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1 Introduction

The commutation relations of local operators are a canonical avatar of causality. At time-

like separation one operator can have a causal affect on another, leading to non-vanishing

commutators. However, such commutators are not necessarily large: the death of a single

butterfly is unlikely to affect the outcome of a presidential election. It is only in some

theories that chaos is generic and large commutators of local operators are the rule rather

than the exception [1–9]. Recently, it has been conjectured that theories dual to gravity

are in a sense as chaotic as possible [10, 11] and the rate of growth of commutators of local

operators saturate a general upper bound on all theories.

Virasoro conformal blocks are a useful tool for studying this conjecture in greater

depth, since they encapsulate the effect of multi-graviton exchanges in AdS3. The fact

that all graviton excitations are related to the vacuum by Virasoro symmetry renders their

effect computable in principle, and a number of methods allow them to be computed in

practice in various expansions. Most relevantly for gravity, their large c expansion is dual

to a large mpl limit [12–22]. In fact, as we will review, it is only in such a large c limit that

the bound of MSS [10] takes a sharp form,

|Ḟ (t)| ≤ 2π

β
(1− F (t) + ε) , (1.1)

where F is a certain out of time ordered correlator of local operators, β−1 is the tempera-

ture, and ε is a small correction containing non-universal terms that vanishes at c → ∞.1

1The correction ε is in a sense time-dependent, but it is convenient to define it to be time-independent

by taking it to be the supremum of the correction over the time region of interest.
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The bound holds for times t > td where td ∼ β is a dissipation time scale. We will be

interested in times t < t∗, where t∗ ∝ log(c) � td is the scrambling time defined by

|1− F (t∗)| ∼ 1.

At leading order in 1/c, the out of time order correlator can be computed in gravity

duals [11], and has been found to saturate the bound in a specific regime. In any regime

t ∈ (td, tf ) where 1− F (t) grows exponentially we may write

1− F (t) = AeλLt, (t1 ≤ t ≤ t2), (1.2)

the bound (1.1) is conveniently stated as a bound on the exponent λL,

λL ≤
2π

β

(
1 +

ε

A
e−λt2

)
. (1.3)

The size of ε depends on the regime of interest; we will see in section 2 that for t & β,

one has ε ∼ c−1, whereas for t & β
2π log c one has ε ∼ c−3. In the main regime of interest,

λL is called the Lyapunov exponent. All of A, ε, and t2 ∼ β
2π log c depend on c, but at

c → ∞ their combination vanishes, and the leading large c value λL = 2π
β in gravity

theories saturates the resulting bound.

The main goal of this paper is to explore the purely gravitational quantum correction

to the growth of 1− F (t), which we will study by analyzing the Virasoro vacuum block at

higher orders in 1/c. Using recent results [12–16, 18–20, 23], we directly compute F (t) and

find in the regime β . t ∼ β
2π log c that there are corrections of the form

1− F (t) = Ae
2π
β
t
(

1 +
2π

β

δ

c
t+ . . .

)
, (1.4)

where δ is a pure number independent of the conformal weights of the operators, say W

and V , in the correlator F (t). At leading order in 1/c, we find

δ = 12 +O
(

1

c

)
. (1.5)

The form of the correction looks like a perturbative correction to the exponent

λL ≈
2π

β

(
1 +

12

c

)
. (1.6)

In forthcoming work [20], we will explore higher order corrections in 1/c in more detail,

and prove that higher order corrections in 1/c exponentiate.

Since the real part of δ is positive, this naively looks like a violation of (1.3). However,

one has to be more precise both about the extra terms . . . in (1.4) and about the small

non-universal correction factor ε. In our review of the proof in [10], we will emphasize that

it is consistent with δ having either positive or negative sign at early t & td, the dissipation

time. In fact, the positive anomalous dimension (1.5) will be allowed for different reasons

in different regimes: for t ∼ β, we will see that the factor ε is sufficiently large to allow for

the anomalous dimension (1.5), whereas for t ∼ 2π
β log c, the correction terms . . . contain

additional contributions to the growth of 1 − F that are not of the form of an anomalous

dimension and are parametrically larger, bringing the rate of growth below the bound.

– 2 –
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Figure 1. This figure depicts the various regimes of the out of time order correlator Fβ of

equation (2.1). At early times t ∼ β we expect 1 − Fβ . 1
c ; this quantity subsequently grows

exponentially with Lyapunov exponent λL until a scrambling time of order t∗ ≈ β
2π log c.

The outline of the paper is as follows. In section 2, we review the recent proof in [10],

framing it in language closer to that of the conformal bootstrap, and focusing on the

potential for 1/c corrections in CFT2. In section 3, we present our computation of the

1/c correction from gravity. In section 4, we discuss the regime in which the Virasoro

vacuum block is expected to dominate the answer, and the relation to various regimes of

bulk physics in the gravity dual. In particular, we explore connections between bounds on

chaos and bounds from causality and unitarity in both flat space scattering and AdS/CFT.

Finally, in section 5, we discuss possible implications and future directions.

2 Lyapunov exponents and bounds

We will be studying thermal correlators with various time orderings in order to define the

Lyapunov exponent λL, a measure of the onset of chaos. Throughout the paper V and

W will be local primary operators in a CFT2. Much of the discussion will be a review of

the setup [10, 24] and various analytic continuations and coordinate choices [25, 26]. But

we will streamline the derivation of the bound [10] by specializing to the case of CFTs,

and we will be very precise about potential 1/c corrections, which we will compute in

subsequent sections.

2.1 Review of the kinematics

We would like to study a finite temperature correlator probing chaos in CFTs. Perhaps

the most natural observable would be a squared commutator, but to connect more closely

with [10] we will study a related out of time order correlator of two local operators V and

W in a thermal background:

Fβ(xi) = 〈V (x1)W (x3)V (x2)W (x4)〉β . (2.1)

In the Euclidean regime, all local operators commute, but in the Lorentzian regime the

operator ordering of equation (2.1) is important. Any Lorentzian operator ordering can be

– 3 –
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Figure 2. The figure on the left shows a choice of locations for V and W [24] in the Euclidean

plane at Lorentzian t = 0. The distance between the two V and the two W is small, regulated by

εi − εj . On the right we have a cartoon of the configuration at finite x, t from the perspective of

AdS3/CFT2. This configuration has the physically intuitive advantage that all operators are on

the same side of a single black brane in the Poincaré patch.

obtained from the Euclidean correlator by analytically continuing through a sequence of

branch cuts.

We will mainly be interested in 2d CFTs, where we have two advantages: we can

connect correlators in the plane to finite temperature correlators via a conformal trans-

formation, and we can use the Virasoro algebra to uniquely determine certain universal

contributions to any correlator. Note that the finite temperature T = 1/β breaks both

conformal and Lorentz invariance. The temperature is the unique dimensionful quantity

in our setup, so its numerical value is irrelevant as long as T 6= 0.

From the AdS perspective, chaos arises from scattering near the horizon of a black

hole. It is possible to make a choice of coordinates [24] for Fβ(xi) that emphasizes this

aspect of the physics, as suggested by figure 2. However, this choice introduces additional

parameters to define the distance between the V V and WW operator pairs, and so we will

instead use a technically more convenient choice2 of coordinates [10, 11] where the V V and

WW separations are proportional to β, as displayed in the Euclidean plane in figure 3.

Note that unlike in conventional radial quantization, the Euclidean time tE plays the role

of an angular coordinate with thermal period β. This choice has a natural correspondence

with the ρ coordinates [27], which provide the largest possible radius of convergence for

the conformal block decomposition in a general spacetime dimension. The ρ coordinates

map the z coordinates on the plane3 to the unit disk:

ρ(z) =
z

(1 +
√

1− z)2
. (2.2)

In other words, the operators are located at ±1 and ±ρ, as shown in figure 3. The region

of convergence of the V V OPE is |ρ| < 1, corresponding to the entire cut z-plane.

2For another recent discussion see [26].
3Where the operators are located at 〈O(∞)O(1)O(z)O(0)〉.
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Figure 3. This figure shows the locations of the operators in the correlator Fβ(xi). We work at

finite temperature, so the Euclidean time tE is an angular variable with period β. On the left we

have a general Euclidean configuration in the ρ coordinates of equation (2.2), while the on the right

is the Lorentzian t = 0 slice of the configuration relevant to the study of chaos, with operators

spaced out over β/4 intervals in Euclidean time.

Thus we will follow the authors of [10, 11], who considered the four-point func-

tion Fβ(xi) with the operators spread out around the thermal cycle, at Euclidean times

τ1 = β/4, τ2 = 3β/4 and τ3 = 0, τ4 = β/2. At finite Lorentzian time t and spa-

tial separation x, we take the coordinates on the plane to be x1, x̄1 = ±ie2πβ−1(±t−x),

x2, x̄2 = ∓ie2πβ−1(±t−x), x3, x̄3 = 1, x4, x̄4 = −1. As is evident from figure 3, the V V and

WW OPEs only converge for x > 0; the regime of large x is an OPE limit, and at large

Lorentzian t it is a lightcone OPE limit [28, 29]. The conformal transformation from the

plane to the thermal cylinder also requires us to multiply the correlator in the plane by a

simple overall factor [24].

We can view the correlator Fβ(xi) as the overlap between the states V (x2)W (x4)|0〉
and W †(x3)V †(x1)|0〉, with the physical intuition that at large times chaotic dynamics

should make these states very different. We will not be focused on the asymptotically large

t behavior of equation (2.1), but in its behavior at intermediate times β � t � t∗, where

t∗ is referred to as the scrambling time. In other words, we are interested in the initial

development of chaos, and the analysis can only apply to theories with t∗ � β. For our

purposes t∗ = β
2π log c where c is the central charge of a CFT.

Normalizing to the disconnected correlator, we therefore expect that in the regime

β � t� t∗ with t > x we have

Fβ(xi)

〈V (x1)V (x2)〉〈W (x3)W (x4)〉
≈ 1− κ

c
eλL(x)t + · · · (2.3)

where κ is a c-independent constant that depends on the kinematics and the properties of V

and W . The exponential behavior, which is expected if the divergence of nearby trajectories

is proportional to their separation in phase space, defines the Lyapunov exponent λL(x).

We have emphasized that the exponent may depend on the spatial separation x between the

pairs of operators V V and WW . Stringy corrections [11] provide an explicit and physically

interesting example where the Lyapunov exponent depends on x.

– 5 –



J
H
E
P
0
5
(
2
0
1
6
)
0
7
0

W (1)

V (z)

V (0) W (1)

Figure 4. CFT 4-point correlators can have branch cuts between their OPE singularities at 0, 1,

and ∞. This figure shows the analytic continuation in the z plane necessary to obtain the out of

time order correlator of equation (2.1). While z pases through the branch cut extending from 1 to

∞, the z̄ variable remains on the original sheet.

We will see in section 3 that at the higher order in 1/c, there are corrections to

equation (2.3) that can be naturally interpreted as a 1
c shift in λL. However, there are also

other corrections, such as a term 1
c2
eλ
′t, which are of equal or greater numerical importance

in the regime β � t� t∗.

2.2 A bound on the Lyapunov exponent and 1
c

corrections

Now we will discuss the correlator (2.1) and review the bound on its growth. As pictured

in figure 3, we use coordinates

ρ = ie
2π(t−x)

β , ρ̄ = −ie
2π(−t−x)

β . (2.4)

At t = 0 and x large, the two insertions of V come very close to each other in the Euclidean

regime, and so the correlator is controlled by the Euclidean OPE limit; in this regime,

z ≈ 4ie
− 2πx

β . We will mainly consider the regime of large x and positive t, so that ρ̄ stays

very small and well within the radius of convergence of the sum over blocks. This is a

lightcone OPE limit [28, 29]. What this means in practice is that contributions from the

lowest-twist operator in the sum over blocks will dominate the correlator.4

As we increase t to values larger than x, the ρ variable passes outside the radius of

convergence of the global blocks, and so one potentially becomes sensitive to all operators

in the conformal block expansion. If we track z in terms of t,

z = 1−

1− ie
2π(t−x)

β

1 + ie
2π(t−x)

β

2

, (2.5)

we see that z starts out near 0 at small t, passes around the insertion of W at 1, and

returns to z ∼ 0, as depicted in figure 4. Due to the insertion of W , there is a branch cut

extending from 1 to∞ in the z plane, and we have to make a choice about whether to pass

through it onto the second sheet of the correlator, or to deform the path in order to avoid

the cut. Passing through the cut corresponds to exchanging the order of operators from

4Conformal blocks began at order ρ̄ τ/2 in a small ρ̄ expansion, where τ = ∆− ` = 2h̄ is the twist of the

primary operator.

– 6 –
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the radial OPE ordering 〈W (∞)W (1)V (z)V (0)〉, and so in order to obtain the correlator

with operators ordered [25] as in (2.1) at large t, z approaches 0 on the second sheet

of the correlator.

Next, a crucial part of the proof is that for Re(t) sufficiently large, the correlator

is analytic for |Im(t)| ≤ β
4 and bounded for Im(t) = ±β

4 . We will review the proof in

the language of the recently derived CFT causality constraints [25]. At large t, one has

(z, z̄) ≈ (4
ρ , 4ρ̄), which approaches the origin with z on the second sheet and z̄ on the first

sheet. In the notation of [25], this is

z = σ, z̄ = ησ, (2.6)

with

η ≈ ρρ̄ = e
− 4πx

β , σ ≈ 4

ρ
= −4ie

2π(x−t)
β . (2.7)

The commutator [V (x1), V (x2)] vanishes outside the lightcone in the background state

|W 〉 = W (0)|0〉 created by the operator W if and only if Fβ is an analytic function of σ

for Im(σ) ≤ 0 in a neighborhood of σ ∼ 0 [25]. This is the same criterion as |Im(t)| ≤ β
4 .

(As we will discuss shortly in detail, a similar analytic continuation is used to study 2-to-2

scattering in AdS/CFT [30]). Furthermore, while the V (z)V (0) OPE does not converge

on the second sheet at z ∼ 0, the V (z)W (1) OPE does converge in this region on both

the first and the second sheet. It is a sum over positive terms on the first sheet, and

analytically continuing to the second sheet (1 − z) → e2πi(1 − z) introduces phases that

can only decrease the magnitude of the correlator. Thus, at z ∼ 0 on the second sheet, the

correlator is still bounded by its value on the first sheet, where the V V OPE does converge.

This is sufficient to prove that a bound of the form (1.1) mentioned in the introduction

exists for some ε. Consider the correlator Fβ normalized by the disconnected piece. It is

bounded by its behavior on the first (Euclidean) sheet, where we can analyze it using the

V V OPE channel∣∣∣∣ Fβ(xi)

〈V (x1)V (x2)〉〈W (x3)W (x4)〉

∣∣∣∣ ≤ ∑
(hα,h̄α)

cV V αcWWαghα,h̄α(z, z̄), (2.8)

where gh,h̄(z, z̄) are the global conformal blocks

gh,h̄(z, z̄) = gh(z)gh̄(z̄),

gh(z) = zh2F1(h, h, 2h, z). (2.9)

In CFT2 we can use either the SO(1, 3) global conformal blocks or the full Virasoro con-

formal blocks; however the latter are only known in closed form in a certain special limits,

so we have used global blocks for concreteness. The cV V α, cWWα are OPE coefficients

proportional to 〈V VOα〉 and 〈WWOα〉.
Now, by taking x large, we can make η and z̄ small, and therefore we can suppress terms

with h̄α > 0. This means that the zero-twist states, i.e. h̄ = 0, dominate in this regime.

In a completely general 2d conformal theory, the zero-twist sector can include higher-spin

current and be very complicated. However, in theories whose gravity duals are purely GR

at low energies, or GR plus massive fields, the only twist-zero sector states are multi-stress

tensor products, which make up the Virasoro vacuum conformal block. Therefore, their

contribution is in principle known and can be easily estimated. By taking t − x large as

– 7 –
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well, we can also make σ small. However, we cannot take this to be arbitrarily small, since

we will mainly be interested in the regime where we are starting to approach the scrambling

time t∗ ≈ β
2π log(c) + x but are still much earlier than it, so that 1

ce
2π(t−x)

β � 1. To be

precise, we want to take the limit where |σ|c is held constant and large as c→∞.

The upshot is that
Fβ

〈V V 〉〈WW 〉 is parametrically bounded by the leading contributions

from the vacuum Virasoro block and contributions with minimal twist τm on the first sheet.

The former of these scale like hLhH
c σ2, and the latter scale like σ∆mητm , where ∆m, τm are

the dimension and twist of the minimal twist operator (after the vacuum Virasoro block):∣∣∣∣ Fβ(xi)

〈V (x1)V (x2)〉〈W (x3)W (x4)〉

∣∣∣∣ . 1 + 2
hWhV
c
|σ|2 +Am|σ|∆mητm

= 1 + 2
hWhV
c3
|σc|2 + e

− 4πτmx
β

Am
c∆m
|σc|∆m , (2.10)

where Am is an unknown theory-dependent prefactor. In d > 2, the first term would

be absent, since in a unitary theory, operators with twist below d−2
2 are forbidden and

thus all contributions, even conserved currents, are suppressed by a e
− 4πτmx

β factor. Thus,
Fβ

〈V V 〉〈WW 〉 is bounded and analytic in the region Im(σ) < 0. Taking f(t) =
Fβ

〈V V 〉〈WW 〉
and letting fm be the maximum value of the r.h.s. of (2.10) for times later than some

optimally chosen time t0 (i.e., for σ less than some value), an elementary complex analysis

argument [10] then implies that

∣∣∣∣dfdt
∣∣∣∣ ≤ 2π

β
(fm − |f |)

(
1 + |f |

fm

)
2

(
1 + sinh−2

(
2πt

β

))
. (2.11)

A crucial point in the above inequality is that the irreducible non-universal term ε

in (1.1) arises from the terms on the r.h.s. of (2.10). Recalling σ ≈ −4ie
2π(x−t)

β , this means

that at times t ∝ t∗ the error ε ∼ O
(
hW hV
c3

)
, but at times t & β we have ε ∼ O

(
hW hV
c

)
.

In other words, if we wish to constrain f(t) for all times t > t0 with t0 ∼ β then we can only

bound |f ′(t)| up to corrections of order 1/c. But if we are specifically interested in the more

restricted regime where t0 scales with t∗ = β
2π log c, then we can obtain a parametrically

stronger bound on chaos.

Finally, let us review the qualitative behavior of the conformal block decomposition

in the V V OPE channel on the second sheet, and in particular its behavior in different

regimes of the spatial separation x. Passing to the second sheet via term-by-term analytic

continuation of the conformal blocks in (2.8), one obtains [24]

Fβ(xi)

〈V (x1)V (x2)〉〈W (x3)W (x4)〉
≈
∑

(hα,h̄α)

c̃V V αc̃WWαe
(hα−h̄α−1)t−(hα+h̄α−1)x

(
1+O

(
e−x, e−t

))
,

(2.12)

where we note that h, h̄ ≥ 0 in unitary theories, and we identify the spin ` = h − h̄ and

the total dimension ∆ = h + h̄. The c̃V V αc̃WWα have been rescaled to absorb some h-

dependent coefficients. The conformal block decomposition of equation (2.12) will not in

general converge. In the presence of an unbounded sum over spins `, it appears that the

– 8 –
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Lyapunov exponent cannot be extracted until after performing the sum. We will discuss

the infinite sum over ubiquitous ‘double-trace’ operators [28, 29, 31, 32] in section 4.1.

We see from the structure of equation (2.12) that the contributions of large dimension

operators will be suppressed at large x, leading to an x-dependent Lyapunov exponent.

The limit of large x and t is a lightcone OPE limit [28, 29] for the CFT correlator; this

limit suppresses contributions from large twist. For example, AdS string states are massive,

and therefore correspond to large twist operators in the CFT, which do not affect the λL(x)

at large x [11]. In circumstances where only a single conformal block dominates at large

c, or when we can sum all relevant contributions, we can make predictions about λL(x).

Our main focus in this paper will be classical and quantum gravitational effects in AdS3,

computed using recent work on Virasoro conformal blocks [19].

3 Quantum corrections to chaos from the Virasoro identity block

We are interested in studying gravitational interactions in AdS and their impact on chaos.

We will begin by reviewing known results and then discuss corrections in 1/c, where c is

the central charge of the CFT2.

Graviton states in AdS3 are created by the CFT2 stress tensor, which has a holomorphic

mode expansion T (z) =
∑

n z
−2−nLn in terms of the Virasoro generators Ln. Thus all

multi-graviton states in AdS3 lie within a single irreducible representation of the Virasoro

algebra. The holomorphic Virasoro vacuum block V(z) represents of the exchange of all of

these states between WW and V V in the correlator F of equation (2.1). The full vacuum

block contribution is a product V(z)V(z̄) of holomorphic and anti-holmorphic blocks, which

depend independently on the holomorphic and anti-holomorphic dimensions hW , hV and

h̄W , h̄V , and on c.

The Virasoro vacuum block can only be computed in closed form in certain limits. At

leading order in the large central charge c → ∞ limit with fixed holomorphic conformal

dimensions hW and hV , the Virasoro vacuum block reduces to the vacuum contribution

plus a 1-graviton global conformal block

V(z) = 1 +
2hWhV

c
z2

2F1(2, 2, 4, z) +O

(
1

c2

)
= 1 +

2hWhV
c

(
6(z − 2) log(1− z)

z
− 12

)
+O

(
1

c2

)
(3.1)

This one-graviton contribution is sufficient to extract the Lyapunov exponent λL at leading

order in a 1/c expansion. We see explicitly that the analytic continuation of figure 4 shifts

log(1 − z) → log(1 − z) − 2πi.5 Expanding the result at large t, or small z = −4ie
2π(x−t)

β ,

we have

V(z) ≈ 1 +
48πihWhV

cz
= 1− 12πhWhV

c
e

2π
β

(t−x)
(3.2)

5One can pass to the second sheet by taking (1 − z) → e2πi(1 − z) or (1 − z) → e−2πi(1 − z). In this

subsection, we choose the latter in order to be consistent with the conventions in [24].
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This takes the form anticipated in equation (2.3), with λL = 2π
β . Note that z̄≈e−

2π
β

(x+t)→0

in the relevant limit, and z̄ has not been analytically continued off of the first sheet, so the

anti-holomorphic V(z̄) ≈ 1.

We are interested in the regime β � t � t∗, as depicted in figure 1. Thus we can

employ a slightly more systematic parameterization and fix y = cz in the limit of large c.6

This does not alter equation (3.2), but it is useful in some more complicated examples.

The Virasoro vacuum block can also be computed in the limit of large c while fixing

hW /c and hV to any value. In this limit the W operator corresponds to an object in

AdS3 with mass proportional to the Planck scale, while V is a light probe with mass much

less than the Planck scale. In this heavy-light limit, the leading in c [13] contributions

have been computed and matched to AdS3 calculations, and more recently the sub-leading

1/c corrections have been computed [19]. After analytically continuing and expanding to

leading order in 1/c with y = cz fixed, one finds [24]

Fβ(t, x) ≈

(
1

1− 24πihW
y

)2hV

(3.3)

where y ≈ −4ie
2π(x+t∗−t)

β as follows from equation (2.7). If we expand this result to first

order in 1/c with fixed z we match equation (3.2). Thus the complete heavy-light Virasoro

block does not provide any new information about the Lyapunov exponent as compared

to 1-graviton exchange. However, it does provide a nice case study for Fβ(t) [24], as it

displays the expected behavior for all times, pictured in figure 1. In particular, in a 1/c

expansion there are an infinite number of 1/(cz)n = 1/yn terms that individually have

singular behavior at y ∼ 0, and (3.3) is an explicit example of these resumming into

something regular that actually vanishes at y → 0.

Now let us consider 1/c corrections to these results, some of which correspond to

quantum effects in AdS3, as pictured in figure 5. These have been computed for the full

heavy-light Virasoro vacuum block [19], although we will only be interested in the low-order

expansion in hW and hV .

In the Euclidean region, we find an expression of the form

V(z) = 1 +

(
2hWhV

c
z2

2F1(2, 2, 4, z)

)
+

1

2

(
2hWhV

c
z2

2F1(2, 2, 4, z)

)2

+ · · ·

+
hWh

2
V + h2

WhV
c2

fLO,SC(z) + hV
hV
c

h2
W

c2
fNLO,SC(z) + hV

1

c

hW
c
fQ(z) + · · · (3.4)

On the first line are the pure 1-graviton and 2-graviton contributions, neglecting the self-

interactions of the gravitons. The first term on the second line ‘fLO,SC’ is so-labeled because

it comes entirely from the leading order semi-classical heavy-light large c limit. In other

words, it only involves information incorporated into equation (3.3).7

6In fact one could fix crz with 0 < r < 1, which would correspond to t ∝ rt∗. Fixing z corresponds to

taking t completely independent of c as c→∞, which in practice would mean t & td.
7The “semi-classical limit” is defined as the terms that survive in limc→∞

1
c

log(V) when the ratios

ηi ≡ hi/c of the external operators to the central charge are all held fixed. The ‘heavy-light’ expansion of

this semi-classical limit is an expansion in small hV /c, with hW /c arbitrary.
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W (1)

W (0)

V (1)

V (z)

W (1)

W (0)

V (1)

V (z)

W (1)

W (0)

V (1)

V (z)

Figure 5. This figure shows diagrams in AdS3 corresponding to various contributions [19] to

the Virasoro vacuum block. The diagram at left is 1-graviton exchange, and is proportional to

hWhV /c. The central diagram, proportional to hWh
2
V /c

2 is a semi-classical correction incorporating

gravitational back-reaction. The diagram at right is a true quantum correction proportional to

hWhV /c
2 which is responsible for 1/c corrections to the Lyapunov exponent.

In contrast, the term fNLO,SC in equation (3.4) is a next-to-leading-order correction to

the semi-classical heavy-light block incorporating gravitational backreaction from the light

probe V . The third term fQ corresponds to a true quantum correction in AdS3, which

will be responsible for a 1/c correction to the Lyapunov exponent. Note that its coefficient

translates into the AdS3 expression

hV hW
c2

∝
(
GN
RAdS

)
GNmVmW (3.5)

where we have restored units, including the AdS curvature scale RAdS.8 Thus the quantum

correction should be viewed as an effect that disappears in the flat space limit where

RAdS →∞ with other parameters held fixed.

We recently computed fSC and fQ explicitly [19]. For the latter we find

fQ = −12

z2

(
−6(z − 2)z

(
Li2

(
1

1− z

)
+ Li2(z)

)
+
(
π2(z − 2)− 16z

)
z

−3(3(z − 2)z + 2) log2(1− z) + (z − 2)z(6 log(z) + 6iπ − 1) log(1− z)
) (3.6)

Performing the analytic continuation of figure 4 and expanding in 1/c with y = cz

fixed, we find

V(z) ≈ 1 + 48πihWhV

(
1

y
− 12 log (y/c)

cy
+

12iπ + 7

cy
− 3i log(y)

πc2
+

6iπ

y2

)
(3.7)

Now we will discuss each of the terms in parentheses. The first term corresponds to the

one-graviton exchange that we studied in equation (3.2), while the others are quantum

corrections. The third term is a complex 1/c correction to the overall coefficient of eλLt.

The fourth term represents highly suppressed linear growth in t not of Lyapunov form.

8Dimensional analysis is facilitated by studying (GNRAdS) logV, a dimensionless function.
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We would like to focus on the first two terms in parentheses in equation (3.7). It is

natural to interpret these as arising from an expansion

1

c z1+ 12
c

≈ 1

y

(
1− 12 log (y/c)

c
+

1

2

(
12 log (y/c)

c

)2

+ · · ·

)
(3.8)

which we would expect for the correlators of a CFT. Recalling that z = −4ie
2π(x−t)

β , the

logarthmic correction we have found can be interpreted as a positive quantum contribution

to the Lyapunov exponent. We have checked the resummation of these logarithms using

a forthcoming [20] computation of the 1/c3 corrections to the Virasoro vacuum block,

verifying the coefficient of the log2(y)/c2 term above. Furthermore, we have also found a

general proof of leading logarithmic resummation [20] to all orders in log(z)/c. Thus at

next-to-leading order in 1/c, by one reasonable definition the Lyapunov exponent is

λL =
2π

β

(
1 +

12

c

)
(3.9)

Naively interpreted, this violates the bound on chaos [10], but as we explained in section 2,

the detailed analysis [10] permits 1/c corrections of either sign. This effect might also be

interpreted as a quantum shift in the graviton Regge intercept in AdS3 [33], which would

vanish in the flat spacetime limit.

However, before we conclude we must return to discuss the last term in parentheses

in equation (3.7). Note that it has a relative phase of i compared to the leading one-

graviton term. Thus it is tempting to interpret it as a quantum two-graviton correction

akin to the last term on the first line of equation (3.4), differentiating it from the Lyapunov

exponent. Nevertheless, this last term contributes significantly to Fβ(t) in the relevant

regime β � t� t∗, leading to

Fβ(t) ≈ 1− 12πhWhV
c

e
2π
β (1+ 12

c )t +
18πhWhV

c2
e

4π
β
t
+ · · · (3.10)

where we have neglected the third and fourth terms in parentheses in equation (3.7). If we

view λL as the first exponent, then it has received a 1/c correction, but this effect does not

dominate over the other contributions to Fβ(t) in the physical regime. We could also define

λL via log(1−Fβ), but this would produce a t-dependent Lyapunov exponent. Clearly V(z)

and Fβ(t) are unambiguous functions, but depending on the definition we may interpret

our result as either a constant 1/c correction to λL, a time-dependent λL, or simply as the

failure of λL to precisely capture the physics of scrambling at finite c.

4 Local AdS correlators, scattering, and causality

In this section we discuss several issues related to AdS correlators, bulk locality, and the

connection between scrambling and scattering. In section 4.1 we study a full AdS3 corre-

lator, which includes both the vacuum Virasoro block and certain double-trace operator

contributions. In section 4.2 we compare chaos and bulk scattering, noting how a certain

‘bulk point singularity’ might be used to diagnose bulk locality near black hole horizons. In

section 4.3 we connect our results on chaos to causality and analyticity in both AdS/CFT

and flat spacetime scattering.
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4.1 Bulk correlators and double-trace operators

In the previous section we used the Virasoro vacuum conformal block, which includes the

exchange of all graviton states, to compute a quantum correction to the Lyapunov exponent

in AdS3/CFT2. However, even in case of pure gravity in AdS3, the 〈WWV V 〉 correlator

receives other contributions. One way of understanding this is that even a “pure” gravity

theory (whose only low-energy degrees of freedom are gravitons) is not really pure once

we introduce the probe operators V,W . At a minimum, at large c, the theory contains

multi-trace operators, corresponding to multi-particle states made from the probes V and

W . From the point of view of the conformal block decomposition or the OPE, double-trace

operators always make an important contribution to any perturbative process in AdS [34].

As we discussed in section 2, the crucial limit that suppresses these other contributions is

x� 1 (i.e. z̄ � 1) where the zero-twist sector dominates. In this section, we will consider

an example where we can explicitly explore the size of double-trace contributions using a

bulk computation [35].

Let us first consider the relatively simple case where the probe operators interact

through the backreaction of W on the bulk geometry. Since the resulting geometry is a

quotient of pure AdS3, the correlator for the CFT on a Lorentzian cylinder can be written

as a sum over images [35]

〈VWVW 〉= |1−z|−2hV

∞∑
n=−∞

(
α2

4 sinh(α2 (log(1−z)+i(n+2)π)) sinh(α2 (log(1−z̄)−inπ))

)2hV

,

(4.1)

where α2 ≡ 1− 24hW
c and the n+ 2 arises because of the analytic continuation of z to the

Lorentzian sheet as depicted in figure 4.

In the limit z̄ → 0 and generic α, the dominant contribution comes from the n = 0

term, since this is the only one with an OPE singularity ∝ z̄−2hL . Since this term is exactly

the contribution from the large c vacuum Virasoro block [12–16, 18], we immediately see

that contributions from multi-trace operators made from the probes V and W are irrelevant

in this limit. It will be useful nevertheless to warm up by being even more explicit here.

The n = 0 term decays at very small z relative to the disconnected correlator:

〈VWVW 〉
〈V V 〉〈WW 〉

∼
(

αz

2 sin(πα)

)2hV

. (4.2)

As usual, we are interested in the initial onset of this decay at large c. Taking α ≈ 1− 12hW
c ,

one obtains
〈VWVW 〉
〈V V 〉〈WW 〉

≈ 1− 48iπhV hW
zc

+ . . . . (4.3)

The first term at large c is shown above, and agrees with equation (3.2). To quantify

the corrections, we take the limit c � 1 with y = zc fixed; in this limit, the first few

contributions are

〈VWVW 〉
〈V V 〉〈WW 〉

≈
(

1− 48iπhV hW
y

+O(y−2))

)
+

1

c

(
24iπhV hW +O(y−1)

)
+ . . . . (4.4)
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In fact, all terms that we have written out explicitly above come from just the single stress

tensor contribution ∝ hV hW
c z2

2F1(2, 2, 4, z).

Now let us look at the bulk result in a more general regime, where c is large with

y = zc and ȳ = z̄c fixed. In this limit, after dividing by the disconnected correlators,

equation (4.1) becomes

〈VWVW 〉
〈V V 〉〈WW 〉

≈
∞∑

n=−∞
n even

 1(
1 + 12iπhW (n+2)

y

)(
1 + 12iπhWn

ȳ

)
2hV

(4.5)

Taking hV = 1, the sum can be computed in closed form to give

〈VWVW 〉
〈V V 〉〈WW 〉

≈
y2ȳ2

(
csch2

(
y

12hW

)
+ csch2

(
ȳ

12hW

))
144h2

W (24πihW + (y − ȳ))2

+
y2ȳ2

(
coth

(
y

12hW

)
− coth

(
ȳ

12hW

))
6hW (24πihW + (y − ȳ))3 (4.6)

The correlator will depend on both x and the time t discussed in section 2 due to the

contributions of double trace V ∂kV and W∂kW type operators. To see this explicitly, one

can expand equation (4.6) in ȳ, giving the vacuum Virasoro block as the leading term and

a correction proportional to ȳ2 which is associated to V ∂kV double trace operators in the

conformal block expansion.

4.2 Bulk point singularities and scattering near horizons

To address the black hole information paradox, it would be useful to be able to use CFT

data to define AdS observables behind the horizon of a black hole. However, not only is

this problem difficult, but because we do not expect bulk observables to have a precise

existence, it may not even be well-defined.

Fortunately, CFT correlators have some features with a precise bulk interpretation. A

particularly sharp example is the bulk point singularity [26, 30, 32, 36, 37] of four-point

correlators at z = z̄, which is associated with AdS scattering amplitudes. The singularity

arises when a set of null rays emanating into the bulk from CFT operator insertions all meet

at a bulk point. This occurs when det x2
ij = 16(ρ − ρ̄)2(1 − ρρ̄)2 ∝ (z − z̄)2 vanishes [30],

where the ρ coordinates are pictured in figure 3. Thus the singularity is a signature of

the existence of a local bulk. CFT correlators computed from AdS perturbation theory

(Witten diagrams) generically have such bulk point singularities. In CFT2 these bulk point

singularities are resolved at finite c [26], although the correlators may still grow a very large

‘bump’ in the vicinity of z = z̄. The Lorentzian correlator of equation (4.6) has such a

bump at large c with fixed z, z̄, although it has an exponentially sensitive coefficient.

Bulk point singularities can never correspond with points behind the horizon of an

AdS black hole. This follows from the definition of a horizon — null rays extending from

behind the horizon will never reach the boundary of AdS. But it is natural to ask if there

exist bulk point singularities associated with bulk points very close to the horizon of a

– 14 –
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Figure 6. We compare the analytic continuation relevant for chaos (left) [24], which requires

crossing a single light cone branch cut, with the analytic continuation for the study of bulk scattering

(right) [30], which requires crossing two branch cuts from the Euclidean region.

black hole. In other words, do bulk point singularities ‘fuzz out’ in a continuous way as we

try to use them to probe local physics closer and closer to the horizon of a black hole?

These considerations suggest a setup closely related to chaos and scrambling. In

AdS/CFT, scrambling arises from interactions near the horizon of a black hole [5, 38].

A crucial role is played by the universal blue-shift experienced by all infalling objects. For

example, consider a particle falling towards the horizon of a BTZ black hole with temper-

ature T . If the particle is released at a time −t, it will blueshift by a factor of ∼ 1
T e

tT once

it crosses the t = 0 time slice [5]. This relative blue-shift will also be important for scat-

tering processes that occur in ‘the zone’ near the horizon. This means that in AdS3/CFT2

we can study scattering in a black hole background via a conformal transformation from

the plane to the thermal cylinder. The conformal transformation cannot create or elimi-

nate bulk point singularities, but it does alter the kinematical interpretation of the region

z ∼ z̄. In specific theories with a bulk point ‘bump’ [26] it may be possible to precisely

characterize the limitations of bulk locality near horizons. Correlators with more than four

operators could be used to study bulk points in the background of perturbations that shift

the location of the horizon [39–41].

As we briefly review in appendix A (see also [26]), the kinematics of bulk point singu-

larities differs subtly from that of the correlators we have used to diagnose chaos. However,

the regimes overlap near z̄ ∼ 0, the lightcone OPE limit. This means that we can relate

scattering and Lyapunov exponents more generally. Let us consider introducing additional

interactions in the bulk in a low-energy effective theory. For scalar fields φV , φW in the

bulk dual to V,W on the boundary, a local quartic interaction with 2k derivatives, i.e. of

the form

(∂µ1 . . . ∂µsφV )(∂µ1 . . . ∂µsφV )(∂µs+1 . . . ∂µkφW )(∂µs+1 . . . ∂µkφW ) (4.7)

creates a leading bulk singularity (after the analytic continuation of figure 6) at z ∼ z̄ of

the form

Fβ
〈V V 〉〈WW 〉

∼ 1

(z − z̄)γ
z2∆V +2∆W+k−2(1− z)∆V +∆W+k−2T

(
− t
s = z

)
sk

,

γ = 2∆V + 2∆W + 2k − 3, (4.8)
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where s−kT
(
− t
s

)
≡ T (sin2 θ

2) is the angular dependence of the leading power of Mandel-

stam s in the flat-space scattering amplitude. This singularity overlaps with the region

of large x and large t relevant for our study of chaos, where both z and z̄ approach zero.

Note that this is given by the forward limit T (0) of the scattering amplitude; we will com-

ment below in more detail on the connection with analyticity constraints on the forward

scattering limit in flat-space [42]. At small z, this bulk singularity grows like9

Fβ
〈V V 〉〈WW 〉

∼ T (0)

zk−1
. (4.9)

Therefore this violates the MSS bound [10] on the rate of growth for k > 2, and for k = 2

it is marginal. In particular, when k = 2, any real T (0) must have the correct sign so that

this contribution to the disconnected piece decreases its magnitude, since an increase would

violate (2.10). This observation was one of the central results of a recent study of causality

in CFT [25]. The fact that k > 2 violates the bound implies that such bulk interactions are

much like higher-spin contributions to CFT correlators in the context of the MSS bound.

That is, each one individually violates the bound, and the only way for them to be present

in a consistent unitary theory is via an infinite number of higher derivative interactions

with correlated coefficients that resum and soften the singularity.10

4.3 Causality and analyticity in flat space vs AdS/CFT

The above constraints bear a striking resemblance to certain bounds on effective field

theories derived from the analyticity of flat-space scattering amplitudes [42]. In fact, with

a little extra work using results [30] connecting the bulk point singularity to the flat space

S-Matrix, one can see that the integration contour on the forward limit of the flat space

scattering amplitude [42] is in fact the same as the integration contour used [25] to study

causality in CFT.

Let us use the form (4.8) for the bulk singularity near z̄ ∼ 0 and z = −t/s� 1 to write

T (s, t� s) ∼ sk
(
− t
s

)k−1 (
−u
s

)2+k−∆V −∆W
(
z − z̄
z

)γ
G

(
− t
s

)
∼ stk−1G

(
− t
s

)
, (4.10)

where G(z) ≡ limz̄→0
Fβ

〈V V 〉〈WW 〉 . Now, consider the case of a bulk interaction (∂φ)4 with

V = W,φV = φW , which corresponds to k = 2 above, and was one of the main cases of

interest in [25] and [42]. To derive analyticity contraints on the forward limit of scattering

amplitudes one studies a contour integral (see figure 8 of [42])

lim
t→0

∮
ds
T (s, t)

s3
(4.11)

9The order of limits here is not quite the same as the one that is relevant for the MSS bound, since we

are taking z ∼ z̄ first and then taking z → 0. Thus the residue in (4.8) does not keep track of the difference

between z and z̄ when these both approach zero but at different rates. In particular, in the limit where

both approach zero with a large ratio η = z̄/z, the final result can contain powers of η, and we are not

keeping track of these on the r.h.s. of (4.9).
10We thank Tom Hartman for emphasizing this to us.
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By isolating the contributions of the interaction (∂φ)4 and using unitarity, one can prove [42]

that this operator must have a positive coefficient in effective field theory. If we perform a

change of variables to σ = − t
s , this contour integral becomes

lim
t→0

∮
ds
T (s, t)

s3
∼
∮
dσ G(σ), (4.12)

where we used equation (4.10). Note that the semi-circular σ contour must be taken at

small radius because t/s is small.11 This is the contour integral that was recently used

(see figure 6 of [25]) to study causality constraints in CFT, and to prove e.g. that AdS

effective theories must have positive coefficients for (∂φ)4 interactions, though in the limit

z̄/z � 1 first rather than z− z̄ � 1 first. So there is a direct connection between causality

constraints on flat space and AdS effective field theories.

5 Discussion

We have argued that one-loop gravitational effects in AdS3, which correspond to universal

1/c corrections to the vacuum Virasoro conformal block of any large c CFT2, produce a

quantum correction to chaos encapsulated by equation (3.10). The result might be viewed

as a correction to the Lyapunov exponent

λL =
2π

β

(
1 +

12

c

)
(5.1)

but the interpretation is somewhat ambiguous, since other 1/c effects are of similar or

greater importance between the dissipation and scrambling times. If interpreted as the

λL above, the result violates a recently proposed bound on chaos [26], but it does not

contradict the arguments that led to that bound, or its spirit [43] that black holes may

be the fastest scramblers. Viewed as a correction to gravitational scattering in AdS3, the

effect we have identified is proportional to GN
RAdS

, so it is a long-distance effect that would

vanish in the flat spacetime limit.

In section 2.2 we specialized the arguments for the bound [26] to CFT2 in order to

examine the potential for 1/c corrections. We found that for t & td near the dissipation

time corrections to the bound can be of order 1/c, but that for times t ∼ t∗ near the

scrambling time, any positive corrections to the bound must be parametrically suppressed

by ∝ 1/c3 in CFT2. In accord with these results, the corrections to λL are only positive

at very early times.

For more general systems the role of 1/c will be played by 1/N2, or the inverse of

the parameter controlling the number of degrees of freedom. Thus our analysis raises the

question of whether other effects violating the bound may be identified in other systems.

Optimistically, we may hope that pure gravity always produces the largest possible value

of λL once all 1/c corrections are taken into account. Then we must ask whether this

idea could be well-defined in higher dimensions. In AdS>3 we expect similar quantum

corrections to λL in the perturbative GN expansion, but if they come from AdS-scale

11See section 6.4 of [25] with `m = 2.
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effects, ie if they are parametrically of order GN
Rd−1

AdS

, then perhaps they will be relatively

universal. Thus the bound on λL may remain more precise [40] than the KSS bound [44]

on the viscosity/entropy ratio, which can be violated [45, 46] by higher dimension local

operators in the gravitational action. A more pessimistic interpretation would be that the

bound on λL cannot be made completely sharp at finite but large values of N , and only

emerges in the strict N → ∞ limit. Even in this case, the bound should still apply to

effects (e.g. stringy corrections) that depend on a parameter (e.g. the ’t Hooft coupling)

that can be adjusted independently in the large N limit.

We have also discussed the relationship between chaos, scattering, AdS locality, and

causality constraints on CFT correlators and flat space scattering amplitudes, emphasizing

that many recent constraints are closely related [25, 26, 42, 47] and can be more directly

connected. We explained that the bulk point singularity, a signature of local bulk scatter-

ing [26, 30, 32, 37], may be used to examine bulk locality near horizons via a kinematical

setup [5] closely related to scrambling.
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A Details of analytic continuations

Let us first discuss the analytic continuation that takes the correlator from the Euclidean

sheet to the second sheet relevant to chaos and to the Regge limit. Under the analytic

continuation of figure 4 the various logarithms and polylogarithms have monodromies

log(1− z)→ log(1− z)− 2πi,

Lin(z)→ Lin(z) +
2πi

(n− 1)!
logn−1(z),

Lin(1− z)→ Lin(1− z), (A.1)

which can be easily derived from Lin(z) =
∫ z

0
Lin−1(t)

t dt and Li1(z) = − log(1− z).

The analytic continuation above differs from that required for an analysis of scattering

amplitudes (in the flat spacetime limit) and the bulk point singularity [26, 30, 32]. The

latter require continuation through a second branch cut and onto a further sheet, as de-

picted in figure 6. As a very explicit example illustrating the distinction, perturbative λφ4

contact interactions in AdS produce correlators proportional to ‘D-functions’. The D1111

function has the closed form expression [30]

DEuc
1111 =

zz̄

z − z̄

(
2Li2(z)− 2Li2(z̄) + log(zz̄) log

(
1− z
1− z̄

))
(A.2)

– 18 –
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on the Euclidean sheet. Following figure 6, on the sheet relevant for chaos the function

continues to

DChaos
1111 =

zz̄

z−z̄

(
2Li2(z)− 2Li2(z̄) + 4πi log(z) + log(zz̄)

(
log

(
1−z
1−z̄

)
−2πi

))
(A.3)

whereas after the analytic continuation to the sheet relevant for scattering [26, 30, 32]

we have

DScatter
1111 =

zz̄

z − z̄

(
2Li2(z)− 2Li2(z̄) + 4πi log(z) + (log(zz̄) + 2πi)

(
log

(
1− z
1− z̄

)
− 2πi

))
The continuation relevant for scattering has a bulk point singularity at z = z̄ [26, 30, 32],

whereas DEuc
1111 and DChaos

1111 are regular at these points. This can be seen explicitly by ex-

panding the functions above in the small parameter z− z̄. A bulk point singularity can only

arise from a sum over an infinite number of conformal blocks, which makes the distinction

between the two analytic continuations in figure 6 somewhat subtle in the context of the

conformal block decomposition. For a more detailed discussion see section 6 of [26].
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