3)

)2

− µVJ ′ − µUP ′ −
3

2
µ′VJ −

3

2
µ′UP +

1

2
µ′′V . (3.7d)

The gauge fields a and ã are then mapped to each other provided the following (twisted)

Sugawara-like relations hold between the near horizon state-dependent functions J , P,

J (3), P(3) and the asymptotic state-dependent functions M, N , V, Z:

M = J 2 +
4

3

(
J (3)

)2
+ 2J ′ (3.8a)

N = JP +
4

3
J (3)P(3) + P ′ (3.8b)

V =
1

54

(
18J 2J (3) − 8

(
J (3)

)3
+ 9J ′J (3) + 27JJ (3)′ + 9J (3)′′

)
(3.8c)

Z =
1

36

(
6J 2P(3) − 8P(3)

(
J (3)

)2
+ 3P(3)J ′ + 3J (3)P ′

+ 9JP(3)′ + 9PJ (3)′ + 12PJJ (3) + 3P(3)′′
)
. (3.8d)

In addition one can explicitly check that the equations of motion

Ṁ = −2µ′′′L + 2Mµ′L +M′µL + 24Vµ′U + 16V ′µU (3.9a)

Ṅ =
1

2
Ṁ
∣∣
L→M + 2Nµ′L +N ′µL + 24Zµ′U + 16Z ′µU (3.9b)

V̇ =
1

12
µ′′′′′U − 5

12
Mµ′′′U −

5

8
M′µ′′U −

3

8
M′′µ′U +

1

3
M2µ′U

− 1

12
M′′′µU +

1

3
MM′µU + 3Vµ′L + V ′µL (3.9c)

Ż =
1

2
V̇
∣∣
L→M −

5

12
Nµ′′′U −

5

8
N ′µ′′U −

3

8
N ′′µ′U +

2

3
MNµ′U

− 1

12
N ′′′µU +

1

3
(MN )′µU + 3Zµ′L + Z ′µL , (3.9d)

with

1

2
Ṁ
∣∣
L→M = −µ′′′M +Mµ′M +

1

2
M′(1 + µM) + 12Vµ′V + 8V ′µV (3.9e)

1

2
V̇
∣∣
L→M =

1

24
µ′′′′′V − 5

24
Mµ′′′V −

5

16
M′µ′′V −

3

16
M′′µ′V +

1

6
M2µ′V

− 1

24
M′′′µV +

1

6
MM′µV +

3

2
Vµ′M +

1

2
V ′(1 + µM) , (3.9f)
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indeed reduce to the simple ones given by (2.7). The relations (3.7) show that the “asymp-

totic chemical potentials” µL, µM, µU, µV depend not only on the “near horizon chemical

potentials” µP , µJ , µ
(3)
P , µ

(3)
J but also on the state-dependent functions P, J , P(3), J (3),

which is one way to see that our near horizon boundary conditions (2.2)–(2.5) are inequiv-

alent to the asymptotic ones of [20, 21]. Moreover, the same relations directly map the

corresponding gauge parameters that preserve the respective boundary conditions by re-

placing µL → ε, (1 + µM)→ τ , µU → χ, µV → κ as well as µJ → εJ , µP → εP , µ
(3)
J → ε

(3)
J

and µ
(3)
P → ε

(3)
P . Therefore, also the infinitesimal transformation laws for N , M, V and

Z can be directly read off from (3.9) by replacing e.g. Ṁ by δM as well as all occur-

rences of chemical potentials µa and µ
(3)
a by the corresponding gauge parameters εa and

ε
(3)
a , respectively.

Thus, one can readily see that the fields N , M, V and Z transform exactly in such

a way that they satisfy the FW3 algebra. Note, however, that their associated canonical

charges still satisfy the (semidirect sum of four) û(1) current algebras as before. This can

be seen by looking at the variation of the canonical boundary charge. In particular, after

using the infinitesimal gauge transformations encoded in (3.9), the relations between the

chemical potentials (3.7) and the Miura-like transformations (3.8) reduces to

δQ =
k

2π

∫
dϕ

(
ε δN +

τ

2
δM+ 8χ δZ + 4κ δV

)
=

k

2π

∫
dϕ

(
εJ δJ + εPδP +

4

3
ε
(3)
J δJ (3) +

4

3
ε
(3)
P δP(3)

)
. (3.10)

4 FW-algebras from Heisenberg

In this section we relate the FW-algebra to the near-horizon Heisenberg (or û(1) current)

algebras. Using the (twisted) Sugawara-like relations (3.8) between the state-dependent

functions as well as their Fourier mode expansions (2.15) and

N (ϕ) =
1

k

∑
n∈Z

Lne
−inϕ M(ϕ) =

2

k

∑
n∈Z

Mne
−inϕ (4.1a)

Z(ϕ) =

√
3

8k

∑
n∈Z

Une
−inϕ V(ϕ) =

√
3

4k

∑
n∈Z

Vne
−inϕ (4.1b)

one finds that the (twisted) Sugawara construction for the FW3 algebra is given by

Ln =
1

k

∑
p∈Z

(
Jn−pPp +

3

4
J

(3)
n−pP

(3)
p

)
− inPn (4.2a)

Mn =
1

2k

∑
p∈Z

(
Jn−pJp +

3

8
J

(3)
n−pJ

(3)
p

)
− inJn (4.2b)
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Un =

√
3

k2

∑
p,q∈Z

[(
Jn−p−qJp −

3

4
J

(3)
n−p−qJ

(3)
p

)
J (3)
q + 2Jn−p−qJ

(3)
p Pq

]

−
√

3i

2k

∑
p∈Z

[
(3n− 2p) J

(3)
n−pPp + (n+ 2p)Jn−pP

(3)
p

]
−
√

3

2
n2P (3)

n (4.2c)

Vn =

√
3

k2

∑
p,q∈Z

(
Jn−p−qJp −

1

4
J

(3)
n−p−qJ

(3)
p

)
J (3)
q

−
√

3i

2k

∑
p∈Z

(3n− 2p)J
(3)
n−pJp −

√
3

2
n2J (3)

n . (4.2d)

At this point it is important to note that we already implicitly assumed some kind of

normal ordering prescription for the constituents of the non-linear operators appearing

in (4.2). The ordering prescription we chose is in accordance with the ones for induced

representations as shown in [32]. Computing the commutation relations of these new

operators we find that they satisfy the FW3 algebra [20]

[Ln, Lm] = (n−m)Ln+m (4.3a)

[Ln,Mm] = (n−m)Mn+m +
cM
12
n(n2 − 1)δn+m,0 (4.3b)

[Ln, Um] = (2n−m)Un+m (4.3c)

[Ln, Vm] = (2n−m)Vn+m (4.3d)

[Mn, Um] = (2n−m)Vn+m (4.3e)

[Un, Um] = − 1

3
(n−m)(2n2 + 2m2 − nm− 8)Ln+m −

64

cM
(n−m)Λn+m (4.3f)

[Un, Vm] = − 1

3
(n−m)(2n2 + 2m2 − nm− 8)Mn+m −

32

cM
(n−m)Θn+m

− cM
36
n(n2 − 4)(n2 − 1)δn+m,0 , (4.3g)

with

Λn =
∑
p∈Z

MpLn−p, Θn =
∑
p∈Z

MpMn−p (4.4)

and cM = 12k. In addition the spin-2 and spin-3 generators have the following non-

vanishing commutation relations with the spin-1 currents:

[Ln, Pm] =−mPn+m (4.5a)

[Ln, Jm] =−mJn+m − in2kδn+m,0 (4.5b)

[Mn, Pm] =−mJn+m − in2kδn+m,0 (4.5c)

[Ln, P
(3)
m ] =−mP (3)

n+m (4.5d)

[Ln, J
(3)
m ] =−mJ (3)

n+m (4.5e)

[Mn, P
(3)
m ] =−mJ (3)

n+m (4.5f)
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[Un, Pm] =− 2
√

3

k
m
∑
p∈Z

(
Jn+m−pP

(3)
q + J

(3)
n+m−pPq

)
+

√
3i

2
m(3n+ 2m)P

(3)
n+m (4.5g)

[Un, Jm] =− 2
√

3

k
m
∑
p∈Z

Jn+m−pJ
(3)
q +

√
3i

2
m(3n+ 2m)J

(3)
n+m (4.5h)

[Vn, Pm] =− 2
√

3

k
m
∑
p∈Z

Jn+m−pJ
(3)
q +

√
3i

2
m(3n+ 2m)J

(3)
n+m (4.5i)

[Un, P
(3)
m ] =

2
√

3

k
m
∑
p∈Z

(
J

(3)
n+m−pP

(3)
q − 4

3
Jn+m−pPq

)
+

2i√
3
m(3n+ 2m)Pn+m (4.5j)

[Un, J
(3)
m ] =

√
3

k
m
∑
p∈Z

J
(3)
n+m−pJ

(3)
q +

2i√
3
m(3n+ 2m)Jn+m −

2k√
3
n3δn+m,0 (4.5k)

[Vn, P
(3)
m ] =

√
3

k
m
∑
p∈Z

J
(3)
n+m−pJ

(3)
q +

2i√
3
m(3n+ 2m)Jn+m −

2k√
3
n3δn+m,0 . (4.5l)

5 Entropy of cosmological solutions

A flat space cosmology (FSC) is described by the field configuration (3.2) with V = Z =

µL = µM = µU = µV = 0 and constant M, N . The entropy of a FSC with inverse

temperature β = 1
T , angular velocity Ω, energy H and angular momentum J satisfies a

first law [34] that is given by

δH = −TδS + ΩδJ . (5.1)

In (2.19) we already computed δH. For δJ one can proceed in exactly the same way i.e.

δJ := δQ[∂ϕ] =
k

2π

∫
dϕ〈ξϕAϕδAϕ〉 =

k

2π

∫
dϕ〈AϕδAϕ〉 . (5.2)

Thus one can rewrite (5.1) also as

δS = − k

2π
β

∫
dϕ〈avδaϕ〉+

k

2π
β Ω

∫
dϕ〈aϕδaϕ〉 . (5.3)

As in the AdS3 case we impose that the holonomy of h = −i β2π
(∫

dϕav − Ω
∫

dϕaϕ
)

is in

the center of the gauge group i.e.

Eigen [h] ∝ Eigen [L0] . (5.4)

In order to make contact with the thermal entropy of FSCs we demand that the holonomies

of our boundary conditions match the ones of FSCs. That means the holonomies are fixed to

Eigen [h] = Eigen [2πiL0] . (5.5)

Assuming again constant chemical potentials for the boundary conditions (2.5) the holon-

omy conditions (5.5) yield the following restrictions

µP = −4π2

β
+ J0Ω, µJ = P0Ω, µ

(3)
P = ΩJ

(3)
0 , µ

(3)
J = ΩP

(3)
0 . (5.6)
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Using these conditions the variation of the entropy (5.3) simplifies considerably and can

be functionally integrated to yield

STh = 2πP0 = 2π(J+
0 + J−0 ) . (5.7)

In order to relate this entropy formula with the one for the higher-spin case one first has

to solve (3.8) for P0. Introducing the dimensionless ratios3

V

2M
3
2

=
R− 1

R
3
2

and
Z

N
√
M

= P , (5.8)

the solution for P0 in terms of these ratios reads

P0 = k
N
(

4R− 6 + 3P
√
R
)

4
√
M(R− 3)

√
1− 3

4R

. (5.9)

Plugging this expression into (5.7) one immediately obtains

STh = 2πk
N
(

2R− 6 + 3P
√
R
)

8
√
M(R− 3)

√
1− 3

4R

, (5.10)

which is exactly the entropy of a FSC with spin-3 hair and central charge

cM = 12k [33, 35–38].

6 Metric formulation

In this section we present some of our results in the metric formulation for convenience of

readers more familiar with that formulation. While this means that we merely translate

results from previous sections, it can be useful for future applications to have explicit ex-

pressions for metric and spin-3 field, see [39, 40] for some reasons to consider the metric

formulation and for AdS3 results. For instance, if one wants to add matter couplings the

Chern-Simons formulation loses some of its attractiveness, while the metric formulation

remains suitable [41]. Even though no non-linear action is known in this formulation, even

perturbatively some non-trivial cross-checks are possible, like a comparison of Wald’s en-

tropy with our result (5.7) to quadratic order in the spin-3 field, along the lines of [39].

Finally, for some flat-space holographic purposes it can be useful to have the metric for-

mulation available, e.g. for the identification of sources and vacuum expectation values,

see [33] and references therein.

We start now with the translation of our results into the metric formulation, assuming

for simplicity constant chemical potentials. The metric is the contraction over the local

zuvielbein, which can be extracted from the connection (2.2) via

ds2 = −2 ηmnAmM AnM +
2

3
KmnAmV AnV (6.1)

3The real numbers N , M , V and Z denote the zero modes of the functions N ,M, V and Z respectively.
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with ηmn = diag(1,−1/2, 1) and Kmn = diag(12,−3, 2,−3, 12) and AmM ,AnV denoting the

coefficients of the connection with respect to the spin-2 and spin-3 translation operators Mm
and Vn. Using the twisted and hatted traces in combination with the matrix representations

as defined in [33] one can rewrite (6.1) as

ds2 =
1

2
t̃r (AµAν) dxµ dxν . (6.2)

In the same gauge, the spin-3 field can be computed using again the twisted trace as

Φ =
1

6
t̃r (AµAνAλ) dxµ dxν dxλ . (6.3)

Using the definitions above together with (2.3) and (2.5) yields the metric

ds2 = 2

(
dv +

J
µP

dϕ

)
dr +

(
µ2
J +

4

3
(µ

(3)
P )2 + 2rµP +

8r(µ
(3)
J )2

µP

)
dv2

+ 2

(
PµJ +

4

3
P(3)µ

(3)
P + 2J r +

8J (3)rµ
(3)
J

µP

)
dv dϕ

+

(
P2 +

4

3
(P(3))2 +

2J 2r

µP
+

8(J (3))2r

µP

)
dϕ2 (6.4)

and the spin-3 field

Φ =
2

27µP

(
Φvvv dv3 + Φvvϕ dv2 dϕ+ Φvvr dv2 dr + Φvϕr dv dϕ dr

+ Φvϕϕ dv dϕ2 + Φϕϕϕ dϕ3 + Φϕϕr dϕ2 dr
)

(6.5)

the components of which are given in appendix C.

7 Extension to fields with spin greater than three

In this section we discuss the generalization to fields of spin s = 2, 3, . . . , N , i.e., the algebra

of our Chern-Simons theory is isl(N,R) (see appendix B for our conventions). The following

calculation works equally well for ihs[λ]. We use the same gauge as in the aforementioned

cases, see in particular equations (2.2) and (2.3), and propose the boundary conditions

aϕ = a(2,3)
ϕ +

N∑
s=4

J (s) L
(s)
0 +

N∑
s=4

P(s) M
(s)
0 =

N∑
s=2

(
J (s) L

(s)
0 + P(s) M

(s)
0

)
, (7.1a)

av = a(2,3)
v +

N∑
s=4

µ
(s)
P L

(s)
0 +

N∑
s=4

µ
(s)
J M

(s)
0 =

N∑
s=2

(
µ

(s)
P L

(s)
0 + µ

(s)
J M

(s)
0

)
, (7.1b)

where a(2,3) refers to the spin-2 and spin-3 part of the connection used in the previous

sections. The considerations of section 2 generalize. This is connected to the fact that the
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generators L
(s)
0 and M

(t)
0 commute among themselves and with each other also for the higher

N cases. The canonical boundary charge is then

Q[ε] =
k

2π

∫
dϕ

N∑
s=2

αs

(
ε
(s)
J J

(s) + ε
(s)
P P

(s)
)

(7.2)

and the corresponding asymptotic symmetry algebra is given by

[J (s)
n , P (t)

m ] = αsk n δ
s,tδn+m,0 . (7.3)

The constants αs are coming from the invariant metric of the isl(N,R) algebra, see equa-

tion (B.12). Relating the near horizon boundary conditions above to the asymptotic ones

is a conceptually straightforward technical problem that we will not address here.

An interesting aspect of our near horizon boundary conditions is that as in the AdS3

higher-spin case the entropy calculated in terms of the near horizon boundary conditions

is unchanged under the addition of the higher-spin fields and still given by

STh = 2πP0 = 2π(J+
0 + J−0 ) . (7.4)

As for the spin-3 case we focused here on the branch that is continuously connected to

the FSC.

8 Conclusions

We have proposed new boundary conditions for flat space spin-3 gravity (2.2)–(2.5) and

flat space higher-spin gravity (7.1), and have shown that they lead to well defined charges

as well as to a novel asymptotic symmetry algebra, (2.16) and (7.3), respectively. Using

this algebra we have shown in section 2.2 how soft excitations can be created by acting

with its generators on some states, like the vacuum or flat space cosmologies. The relation

between the near horizon and the asymptotic quantities given in equation (3.8) made it

possible to relate the remarkably simple entropy of the near horizon geometries, (5.7), to

the more complicated one from the boundary, (5.10).

This work shows another generalization of the proposal of [26]. Interestingly, the

generalization to supersymmetric versions [42], non-principally embedded (higher) spins [8,

43, 44] as well es higher dimensions has not yet been achieved and might therefore provide

a further testing ground. Some of these generalizations are technically (and perhaps also

conceptually) more challenging, since even for situations where a Chern-Simons formulation

is available the connection most likely is not going to be diagonal, as opposed to the

situation in previous work or in our current paper.

Our considerations have focused on the (higher-spin generalization) of future null in-

finity. Investigations using the full structure of asymptotically flat spacetimes [45] have

provided fascinating connections between soft modes and conservation laws [46–48]. In the

light that future and null infinity have also been linked in three spacetime dimensions [49]

it might be fruitful to search for similar effects for the flat space case of [28] as well as for
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our proposal. Progress in this direction in four spacetime dimensions including higher-spin

extensions has been made in [50].

Finally, an explicit construction of flat space cosmology microstates, along the lines

of the corresponding BTZ construction [51, 52] is an outstanding open problem (both for

spin-2 and higher-spins) that might even provide insights into the black hole information

paradox [22].
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A isl(3,R) algebra

Here we review our conventions for the algebra isl(3,R). The set of generators that span

the isl(3,R) algebra is given by Li, Mi, Um, Vm with i = −1, 0, 1 and m = −2,−1, 0, 1, 2

such that the non-zero commutators are given by

[Ln, Lm] = (n−m)Ln+m (A.1a)

[Ln, Mm] = (n−m)Mn+m (A.1b)

[Ln, Um] = (2n−m)Un+m (A.1c)

[Ln, Vm] = (2n−m)Vn+m (A.1d)

[Un, Um] = σ(n−m)(2n2 + 2m2 − nm− 8)Ln+m (A.1e)

[Un, Vm] = σ(n−m)(2n2 + 2m2 − nm− 8)Mn+m . (A.1f)

The Ln generate rotations, the Mn generate translations and Un, Vn generate spin-3 trans-

formations. The factor σ fixes the normalization of the spin-3 generators Un and Vn.

We choose

σ = −1

3
. (A.2)

This algebra may be equipped with an invariant metric, which is a non-degenerate, invari-

ant, symmetric bilinear form, given by

〈Ln Mm〉 = −2


M1 M0 M−1

L1 0 0 1

L0 0 −1
2 0

L−1 1 0 0

 (A.3)
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as well as

〈Un Vm〉 = 2



V2 V1 V0 V−1 V−2

U2 0 0 0 0 4

U1 0 0 0 −1 0

U0 0 0 2
3 0 0

U−1 0 −1 0 0 0

U−2 4 0 0 0 0


. (A.4)

All other pairings of generators inside the bilinear form are zero.

B ihs[λ] and isl(N,R) algebra

We define the infinite dimensional Lie algebra ihs[λ] using a contraction of hs[λ] ⊕ hs[λ].

The finite dimensional algebra isl(N,R) is then given by a Lie algebra quotient thereof.

We will provide an invariant metric for both algebras as well as the commutators for spins

s ≤ 4 of ihs[λ].

B.1 Contraction

Here we will sketch how ihs[λ] can be derived as a contraction of hs[λ] ⊕ hs[λ].4 A basis

for the first and second summand are given by Ea and Ẽa, respectively. The commutation

relations are then (we suppress various indices for clarity)

[Ea, Eb] = f c
ab Ec [Ea, Ẽb] = 0 [Ẽa, Ẽb] = f c

ab Ẽc (B.1)

and the invariant metric is

〈EaEb〉 = Ωab 〈EaẼb〉 = 0 〈ẼaẼb〉 = Ωab . (B.2)

Defining

La = Ea + Ẽa Ma =
1

`
(Ea − Ẽa) (B.3)

and taking the `→∞ limit leads to the new algebra

[La, Lb] = f c
ab Lc [La, Mb] = f c

ab Mc [Ma, Mb] = 0 (B.4)

with the invariant metric 〈LaMb〉 = Ωab and 〈LaLb〉 = 〈MaMb〉 = 0. The invariance of 〈LaMb〉
with respect to Lc is a consequence of the invariance of the original invariant metric.

B.2 ihs[λ]

The generators of ihs[λ] are given by

L(s)
n , M(s)

n , s ≥ 2, |n| < s . (B.5)

With the notation used in the previous sections L
(2)
n = Ln, M

(2)
n = Mn, L

(3)
n = Un and

M
(3)
n = Vn. Using the contraction described in the preceding subsection we can use the

4This construction works equally well for any other direct sum of a Lie algebra with an invariant metric.
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commutation relations of hs[λ] [53–57]5 we arrive at the commutation relations of ihs[λ] [38]

[L(s)
n , L(t)

m ] =

s+t−1∑
u=2
even

gstu (n,m;λ) L
(s+t−u)
n+m (B.6a)

[L(s)
n , M(t)

m ] =

s+t−1∑
u=2
even

gstu (n,m;λ) M
(s+t−u)
n+m (B.6b)

[M(s)
n , M(t)

m ] = 0 (B.6c)

where

gstu (n,m;λ) =
qu−2

2(u− 1)!
φstu (λ)N st

u (n,m) (B.7a)

N st
u (n,m) =

u−1∑
k=0

(−1)k
(
u− 1

k

)
[s− 1 + n]u−1−k[s− 1− n]k[t− 1 +m]k[t− 1−m]u−1−k

(B.7b)

φstu (λ) = 4F3

[
1
2 + λ , 1

2 − λ ,
2−u

2 , 1−u
2

3
2 − s ,

3
2 − t ,

1
2 + s+ t− u

1

]
. (B.7c)

The number q is a normalization factor that can be set to any fixed value (for more details

see appendix A in [7]). The falling factorial or Pochhammer symbol is given by

[a]n = a(a− 1)(a− 2) · · · (a− n+ 1) =
a!

(a− n)!
=

Γ(a+ 1)

Γ(a+ 1− n)
(B.8)

the rising factorial or Pochhammer symbol is given by

(a)n = a(a+ 1) · · · (a+ n− 1) =
(a+ n− 1)!

(a− 1)!
=

Γ(a+ n)

Γ(a)
(B.9)

with

(a)0 = [a]0 = 1 . (B.10)

The generalized hypergeometric function mFn(z) is defined by

mFn

[
a1, . . . , am
b1, . . . , bn

z

]
=

∞∑
k=0

(a1)k(a2)k . . . (am)k
(b1)k(b2)k . . . (bn)k

zk

k!
. (B.11)

The infinite dimensional Lie algebra ihs[λ] possesses an invariant metric given by

〈L(s)
n M(t)

m 〉 ≡
3

4q(λ2 − 1)
gsts+t−1(n,m, λ) (B.12a)

= Ns
(−1)s−n−1

4(2s− 2)!
Γ(s+ n)Γ(s− n)δstδn,−m

〈L(s)
n L(t)

m 〉 = 〈M(s)
n M(t)

m 〉 = 0 (B.12b)

5The commutation relations were explicitly given in [56]. Our structure constants are divided by four

with respect to the ones given in [7], but we otherwise closely follow [7] (see also [5, 8, 58]).
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with

Ns ≡
3 · 4s−3√πq2s−4Γ(s)

(λ2 − 1)Γ(s+ 1
2)

(1− λ)s−1(1 + λ)s−1 . (B.13)

The overall constant has been chosen so that

〈L(2)
1 M

(2)
−1〉 = −1 . (B.14)

B.3 isl(N,R)

Using ihs[λ] one can define isl(N,R) as a Lie algebra quotient. This is only possible for

λ = N since this leads to an ideal χN [53, 59, 60] spanned by L
(s)
n and M

(s)
n with s > N .

Using this ideal we can then define the finite dimensional algebra isl(N,R) by the quotient

isl(N,R) = ihs[N ]/χN . (B.15)

The invariant metric, equation (B.12) with λ = N , stays an invariant metric for isl(N,R).

It is zero for higher spins. In the next section this can be seen explicitly.

B.4 Commutators of ihs[λ] for s ≤ 4

We list here the commutators for s ≤ 4 of ihs[λ] (with q = 1/4)6

[L(2)
n , L(2)

m ] = (n−m)L
(2)
n+m (B.16a)

[L(2)
n , L(3)

m ] = (2n−m)L
(3)
n+m (B.16b)

[L(3)
n , L(3)

m ] = − 1

60
(λ2 − 4)(n−m)(2n2 − nm+ 2m2 − 8)L

(2)
n+m

+ 2(n−m)L
(4)
n+m (B.16c)

[L(2)
n , L(4)

m ] = (3n−m)L
(4)
n+m (B.16d)

[L(3)
n , L(4)

m ] = − 1

70
(λ2 − 9)(5n3 − 5n2m− 17n+ 3nm2 + 9m−m3)L

(3)
n+m

+ (3n− 2m)L
(5)
n+m (B.16e)

[L(4)
n , L(4)

m ] = (λ2 − 4)(λ2 − 9)(n−m)f(n,m)L
(2)
n+m

− 1

30
(λ2 − 19)(n−m)(n2 − nm+m2 − 7)L

(4)
n+m

+ 3(n−m)L
(6)
n+m (B.16f)

with

f(n,m) =
1

8400

[
3n4 + 3m4 − 2nm(n−m)2 − 39n2 − 39m2 + 20nm+ 108

]
. (B.17)

The commutators for [L
(s)
n , M

(t)
m ] are equivalent with the substitution L → M on the right

hand side [see equation (B.6)]. The invariant metric for s ≤ 4 is given by the anti-diagonal

6A Mathematica workbook that reproduces the commutation relations and might be useful for further

checks is uploaded as an ancillary file on the arxiv server.
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matrices

〈L(2)
n M(2)

m 〉 = adiag

(
− 1,

1

2
,−1

)
(B.18a)

〈L(3)
n M(3)

m 〉 =
1

20
(λ2 − 4) · adiag

(
4, 1,

2

3
, 1, 4

)
(B.18b)

〈L(4)
n M(4)

m 〉 =
1

140
(λ2 − 4)(λ2 − 9) · adiag

(
− 6, 1,

2

5
,

3

10
,

2

5
, 1,−6

)
. (B.18c)

C Explicit formulas for spin-3 field

The non-zero components of the spin-3 field in (6.5) are given by

Φvvv = 54rµJ µ
(3)
J µP + 9µ2

J µPµ
(3)
P − 36r(µ

(3)
J )2µ

(3)
P − 4µP (µ

(3)
P )3 − 9rµ2

Pµ
(3)
P (C.1a)

Φvvϕ = − 72J3rµ
(3)
J µ

(3)
P + 54J rµJ µ(3)

J + 9P(3)µ2
J µP + 18PµJ µPµ(3)

P − 18J rµPµ(3)
P

+ 54J (3)rµJ µP − 36P(3)r(µ
(3)
J )2 + 54Prµ(3)

J µP − 12P(3)µP(µ
(3)
P )2

− 9P(3)rµ2
P (C.1b)

Φvvr = 27µJ µ
(3)
J − 9µPµ

(3)
P (C.1c)

Φvϕϕ = − 9J 2rµ
(3)
P + 54JPrµ(3)

J − 72J (3)P(3)rµ
(3)
J + 18PP(3)µJ µP − 18JP(3)rµP

+ 54J (3)PrµP − 36(J (3))2rµ
(3)
P + 54J (3)J rµJ + 9P2µPµ

(3)
P

− 12(P(3))
2
µPµ

(3)
P (C.1d)

Φvϕr = 27J (3)µJ − 9J µ(3)
P + 27Pµ(3)

J − 9P(3)µP (C.1e)

Φϕϕϕ = − 9J 2P(3)r − 36(J (3))2P(3)r + 54JJ (3)Pr + 9P2P(3)µP − 4(P(3))3µP (C.1f)

Φϕϕr = 27J (3)P − 9JP(3) . (C.1g)
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