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1 Introduction

The leading candidate for a non-perturbative formulation of M-theory is expected to be the

infinite matrix size limit of a matrix model of some kind. One such proposal is the BFSS

model [1–3] which was conjectured to capture the entire dynamics of M-theory.1 Relatives

of this model such as the BMN model [4] or models derived from the ABJM model [5] are

also considered possible viable candidates for such a non-perturbative formulation. All of

these conjectured formulations of M-theory are regularised versions of the supermembrane

and are matrix quantum mechanical systems. They are based on the matrix regularisation

of membranes introduced by Hoppe [6] and extended to the supermembrane in [1] and [7].

In the second half of the paper we focus on the BFSS model. However, we dedicate the

earlier sections of the paper to a careful study of the Hoppe regulated bosonic membrane

which is the bosonic part of the BFSS model. This model is also of separate interest since it

is the high temperature limit of maximally supersymmetric 1+1 dimensional SU(N) Yang-

Mills (or matrix string theory) compactified on a circle when the fermions decouple due to

their anti-periodic boundary conditions at finite temperature. The model has been studied

already both theoretically [8] (see also ref. [9]) and numerically [10, 11] and our results are

in accord with these studies. The zero temperature supersymmetric gauge theory has been

studied in a hamiltonian light cone context in ref. [12].

1With a periodically identified lightlike direction for finite matrix size.
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We then continue our study with the BFSS model. This model first emerged as N = 16

supersymmetric Yang-Mills quantum mechanics [13–15], later it arose as the 11-dimensional

supermembrane in Hoppe’s regularization and most recently as the BFSS model [2], a

candidate for a non-perturbative formulation of M-theory, and it also describes the low

energy effective theory of a system of D0-branes [16]. A lattice version of the model which

preserves eight of the sixteen supersymmetries was presented in [17].

Our lattice regularisation of the model follows Catterall and Wiseman [18]. In this

formulation it is clear that the Pfaffian obtained when the Fermions are integrated out can

in general be complex. However, we find that the phase of the Pfaffian is restricted to a

narrow band so that cos(Θpf ) ∼ 1. There is therefore no real phase or ‘sign problem’ as

far as simulations of the model are concerned. We simulate the model using a rational

hybrid monte carlo algorithm (RHMC) and find excellent agreement with results reported

in [18–21] though our values for the energy are slightly higher than those of [19, 21] but

in excellent agreement with predictions of AdS/CFT when leading 1/α′ corrections are

included. Those interested primarily in the supersymmetric model can skip to section 4

for our discussion of the model and results, consulting section 2 for the continuum model

and our notation.

The principal results of this paper are:

• We perform monte carlo simulations of the bosonic BFSS model and measure the

two point correlation function, the mass gap and the eigenvalue distribution of each

matrix. All fit with Gaussian matrix quantum mechanics with the same mass as that

found from the correlation function.

• We derive an effective description of the bosonic model using a 1/p expansion where

p is the number of matrices. The description is in terms of p massive scalar fields that

are gauged under the adjoint action of SU(N) but are otherwise free scalar fields2

• The effective model has a phase transition in the same region as the full model

(see [22]).3

• We study the maximally supersymmetric BFSS model and present arguments showing

that though the lattice model in general has a complex phase, it is only the cosine of

this phase that enters in simulations and the model is such that the angle is restricted

to regions where the cosine is positive hence there is no sign problem in the full model.

• We simulate the model using a Fourier accelerated rational hybrid monte carlo algo-

rithm confirming results found earlier by other groups and find excellent agreement

with predictions of AdS/CFT when subleading 1/α′ corrections are included.

2The relevant results here were previously obtained in [8] which we became aware of these after writing

this article.
3The model can also be interpreted as the high temperature description of the maximally supersymmetric

1 + 1 dimensional Yang-Mills compactified on a circle. In this setting its two transitions are the high

temperature limit of the black hole black string transition in the dual gravity model [24].
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The simulations we report provide a useful test of our code as we proceed to examine

further observables and the inclusion of longitudinal M5-branes or equivalently D4-branes.

Our goal being the Berkooz-Douglas matrix model holographically dual to the backreacted

D0/D4 brane system. Such studies can provide a solid test of the AdS/CFT correspondence

with flavour degrees of freedom, which is a widely used tool for non-perturbative analysis

in flavour dynamics.

The layout of the paper is as follows: in section 2 we introduce the BFSS model

and continue in section 3 with a study of the bosonic part of the model describing our

lattice discretisation and hybrid monte carlo algorithm. We then present our numerical

results for this bosonic model and continue in section 3.5 to develop an expansion for the

model in terms of the inverse of the number of matrices. This leads us to introduce our

effective Gaussian model and compare it with the full model. In section 4 we return to

the supersymmetric model and present our lattice discretisation of this model. We give a

discussion of the phase of the Pfaffian in the model and present our results. The paper

ends with a discussion of our results in section 5.

2 The BFSS model

The BFSS matrix model is a one dimensional supersymmetric Yang-Mills theory naturally

arising in type IIA superstring theory as a low energy effective description of D0-branes. It

is conjectured that in the limit of a large number of D0-branes, N , the model is equivalent

to uncompactified eleven dimensional M -theory [2] while for finite N it corresponds to M -

theory compactified on a light-like circle [3]. The easiest way to obtain the BFSS matrix

model is via dimensional reduction of ten dimensional supersymmetric Yang-Mills theory

down to one dimension. The resulting reduced ten dimensional action is given by [23]:

SM =
1

g2

∫
dtTr

{
1

2
(D0X

i)2 +
1

4
[Xi, Xj ]2 − i

2
ΨTC10 Γ0D0Ψ +

1

2
ΨTC10 Γi[Xi,Ψ]

}
, (2.1)

where Ψ is a thirty two component Majorana-Weyl spinor, Γµ are ten dimensional gamma

matrices and C10 is the charge conjugation matrix satisfying C10ΓµC−1
10 = −ΓµT . We take

a representation for Γµ in terms of nine dimensional (euclidian) gamma matrices γi:

Γi = γi ⊗ σ1 , for i = 1, . . . , 9 ,

Γ0 = 116 ⊗ iσ2 ,

C10 = C9 ⊗ iσ2 , (2.2)

where C9 is the charge conjugation matrix in nine dimensions satisfying C9γ
iC−1

9 = γi
T

and σi are the Pauli matrices. With the following choice for the Majorana-Weyl spinor:

Ψ = ψ ⊗

(
1

0

)
, (2.3)

where ψ is a sixteen component Spin(9) Majorana fermion and Wick rotating to Euclidean

time, we obtain the Euclidean action:

SE =
1

g2

∫
dtTr

{
1

2
(DtXi)2 − 1

4
[Xi, Xj ]2 +

1

2
ψTC9Dtψ −

1

2
ψTC9 γ

i[Xi, ψ]

}
, (2.4)
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which, as is manifest, is Spin(9) invariant. Note: we have not imposed any restriction on

the nine dimensional spinor basis. For example if we choose γi to be in the Majorana

representation (where the nine γi are taken to be real and symmetric) then C9 = 116 and

we arrive at the more standard form for the action (2.4). However, we are interested in

a basis in which the discrete theory is free of fermion doubling, which can be achieved by

taking a basis [18] in which C9 = 18 ⊗ σ1. We will return to this in section 4, where we

consider the discretisation of the full BFSS matrix model.

3 Bosonic BFSS on the lattice

In this section we focus on the bosonic part of the action (2.4) given by:

Sb =
1

g2

∫ β

0
dt tr

{
1

2
(DtXi)2 − 1

4
[Xi, Xj ]2

}
. (3.1)

The zero temperature model was introduced by Hoppe [6] as a gauge fixed and regulated

description of membranes. The model has also been extensively studied in the literature.4

It has been simulated for a first time in refs. [24, 25], where certain aspects of the full model

were described in terms of simple Gaussian model. Its phase structure at finite temperature

has been explored in [8, 10, 22], where the authors found that as the temperature is de-

creased the model first undergoes what is probably a 3rd order deconfining-confining phase

transition into a phase with non-uniform but gapless distribution for the holonomy. As the

temperature is further decreased there is a 2nd order transition to a gapped holonomy with

a quadratic decrease in the internal energy to a constant value for lower temperatures. The

high temperature expansion of the model was developed in [26]. In what follows we will

reproduce the main results of [8, 22] and elaborate on the properties of the theory at zero

temperature. In particular we will provide evidence that the low temperature phase of the

model has an effective description in terms of a free massive scalar which captures many

of the finite temperature features of the model including one of its two phase transitions.

3.1 Discretisation

We discretise time to Λ sites tn = an, (n = 0, . . . ,Λ − 1), where the lattice spacing is

a = β/Λ, and impose periodic boundary conditions identifying the point tΛ = Λa = β with

the point 0. To discretise the covariant derivative Dt we define the transporter fields:

Un,n+1 = P exp

[
i

∫ (n+1)a

na
dtA(t)

]
, (3.2)

where P denotes a path ordered product. Let us consider for a moment the pure derivative

part of Dt. On the lattice we have:

∂tX
i
n →

Xi
n+1 −Xi

n

a
. (3.3)

4The model is also the high temperature limit of 1+1 dimensional N = 8 supersymmetric Yang-Mills on

R× S1 where β is now the period of the S1 and the fermions drop out due to their anti-periodic boundary

conditions at finite temperature.

– 4 –



J
H
E
P
0
5
(
2
0
1
6
)
1
6
7

To make the above expression gauge covariant we have to transport back the field at tn+1

to tn. For the discrete version of the covariant derivative, we obtain:

Dt →
Un,n+1X

i
n+1Un+1,n −Xi

n

a
, (3.4)

where Un+1,n = U †n,n+1. Using equation (3.4) for the discrete bosonic action we obtain:

Sb = N
Λ−1∑
n=0

tr

{
−1

a
Xi
nUn,n+1X

i
n+1U

†
n,n+1 +

1

a
(Xi

n)2 − a

4
[Xi

n, X
j
n]2
}
, (3.5)

where without loss of generality we have taken g = 1√
N

.5 The action Sb can be written in

a much simpler form by using the U(n)Λ gauge symmetry of the model. Indeed, at each

lattice site we have a local U(N) symmetry. Using that symmetry we can perform the

transformation:

X ′
i
0 = Xi

0 , (3.6)

X ′
i
1 = U0,1X

i
1 U
†
0,1 ,

X ′
i
2 = (U0,1U1,2)Xi

2 (U0,1U1,2)† ,

. . .

X ′
i
Λ−1 = (U0,1U1,2 . . . UΛ−2,Λ−1)Xi

Λ−1 (U0,1U1,2 . . . UΛ−2,Λ−1)†

introducing the notation W = (U0,1U1,2 . . . UΛ−2,Λ−1UΛ−1,0) for the bosonic action (3.5)

we obtain:

Sb = −1

a
Ntr

{
Λ−2∑
n=0

X ′
i
nX
′i
n+1 +X ′

i
Λ−1W X ′

i
0W†

}
+N

Λ−1∑
n=0

tr

{
1

a
(X ′

i
n)2 − a

4
[X ′

i
n, X

′j
n]2
}
.

(3.7)

The unitary matrix W has the decomposition W = V DV †, where D = diag{eiθ1 , . . . , eiθN }
is a diagonal unitary matrix and V is a unitary. But the action (3.7) has the residual

symmetry X ′in → V X ′inV
†, which we can use to diagonalise W. Furthermore, it has an

additional symmetry X ′in → hnX
′i
nh
†
n, where hn is a diagonal unitary matrix, which we

can use to “distribute” the diagonal matrix D among all of the hop terms. Indeed, defining

the matrix DΛ = diag{eiθ1/Λ, . . . , eiθN/Λ}, which satisfies (DΛ)Λ = D, one can verify that

under the transformation:

X ′
i
n = (V hn)X̃i

n(V hn)† ,where : hn = (DΛ)n , (3.8)

the action (3.7) transforms into:

Sb[X̃,DΛ] = N
Λ−1∑
n=0

tr

{
−1

a
X̃i
nDΛX̃

i
n+1D

†
Λ +

1

a
(X̃i

n)2 − a

4
[X̃i

n, X̃
j
n]2
}
. (3.9)

5This can always be arranged by an appropriate rescaling of the matrices and the time coordinate and

β becomes the dimensionless temperature parameter λ1/3

T
with λ = g2N the ’t Hooft coupling.
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Now let us discuss the measure of the transporter fields Un,n+1. The measure can be

written as:

Λ−1∏
n=0

DUn,n+1 =
Λ−1∏
n=1

DUn,n+1DU0,1 =
Λ−1∏
n=1

DUn,n+1DW , (3.10)

where we have used that U0,1 =W (U1,2 . . . UΛ−2,Λ−1)† and the invariance of the measure.

But the action (3.9) depends only on the matrix W (in fact only on the eigenvalues of W).

Therefore the integration over the measure of the transporter fields reduces to:

∫ Λ−1∏
n=0

DUn,n+1e
−Sb[X̃,DΛ] = (V olU(N))Λ−1

∫
DWe−Sb[X̃,DΛ] ∝ (3.11)

∝
∫ N∏

k=1

dθk
∏
l>m

|eiθl − eiθm |2 e−Sb[X̃,DΛ(θ)] ∝
∫ N∏

k=1

dθk e
−Sb[X̃,DΛ(θ)]−SFP[θ] ,

where SFP[θ] is given by:

SFP[θ] = −
∑
l 6=m

ln

∣∣∣∣sin θl − θm2

∣∣∣∣ . (3.12)

3.2 Hybrid Monte Carlo

To implement the Hybrid Monte Carlo algorithm it is convenient to work in a gauge in which

the holonomy matrix is non-trivial at only one link (we choose the one connecting sites

zero and Λ− 1). To this end we omit the diagonal matrices hn in the transformation (3.8).

The action (3.9) is then given by:

Sb[X,D] = Ntr

{
−1

a

Λ−2∑
n=0

Xi
nX

i
n+1 −

1

a
Xi

Λ−1DX
i
0D
† +

Λ−1∑
n=0

[
1

a
(Xi

n)2 − a

4
[Xi

n, X
j
n]2
]}

.

(3.13)

The corresponding Hamiltonian for the molecular dynamics part of the HMC algorithm

is then:

Hbos =
1

2

Λ−1∑
n=0

trP in.P
i
n +

1

2

N−1∑
l=0

P ld
2

+ Sb[X,D(θ)] + SFP[θ] , (3.14)

where P in are the canonical momenta corresponding to the hermitian matrices X̃i
n, and pld

are the canonical momenta associated to the angles θl. Hamilton’s equations read:

Ṗ in, lm = −∂Sb/∂X i
n,ml , Ṗ ld = −∂Sb/∂θl , (3.15)

Ẋi
n, lm = P in, lm , θ̇l = P ld ,

– 6 –
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where dots denote derivatives are with respect to the Monte Carlo time. Using equa-

tion (3.13), for the corresponding forces we obtain:

−∂Sb/∂X i
0,ml =

N

a

(
Xi

1 − 2Xi
0 +D†Xi

Λ−1D
)
lm

+Na
[
Xj

0 ,
[
Xi

0, X
j
0

]]
lm

,

−∂Sb/∂X i
n,ml =

N

a

(
Xi
n+1−2Xi

n+Xi
n−1

)
lm

+Na
[
Xj
n,
[
Xi
n, X

j
n

]]
lm

for n=1, . . . ,Λ−2 ,

−∂Sb/∂X i
Λ−1,ml =

N

a

(
DX i

0D
† − 2Xi

Λ−1 +Xi
Λ−2

)
lm

+Na
[
Xj

Λ−1,
[
Xi

Λ−1, X
j
Λ−1

]]
lm

,

−∂Sb/∂θl =
2N

a

N−1∑
m=0

<
(
iX i

Λ−1mlX
i
0 lme

i(θl−θm)
)

+
∑

m,m 6=l
cot

(
θl − θm

2

)
, (3.16)

which we implement in the Hybrid Monte Carlo.

3.3 Phase structure

In this section we reproduce the studies of the phase structure of the bosonic model orig-

inally obtained in [22]. The main observables that we focus on are the internal energy of

the system E, the “extent of space” 〈R2〉 and the Polyakov loop P defined via:

E/N2 =

〈
− 3

4Nβ

β∫
0

dtTr
(
[Xi, Xj ]2

)〉
, (3.17)

〈R2〉 =

〈
1

Nβ

β∫
0

dtTr
(
Xi
)2〉

. (3.18)

P ≡ 1

N
TrU , (3.19)

U ≡ P exp

i β∫
0

dtA0(t)

 , (3.20)

where the holonomy matrix, U , is the continuum limit of the link variable U0,Λ defined in

equation (3.2). The expectation value of the Polyakov loop 〈|P |〉 plays the rôle of an order

parameter for the confining-deconfining phase transition discussed in [22]. In figure 1 we

presented a plot of this order parameter as a function of the temperature. The plot is for

N = 16 and lattice spacing a ≈ 0.05. One can see that near temperature T ≈ 0.90 there

is a phase transition. The change of the slope of the curves and the fluctuations in the

simulations near T ≈ 0.9 is consistent with the existence of a second order phase transition.

In figure 2 we present plots of the energy and “extent of space” as functions of the

temperature, for N = 16 and lattice spacing a ≈ 0.05. The dashed curves represent the

analytical high temperature behaviour obtained in [26]. Our results agree very well with

the corresponding studies in [8, 10, 22].

A more detailed analysis of the temperature range close to the transition revealed

that there are in fact two transitions. To uncover more detail on the nature of the phase

transition the authors of [22] analysed the distribution of the holonomy matrix near the

– 7 –
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Figure 1. A Plot of the expectation value of the Polyakov loop |P | as a function of the temperature,

for N = 16 and lattice spacing a ≈ 0.05. One can see that near T ≈ 0.90 the theory undergoes a

second order phase transition.

0.0 0.5 1.0 1.5 2.0 2.5
6

8

10
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T

EêN
2

0.0 0.5 1.0 1.5 2.0 2.5
2.0

2.5

3.0

3.5

T

XR2 \

Figure 2. Plots of the scaled energy E/N2 and the “extent of space” 〈R2〉 as functions of the

temperature. The dashed curves correspond to the high temperature behaviour obtained in [26].

One can see that near T ≈ 0.9 the plots suggest the existence of a second order phase transition.

The energy and temperature in the plots are in units of λ1/3.

phase transition and uncovered behaviour consistent with the Gross-Witten model [27]

and concluded that the holonomy undergoes a transition from a uniform distribution at

Tc1 ' 0.8758(9) to a gapped distribution at Tc2 = 0.905(2). In figure 3 we present our plots

of the distribution of the holonomy around the phase transition. The dashed curves in the

plot represent fits with the gapped and ungapped forms of the Gross-Witten distribution

which are in excellent agreement with those of [8, 10, 22]. We have not attempted to refine

their results, rather our purpose is to uncover a hidden Gaussian structure in the model.

3.4 Gap and eigenvalue distribution

In this section we investigate the eigenvalue distribution of the scalar fields. We also per-

form studies of the mass of the theory at zero temperature. Our results suggest that at

– 8 –
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Figure 3. Plots of the distribution of the holonomy P for temperatures T = 0.900 (the confined

and ungapped) and T = .9006 (the deconfinied and gapped). The plots are for size N = 16 and

lattice spacing a ≈ 0.05. The dashed curves correspond to fits to the Gross-Witten gapped and

ungapped distributions.

all temperatures the eigenvalue distribution of any one of the Xi is given by a Wigner

semicircle, with a radius Rλ following the temperature behaviour of the observable 〈R2〉.6

Therefore, we conclude that while the radius of the distribution experiences a phase transi-

tion the shape of the distribution remains unchanged. We believe that the main reason for

this behaviour is that for nine scalar fields the commutator squared term can be replaced

and approximated by a quadratic mass term in the spirit of [28], where an expansion at

large number of scalar fields has been developed. Generalising these techniques, we are able

to obtain an estimate of the mass, which agrees very well with both the gap measured from

correlation functions and the radius of the distribution which are obtained from Monte

Carlo simulations.

In the limit of high temperature the model reduces to the 10-dimensional Yang-Mills

matrix model considered in [28]. The obtained behaviour of the radius is in agreement with

the large temperature expansion performed in [26] and provides an analytic approximation

to the leading coefficients in this expansion.

We begin by considering the model at zero temperature. In this case the holonomy can

be completely gauged away and the model simplifies. Furthermore, at zero temperature

the correlator: 〈
Tr
(
X1(0)X1(t)

)〉
∝ e−mt + . . . , (3.21)

captures the gap m = E1 − E0 of the theory. To calculate the gap in the discrete theory,

we periodically identify the time direction with period β:

〈
Tr
(
X1(0)X1(t)

)〉
= A (e−mt + e−m(β−t)) , (3.22)

6The semicircle law implies R2
λ = 4

p
〈R2〉.

– 9 –
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Figure 4. On the left: a plot of the correlator
〈
Tr
(
X1(0)X1(t)

)〉
for N = 30, β = 10 and

lattice spacing a = 0.25. The fitting curve is given by equation (3.22) with A = N
2m(1−e−βm)

and

with parameters m ≈ (1.965± .007)λ1/3 . On the right: a plot of the eigenvalue distribution of one

of the scalars for the same parameters. The fitting curve represent a Wigner-semicircle of radius

Rλ ≈ 1.01 .

Note that although formally β is the same parameter that we have at finite temperature,

since we set the holonomy to zero here its meaning is just a periodic coordinate as opposed

to inverse temperature. Our result for the correlator for N = 30, β = 10 and lattice spacing

a = 0.25 is presented on the left in figure 4. The fitting curve is given by equation (3.22) and

when we perform a two parameter fit we obtain A ≈ 7.50± 0.2 and m ≈ (1.90± .01)λ1/3 .

However, for Gaussian scalar fields of mass m we have A = N
2m(1−e−βm)

and performing a

one parameter fit for m yields m = 1.965 ± 0.007 and A = 7.63 ± 0.03. On the right we

have presented a plot of the eigenvalue distribution of one of the matrices for the same

parameters. The fitting curve represents a Wigner semicircle of radius Rλ ≈ 1.01. The

fact that the theory is gapped and that the eigenvalue distribution is a semicircle suggests

that that at low temperate the model has an effective action:

Seff = N

∞∫
−∞

dtTr

(
1

2
(Ẋi)2 +

1

2
m2(Xi)2

)
(3.23)

for each of the matrices Xi. It is well known [29] that for the action (3.23) the eigenvalue

distribution of X is given by a Wigner semicircle of radius:

Rλ =

√
2

m
≈ 1.009± .002, (3.24)

where we have substituted m ≈ 1.965 ± .007. This agrees nicely (within errors) with the

result for Rλ ≈ 1.01 obtained by fitting the actual distribution. It is also in excellent

agreement with the large p theoretical prediction of [8],

Rλ(p) =

√
2

p1/3

(
1 +

1

p

(
7
√

5

30
− 9

32

)
+ · · ·

)
' 1.0068 (3.25)
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3.5 1/D expansion

Adapting the techniques developed in [28] to the time dependent case that we are consider-

ing we can obtain a theoretical estimate of the radius at low temperature.7 Let us consider

again the action of the bosonic model (3.1):

Sb = N

∫ β

0
dt tr

{
1

2
(DtXi)2 − 1

4
[Xi, Xj ]2

}
, (3.26)

where we have rescaled so that β = λ1/3

T (effectively we set g = N−1/2). The commutator

square term can be written as:

Tr[Xi, Xj ]2 = Tr
(

[ta, tc][tb, td]
)
Xi
aX

i
bX

j
cX

j
d = λabcdXi

aX
i
bX

j
cX

j
d , (3.27)

where ta are SU(N) generators normalised to Tr tatb = δab and the tensor λabcd is given by:

λabcd =
1

2
Tr
(

[ta, tc][tb, td] + [ta, td][tb, tc]
)
, (3.28)

It is convenient also to define the inverse kernel of λabcd satisfying:

µabcd λ
cdef = δeaδ

f
b , λabcd µcdef = δae δ

b
f . (3.29)

We will also use the identities:

λabcd δcd = −2N δab , µabcd δ
cd = − 1

2N
δab . (3.30)

The action (3.26) can then be written as:

Sb = N

∫ β

0
dtTr

(
1

2
(DtXi)2

)
− N

4
λabcd

∫ β

0
dtX i

aX
i
bX

j
cX

j
d . (3.31)

Our next step is to add to the action the term:8

∆S =
N

4
µabcd

β∫
0

dt
(
kab + λabefXi

eX
i
f

)(
kcd + λcdghXi

gX
i
h

)
, (3.32)

the action S′b = Sb + ∆S then becomes:

S′b =
N

2

∫ β

0
dt
{

Tr(DtXi)2 + kabXi
aX

i
b

}
+
N

4
µabcd

β∫
0

dt kabkcd . (3.33)

Next we define:

k ij,lm ≡ taij kab tblm , (3.34)

7The next order corrections for the current model were computed in [8] but we were unaware of this

work at the time of writing.
8Note that we can always add this term since

∫
Dk e−∆S = const.
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From the definition of kij,lm it follows that it is traceless with respect to the first and

the second pair of indices and we can invert: kab = taij kji,ml t
b
lm. Substituting in the

action (3.33), Fourier transforming (via X =
∑

n e
i 2πn
β
t
X̃n) and assuming kab is time inde-

pendent we obtain:

S′b =
N

2

∞∑
n=−∞

X̃−n, ij

((
2π n+ θi − θj

β

)2

Pjl,ml + kjl,ml

)
X̃n, lm +

β N

4
µabcd k

abkcd , (3.35)

where we have defined the projector on traceless matrices:

Pij,lm = taij t
a
lm = δimδjl −

1

N
δijδlm (3.36)

and assumed that k is constant. Defining also the double index matrix:

W (n)ij,lm ≡
(

2π n+ θi − θj
β

)2

Pjl,ml + kjl,ml , (3.37)

we can integrate out the X’s:∫
DX Dk e−S′b ∝

∫
Dk

∏
n

Det−p/2 (P.W (n).P ) e−
β N

4
µabcd k

abkcd . (3.38)

The effective action for the field k then becomes:

Seff [k] =
p

2

∑
n

Tr log (P.W (n).P ) +
β N

4
µabcd k

abkcd . (3.39)

We now notice that the first term in the expression for the matrix W (3.37) commutes

with the projector P . It is natural then to consider an ansatz for k which also has this

property. Thus we consider:

kij,lm ≡ kij Pij,lm = Pij,lm klm (3.40)

The last equality is possible only if all diagonal components of kij are the same (namely

kii = kjj for all i, j) we also choose kij to be symmetric. Then:

W (n)ij,lm = ∆ij(n)Pij,lm = Pij,lm∆lm(n) , (3.41)

∆ij(n) ≡
(

2π n+ θi − θj
β

)2

+ kij ,

and we have for all powers r that (P.W (n).P )rij,lm = Pij,lm (∆ij(n))r. Therefore,

Seff [k] =
p

2

∑
n

∑
ij

Pij,ji log(∆(n)ij) +
β N

4
µabcd k

abkcd . (3.42)

The corresponding saddle point equation S′eff [k] = 0 becomes:

p

2

∑
n

Pij,ji(
2π n+θi−θj

β

)2
+ kij

+
β N

2
µabcd k

abtcijt
d
ji = 0 . (3.43)
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We can now sum the series to obtain:

p√
kij

sinh
(
β
√
kij
)

cosh
(
β
√
kij
)
− cos(θi − θj)

Pij,ji + 2Nµabcd k
abtcijt

d
ji = 0 . (3.44)

In principle we can solve for kij in terms of θi − θj , but we will restrict ourselves to

extracting the low temperature dependence. The first term in equation (3.44) has the

following expansion:

sinh
(
β
√
kij
)

cosh
(
β
√
kij
)
− cos(θi − θj)

= 1 + 2 cos(θi − θj) e−β
√
kij +O

(
e−2β

√
kij
)

(3.45)

One can see that the effect of the holonomy is exponentially suppressed at low temperature.

To leading order we can then consider a symmetric ansatz kij = k0, which also implies

kab = k0 δ
ab. We obtain:

p√
k0
Pij,ji − k0 Pij,ji = 0 ∴ k0 = p2/3 . (3.46)

Substituting into the action (3.33) to leading order we obtain:

Sb = N

∞∫
−∞

dtTr

(
1

2
(Ẋi)2 +

p2/3

2
(Xi)2

)
(3.47)

and the corresponding radius of the eigenvalue distribution is:

R0 =

(
8

p

)1/6

≈ 0.98 . (3.48)

This result agrees within a few percent with Rλ ≈ 1.01 obtained by fitting the distribution

in figure 4.

The exponential suppression of the holonomy corrections to the low temperature saddle

point for kab suggest that a lot of the physics of the model (at least at low temperature)

can be captured by the action:

Sb = N

β∫
0

dtTr

(
1

2
(DtXi)2 +

m2

2
(Xi)2

)
, (3.49)

where we restored the gauge field in the covariant derivatives. Surprisingly this model

knows lots about the phase transition of the full model. An analysis similar to that above

shows that the critical temperature for p adjoint gauged Gaussian matrices as in [9] with

mass m occurs at TGaussian
c = m

ln p which for m = 1.965 yields Tc = 0.8943 and for m = p1/3

yields Tc = 0.9467. In figure 5 we have presented our results for the energy and the

Polyakov loop. Note that in this approximation the scaled energy E/N2 is equal to the

extent of space 〈R2〉. The plots are for m = 91/3, N = 32 and lattice spacing a ≈ 0.05.

One can see that both the energy and the Polyakov loop exhibit the same behaviour as for

the full model. There seems to be a phase transition taking place at T ≈ .95 appearing
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Figure 5. On the left: a plot of the energy of the gauged gaussian model for N = 32 lattice spacing

a ≈ 0.05. The red curve represents Wigner semicircle. On the right: a plot of the expectation value

of the Polyakov loop for m = 91/3, N = 32 lattice spacing a ≈ 0.05. The second order phase

transition takes place at T ≈ 0.95. The energy and temperature in the plots are in units of λ1/3.

to be of a second order. It is slightly shifted towards high temperatures relative to the

critical temperature for the full model. If instead of mass m = p1/3λ1/3 we use the value

m ' (1.90 ± .01)λ1/3 the phase transition is shifted in the opposite direction (just bellow

T = 0.9). This indicates that if one fits the mass parameter one can improve even further

the agreement of the gauged gaussian model and the full one. The dashed curve in the

second plot is the theoretical prediction for the high-temperature behaviour of the Polyakov

loop, again one can observe a very good agreement. The high temperature behaviour of

the energy on the other side disagrees with the corresponding behaviour of the full model.

This is not surprising since we derived the effective action at low temperature and the

behaviour at high temperature is dominated by the highest power of the potential which

has been changed from quartic to quadratic. One can also see that at low temperature the

energy remains constant.

In figure 6 we have presented a plot of the energy versus the temperature zoomed in

near the phase transition. The dashed curve represents a fit with:

E − ε0 = C(T − T0)2 (3.50)

with parameter T0 ≈ 0.896. Note that although this seems to indicate the presence of a

separate third order phase transition, there is not enough evidence to support that. It is

also possible that two apparent phase transitions signal the presence of a single first order

phase transition, numerically it is difficult to exclude such a possibility.

One can perform the large p analysis (see [28]) in the high temperature limit where the

model now has p+ 1 matrices (the holonomy becomes the additional matrix) and predict

that the model in this limit again becomes Gaussian but now the field kab includes the

holonomy and the saddle becomes kab =
√
p+ 1δab which again predicts a Gaussian matrix

model with a high temperature effective action Seff =
√
p+1
2 Tr((Xi)2) and consequently a

Wigner semicircle distribution for the eigenvalues of Xi.

We conclude this section by presenting results for the eigenvalue distribution of Xi

for the gauged gaussian model at finite temperature. In figure 7 we presented plots of the

distribution for T = 0.2, N = 30 (left) and T = 5.0, N = 30 (right). The red dashed curves

– 14 –



J
H
E
P
0
5
(
2
0
1
6
)
1
6
7

0.89 0.90 0.91 0.92 0.93 0.94 0.95

2.16

2.18

2.20

2.22

2.24

2.26

2.28

2.30

T

EêN
2

Figure 6. A zoomed in plot of the energy versus the temperature. The dashed curve represents

a fit to equation (3.50) with T0 ≈ 0.896.
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Figure 7. On the left: a plot of the eigenvalue distribution for Xi for N = 30, T = .2 and lattice

spacing a = .25. The red curve represents Wigner semicircle. On the right: a plot of the eigenvalue

distribution for N = 30, T = 5.0 and lattice spacing a = .05. Again the red curve represents Wigner

semicircle.

show a Wigner semicircle. One can see that the shape of the eigenvalue distribution does

not change with temperature.

4 The supersymmetric model on the lattice

In this section we consider the full supersymmetric BFSS model on the lattice. The model

has been simulated using a non-lattice approach in [19] and using lattice discretisation

in [18] and [21]. The main goal of these studies has been to compare the low temperature

regime of the model to the holographically dual black hole geometry. The authors of

refs. [19] and [21] also compared the high temperature regime of the model with the high

temperature expansion performed in [26]. Our goal is to reproduce some of these studies

and calibrate our code.
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A naive discretisation of the action (2.4) would result in a fermion doubling. This can

be avoided [18] if the charge conjugation matrix is taken to be C9 = 18⊗σ1.9 Constructing

a basis for which C9 is of this form is relatively straightforward. For example one can

tensor up the Majorana basis in seven euclidean dimensions γ̃aE :

γa = −γ̃aE ⊗ σ3 , for a = 1, . . . , 7 ,

γ8 = 18 ⊗ σ2 ,

γ9 = 18 ⊗ σ1 , (4.1)

and verify that indeed C9 is of the desired form (it also satisfies C9 = γ9). We next proceed

in discretising the action (2.4). Since the bosonic part of the action is identical to the one

considered in section 3, we will consider only the fermionic part of the action:

Sf =
1

2g2

∫
dτ tr

{
ψαC9αβ Dτψβ − ψα(C9γ

i)αβ [Xi, ψβ ]
}
. (4.2)

We begin by splitting the fermions into two eight component fermions: ψ = (ψ1, ψ2) and

defining the forward and backward derivatives D±:

(D−W )n = (Wn − Un,n−1Wn−1Un−1,n)/a ,

(D+W )n = (Un,n+1Wn+1Un+1,n −Wn)/a . (4.3)

One can show that the discretised kinetic term then becomes:

Skin
f =

1

2g2

∫
dt tr

(
ψαC9αβ Dtψβ

)
=

a

2g2

Λ−1∑
n=0

tr
{
ψT1,n(D−ψ2)n + ψT2,n(D+ψ1)n

}
= (4.4)

=
1

g2
tr

{
−

Λ−1∑
n=0

ψT2,nψ1,n +
Λ−2∑
n=0

ψT2,nUn,n+1ψ1,n+1Un+1,n ± ψT2,Λ−1UΛ−1,0ψ1,0U0,Λ−1

}
,

where the plus/minus sign in the last term corresponds to periodic/anti-periodic boundary

conditions for the fermions.10 Using the gauge from the previous subsection when the

holonomy is concentrated on a single link we can write Skin
f as:

Skin
f =

1

g2
tr

{
−

Λ−1∑
n=0

ψT2,nψ1,n +

Λ−2∑
n=0

ψT2,nψ1,n+1 ± ψT2,Λ−1Dψ1,0D
†

}
. (4.5)

Since all fields transform in the adjoint of SU(N) instead of dealing with matrices we can

use the corresponding real components: Xa = tr(taX) and ψa = tr(taψ), where ta are the

standard basis of SU(N) (introduced earlier) normalised as tr tatb = δab. Skin
f can then be

written as:

Skin
f =

1

g2

N2−1∑
a,b=0

Λ−1∑
m,n=0

8∑
α=1

ψα+8
m,aK

ab
mnψ

α
n ,b , (4.6)

Kab
mn = (δm+1,n − δm,n)δab ± δm,Λ−1δn,0 d

ab (4.7)

dab = tr
(
taD tbD†

)
. (4.8)

9It is analogous to using staggered fermions, which in one dimension completely removes the doublers.
10Namely the conditions ψ−1 = ±ψΛ−1 and ψΛ = ±ψ0. We use the negative sign since the system is at

finite temperature.
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where the plus/minus sign corresponds to periodic/ant-periodic boundary conditions. The

kinetic term can also be written as:

Skin
f =

N2−1∑
a,b=0

Λ−1∑
m,n=0

16∑
α,β=1

ψαm ,aMkin
mn,αβ,ab ψ

β
n ,b (4.9)

Mkin
mn,αβ,ab =

1

2g2

(
08 −Kba

nm

Kab
mn 08

)
αβ

. (4.10)

Discretising the potential part of the action is straightforward. One obtains:

Spot
f =

N2−1∑
a,b=0

Λ−1∑
m,n=0

16∑
α,β=1

ψαm ,aM
pot
mn,αβ,ab ψ

β
n ,b (4.11)

Mpot
mn,αβ,ab =

1

2g2
a ifabc (C9γ

i)αβ X
c,i
n δn+m,0 . (4.12)

Finally, defining:

Mmn,αβ,ab =
1

2g2

(
08 −Kba

nm

Kab
mn 08

)
αβ

+
1

2g2
a ifabc (C9γ

i)αβ X
c,i
n δn+m,0 . (4.13)

We can write:

Sf = ψTMψ . (4.14)

4.1 The Pfaffian phase is not a problem!

Integrating out the Fermions, the partition function of the model can be written as:

Z ∝
∫
DX Dψ e−S[X,ψ] ∝

∫
DX Pf(M) e−Sbos[X] (4.15)

Observe thatM is the sum of an anti-hermitian kinetic term and a hermitian potential and

M†(X) = −M(−X). Also because the Bosonic action is symmetric in X the Pfaffian in the

partition function can be replaced by |Pf(M)| cos(ΘPf ). Now as long as −π
2 < ΘPf <

π
2

the cosine is positive and the effective action defines a true probability distribution given by

Seff = Sbos[X]− ln |Pf(M)| − ln cos(ΘPf ) (4.16)

In figure 8 we present a plot of the phase of the pfaffian of the fermionic matrix for

N = 3 and four lattice points.11 One can see that the cosine remains positive. We believe

that the drop in the cos θ curve at very low temperatures is a lattice effect and is not

present in the continuum limit. Our results show a very good agreement with the earlier

studies of ref. [30].

11Note that to control the flat directions at low temperature we have added a small mass for the

bosonic field.
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Figure 8. A plot of the phase of the pfaffian of the fermionic matrix for N = 3 and Λ = 4. One

can see that the phase remains small for all temperature, but drops at very low temperatures. We

believe that this is a lattice artifact and is not present in the continuum limit. The flat directions

are controlled with a small mass regulator at low temperature.

4.2 RHMC and fermionic forces

The next step is to apply the RHMC method [31] to the model. To this end we need the

so called fermionic forces. Let us summarise briefly the philosophy.

As we have shown above the model does not suffer from a severe sign problem and so

we ignore the phase of the Pfaffian and use that:

|Pf(M)| = det(M†M)1/4 , (4.17)

to write

Z ∝
∫
DX Dξ†Dξ e−Sbos[X]−Sps.f , (4.18)

where

Sps.f ≡ ξ† (M†M)−1/4ξ . (4.19)

Here ξ is a 16(N2
c − 1)Λ dimensional vector consisting of the pseudo-fermionic fields. The

idea of the RHMC is to approximate the rational exponent of the matrix M†M with a

partial sum:

(M†M)δ = α0 +

#∑
i=1

αi (M†M+ βi)
−1 , (4.20)

where the parameters α0, αi, βi and # depend on the rational exponent δ, the spectral

range of the matrixM†M and the desired accuracy. We will need two rational exponents.

To update the pseudo fermions we use that the field η ≡ (M†M)−1/8ξ has a gaussian

distribution and solve for ξ = (M†M)1/8 η using a multi-shift solver. Therefore, δ = 1/8

is one of the rational exponents that we need. To calculate the fermionic forces and the

contribution to the hamiltonian we need to invert (M†M)−1/4 and the second exponent

is δ = −1/4.
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Let us elaborate on the computation of the fermionic forces. We have two type of

forces: gradients with respect to Xn ij and gradients with respect to the phases of the

links θi. Using the partial expansion (4.20), one can easily derive an expression for the

derivatives of the fermionic action:

∂Sps.f

∂u
= −

#∑
i=1

αi ξ
†(M†M+ βi)

−1 ∂(M†M)

∂u
(M†M+ βi)

−1ξ

= −
#∑
i=1

αi h
†
i

∂(M†M)

∂u
hi , (4.21)

where hi satisfy (M†M+ βi)hi = ξi and are obtained from the multi-solver.

4.3 Simulation results

In this subsection we provide our results from the Monte Carlo simulation of the model.

We focus on the same observables that we analysed for the bosonic model in section 3.3.

The definitions of the extent of space 〈R2〉 and the expectation value of the Polyakov loop

P remain the same. The expression for the internal energy is [18]:12

E

N2
= − 3T

N2

(
〈Sbos〉 −

9

2
Λ (N2 − 1)

)
, (4.22)

We have simulated the following configurations. For temperatures T > 2 we have used

N = 8 and Λ = 8. For the region 1 ≤ T ≤ 2 we have used N = 8 and two or three

different sizes of the lattice (for each point) in the range 8 ≤ Λ ≤ 16. (For T = 1 we

also went to Λ = 32). For temperatures lower than one we have used N = 10, 12, 14 and

two lattice sizes per point Λ = 8, 16. For all temperatures the Polyakov loop is largely

independent on the lattice spacing. The extent of space also experiences very weak lattice

effects. However, this is not the case for the internal energy and even for temperatures

as high as T = 2 lattice effects can be a factor. In figure 9 we present our results for the

energy at T = .9, 1.0 for different lattice spacing. One can see that the lattice effects die out

linearly, which allows us to extrapolate the energy to zero lattice spacing. Our results for

the internal energy are summarised in figure 10. The dashed curve at high temperatures is

the theoretical curve obtained in the high temperature expansion. The dashed curve at low

temperature represents the prediction of gauge/gravity.13 The model becomes unstable for

small matrix sizes N , an effect which has been related to Hawking radiation in the dual

gravitational theory [30, 32]. To compare with the gauge/gravity predictions one needs to

consider large matrices. Simulations with large matrix sizes is computationally expensive

and as a result our low temperature data is still preliminary. However, even at this point

we have excellent overall agreement with the studies of [19] and [21].

12Note that this expression is also valid for the bosonic model. The result can be obtained by rescaling the

fields such that the kinetic term is temperature independent and removes any temperature dependence from

the measure (the Van Vleck Morette determinant generically depends on temperature). Then differentiating

with respect to temperature and using the Ward identities associated with the total number of degrees of

freedom yields this result.

13We have used the α′ corrected expression 1
N2

E

λ1/3 = 7.41
(

T

λ1/3

) 14
5 − 5.58

(
T

λ1/3

) 23
5

obtained in [20].
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Figure 9. Scaling of the internal energy with the lattice spacing for temperatures T = 0.9, 1.0

and N = 10. One can see that the lattice effects die our linearly, which allows extrapolation of the

zero lattice spacing result.
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Figure 10. Results for the internal energy for 8 ≤ N ≤ 14 and 8 ≤ Λ ≤ 16. The dashed curve

at high temperature corresponds to the theoretical results of [26], while the low temperature curve

represents the prediction for the internal energy from the AdS/CFT correspondence.

Finally, in figure 11 we present our results for the Polyakov loop and the extent of

space. Again the dashed curve represents the high temperature theoretical result obtained

in [26]. One can see the excellent agreement at high temperatures. Our result for these

observables agree with the previous studies preformed in [18–20] and [21].
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Figure 11. Plots of the expectation value of the Polyakov loop 〈|P |〉 and the extent of space 〈R2〉
as functions of temperature. The dashed curves represent the predictions of the high temperature

expansion.

5 Discussion

In this paper we have analysed both the purely Bosonic and the supersymmetric BFSS

models. These are “Hoppe” regulated membranes and one would expect that in the large

N limit when the regulator is removed that they describe the full quantum dynamics of

these membranes. Surprisingly we found that the bosonic model, for sufficiently large

embedding dimension reduces to a system of p-massive free bosons with the mass given

by m ∼ p1/3. For p = 9 we performed detailed simulations of the model evaluating both

the fall off of the correlation function and the eigenvalue distribution of the Xi fit with

a Wigner semi-circle both of which give a consistent mass m ' (1.965 ± .007)λ1/3. This

is a fundamental non-perturbative result and gives the mass gap in the full Hamiltonian

of the model.

The correspondence of the full model and our gauged Gaussian model is excellent for

a wide range of temperatures. Somewhat surprisingly the phase transition region of the

full model is faithfully reproduced by the effective model with the two transitions of the

full model merged into one. Since the finite temperature version of the model is also the

high temperature limit of 1 + 1 dimensional maximally supersymmetric Yang-Mills [24]

compactified on a circle, we have established that this latter model should also reduce to

a system of free massive scalars in its large radius high temperature phase.

We then study the full supersymmetric BFSS model using a rational hybrid monte

carlo simulation with Fourier acceleration to evaluate observables of the model. After

describing our lattice discretisation of the model we investigated the phase of the Pfaffian

obtained on integrating out the Fermions. The Pfaffian is generically complex, however,

its phase is in fact not a problem for simulations. What enters simulations is the cosine

of this phase and in the regularisation used in our work this phase is in fact restricted to

a region where the cosine is positive once the lattice spacing is sufficiently small. Direct

measurements confirm that the phase is indeed small.

Though our results for this part of the paper do not yet go beyond those of [19] or

cover as low a temperature as those of [21] they are more precise than those of Catterall
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and Wiseman [18] who use a similar lattice simulation. We have taken several lattice

spacings and then performed an extrapolation to the limit of zero lattice spacing. We

find good agreement with earlier results and excellent agreement with the predictions of

gauge/gravity once 1/α′ corrections are included. Our results appear to approach the

predictions of gauge/gravity a little more closely than those of [19] but the difference

is broadly within the errors. The principal difficulty in simulating the model at lower

temperatures is due to critical slowing down and though Fourier acceleration helped for T '
0.5, simulations become increasingly more difficult at lower temperatures. An additional

difficulty is the instability due to flat directions, which require increasingly larger matrix

sizes as the temperature is reduced.

One of the principal aims of this work was to check the claims of previous work and

in particular those on the absence of a complex phase problem. We were also interested

in calibrating our code as we extend it to include systems with D4-branes. The exten-

sion to such systems will allow us to perform more extensive tests of the gauge/gravity

correspondence.
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