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1 Introduction

After the discovery of exact tachyon vacuum solution [1] in cubic string field theory (CSFT)

followed by its concise understanding [2] in terms of the KBc algebra [3], there have been

considerable developments in the construction of multi-brane solutions [4–7]. The identifi-

cation of a solution as the n-brane one representing n pieces of D25-branes has been done

from its energy density consideration. However, for the complete identification, we have

to show that the the physical excitations on the solution are those of the open string and,

in particular, that each excitation has n2 degeneracy. For the tachyon vacuum solution

(n = 0), a general proof has been given for the absence of physical excitations [8]. On

the other hand, for n-brane solution with n ≥ 2, no formal existence proof nor an explicit

construction of the excitations has been given.1

In this paper, we present an explicit analysis of fluctuations around multi-brane solu-

tions in the framework of the Batalin-Vilkovisky (BV) formalism [10, 11]. Our analysis is

not a complete one, but is rather a first step toward the final understanding. First, our

analysis is restricted only to the tachyon vacuum solution and the 2-brane one. Second,

we do not solve the general excitation modes on the solution. Our analysis is restricted to

the tachyon mode among all the excitations.

Let us explain our analysis in more detail. We are interested in the kinetic term of the

action of CSFT expanded around a multi-brane solution:

S0 =
1

2

∫
Φ ∗ QΦ, (1.1)

where Q is the BRST operator in the background of the solution, and Φ is the fluctuation

around the solution. Previous arguments have been mainly on the presence of the homotopy

operator A on the tachyon vacuum solution satisfying QA = I with I being the identity

string field. If there exists a well-defined A, it implies that there are no physical excitations

at all. In this paper, we carry out a different kind of analysis. We consider a candidate

tachyon field χ(x) as a fluctuation around a class of multi-brane solutions, and examine

whether χ represents a genuine physical excitation or it is unphysical. In the former case,

the lagrangian of χ contained in (1.1) should be the ordinary one:2

Lχ = −1

2

(
(∂µχ)

2 +m2χ2
)
. (1.2)

On the other hand, if χ is unphysical, it should be a member of unphysical BRST quartet

fields
(
χ,C,C,B

)
with the lagrangian given by a BRST-exact form [12]:

Lquartet = iδB

[
C

((
�−m2

)
χ− 1

2
B
)]

= −B
(
�−m2

)
χ+

1

2
B2 − iC

(
�−m2

)
C, (1.3)

where the BRST transformation δB (satisfying the nilpotency δ2B = 0) is defined by

δBχ = C, δBC = 0, δBC = iB, δBB = 0. (1.4)

1See [9], for a construction of multi-brane solutions and the fluctuation modes around them by intro-

ducing the boundary condition changing operators.
2The space-time metric used in this paper is the mostly plus one; gµν = diag(−1, 1, 1, · · · , 1).
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In CSFT which has been constructed in the BV formalism, the lagrangian for unphysical

χ is not of the type (1.3) containing the auxiliary field B, but is rather the one obtained

by integrating out B:

L′
quartet = −1

2

[(
�−m2

)
χ
]2 − iC

(
�−m2

)
C. (1.5)

This is invariant under the redefined BRST transformation δ′B:

δ′Bχ = C, δ′BC = 0, δ′BC = i
(
�−m2

)
χ. (1.6)

Note that δ′B is nilpotent only on-shell; in particular, we have (δ′B)
2C = i

(
�−m2

)
C.

Our analysis is carried out within the framework of the BV formalism. We first

construct six first-quantized string states ui(k) carrying center-of-mass momentum kµ.

These six states correspond to the three fields (χ,C,C) in (1.5) as well as their anti-fields

(χ⋆, C⋆, C⋆). We call the six states ui the tachyon BV states. Then, we examine the 6× 6

matrix ωij =
∫
ui uj given by the CSFT integration. In fact, this ωij is the matrix defining

the anti-bracket in the BV formalism, and it determines whether χ is physical or unphysi-

cal. If ωij is non-degenerate, namely, detωij 6= 0, χ is unphysical. More precisely, after the

gauge-fixing by removing the anti-fields, we obtain the lagrangian (1.5) of an unphysical

system. On the other hand, if ωij is degenerate, it implies that the six states ui are not

independent, and therefore, some of the fields/anti-fields necessary for making χ unphysical

are missing. Concrete analysis shows that the lagrangian for χ in the case of degenerate

ωij is the physical one (1.2).

We consider multi-brane solutions in CSFT given formally as the pure-gauge UQBU
−1

with U specified by a function G(K) of K in the KBc-algebra (see (3.2)). The point is that

the eigenvalues of K are in the range K ≥ 0, and various physical quantities associated

with the solution such as the energy density are not well-defined due to the singularity

at K = 0. Therefore, we introduce the Kε-regularization of replacing K in UQBU
−1

by Kε = K + ε with ε being a positive infinitesimal [5]. Then, the regularized solution

(UQBU
−1)K→Kε is no longer exactly pure-gauge, and the zero or the pole of G(K) atK = 0

is interpreted as the origin of the non-trivial energy density of the apparently pure-gauge

configuration [4–7].3 Namely, ε from the infinitesimal violation of pure-gauge is enhanced

by 1/ε from the singularity at K = 0 to lead to non-trivial results for the solution.

This phenomenon of ε × (1/ε) giving non-trivial results also occurs in ωij in our BV

analysis. By the gauge transformation which transforms UQBU
−1 to zero, the regularized

solution (UQBU
−1)K→Kε is transformed to an apparently O(ε) quantity. Then, the corre-

sponding BRST operator Q is almost equal to the original QB; Q = QB+O(ε). Therefore,

the matrix ωij for the six tachyon BV states is reduced to a degenerate one if we simply

put ε = 0 without taking into account the singularity at K = 0. Namely, there exists a

physical tachyon field on any n-brane solution of the pure-gauge type in the naive analysis.

The total absence of physical excitations expected on the tachyon vacuum should rather

3The zero and pole of G(K) at K = ∞ also make the pure-gauge solutions non-trivial and more rich [7].

However, we do not consider this type of solutions in this paper.
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be a non-trivial phenomenon coming from ε× (1/ε) 6= 0. Our interest here is whether this

phenomenon does not occur on n-branes with n ≥ 2.

In CSFT, the meaning of the EOM, QBΨ+Ψ2 = 0, is not so simple. When we consider

whether the EOM is satisfied by a candidate solution ΨS , we have to specify the test string

field ΨT and examine whether the EOM test,
∫
ΨT ∗

(
QBΨS +Ψ2

S

)
= 0, holds or not. It is

in general impossible that the EOM test holds for any ΨT, and the EOM test restricts both

the solution and the fluctuations around it. For the pure-gauge type solutions mentioned

above, the EOM against itself (namely, ΨT = ΨS) is satisfied only for the tachyon vacuum

solution and the 2-brane one (and, of course, for the single-brane solution ΨS = 0) [5]. The

correct value of the energy density can also be reproduced only for these two solutions.

Therefore, in this paper, we carry out calculations of ωij for these two kinds of solutions

with n = 0 and 2. Then, we need to take into account the EOM also in the construction

of the tachyon BV states ui on each solution. For the BV analysis, the EOM must hold

against the commutator ΨT = [ui, uj ] as we as ΨT = ui themselves, and this is in fact

a non-trivial problem, in particular, for the 2-brane solution. For devising such ui, we

multiply the naive expression of u0 with the lowest ghost number by the functions of Kε,

L(Kε) and 1/R(Kε), from the left and the right, respectively, and define the whole set

of six ui by the operation of Q. Then, we obtain the constraints on L(Kε) and R(Kε)

from the requirement of the EOM. The existence of L(Kε) and R(Kε) also affects the

calculation of ωij .

There is another important technical point in our BV analysis. The matrix ωij =∫
uiuj and the EOM test against the commutator ΨT = [ui, uj ] are functions of k2 of the

momentum kµ carried by ui. Then, a problem arises: some of these quantities contain

terms depending on ε of the Kε-regularization in a manner such as εmin(2k2−1,1), which

diverges in the limit ε → 0 for a smaller k2 and tends to zero for a larger k2. Therefore, we

define them as the “analytic continuation” from the region of sufficiently large k2 (namely,

sufficiently space-like kµ) to drop this type of ε-dependent terms.

Next, we comment on the “cohomology approach” to the problem of physical fluctua-

tion around a multi-brane solution. In this approach, we consider the BRST cohomology

KerQ/ImQ, namely, we solve Qu1(k) = 0 for u1(k) which carries ghost number one and is

not Q-exact. However, the meaning of (non-)equality in Qu1 = 0 and u1 6= Q(∗) is subtle
for multi-brane solutions of the pure-gauge type discussed in this paper due to the singular-

ity at K = 0. To make these equations precise, we should introduce the Kε-regularization

and consider their inner-products (CSFT integrations) with states in the space of fluctu-

ations. We would like to stress that our BV analysis indeed gives information for solving

the BRST cohomology problem within the Kε-regularization. (The present BV analysis

can identify some of the non-trivial elements of KerQ/ImQ. However, it cannot give the

complete answer to the cohomology problem since we consider only a set of trial BV states.)

We will explain the interpretation of our results of the BV analysis in the context of the

cohomology approach in sections 4.4 and 5.2. We also comment that the analysis of the

BRST cohomology around the tachyon vacuum by evaluating the kinetic term of the action

of the fluctuation in the level truncation approximation [13–15] has some relevance to the

present BV approach.

– 4 –
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Then, finally in the Introduction, we state our results obtained in this paper. For the

tachyon vacuum solution, we find that the matrix ωij is non-degenerate. This implies that

our candidate tachyon field is an unphysical one belonging to a BRST quartet. On the

other hand, for the 2-brane solution, ωij turns out to be degenerate, implying that the

tachyon field is a physical one. These results are both what we expect for each solution.

However, we have not succeeded in identifying the whole of the 22 tachyon fields which

should exist on the 2-brane solution. In addition, the six tachyon BV states in this paper

have a problem that they do not satisfy the hermiticity requirement (see section 3.5).

The organization of the rest of this paper is as follows. In section 2, we recapitulate

the BV formalism used in this paper, and give examples of the BV states on the unstable

vacuum. In section 3, we present the construction of the six tachyon BV states on a generic

pure-gauge type solution, and prepare various formulas necessary for the BV analysis. In

section 4, we carry out the calculation of the EOM against ui and [ui, uj ] and of each

component of ωij on the 2-brane solution to confirm the existence of a physical tachyon

field. Next, in section 5, we repeat the same analysis for the tachyon vacuum solution.

There we find that the candidate tachyon field is unphysical. We summarize the paper

and discuss future problems in section 6. In the appendices, we present various technical

details used in the text.

2 BV formalism for CSFT

The action of CSFT on the unstable vacuum [16],4

S[Ψ] =

∫ (
1

2
Ψ ∗QBΨ+

1

3
Ψ3

)
, (2.1)

satisfies the BV equation: ∫ (
δS

δΨ

)2

= 0. (2.2)

Concretely, we have
δS

δΨ
= QBΨ+Ψ2, (2.3)

and the BV equation holds due to (i) the nilpotency Q2
B = 0 of the BRST operator QB,

(ii) the derivation property of QB on the ∗-product, (iii) the property
∫
QB(· · · ) = 0, (iv)

the associativity of the ∗-product, and (v) the cyclicity
∫
A1 ∗ A2 = (−1)A1A2

∫
A2 ∗ A1

valid for any two string fields A1 and A2.
5 The BV equation is a basic requirement in the

construction of gauge theories including SFT. The BV equation implies the gauge invariance

of the action. Moreover, it gives a consistent way of gauge-fixing and quantization of the

theory.

In this paper, we are interested in CSFT expanded around a non-trivial solution ΨS

satisfying the EOM:

QBΨS +Ψ2
S = 0. (2.4)

4We have put the open string coupling constant equal to one.
5(−1)A = +1 (−1) when A is Grassmann-even (-odd).
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Expressing the original string field Ψ in (2.1) as

Ψ = ΨS +Φ, (2.5)

with Φ being the fluctuation, we obtain

S[Ψ] = S[ΨS ] +

∫
Φ ∗

(
QBΨS +Ψ2

S

)
+ SΨS

[Φ]. (2.6)

The second term on the r.h.s. of (2.6) should vanish due to the EOM (2.4). However, for

multi-brane solutions in CSFT, this EOM term cannot vanish for all kinds of fluctuations Φ

as stated in the Introduction. This is the case even for the tachyon vacuum solution. In this

paper, we restrict the fluctuation Φ around ΨS to those for which the EOM term of (2.6)

vanishes. We will see later that the EOM term must also vanish against the commutator

among the fluctuations.

The last term of (2.6) is the action of the fluctuation:

SΨS
[Φ] =

∫ (
1

2
Φ ∗ QΨS

Φ+
1

3
Φ3

)
. (2.7)

The only difference between the two actions (2.1) and (2.7) is that the BRST operator

QB in the former is replaced with QΨS
, the BRST operator around the solution ΨS . The

operation of QΨS
on any string field A with a generic ghost number is defined by

QΨS
A = QBA+ΨS ∗A− (−1)AA ∗ΨS . (2.8)

The BV equation for SΨS
, ∫ (

δSΨS

δΦ

)2

= 0, (2.9)

which is formally equivalent to (2.2) for the original S, also holds since QΨS
satisfies the

same three basic properties as QB does; (i), (ii) and (iii) mentioned below (2.3). Among

them, the nilpotency Q2
ΨS

= 0 is a consequence of the EOM; namely, we have from (2.8)

Q2
ΨS

A =
[
QBΨS +Ψ2

S , A
]
. (2.10)

On the other hand, the other two properties (ii) and (iii) hold for any ΨS irrespectively

of whether it satisfies the EOM or not. In the following, we omit the subscript ΨS in SΨS

unless necessary.

2.1 BV equation in terms of component fields

Here, we consider the BV equation (2.9) for the action (2.7) in terms of the component

fields.6 Let {ui(k)} be a “complete set” of states of fluctuation around ΨS (here, we take

as ΨS a translationally invariant solution, and kµ is the center-of-mass momentum of the

6See, for example, [17, 18] for the BV formalism for a general supermanifold of fields and anti-fields.

The matrix ωij in [18] corresponds to (−1)ϕ
i

ωij in this paper.
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fluctuation). Note that each ui(k) is a string field. Then, we expand the fluctuation

field Φ as

Φ =

∫

k

∑

i

ui(k)ϕ
i(k), (2.11)

where ϕi(k) is the component field corresponding to the state ui(k), and
∫
k is short for∫

d26k/(2π)26. In (2.11), ui(k) may carry any ghost number Ngh(ui), and the ghost number

of the corresponding ϕi must satisfy

Ngh(ui) +Ngh(ϕ
i) = Ngh(Φ) = 1. (2.12)

Then, we define the matrix ωij(k) and its inverse ωij(k) by

∫
ui(k

′)uj(k) = ωij(k)× (2π)26δ26(k′ + k), (2.13)

and ∑

j

ωij(k)ωjk(k) = δik. (2.14)

Here, we are assuming that ωij is non-degenerate, namely, that the inverse matrix ωij

exists.7 In particular, the number of the basis ui(k) must be even. Note that ωij and ωij

are non-vanishing only for (i, j) satisfying Ngh(ui) +Ngh(uj) = 3, and therefore,

Ngh(ϕ
i) +Ngh(ϕ

j) = −1. (2.15)

Note also that these matrices are symmetric in the following sense:

ωij(k) = ωji(−k), ωij(k) = ωji(−k). (2.16)

The completeness relation of the set {ui} reads

A =

∫

k

∑

i,j

ui(k)ω
ij(k)

∫
uj(−k) ∗A, (2.17)

for any string field A, and hence we have8

δ

δΦ
=

∫

k

∑

i,j

ui(k)ω
ij(k) (−1)ϕ

j δ

δϕj(−k)
. (2.18)

Using (2.18) in (2.9), we obtain the BV equation in terms of the component fields:

∫

k

∑

i,j

ωij(k)
δS

δϕi(k)

δS
δϕj(−k)

= 0. (2.19)

7Precisely speaking, our assumption here is that detωij(k) is not identically equal to zero as a function

of kµ. ωij being degenerate at some points in the kµ space is allowed.
8The sign factor (−1)ϕ

j

in (2.18) is due to the fact that the CSFT integration
∫

is Grassmann-odd. In

this paper, δ/δϕj for a Grassmann-odd ϕj is defined to be the left-derivative
−→
δ /δϕj .
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It is convenient to take the Darboux basis where the matrix ωij(k) takes the follow-

ing form:

ωij(k) =

(
0 D(−k)

D(k) 0

)
, D(k) = diag

(
a1(k), a2(k), · · ·

)
. (2.20)

Denoting the corresponding component fields, namely, the pair of fields and anti-fields,

as {φi(k), φi
⋆(k)} with the index i running only half of that for {ϕi}, the BV equa-

tion (2.19) reads
∫

k

∑

i

ai(k)−1 δS
δφi

⋆(−k)

δS
δφi(k)

= 0. (2.21)

Then, the gauge-fixed action Ŝ and the BRST transformation δ̂B under which Ŝ is invariant

are given by

Ŝ[φ] = S
∣∣
L
, δ̂Bφ

i = i ai(k)−1 δS
δφi

⋆(−k)

∣∣∣∣
L

, (2.22)

where |L denotes the restriction to the Lagrangian submanifold defined by the gauge-

fermion Υ[φ]:

L : φi
⋆ =

δΥ[φ]

δφi
. (2.23)

The simplest choice for Υ is of course Υ = 0.

2.2 Examples of BV basis on the unstable vacuum

For CSFT on the unstable vacuum, the BV basis {ui(k)} consists of an infinite number of

first quantized string states of all ghost numbers. Though the whole BV basis is infinite

dimensional, we can consider a subbasis with non-degenerate ωij and consisting of a finite

number of states which are connected by the operation of QB and are orthogonal (in the

sense of ωij = 0) to any states outside the subbasis.

Here, we present two examples of BV subbasis with non-degenerate ωij . For our later

purpose, we present them using the KBc algebra in the sliver frame. The KBc algebra and

the correlators in the sliver frame are summarized in appendix A. In the rest of this paper,

we omit “sub” for the BV subbasis and simply write “BV basis” since we will not consider

the full BV basis.

2.2.1 Unphysical BV basis of photon longitudinal mode

Our first example is the unphysical BV basis associated with the longitudinal mode of

the photon on the unstable vacuum ΨS = 0. Namely, we consider the unphysical model

obtained by restricting the photon field to the pure-gauge, Aµ(x) = ∂µχ(x). The corre-

– 8 –
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sponding BV basis consists of the following six states:

Ngh=0 : u0(k)=
1√
2
e−αK Vk e

−αK ,

Ngh=1 : u1A(k)=
i√
2
e−αKc [K,Vk] e

−αK , u1B(k)=
−i√
2
e−αK [K, c]Vk e

−αK ,

Ngh=2 : u2A(k)=
i√
2
e−αKc [K, c] [K,Vk] e

−αK , u2B(k)=
i√
2
e−αKc [K, [K, c]]Vk e

−αK ,

Ngh=3 : u3(k)=
1√
2
e−αKc [K, [K, c]] [K, c]Vk e

−αK , (2.24)

where α is a constant,

α =
π

4
, (2.25)

and Vk is the vertex operator of momentum kµ at the origin:

Vk = eikµX
µ(0,0). (2.26)

These six states ui(k) are all chosen to be hermitian in the sense that

ui(k)
† = ui(−k). (2.27)

Among the six ui, u1A is the photon state with longitudinal polarization kµ. The operation

of QB on the six states (2.24) is given as follows:

iQBu0(k) = u1A(k)− k2u1B(k),

QB

(
u1A
u1B

)
= −

(
k2

1

)
(
u2A(k) + u2B(k)

)
,

iQB

(
u2A(k)

u2B(k)

)
=

(
1

−1

)
k2u3(k),

QBu3(k) = 0. (2.28)

The non-trivial components of the 6× 6 matrix ωij(k) are given by

ω0,3 = −1,

(
ω1A,2A ω1A,2B

ω1B,2A ω1B,2B

)
=

(
k2 0

0 1

)
, (2.29)

and therefore ωij is non-degenerate.9 Moreover, the present basis {ui} is already Darboux

as seen from (2.29). Then, expanding the string field Ψ as

Ψ=

∫

k

{
u0(k)C(k)+u1A(k)χ(k)+u1B(k)C⋆(k)+u2A(k)χ⋆(k)+u2B(k)C(k)+u3(k)C⋆(k)

}
,

(2.30)

9Though ωij(k) is degenerate at k2 = 0, this is not a problem as we mentioned in footnote 7.
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and using (2.28) and (2.29), we find that the kinetic term of the CSFT action (2.1) is

given by

S0 =
1

2

∫
Ψ ∗QBΨ (2.31)

=

∫

k

{
−1

2

(
k2χ(−k) + C⋆(−k)

) (
k2χ(k) + C⋆(k)

)
+ ik2

(
C(−k)− χ⋆(−k)

)
C(k)

}
.

Finally, the gauge-fixed action Ŝ0 and the BRST transformation δ̂B in the gauge C⋆ =

χ⋆ = C⋆ = 0 are given using (2.22) by

Ŝ0 =

∫

k

{
−1

2
k2χ(−k) k2χ(k) + ik2C(−k)C(k)

}
, (2.32)

and

δ̂Bχ(k) = C(k), δ̂BC(k) = −ik2χ(k), δ̂BC(k) = 0. (2.33)

This is the m2 = 0 version of the unphysical system given in (1.5) and (1.6).

2.2.2 BV basis of the tachyon mode

Our second example is the BV basis for the tachyon mode on the unstable vacuum. It

consists only of two states: the tachyon state u1 and its BRST-transform u2:

Ngh = 1 : u1(k) = e−αKc Vk e
−αK , Ngh = 2 : u2(k) = e−αKcKcVk e

−αK , (2.34)

with

QB u1(k) = −
(
k2 − 1

)
u2(k), QB u2(k) = 0. (2.35)

The 2× 2 matrix ωij is non-degenerate since we have

ω1,2(k) = 1. (2.36)

Expressing the string field as

Ψ =

∫

k

(
u1(k)φ(k) + u2(k)φ⋆(k)

)
, (2.37)

the kinetic term reads

S0 = −1

2

∫

k
φ(−k)

(
k2 − 1

)
φ(k), (2.38)

which does not contain the anti-field φ⋆. The gauge-fixed action Ŝ0 is the same as S0, the

ordinary kinetic term of the tachyon field φ. The BRST transformation of φ is of course

equal to zero; δ̂Bφ = i δS0/δφ⋆|L = 0.
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3 Tachyon BV states around a multi-brane solution

We consider the fluctuation around a multi-brane solution Ψε given as theKε-regularization

of the pure-gauge UQBU
−1 [5]:

Ψε =
(
UQBU

−1
)
ε
= c

Kε

Gε
Bc (1−Gε) , (3.1)

where U and its inverse U−1 are specified by a function G(K) of K:

U = 1−Bc (1−G(K)) , U−1 = 1 +
1

G(K)
Bc (1−G(K)) . (3.2)

Here and in the following, Oε for a quantity O containing K denotes the Kε-regularized

one; Oε = O
∣∣
K→Kε=K+ε

. Therefore, we have Gε ≡ G(Kε) in (3.1). Although the EOM is

satisfied automatically by the pure-gauge UQBU
−1, the Kε-regularization breaks the EOM

by the O(ε) term:

QBΨε +Ψε ∗Ψε = ε× c
Kε

Gε
c (1−Gε) . (3.3)

As we saw in [5], this O(ε) breaking of the EOM can be enhanced by the singularity at

K = 0 to lead to non-trivial results for the EOM against Ψε itself:
∫
Ψε ∗

(
QBΨε +Ψ2

ε

)
= ε×

∫
BcGεc

Kε

Gε
cGεc

Kε

Gε
. (3.4)

We found that (3.4) vanishes for G(K) having a simple zero, a simple pole or none at all

at K = 0, which we expect to represent the tachyon vacuum, the 2-brane and the 1-brane,

respectively, from their energy density values. For G(K) with higher order zero or pole at

K = 0, (3.4) becomes non-vanishing. Therefore, in this paper, we consider the following

two G(K) as concrete examples:

Gtv(K) =
K

1 +K
, G2b(K) =

1 +K

K
, (3.5)

which correspond to the tachyon vacuum and the 2-brane, respectively.

For our purpose of studying the fluctuation, it is more convenient to gauge-transform

Ψε by U−1
ε

[
= (Uε)

−1 =
(
U−1

)
ε

]
to consider

Pε = U−1
ε (Ψε +QB)Uε = U−1

ε

(
Ψε − UεQBU

−1
ε

)
Uε = ε× 1

Gε
cGεBc (1−Gε) . (3.6)

Note that Pε is apparently of O(ε) since, without the Kε-regularization, the present gauge

transformation transforms the pure-gauge UQBU
−1 back to zero. The fluctuation around

Pε and that around Ψε are related by

SPε [Φ] = SΨε [UεΦU
−1
ε ], (3.7)

for SΨS
of (2.7). Note the following property of QΨS

(2.8):

QV −1(ΨS+QB)V (V
−1AV ) = V −1 (QΨS

A)V. (3.8)
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The EOM of Pε is given by

QBPε + P2
ε = U−1

ε

(
QBΨε +Ψ2

ε

)
Uε = ε× 1

Gε
c (KεcGε −GεcKε)Bc (1−Gε) . (3.9)

Though the EOM against the solution itself, (3.4), is not a gauge-invariant quantity, we

have confirmed that
∫
Pε ∗

(
QBPε + P2

ε

)
vanishes in the limit ε → 0 for the two G(K)

in (3.5).

3.1 Six tachyon BV states around Pε

We are interested in whether physical fluctuations exist or not around the classical solutions

Pε specified by two G(K) in (3.5). Our expectation is of course that there are no physical

fluctuations at all for Gtv, while there are quadruplicate of physical fluctuations for G2b.

In this paper, we consider this problem in the framework of the BV formalism by focusing

on the tachyon mode. In the following, Q denotes QPε , the BRST operator around Pε:

QA = QPεA = QBA+ Pε ∗A− (−1)AA ∗ Pε. (3.10)

Accordingly, S[Φ] denotes SPε [Φ], the action of the fluctuation Φ around Pε:

S[Φ] =
∫ (

1

2
Φ ∗ QΦ+

1

3
Φ3

)
. (3.11)

Our analysis proceeds as follows:

1. We first present a set of six BV states {ui(k)} containing the tachyon state. This set

of BV states is similar to (2.24) for the photon longitudinal mode.

2. We evaluate the matrix ωij(k) (2.13) for the six BV states, and obtain the kinetic

term of the action (3.11),

S0[Φ] =
1

2

∫
Φ ∗ QΦ, (3.12)

by expanding Φ in terms of the six states.

3. If the matrix ωij is non-degenerate, detωij 6= 0, we conclude that the tachyon field

is an unphysical one. On the other hand, if ωij is degenerate, detωij = 0, and,

furthermore, the kinetic term (3.12) is reduced to (1.2), the tachyon field is a physical

one.

As a concrete choice of the six tachyon BV states ui(k), we take

Ngh=0 : u0=Lû0R
−1,

Ngh=1 : u1A=Lû1AR
−1 + ξ

[
Pε, Lû0R

−1
]
, u1B=Lû1BR

−1 − (1− ξ)
[
Pε, Lû0R

−1
]
,

Ngh=2 : u2A=Lû2AR
−1, u2B=

{
Pε, (1− ξ)Lû1AR

−1 + ξLû1BR
−1

}
,

Ngh=3 : u3= i [Pε, u2A]= i
[
Pε, Lû2AR

−1
]
. (3.13)
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Each state in (3.13) consists of various ingredients. First, ûi(k) (i = 0, 1A, 1B, 2A) are

defined by

û0 = −i
B

Kε
e−αKεcVk e

−αKε ,

û1A = e−αKεcVk e
−αKε ,

û1B =
(
1− k2

) B

Kε
e−αKεcKcVk e

−αKε +
ε

Kε
e−αKεcVk e

−αKε ,

û2A = e−αKεcKcVk e
−αKε . (3.14)

By QB, they are related by

iQBû0 = û1A − û1B, QBû1A = QBû1B =
(
1− k2

)
û2A. (3.15)

Note that there appear in (3.14) e−αKε instead of e−αK . Namely, each state in (3.14) is

multiplied by an extra factor e−2αε. Though this is merely a c-number factor which is

reduced to one in the limit ε → 0, it makes the expressions of various O(1/ε) quantities

simpler as we will see in section 4.

Second, L = L(Kε) and R = R(Kε) in (3.13) are functions of only Kε. Though

they are quite arbitrary at this stage, we will determine later, for each classical solution

Pε, their small Kε behavior from the requirement that the EOM against u1A/B and that

against the commutators
[
u0, u1A/B

]
hold. Finally, ξ in (3.13) is a parameter related to

the arbitrariness in the definitions of u1A and u1B.

The action of the BRST operator Q (3.10) on the six states of (3.13) is given by

iQu0 = u1A − u1B,

Q
(
u1A
u1B

)
=

(
1

1

)
[(
1− k2

)
u2A + u2B

]
+ i

(
ξ

−1 + ξ

)
[EOMε, u0] ,

iQ
(
u2A
u2B

)
=

(
1

k2 − 1

)
u3 + i

(
0

1

)
[EOMε, (1− ξ)u1A + ξu1B] ,

Qu3 = i [EOMε, u2A] , (3.16)

where EOMε is defined by

EOMε = QBPε + P2
ε , (3.17)

and given explicitly by (3.9).

The set of six BV states (3.13) has been constructed by comparing its BRST transfor-

mation property (3.16) with that of the six BV states (2.24) for the longitudinal photon

and by taking into account that EOMε and Pε are both apparently of O(ε). First, û1A
is the tachyon state on the unstable vacuum, and û0 is û1A multiplied by the “homotopy

operator” B/Kε of QB. We start with u0, which is û0 dressed by L and R−1, and divided

Qu0 into the difference of u1A and u1B as given by the first equation of (3.16). If we ignore

the apparently of O(ε) terms, u1A is the dressed tachyon state, and u1B, which is multi-

plied by (1−k2) vanishing at the tachyon on-shell k2 = 1, corresponds to k2u1B in the first

– 13 –
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equation of (2.28) for the massless longitudinal photon. We have distributed
[
Pε, Lû0R

−1
]

in iQu0 to u1A and u1B with coefficients specified by the parameter ξ. Then, we consider

Qu1A and Qu1B, which are equal to each other if Q2 = 0 and hence EOMε = 0 holds (see

the second equation of (3.16)). We have chosen u2A and u2B as the part of Qu1A which

is multiplied by (1 − k2) and the rest, respectively. For u2A and u2B, we have no clear

correspondence with the BV states of the longitudinal photon. Finally, u3 is naturally

defined from Q(u2A, u2B) as given in the last equation of (3.16).

Our choice (3.13) of the six states ui is of course not a unique one. For instance,

in (3.14), the part (ε/Kε) e
−αKεcVke

−αKε in û1B may be moved to û1A to replace û1A, û1B
and û2A in (3.13) with the following ones:

û1A =
K

Kε
e−αKεcVk e

−αKε ,

û1B =
(
1− k2

) B

Kε
e−αKεcKcVk e

−αKε ,

û2A =
K

Kε
e−αKεcKcVk e

−αKε . (3.18)

For u2A and u2B, we may take more generic linear combinations of the three terms

Lû2AR
−1,

{
Pε, Lû1AR

−1
}

and
{
Pε, Lû1BR

−1
}
. However, here in this paper, we carry

out the BV analysis by adopting the states of (3.13) with ûi given by (3.14). In this sense,

our analysis is rather an “experiment” and is not a comprehensive one. We do not know

whether the conclusion of tachyon being physical or unphysical can be changed by taking

another set of tachyon BV states.10

3.2 ω
(a,b)
ij (k)

As we will see later, L(Kε) and R−1(Kε) appearing in the definition of ui (3.13) play a

crucial role in making the EOM terms to vanish on the 2-brane. However, the pair (L,R) is

not uniquely determined by this requirement alone. Therefore, we put a superscript (a) on

(L,R) and the corresponding states ui in (3.13) to distinguish different choices of (L,R).

For example, we write

u
(a)
0 = L(a) û0

(
1/R(a)

)
. (3.19)

Then, the matrix ωij (2.13) now has another index (a, b):

∫
u
(a)
i (k′)u

(b)
j (k) = ω

(a,b)
ij (k)× (2π)26δ26(k′ + k), (3.20)

with i, j = 0, 1A, 1B, 2A, 2B, 3. However, ω
(a,b)
ij (k) should not be regarded as a matrix

with its left index (i, a) and right one (j, b); it is still a 6 × 6 matrix with a fixed pair of

(a, b). When we consider the action (3.11) in the final step of our analysis, we put (a) = (b)

by taking a particular (L,R).

10In section 6, we argue the stability of the (un)physicalness of tachyon fluctuation under the change of

the parameter ξ in (3.13) and under the replacement of ûi (3.14) with those given by (3.18).
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We see that all the components of ω
(a,b)
ij are not independent. By considering

∫
u
(a)
0 iQu

(b)
2A,

∫
u
(a)
0 iQu

(b)
2B and

∫
u
(a)
1BQu

(b)
1A, and using

∫
A1 ∗ QA2 = −(−1)A1

∫
(QA1) ∗A2, (3.21)

and (3.16), we obtain the following relations:

ω
(a,b)
1B,2A = ω

(a,b)
1A,2A + ω

(a,b)
0,3 , (3.22)

ω
(a,b)
1B,2B = ω

(a,b)
1A,2B −

(
1− k2

)
ω
(a,b)
0,3 , (3.23)

(
1− k2

)
ω
(a,b)
1B,2A + ω

(a,b)
1B,2B =

(
1− k2

)
ω
(b,a)
1A,2A + ω

(b,a)
1A,2B. (3.24)

In deriving the last two relations, we have assumed the vanishing of the EOM terms:

∫ [
u
(a)
0 , u

(b)
i

]
∗ EOMε = 0, (i = 1A, 1B). (3.25)

From (3.22) and (3.23), we also have

(
1− k2

)
ω
(a,b)
1B,2A + ω

(a,b)
1B,2B =

(
1− k2

)
ω
(a,b)
1A,2A + ω

(a,b)
1A,2B. (3.26)

Therefore, among the five components, ω
(a,b)
1A/B,2A/B and ω

(a,b)
0,3 , we can choose ω

(a,b)
1A,2A, ω

(a,b)
1A,2B

and ω
(a,b)
0,3 as independent ones, and write the submatrix Ω(a,b) as

Ω(a,b) ≡



ω
(a,b)
1A,2A ω

(a,b)
1A,2B

ω
(a,b)
1B,2A ω

(a,b)
1B,2B


 =

(
ω
(a,b)
1A,2A ω

(a,b)
1A,2B

ω
(a,b)
1A,2A + ω

(a,b)
0,3 ω

(a,b)
1A,2B +

(
k2 − 1

)
ω
(a,b)
0,3

)
. (3.27)

Its determinant is given by
∣∣∣Ω(a,b)

∣∣∣ = ω
(a,b)
0,3

[(
k2 − 1

)
ω
(a,b)
1A,2A − ω

(a,b)
1A,2B

]
. (3.28)

Using (3.16) and assuming (3.25), we also obtain the following useful formulas:

∫
u
(a)
i Qu

(b)
j =

(
1− k2

)
ω
(a,b)
1A,2A + ω

(a,b)
1A,2B, (i, j = 1A, 1B), (3.29)

∫
u
(a)
0 iQ

(
u
(b)
2A, u

(b)
2B

)
=

(
1, k2 − 1

)
ω
(a,b)
0,3 , (3.30)

where we have omitted (2π)26δ26(k′ + k) on the r.h.s. .

3.3 Formulas for the EOM tests and ω
(a,b)
ij

For the BV analysis for a given Gε, we need to evaluate (i) the EOM test of Pε against

u1A/B and
[
u
(a)
0 , u

(b)
1A/B

]
, and (ii) ω

(a,b)
0,3 , ω

(a,b)
1A,2A and ω

(a,b)
1A,2B. For u1A and u1B containing

the parameter ξ (see (3.13)), it is convenient to introduce w
(a)
ℓ (ℓ = A,B,C) defined by

w
(a)
A = L(a)û1AR

(a)−1, w
(a)
B = L(a)û1BR

(a)−1, w
(a)
C =

[
Pε, L

(a)û0R
(a)−1

]
, (3.31)
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and express u
(a)
1A/B as

u
(a)
1A = w

(a)
A + ξaw

(a)
C , u

(a)
1B = w

(a)
B − (1− ξa)w

(a)
C , (3.32)

where we have allowed the parameter ξ to depend on the index a of L(a) and R(a). For

L(a)(Kε) and R(a)(Kε), we assume that their leading behaviors for Kε ∼ 0 are

L(a)(Kε) ∼ Kma
ε , R(a)(Kε) ∼ Kna

ε , (3.33)

and give their remaining Kε-dependences as Laplace transforms:

L(a)(Kε) = Kma
ε

∫ ∞

0
dsa v

(a)
L (sa) e

−Kεsa ,
1

R(a)(Kε)
=

1

Kna
ε

∫ ∞

0
ds̃a v

(a)
1/R(s̃a) e

−Kεs̃a .

(3.34)

As given in (3.34), we adopt sa and s̃a as the integration variable of the Laplace transform

of L(a) and 1/R(a), respectively. We adopt the following normalization for v
(a)
L and v

(a)
1/R:

∫ ∞

0
dsa v

(a)
L (sa) =

∫ ∞

0
ds̃a v

(a)
1/R(s̃a) = 1. (3.35)

Namely, the coefficients of the leading terms (3.33) are taken to be equal to one. The pair

(ma, na) and the associated v
(a)
L (sa) and v

(a)
1/R(s̃a) should be determined by the requirement

of the EOM as stated before. Concerning the choice of (ma, na), it would be natural to

consider the case ma = na since the overall order of the BV states ui (3.13) with respect

to Kε for Kε ∼ 0 is not changed from the case without L(a) and R(a). We will restrict

ourselves to the case ma = na in the concrete calculations given in sections 4 and 5.

Then, the three kinds of quantities necessary for the BV analysis are expressed as the

following integrations over the Laplace transform variables:
∫
wℓ ∗ EOMε =

∫ ∞

0
ds vL(s)

∫ ∞

0
ds̃ v1/R(s̃)Eℓ(s, s̃), (3.36)

i

∫ [
w

(a)
ℓ (k′), u

(b)
0 (k)

]
∗ EOMε =

∫

(sa,sb,s̃a,s̃b)

E
(a,b)
ℓ,0 (sa, sb, s̃a, s̃b)× (2π)26δ26(k′ + k), (3.37)

ω
(a,b)
ij (k) =

∫

(sa,sb,s̃a,s̃b)

W
(a,b)
ij (sa, sb, s̃a, s̃b), (3.38)

where
∫
(sa,sb,s̃a,s̃b)

is the integration defined by

∫

(sa,sb,s̃a,s̃b)

=

∫ ∞

0
dsa v

(a)
L (sa)

∫ ∞

0
dsb v

(b)
L (sb)

∫ ∞

0
ds̃a v

(a)
1/R(s̃a)

∫ ∞

0
ds̃b v

(b)
1/R(s̃b). (3.39)

The explicit expressions of Eℓ, E
(a,b)
ℓ,0 (ℓ = A,B,C) and W

(a,b)
ij are lengthy and hence are

summarized in appendix B. They are given as sliver frame integrations containing a single

or no B. Though some of their defining expressions contain two or more B, we have used

the KBc algebra to reduce them to sliver frame integrations with a single B.
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The three Eℓ are not independent, but they satisfy the following relation:

EA − EB + EC = 0. (3.40)

This follows from wA − wB + wC = u1A − u1B = iQu0 (see the first of (3.16)) and the

Bianchi identity:

QEOMε = 0. (3.41)

Eq. (3.40) can be used as a consistency check of the calculations.

3.4 The action of the fluctuation in the non-degenerate case

Let us consider the kinetic term S0[Φ] (3.12) in the case of non-degenerate ωij . We have

attached the superscript (a, b) on ω
(a,b)
ij for distinguishing

(
vL, v1/R, ξ

)
defining the state ui

and that defining uj . However, when we express the fluctuation in terms of the basis {ui}
and the corresponding component fields, we choose one particular

(
vL, v1/R, ξ

)
. Namely,

when we consider the action (3.12), there appear only ω
(a,a)
ij with (a) = (b). Therefore, we

here omit the superscript (a, a) and simply write ωij .

When ωij is non-degenerate and the determinant (3.28) is not identically equal to zero,

|Ω| 6= 0, it is convenient to move to the Darboux basis by switching from (u2A, u2B) to

(u2P , u2Q) defined by

(u2P , u2Q) = (u2A, u2B) Ω
−1, (3.42)

where the inverse matrix Ω−1 is given by

Ω−1 =
1

|Ω|

(
ω1B,2B −ω1A,2B

−ω1B,2A ω1A,2A

)
, |Ω| = ω0,3

[(
k2 − 1

)
ω1A,2A − ω1A,2B

]
. (3.43)

The new set {u0, u1A, u1B, u2P , u2Q, u3} is in fact a Darboux basis since we have

(
ω1A,2P ω1A,2Q

ω1B,2P ω1B,2Q

)
=

∫ (
u1A
u1B

)
(u2P , u2Q) =

(
1 0

0 1

)
. (3.44)

Instead of (3.30), (u2P , u2Q) satisfies

∫
u0 iQ (u2P , u2Q) = ω0,3

(
1, k2 − 1

)
Ω−1 = (−1, 1). (3.45)

For expressing Φ in terms of the Darboux basis, it is more convenient to use still

another one {ũi} with tilde, which is defined by multiplying the states corresponding to

the fields and anti-fields by
√

̟(k) and its inverse, respectively:




ũ0
ũ1A
ũ2Q


 =

√
̟(k)




u0
u1A
u2Q


 ,



ũ1B
ũ2P
ũ3


 =

1√
̟(k)



u1B
u2P
u3


 , (3.46)

with ̟(k) given by

̟(k) =
(
k2 − 1

)
ω1A,2A(k)− ω1A,2B(k). (3.47)
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Then, expressing Φ as

Φ=

∫

k

{
ũ0(k)C(k)+ũ1A(k)χ(k)+ũ1B(k)C⋆(k)+ũ2P (k)χ⋆(k)+ũ2Q(k)C(k)+ũ3(k)C⋆(k)

}
,

(3.48)

the kinetic term (3.12) is given in terms of the component fields and anti-fields as

S0[Φ] =

∫

k

{
−1

2

(
̟χ+ C⋆

)
(−k)

(
̟χ+ C⋆

)
(k) + i

(
̟C − χ⋆

)
(−k)C(k)

}
. (3.49)

The action (2.31) for the photon longitudinal mode on the unstable vacuum is essentially

the special case of (3.49) with ̟(k) = k2, and the gauge-fixing process for (3.49) goes

in the same manner as for (2.31). Adopting the gauge L with χ⋆ = C⋆ = C⋆ = 0, the

gauge-fixed action and the BRST transformation are given by

Ŝ0 = S0

∣∣
L
=

∫

k

{
−1

2
(̟χ)(−k) (̟χ)(k) + i

(
̟C

)
(−k)C(k)

}
, (3.50)

and

δ̂Bχ(k) = i
δS0

δχ⋆(−k)

∣∣∣∣
L

= C(k),

δ̂BC(k) = i
δS0

δC⋆(−k)

∣∣∣∣
L

= −i̟(k)χ(k),

δ̂BC(k) = iω0,3(k)
−1 δS0

δC⋆(−k)

∣∣∣∣
L

= 0. (3.51)

If ̟(k) has a zero at k2 = −m2, the action (3.50) describes a totally unphysical system

with mass m explained in the Introduction.

The above argument leading to (3.49) does not apply if we ωij is degenerate. In such

a case, the system can describe a physical one in general.

3.5 (Non-)hermiticity of the BV states

Our tachyon BV basis {ui} given by (3.13) has in fact a problem that it does not satisfy

the hermiticity condition. We will explain it in this subsection.

In the original CSFT action (2.1), the the string field Ψ is assumed to be hermitian;

Ψ† = Ψ, or more generally, Ψ† = W (K)ΨW (K)−1 with W (K) depending only on K.

This constraint ensures the reality of the action (2.1) and, at the same time, prevents

the duplication of each fluctuation modes. Then, let us consider the hermiticity for the

action (3.11) of the fluctuation Φ around Pε. First, Pε (3.6) satisfies the hermiticity in the

following sense:

P†
ε = ε× (1−Gε) cGεBc

1

Gε
= WPεW

−1, (3.52)

with W given by

W = Gε (1−Gε) . (3.53)

Therefore, the fluctuation Φ in (3.11) must satisfy the same hermiticity:

Φ† = WΦW−1. (3.54)
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If (3.54) holds, it follows that QΦ with Q defined by (3.10) also satisfies the same her-

miticity11 (
QΦ

)†
= W (QΦ)W−1, (3.55)

and hence that the action (3.11) is real. In the expansion (2.11) of Φ in terms of the basis

{ui(k)} and the component fields ϕi(k), the hermiticity of Φ, (3.54), is realized by imposing

ui(k)
† = W ui(−k)W−1, (3.56)

and ϕi(k)† = ϕi(−k). However, our BV states (3.13) do not satisfy this hermiticity

condition.

One way to realize the hermiticity (3.56) is to take, instead of the states ui (3.13), the

following ones Ui:

Ui(k) =
1

2

[
ui(k) +W−1 ui(−k)†W

]
. (3.57)

In fact, Ui(k) satisfies (3.56) since W (3.53) is hermitian, W † = W . The relations (3.16)

under the operation of Q remain valid when ui is replaced with Ui.

However, the results of the BV analysis which will be presented in sections 4 and 5 are

largely changed if we adopt the hermitian basis {Ui} instead of {ui}. The EOM against

U1A/B is the same as that for u1A/B. On the other hand, the cross terms among the two

terms on the r.h.s. of (3.57) are added to the EOM against the commutator
[
U

(a)
1A/B, U

(b)
0

]

as well as ω
(a,b)
ij defined by (3.20) with ui replaced with Ui. Sample calculations show

that these cross terms change the results of sections 4 and 5 to much more complicated

ones. For example, the EOM against
[
U

(a)
1A/B, U

(b)
0

]
on the 2-brane no longer holds for

any
(
vL, v1/R, ξ

)
with (m,n) = (1, 1). Therefore, we will continue our analysis by using

the original non-hermitian basis {ui}, though this is certainly a problem to be solved in

the future.

4 BV analysis around the 2-brane solution

In this section, we carry out the BV analysis of the six states of (3.13) for the 2-brane

solution given by G2b in (3.5). Our analysis consists of the following three steps:

1. Evaluation of the EOM of Pε against u1A/B and
[
u
(a)
0 , u

(b)
1A/B

]
(recall (3.25) for the

necessity of the latter). From the vanishing of these EOMs, we determine the allowed

set of (L(Kε), R(Kε)).

2. Calculation of ω0,3, ω1A,2A and ω1A,2B for (L(Kε), R(Kε)) determined above. Our

expectation is that ω0,3 = 0, namely, that the present set of six BV states is degenerate

and therefore the tachyon can be physical.

3. Derivation of the kinetic term S0[Φ] (3.12) of the fluctuation Φ in terms of the com-

ponent fields defined by the basis {ui}.
11In deriving (3.55), we use the property QBK = 0 and

(
QBA

)†
= −(−1)AQBA

† valid for any string

field A.

– 19 –



J
H
E
P
0
5
(
2
0
1
6
)
0
2
2

4.1 EOM against u1A and u1B

First, let us consider the EOM test against u1A and u1B. For this purpose, we have to

evaluate Eℓ(s, s̃) of (3.36), which is given by (B.2)–(B.4) for a generic Gε. For the 2-brane

solution with G = G2b (3.5), Eℓ are given explicitly by

EA = −ε

∫
BcKm−1

ε e−(α+s)Kεc
K1−n

ε

1 +Kε
e−(α+s̃)Kεc

[
Kε, 1 +

1

Kε

]

c
, (4.1)

EB = −ε

∫
BcKc

K1−n
ε

1 +Kε
e−(α+s̃)Kε c

[
Kε, 1 +

1

Kε

]

c

e−(α+s)Kε

K2−m
ε

− ε2
∫

Bc
e−(α+s)Kε

K2−m
ε

c
K1−n

ε

1 +Kε
e−(α+s̃)Kεc

[
Kε, 1 +

1

Kε

]

c
, (4.2)

EC = ε2
∫
Bc

K1−n
ε

1 +Kε
e−(α+s̃)Kεc

[
K,

1

Kε

]

c
c
e−(α+s)Kε

K2−m
ε

. (4.3)

where [Kε, 1 + (1/Kε)]c is defined by (see (B.1))

[
Kε, 1 +

1

Kε

]

c
= Kε c

(
1 +

1

Kε

)
−
(
1 +

1

Kε

)
cKε. (4.4)

Since the order of the correlator
∫
BcKp

ε cK
q
ε cKr

ε cK
s
ε with respect to ε is

O
(
εmin(p+q+r+s−3,0)

)
,12 we find that

EA = O
(
ε1+min(m−n−3+δm,1+δn,1+δm,1δn,1,0)

)
,

EB = O
(
ε1+min(m−n−3+2δn,1+δn,0,0)

)
+O

(
ε2+min(m−n−4+δm,2+δn,1+δm,2 δn,1,0)

)
,

EC = O
(
ε2+min(m−n−4+δn,1,0)

)
, (4.5)

where the Kronecker-delta terms are due to the identities c2 = cKcKc = 0, and the two

terms in EB corresponds to those in (4.2). For a given (m,n), Eℓ can be evaluated by using

the formulas of the Bcccc correlators given in appendix A. However, we cannot carry out

the calculation for a generic (m,n), and the calculation for each (m,n) is very cumbersome.

Therefore, we have evaluated Eℓ only for two cases, (m,n) = (1, 1) and (0, 0). We have

chosen (m,n) = (1, 1) since, as seen from (4.5), Eℓ are least singular with respect to ε for

(m,n) = (1, 1) if we restrict ourselves to the case m = n.13 We have taken the other one

(m,n) = (0, 0) including the simplest case L = R = 1 as a reference.

12This formula is derived by using the scaling property G(λt1, λt2, λt3, λt4) = λ3G(t1, t2, t3, t4) of the

correlator G(t1, t2, t3, t4) =
∫
Bc e−t1Kc e−t2Kc e−t3Kc e−t4K given by (A.4) and (A.6). For p+q+r+s ≥ 4,

the correlator contains divergences from K = ∞ and hence not regularized by ε. This is the reason why

“min” appears in the formula.
13As we mentioned in section 3.3, the case m = n is natural in the sense that the overall order of each

BV state ui (3.13) with respect to Kε is not changed by (L,R).
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4.1.1 (m,n) = (1, 1)

In this case, Eℓ are given up to O(ε) terms by

EA(s, s̃) = 0,

EB(s, s̃) = EC(s, s̃) = − 3

π2
C1(s̃)×

1

ε
+

1

2
C2(s̃), (4.6)

where C1,2(s̃) are defined by

C1(s̃) = s̃+ α+ 1, C2(s̃) = (s̃+ α+ 1)2 + 1. (4.7)

We defer further arguments on the EOM against u1A/B for (m,n) = (1, 1) till we discuss

the EOM against
[
u
(a)
1A/B, u

(b)
0

]
in section 4.2.1.

4.1.2 (m,n) = (0, 0)

In this case, Eℓ are all of O(1/ε2):

(EA, EB, EC) = (1, 2, 1)× 3

π2

1

ε2
+O

(
1

ε

)
. (4.8)

This implies that we have to choose ξ = −1 to make the 1/ε2 part of the EOM test against

u1A and u1B to vanish. Namely, we have to take

u1A = wA − wC , u1B = wB − 2wC . (4.9)

Then, the combinations of Eℓ relevant to u1A/B are given as follows:

EA − EC = EB − 2EC =

[(
2

π2
+

5

3

)
C1(s̃) +

3

π2
D1(s)

]
1

ε
− 7

2
C2(s̃) + (2−D1(s))C1(s̃),

(4.10)

with D1(s) defined by

D1(s) = s+ α. (4.11)

4.2 EOM against
[
u
(a)
1A/B, u

(b)
0

]

Next, we evaluate the EOM test against
[
u
(a)
1A/B, u

(b)
0

]
, namely, E

(a,b)
ℓ,0 of (3.37) given explic-

itly by (B.5)–(B.7) for a generic Gε. As in the previous subsection, we consider only the

two cases; (ma, na) = (mb, nb) = (1, 1) and (0, 0). We will explain the calculations in the

case of (1, 1) in great detail. The same method will be used also in the calculation of ω
(a,b)
ij .

4.2.1 (ma, na) = (mb, nb) = (1, 1)

For G = G2b (3.5) and for (ma, na) = (mb, nb) = (1, 1), E
(a,b)
A,0 (B.5) reads

E
(a,b)
A,0 (sa, sb, s̃a, s̃b)

= ε

∫
BcVk

e−(α+s̃b)Kε

1 +Kε
c

[
Kε, 1 +

1

Kε

]

c

[
c, e−(α+sa)Kε

]
V−k

e−(2α+s̃a+sb)Kε

Kε

− ε

∫
BcVke

−(2α+s̃b+sa)Kεc V−k
e−(α+s̃a)Kε

1 +Kε
c

[
Kε, 1 +

1

Kε

]

c

e−(α+sb)Kε

Kε
. (4.12)
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Let us explain how we evaluate (4.12) and other E
(a,b)
ℓ,0 for a generic momentum kµ. Let

us consider, as an example, the contribution of the c e−(α+sa)K term of the commutator[
c, e−(α+sa)K

]
to the first integral of (4.12):

ε

∫
BcVk

e−(α+s̃b)Kε

1 +Kε
c

(
Kc

1

Kε
− 1

Kε
cK

)
c e−(α+sa)KεV−k

e−(2α+s̃a+sb)Kε

Kε

= e−ε(π+
∑

s) ε

∫ ∞

0
dt1 e

−(1+ε)t1

∫ ∞

0
dt2 e

−εt2

∫ ∞

0
dt3 e

−εt3F (t1, t2, t3), (4.13)

with e−ε(π+
∑

s) defined by

e−ε(π+
∑

s) = e−ε(π+sa+sb+s̃a+s̃b). (4.14)

In (4.13), t1, t2 and t3 are the Schwinger parameters for 1/(1 + Kε) and the two 1/Kε,

respectively, and the function F (t1, t2, t3) is given by

F (t1, t2, t3) = − ∂

∂w2
G
(
t1 + α+ s̃b, w2, t2, t3 + 3α+ sa + s̃a + sb; t3 + 2α+ s̃a + sb

)∣∣∣∣
w2=0

+
∂

∂w3
G
(
t1 + α+ s̃b, t2, w3, t3 + 3α+ sa + s̃a + sb; t3 + 2α+ s̃a + sb

)∣∣∣∣
w3=0

, (4.15)

where G is the product of the ghost correlator and the matter one on the infinite cylinder

of circumference ℓ = w1 + w2 + w3 + w4:

G(w1, w2, w3, w4;wX) =
〈
Bc(0)c(w1)c(w1 + w2)c(w1 + w2 + w3)

〉
ℓ
×
∣∣∣∣
ℓ

π
sin

πwX

ℓ

∣∣∣∣
−2k2

.

(4.16)

The explicit expressions of the correlators are given in appendix A.

One way to evaluate (4.13) in the limit ε → 0 is to (i) make a change of integra-

tion variables from (t2, t3) for 1/Kε to (u, x) by (t2, t3) = (u/ε) (x, 1− x), (ii) carry out

the x-integration first, (iii) Laurent-expand the integrand in powers of ε to a necessary

order, and finally (iv) carry out the integrations over u and t1. In fact, we obtained the

results (4.6), (4.8) and (4.10) by this method. However, it is hard to carry out explicitly

the x-integration in (4.13) before Laurent-expanding with respect to ε due to the presence

of the k2-dependent matter correlator in (4.16). On the other hand, Laurent-expanding

the (t1, u, x)-integrand with respect to ε before carrying out the x-integration sometimes

leads to a wrong result. Namely, the integration regions where x or 1− x are of O(ε) can

make non-trivial contributions.

Our manipulation for obtaining the correct result for (4.13) is as follows. Eq. (4.13),

which is multiplied by ε, can be non-vanishing due to negative powers of ε arising from

the two 1/Kε at the zero eigenvalue K = 0. In the r.h.s. of (4.13), this contribution comes

from any of the following three regions of the (t2, t3)-integration:

Region I: t2 = finite, t3 → ∞,

Region II: t2 → ∞, t3 → ∞,

Region III: t2 → ∞, t3 = finite. (4.17)
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Concretely, (4.13) is given as the sum of the contributions from the three regions:

e−ε(π+
∑

s)

∫ ∞

0
dt1 e

−(1+ε)t1 [(I) + (II) + (III)] , (4.18)

with each term given by

(I) =

∫ ∞

ε
du e−u

∫ ζu/ε

0
dy Ser

ε
F
(
t1, t2 = y, t3 = (u/ε)− y

)
, (4.19)

(II) =

∫ ∞

ε
du e−u

∫ 1−η

ζ
dx Ser

ε

u

ε
F
(
t1, t2 = xu/ε, t3 = (1− x)u/ε

)
, (4.20)

(III) =

∫ ∞

ε
du e−u

∫ ηu/ε

0
dy Ser

ε
F
(
t1, t2 = (u/ε)− y, t3 = y

)
, (4.21)

where Serε denotes the operation of Laurent-expanding the function with respect to ε to

a necessary order.14 In each region, we have put t2 + t3 = u/ε and limited the integration

region of u to (ε,∞) since the other region (0, ε) cannot develop a negative power of ε. As

given in (4.19)–(4.21), the three regions of (4.17) are specified by two parameters, ζ and

η, which we assume to be of O(ε0). Explicitly, the evaluation of the terms (I)–(III) goes

as follows:

Term (I). For (4.19), the Laurent expansion gives

Ser
ε

F =
2π2

3

( ε

u

)3
(t1 + s̃b + α) (t1 + s̃b + α+ y) (t1 + sa + s̃b + 2α+ y)−2k2 y3 + . . . .

(4.22)

The leading term of the y-integration is of order (u/ε)max(5−2k2,0), and we obtain

(I) ∼
∫ ∞

ε
du e−u

( ε

u

)3−max(5−2k2,0)
= O

(
εmin(2k2−2,1)

)
, (4.23)

where we have used that15

∫ ∞

ε
du e−u

( ε

u

)g
= O

(
εmin(g,1)

)
. (4.24)

The subleading term of (4.22), which is of O
(
(ε/u)4

)
, gives terms of order εmin(2k2−2+p,1)

with p = 1, 2, · · · .

Term (II). The Laurent expansion in (4.20) gives

Ser
ε

u

ε
F = 2 (t1 + s̃b + α)

πx cosπx− sinπx

sinπx

(
u sinπx

πε

)2−2k2

+ . . . . (4.25)

Since the x-integration in the range ζ ≤ x ≤ 1− η is finite, we obtain

(II) ∼
∫ ∞

ε
du e−u

(u
ε

)2−2k2

= O
(
εmin(2k2−2,1)

)
. (4.26)

14In this Laurent expansion, we treat u, y, x and 1− x as quantities of O(ε0).
15Precisely, the r.h.s. of (4.24) for g = 1 should read O(ε ln ε).
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Term (III). The Laurent expansion in (4.21) gives

Ser
ε

F = −2 (s̃b + t1 + α) (sb + s̃a + 2α+ y)−2k2 (sa + sb + s̃a + 3α+ y) + . . . . (4.27)

Carrying out the y-integration, we get

(III) =
t1 + s̃b + α

(k2 − 1)(2k2 − 1)

∫ ∞

ε
du e−u

[
(sb + s̃a + 2α+ y)1−2k2

×
{
2(k2 − 1)(sa + α) + (2k2 − 1)(sb + s̃a + 2α+ y)

}]y=ηu/ε

y=0

= −(t1 + s̃b + α) (sb + s̃a + 2α)1−2k2

(k2 − 1)(2k2 − 1)

{
2(k2 − 1)(sa + α) + (2k2 − 1)(sb + s̃a + 2α)

}

+O
(
εmin(2k2−2,1)

)
, (4.28)

where the last term is the contribution of the y = ηu/ε term.

Summing the three terms, (4.23), (4.26) and (4.28), and carrying out the t1-integration

of (4.18), we finally find that (4.13) is given by

− (s̃b + α+ 1) (sb + s̃a + 2α)1−2k2

(k2 − 1)(2k2 − 1)

{
2(k2 − 1)(sa + α) + (2k2 − 1)(sb + s̃a + 2α)

}

+O
(
εmin(2k2−2,1)

)
. (4.29)

This result can also be checked by numerically carrying out the integrations of (4.13) for

given values of ε, k2 and other parameters in (4.13).

The evaluation of the other term of the first integral of (4.12), namely, the term

containing the e−(α+sa)Kc part of the commutator
[
c, e−(α+sa)

]
, is quite similar. In fact,

the two terms of the commutator almost cancel one another, and the whole of the first

integral of (4.12) turns out to be simply of O
(
εmin(2k2−1,1)

)
.16

Next, the second integral of (4.12) is given by

e−ε(π+
∑

s) ε

∫ ∞

0
dt1 e

−(1+ε)t1

∫ ∞

0
dt2 e

−εt2
{
G(2α+s̃b+sa, t1+α+s̃a, t2, α+sb; 2α+s̃b+sa)

+ (1 + t3) ∂w3G(2α+ s̃b + sa, t1 + α+ s̃a, w3, t2 + α+ sb; 2α+ s̃b + sa)|w3=0

}
. (4.30)

The evaluation of this term is much easier than that of the first integral explained above

since there is only one Schwinger parameter t2 for 1/Kε. We have only to Laurent-expand

the integrand with respect to ε after making the change of integration variables from t2 to

u = εt2, and carry out the (t1, u)-integrations. After all, the whole of E
(a,b)
A,0 (4.12) is found

to be given by

E
(a,b)
A,0 = O

(
εmin(2k2−1,1)

)
+ (sa + s̃b + 2α)1−2k2

[
C2(s̃a) + (sa + s̃b + 2α)C1(s̃a)

]
, (4.31)

where the first (second) term on the r.h.s. corresponds to the first (second) integral of (4.12).

16The actual ε-dependence may be a milder one since we are not taking into account the possibility of

cancellations among the three terms (4.19)–(4.21) for the whole of the first integral of (4.12). In fact,

numerical analysis supports a milder behavior O
(
εmin(2k2,1)

)
.
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The first term on the r.h.s. of (4.31), O
(
εmin(2k2−1,1)

)
, vanishes in the limit ε → 0

for k2 > 1/2, while it is divergent for k2 < 1/2. Here, we define E
(a,b)
A,0 for a generic k2

as the “analytic continuation” from the region of sufficiently large k2 (k2 > 1/2 in the

present case). Thus, E
(a,b)
A,0 is simply given by the last term of (4.31). Eq. (4.31) has been

obtained by keeping only the first term of the Laurent expansion. The subleading term

which has an extra positive power (ε/u)p contributes O
(
εmin(2k2−1+p,1)

)
. This vanishes for

k2 > 1/2 and does not affect our definition of E
(a,b)
A,0 by analytic continuation. We apply

this definition of E
(a,b)
A,0 by analytic continuation from the region of sufficiently large k2 also

to other k2-dependent quantities; E
(a,b)
ℓ,0 (ℓ = B,C) and W

(a,b)
ij .

The evaluation of E
(a,b)
B,0 and E

(a,b)
C,0 is similar except two points. First, they contain

terms with three 1/Kε. For such terms, we have to carry out the integration over the three

Schwinger parameters by considering 23− 1 = 7 regions with at least one large parameters

(see appendix C). Second, the obtained E
(a,b)
ℓ,0 (ℓ = B,C) both contain 1/ε terms, and,

therefore, e−ε(π+
∑

s) (4.14) multiplying them makes non-trivial contribution to their O(ε0)

terms. Then, we get the following results:17

E
(a,b)
B,0 =

1− k2

1− 2k2
(sa + s̃b + 2α)1−2k2 C2(s̃a) (4.32)

+ (sb + s̃a + 2α)1−2k2
{
−1

2
C2(s̃b) +

[
1

1− 2k2
3

π2

1

ε
− (sb + s̃a + 2α)

]
C1(s̃b)

}
,

E
(a,b)
C,0 = − 1

2(1− 2k2)
(sb + s̃a + 2α)1−2k2 [2C1(s̃b) + C2(s̃b)]

− 1

1− 2k2

(
3

π2

1

ε
+ 1

)
(sa + s̃b + 2α)1−2k2 C1(s̃a). (4.33)

In particular, E
(a,b)
A,0 −E

(a,b)
B,0 +E

(a,b)
C,0 , which is related to the EOM against

[
u
(a)
0 , u

(b)
1A−u

(b)
1B

]
,

is given by

E
(a,b)
A,0 −E

(a,b)
B,0 +E

(a,b)
C,0 =−

{
k2

1−2k2
C2(s̃a) +

[
1

1−2k2

(
3

π2

1

ε
+ 1

)
−Sa+b̃

]
C1(s̃a)

}
S1−2k2

a+b̃

−
{

k2

1−2k2
C2(s̃b) +

[
1

1−2k2

(
3

π2

1

ε
+ 1

)
−Sb+ã

]
C1(s̃b)

}
S1−2k2

b+ã ,

(4.34)

where Sa+b̃ and Sb+ã are defined by

Sa+b̃ = sa + s̃b + 2α, Sb+ã = sb + s̃a + 2α. (4.35)

Eq. (4.34) implies that, in order for the EOM against
[
u
(a)
0 , u

(b)
1A − u

(b)
1B

]
to hold for any k2,

v
(a)
1/R(s̃a) and v

(b)
1/R(s̃b) must be such that satisfy

∫ ∞

0
ds̃ v1/R(s̃)

(
C1(s̃)

C2(s̃)

)
= 0. (4.36)

17If we adopt e−αK instead of e−αKε in the definition of ûi (3.14), we have to replace all 1/ε in (4.32)

and (4.33) with (1/ε) + π.
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In this case, the EOMs against
[
u
(a)
0 , u

(b)
1A

]
and

[
u
(a)
0 , u

(b)
1B

]
hold for any ξ. Furthermore, the

EOM against u1A/B also holds for any ξ as seen from (4.6).

The condition (4.36) restricts the first few terms of the series expansion of 1/R(Kε)

with respect to Kε. In fact, expanding the expression (3.34) for 1/R(Kε) in powers of Kε

and using the condition (4.36), we obtain

1

R(Kε)
=

1

Kε

{
1 + (α+ 1)Kε +

1

2
α (α+ 2)K2

ε +O
(
K3

ε

)}
. (4.37)

4.2.2 (ma, na) = (mb, nb) = (0, 0)

The complete evaluation of E
(a,b)
ℓ,0 for (ma, na) = (mb, nb) = (0, 0) is much harder than that

for (1, 1). Here, however, we need only their 1/ε2 part:


E

(a,b)
A,0

E
(a,b)
B,0


 = −

(
1

2

)
3

π2

1

1− 2k2
(sb + s̃a + 2α)1−2k2 × 1

ε2
+O

(
1

ε

)
,

E
(a,b)
C,0 =

3

π2

1

1− 2k2
(sa + s̃b + 2α)1−2k2 × 1

ε2
+O

(
1

ε

)
. (4.38)

This result implies that the 1/ε2 part of the EOM against
[
u
(a)
1A/B, u

(b)
0

]
cannot vanish for

any choice of ξa (and, in particular, for ξa = −1 determined in section 4.1.2) at least

in the case (a) = (b) which we take in the end. Therefore, we do not consider the case

(ma, na) = (mb, nb) = (0, 0) in the rest of this section.

4.3 ω
(a,b)
ij for (ma, na) = (mb, nb) = (1, 1)

Let us complete the BV analysis around the 2-brane solution by evaluating the matrix

ω
(a,b)
ij (3.20) for (ma, na) = (mb, nb) = (1, 1) (see (B.8)–(B.16) for explicit expressions of

W
(a,b)
i,j ). First, for W

(a,b)
0,3 (B.8), we obtain18

W
(a,b)
0,3 = O

(
εmin(2k2,1)

)
. (4.39)

Namely, W
(a,b)
0,3 defined by analytic continuation is identically equal to zero. Next,

W
(a,b)(1)
1A,2A (B.10) and W

(a,b)(2)
1A,2A (B.11) constituting W

(a,b)
1A,2A by (B.9) are given by

W
(a,b)(1)
1A,2A =

∫
c V−k e

−(2α+sb+s̃a)KcKcVk e
−(2α+sa+s̃b)K = f(sa, sb, s̃a, s̃b), (4.40)

W
(a,b)(2)
1A,2A = O

(
εmin(2k2,1)

)
, (4.41)

with

f(sa, sb, s̃a, s̃b) =

[(
1 +

sa + sb + s̃a + s̃b
π

)
sin

(
π
2 + sb + s̃a

1 + 1
π (sa + sb + s̃a + s̃b)

)]2(1−k2)

.

(4.42)

18The first and the second terms in (B.8) are of O
(
εmin(2k2,1)

)
and O(ε), respectively.
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Therefore, ω
(a,b)
1A,2A defined by analytic continuation is independent of ξa and is given by

(see (3.38))

ω
(a,b)
1A,2A =

∫

(sa,sb,s̃a,s̃b)

f(sa, sb, s̃a, s̃b). (4.43)

Finally, for W
(a,b)
1A,2B given by (B.12), we obtain the following result after the analytic con-

tinuation:

W
(a,b)(1)
1A,2B = 0,

W
(a,b)(2)
1A,2B =

1

2
S1−2k2

a+b̃

[
C2(s̃a) + Sa+b̃C1(s̃a)

]
, (4.44)

W
(a,b)(3)
1A,2B = −1

2
S1−2k2

b+ã [C2(s̃b) + Sb+ãC1(s̃b)] ,

W
(a,b)(4)
1A,2B =

1

2

1− k2

1−2k2

[
S1−2k2

a+b̃
C2(s̃a)− S1−2k2

b+ã C2(s̃b)
]
−
(

1

1−2k2
3

π2

1

ε
−Sa+b̃

)
S1−2k2

a+b̃
C1(s̃a).

Assuming that v
(a)
1/R and v

(b)
1/R both satisfy the condition (4.36), our result (4.44) implies

that ω
(a,b)
1A,2B is equal to zero for any (ξa, ξb).

Summarizing, we have obtained

ω
(a,b)
0,3 = 0, ω

(a,b)
1A,2A = 1 +O

(
k2 − 1

)
, ω

(a,b)
1A,2B = 0, (4.45)

and, from (3.27), 
ω

(a,b)
1A,2A ω

(a,b)
1A,2B

ω
(a,b)
1B,2A ω

(a,b)
1B,2B


 =

(
1 0

1 0

)
ω
(a,b)
1A,2A. (4.46)

4.4 The action of the fluctuation with (m,n) = (1, 1)

The above result, in particular, ω
(a,b)
0,3 = 0, implies that the present ω

(a,b)
ij for the six BV-

states is degenerate. From ω
(a,b)
0,3 = 0 and (4.46), we see that the rank of the 6× 6 matrix

ω
(a,b)
ij is two, and that there exists effectively the following four equivalences:19

u
(a)
0 ∼ 0, u

(a)
2B ∼ 0, u

(a)
3 ∼ 0, u

(a)
1A ∼ u

(a)
1B . (4.47)

Therefore, we express the fluctuation Φ around the solution Pε in terms of only u1A and

u2A which are non-trivial and independent:

Φ =

∫

k
(u1A(k)χ(k) + u2A(k)χ⋆(k)) . (4.48)

Here, we have chosen as v1/R(s̃) defining ui a suitable one satisfying the condition (4.36),

and omitted the superscript (a) as in section 3.4. Plugging (4.48) into the kinetic term

S0[Φ] (3.12) and using (3.29), we obtain

S0[Φ] = −
∫

k

1

2
ω1A,2A(k)

(
k2 − 1

)
χ(−k)χ(k). (4.49)

19For a state w, w ∼ 0 implies that ω
(a,b)
w,j =

∫
w(a)u

(b)
j vanishes for any u

(b)
j in the six BV states. Note

that Qw ∼ 0 follows from w ∼ 0 due to the property (3.21).
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Since we have ω1A,2A(k
2 = 1) = 1, the expansion (4.48) and the action (4.49) are essentially

the same as (2.37) and (2.38), respectively, for the tachyon field on the unstable vacuum.

The present χ represents a physical tachyon field.

Finally, let us interpret the above result in the context of the BRST cohomology

problem. Using the truncation (4.47) and discarding the EOM terms in the BRST trans-

formation formula (3.16), we obtain the following equations for the remaining u1A and u2A:

Qu1A =
(
1− k2

)
u2A, iQu2A = 0. (4.50)

The first equation and the fact that u0 ∼ 0, namely, that there is no candidate BRST

parent of u1A, imply that u1A at k2 = 1 is a physical state belonging to KerQ/ImQ.

5 BV analysis around the tachyon vacuum solution

In this section, we repeat the BV analysis of the previous section by taking Gtv (3.5) which

represents the tachyon vacuum. We expect of course that the matrix ωij of the six BV

states ui is non-degenerate and therefore the excitations they describe are unphysical ones.

As (m,n) for (L,R), we consider here again only the two cases, (1, 1) and (0, 0).

5.1 EOM against u1A/B and
[
u
(a)
1A/B, u

(b)
0

]

First, Eℓ (ℓ = A,B,C) (3.36) for the EOM against u1A/B are calculated to be given by

EA = EB = 2, EC = 0 for (m,n) = (1, 1), (5.1)

and

EA = EB = EC = 0 for (m,n) = (0, 0). (5.2)

The result (5.1) implies that the EOMs against u1A and u1B cannot be satisfied for any

ξ in the case (m,n) = (1, 1). On the other hand, EOMs against u1A/B both hold for an

arbitrary ξ in the case (0, 0). Therefore, in the rest of this section, we consider only the

latter case (m,n) = (0, 0).

Next, E
(a,b)
ℓ,0 (ℓ = A,B,C) (3.37) for the EOM against

[
u
(a)
1A/B, u

(b)
0

]
in the case (m,n) =

(0, 0) are found to be given by

E
(a,b)
A,0 = O

(
εmin(2k2,1)

)
, E

(a,b)
B,0 = O

(
εmin(2k2−1,1)

)
, E

(a,b)
C,0 = O

(
εmin(2k2−1,1)

)
. (5.3)

Namely, E
(a,b)
ℓ,0 defined by analytic continuation are all equal to zero.

Summarizing, all the EOM tests are satisfied for any
(
vL, v1/R, ξ

)
in the case (m,n) =

(0, 0). The choice (m,n) = (1, 1) is excluded by the EOM test against u1A/B.

5.2 ω
(a,b)
ij for (ma, na) = (mb, nb) = (0, 0) and ξa = ξb = 0

For the tachyon vacuum solution and for (ma, na) = (mb, nb) = (0, 0), we find that

W
(a,b)
0,3 (B.8) is non-trivial and is given by

W
(a,b)
0,3 = − (sb + s̃a + 2α)2(1−k2) +O

(
εmin(2k2,1)

)
, (5.4)

where the last term should be discarded by analytic continuation.
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Next, for ω
(a,b)
1A,2A and ω

(a,b)
1A,2B , we have to specify (ξa, ξb). Here, we consider the sim-

plest case of (ξa, ξb) = (0, 0), for which we need to calculate only W
(a,b)(1)
1A,2A (B.10) and

W
(a,b)(1)
1A,2B (B.13). We see that the former, which is independent of Gε and depends on

(ma, na) and (mb, nb) only through the differences mb − na and ma − nb, is the same

as (4.40) for the 2-brane solution:

W
(a,b)(1)
1A,2A = f(sa, sb, s̃a, s̃b), (5.5)

with f given by (4.42). As for the latter, we find that

W
(a,b)(1)
1A,2B = O(ε). (5.6)

Our result implies that

ω
(a,b)
0,3 = −1 +O(k2 − 1), ω

(a,b)
1A,2A = 1 +O(k2 − 1), ω

(a,b)
1A,2B = 0, (5.7)

for any v
(a/b)
L and v

(a/b)
1/R . Since ωij for the six BV states ui are non-degenerate, the general

argument of section 3.4 does apply to the present case. From (5.7), the function̟(k) (3.47)

is given by20

̟(k) =
(
k2 − 1

)
ω1A,2A(k) = k2 − 1 +O

(
(k2 − 1)2

)
, (5.8)

and the fluctuation around the tachyon vacuum we have constructed is an unphysical one

with m2 = −1.

Finally, our result is interpreted in the BRST cohomology problem as follows. On the

mass-shell k2 = 1, ωij is reduced to

ω0,3 = −1,

(
ω1A,2A ω1A,2B

ω1B,2A ω1B,2B

)
=

(
1 0

0 0

)
,

(
k2 = 1

)
. (5.9)

From this we find that u1B ∼ 0 and u2B ∼ 0 at k2 = 1. Then, from (3.16), we obtain the

following BRST transformation rule for the remaining (u0, u1A, u2A, u3):

iQu0 = u1A, Qu1A = 0, iQu2A = u3, Qu3 = 0,
(
k2 = 1

)
. (5.10)

This implies, in particular, that the candidate physical state u1A is a trivial element of

KerQ/ImQ. Of course, this cannot be a proof of the total absence of physical excitations

with m2 = −1 on the tachyon vacuum.

20This ̟(k) is not necessarily non-negative, and this may be a problem for the hermiticity of ũi related to

ui by (3.46) containing
√

̟(k). For example, in the simplest case of L = R = 1, we have ω1A,2A(k) ≡ 1 and

hence ̟(k) is negative for k2 < 1. Though the hermiticity of the original BV states ui itself is a problem

as we mentioned in section 3.5, one way to resolve the negative ̟ problem would be to Wick-rotate to the

Euclidean space-time where we have k2 ≥ 0 (the negative ̟ region, 0 ≤ k2 < 1, should be regarded as an

artifact of the tachyon).
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6 Summary and discussions

In this paper, we carried out the analysis of the six tachyon BV states for the 2-brane

solution and for the tachyon vacuum solution in CSFT. This set of six states was chosen

from the requirement that the EOM of the solution holds against the states and their

commutators. We found that the matrix ωij defining the BV equation is degenerate and

therefore the tachyon mode is physical for the 2-brane solution. On the other hand, ωij is

non-degenerate on the tachyon vacuum solution, implying that the candidate tachyon field

is in fact unphysical there. These results are in agreement with our expectation and the

general proof of the non-existence of physical excitations on the tachyon vacuum [8].

Our analysis in this paper is incomplete in several respects. First, we have not identified

all of the four tachyon fields of the same m2 = −1 which should exist on the 2-brane

solution. Secondly and more importantly, we must resolve the problem that our six tachyon

BV states (3.13) do not satisfy the hermiticity condition (3.56). Even if we put aside

this problem, there are a number of questions to be understood concerning our tachyon

BV states:

• The construction of our tachyon BV states (3.13) is not a unique one. In particu-

lar, the division of iQu0 into u1A and u1B and that of Qu1A/B into u2A and u2B
(see (3.16)) have much arbitrariness which is not reduced to a linear recombina-

tion among the two states. We have to confirm that the (non-)existence of physical

tachyon fluctuation does not depend on the choice of the tachyon BV states so long

as they satisfy the EOM conditions. (Or we have to establish a criterion for selecting

a particular set of the BV states besides the EOM conditions.)

In this paper, we introduced one parameter ξ representing an arbitrariness of the

tachyon BV states (recall (3.13)). For the 2-brane solution and for (m,n) = (1, 1)

and v1/R satisfying (4.36) from the EOM conditions, we found in section 4.3 that

the matrix ωij(k) is totally independent of the parameter ξ, implying that a physical

tachyon fluctuation exists for any ξ. For the tachyon vacuum solution and for (m,n) =

(0, 0), the results for ω0,3 given in (5.4) and (5.7) are independent of ξ. Though we

have to evaluate other ωij for confirming the non-degeneracy of the 2×2 part Ω (3.27)

with detΩ = ω0,3̟, the fact that ω0,3(k) 6= 0 supports that the present set of the

tachyon BV states is an unphysical one for any ξ.

Besides the analysis presented in sections 4 and 5, we carried out the analysis also for

the BV states (3.13) using another choice of ûi given by (3.18). The results for this

BV states are mostly the same as those for the BV states using ûi of (3.14). First,

for the 2-brane solution, the EOM conditions are all satisfied for (m,n) = (1, 1) and

v1/R satisfying (4.36), and we obtain, in the particular case of ξ = 1,

ω0,3 = 0, ω1A,2A = −1 +O
(
k2 − 1

)
, ω1A,2B = 0, (6.1)

where ω1A,2A is given by the following W
(a,b)
1A,2A:

W
(a,b)
1A,2A = f(sa, sb, s̃a, s̃b)−

(π
2
+ sa + s̃b

)2(1−k2)
−
(π
2
+ sb + s̃a

)2(1−k2)
, (6.2)

– 30 –



J
H
E
P
0
5
(
2
0
1
6
)
0
2
2

with f defined by (4.42). This result should be compared with (4.45) for the

choice (3.14) of ûi adopted in section 4. Eq. (6.1) implies that ωij is degenerate

and the tachyon is physical. However, the fact that ω1A,2A = −1 at k2 = 1 im-

plies that the the tachyon field kinetic term given by (4.49) has the wrong sign,

namely, that the physical tachyon is a negative norm one. Of course, we have to

resolve the hermiticity problem before taking this problem seriously. Secondly, for

the tachyon vacuum solution and for (m,n) = (0, 0) and ξ = 1, we found that ωij

is non-degenerate and hence the fluctuation is an unphysical one. The main dif-

ference from the case of ûi given by (3.14) is that ωij are of O(1/ε); for example,

ω0,3 = −(π/2)2(1−k2)
[
1 + 6/

(
π3

(
2k2 − 1

)
ε
)]

for L = R = 1.

These two results, one concerning the parameter ξ and the other for another

choice (3.18) of ûi, may support the expectation that the (un)physicalness of the

tachyon fluctuation is insensitive to the details of the choice of the BV states. In any

case, we need a deeper understanding and general proof of this expectation.

• We have restricted our analysis of the kinetic term S0 (3.12) only to the six tachyon

BV states and ignored the presence of all other states. For this analysis to be truly

justified, we have to show that the complete set of the BV states of fluctuation can

be constructed by adding to our set of tachyon BV states its complementary set of

BV states which are orthogonal (in the sense of ωij = 0) to the former set.

• As (m,n) specifying the leading small Kε behavior of L(Kε) and R(Kε), we have

considered only the two cases, (1, 1) and (0, 0). We should examine whether there are

other allowed (m,n) passing the EOM tests, and if so, we must clarify the relationship

among the BV bases with different (m,n).

Finally, we have to extend our analysis to more generic n-brane solutions (including the

exotic one with n = −1), and also to fluctuations other than the tachyon mode.
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A KBc algebra and correlators

Here, we summarize the KBc algebra and the correlators which we used in the text. The

elements of the KBc algebra satisfy

[B,K] = 0, {B, c} = 1, B2 = c2 = 0, (A.1)

and

QBB = K, QBK = 0, QBc = cKc. (A.2)

Their ghost numbers are

Ngh(K) = 0, Ngh(B) = −1, Ngh(c) = 1. (A.3)
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In the text and in appendix B, there appear the following CSFT integrations:
∫
Bc e−t1Kc e−t2Kc e−t3Kc e−t4K = 〈Bc(0)c(t1)c(t1 + t2)c(t1 + t2 + t3)〉t1+t2+t3+t4

, (A.4)
∫
c e−t1Kc e−t2Kc e−t3K = 〈c(0)c(t1)c(t1 + t2)〉t1+t2+t3

. (A.5)

They are given in terms of the correlators on the cylinder with infinite length and the

circumference ℓ:

〈B c(z1)c(z2)c(z3)c(z4)〉ℓ =
(
ℓ

π

)2{
−z1

π
sin

[π
ℓ
(z2 − z3)

]
sin

[π
ℓ
(z2 − z4)

]
sin

[π
ℓ
(z3 − z4)

]

+
z2
π

sin
[π
ℓ
(z1 − z3)

]
sin

[π
ℓ
(z1 − z4)

]
sin

[π
ℓ
(z3 − z4)

]

− z3
π

sin
[π
ℓ
(z1 − z2)

]
sin

[π
ℓ
(z1 − z4)

]
sin

[π
ℓ
(z2 − z4)

]

+
z4
π

sin
[π
ℓ
(z1 − z2)

]
sin

[π
ℓ
(z1 − z3)

]
sin

[π
ℓ
(z2 − z3)

]}
, (A.6)

〈c(z1)c(z2)c(z3)〉ℓ =
(
ℓ

π

)3

sin
[π
ℓ
(z1 − z2)

]
sin

[π
ℓ
(z1 − z3)

]
sin

[π
ℓ
(z2 − z3)

]
. (A.7)

Finally, the matter correlator is given by

〈
eik·X(z,z) eik

′·X(z′,z′)
〉matt

ℓ
=

∣∣∣∣
ℓ

π
sin

π(z − z′)

ℓ

∣∣∣∣
−2k2

× (2π)26δ26(k + k′). (A.8)

B Eℓ, E
(a,b)
ℓ,0 , W

(a,b)
0,3 , W

(a,b)
1A,2A and W

(a,b)
1A,2B

In this appendix, we present explicit expressions of the quantities defined by (3.36), (3.37)

and (3.38). In these expressions, [Kε, Gε]c denotes the following abbreviation:

[Kε, Gε]c = Kε cGε −Gε cKε. (B.1)

Eℓ(s, s̃) (ℓ = A,B,C).

EA = ε

∫
Bc (1−Gε)K

m
ε e−(α+s)Kεc

e−(α+s̃)Kε

GεKn
ε

c [Kε, Gε]c , (B.2)

EB =
(
1− k2

)
ε

∫
BcKc

e−(α+s̃)Kε

GεKn
ε

c [Kε, Gε]c (1−Gε)
e−(α+s)Kε

K1−m
ε

+ ε2
∫
Bc (1−Gε)

e−(α+s)Kε

K1−m
ε

c
e−(α+s̃)Kε

GεKn
ε

c [Kε, Gε]c , (k2 = 0), (B.3)

EC = −ε2
∫
Bc

e−(α+s̃)Kε

GεKn
ε

c [Kε, Gε]c c (1−Gε)K
m−1
ε e−(α+s)Kε . (B.4)

In (B.3), we have kept k2 to make explicit the origin of the term, though we of course have

to put kµ = 0 due to momentum conservation. We have omitted the space-time volume

(2π)26δ26(k = 0) = V T on the r.h.s. of (B.2)–(B.4).
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E
(a,b)
ℓ,0 (sa, sb, s̃a, s̃b) (ℓ = A,B,C).

E
(a,b)
A,0 = −ε

∫
BcVk

e−(α+s̃b)Kε

GεK
nb
ε

c [Kε, Gε]c

[
c, (1−Gε)K

ma
ε e−(α+sa)Kε

]
V
−k

e−(2α+sb+s̃a)Kε

K1+na−mb
ε

− ε

∫
BcVk

e−(2α+sa+s̃b)Kε

Knb−ma
ε

c V
−k

e−(α+s̃a)Kε

GεK
na
ε

c [Kε, Gε]c (1−Gε)
e−(α+sb)Kε

K1−mb
ε

, (B.5)

E
(a,b)
B,0 = −

(
1− k2

)
ε

∫
BcKcV

−k

e−(2α+sb+s̃a)Kε

K1+na−mb
ε

Vk

[
c,
e−(α+s̃b)Kε

GεK
nb
ε

]
[Kε, Gε]c (1−Gε)

e−(α+sa)Kε

K1−ma
ε

−
(
1− k2

)
ε

∫
BcKcV

−k

e−(α+s̃a)Kε

GεK
na
ε

c [Kε, Gε]c (1−Gε)
e−(α+sb)Kε

K1−mb
ε

Vk

e−(2α+sa+s̃b)Kε

K1+nb−ma
ε

− ε2
∫
BcVk

e−(α+s̃b)Kε

GεK
nb
ε

c [Kε, Gε]c

[
c, (1−Gε)

e−(α+sa)Kε

K1−ma
ε

]
V
−k

e−(2α+sb+s̃a)Kε

K1+na−mb
ε

− ε2
∫
BcVk

e−(2α+sa+s̃b)Kε

K1+nb−ma
ε

c V
−k

e−(α+s̃a)Kε

GεK
na
ε

c [Kε, Gε]c (1−Gε)
e−(α+sb)Kε

K1−mb
ε

, (B.6)

E
(a,b)
C,0 = −ε2

∫
BcVk

e−(α+s̃b)Kε

GεK
nb
ε

c [Kε, Gε]c

[
c,

1

Gε

− 1

]
Gε (1−Gε)

e−(α+sa)Kε

K1−ma
ε

V
−k

e−(2α+sb+s̃a)Kε

K1+na−mb
ε

− ε2
∫
BcV

−k

e−(α+s̃a)Kε

GεK
na
ε

cGεc
Kε

Gε

cGε (1−Gε)
e−(α+sb)Kε

K1−mb
ε

Vk

e−(2α+sa+s̃b)Kε

K1+nb−ma
ε

+ ε2
∫
BcV

−k

e−(α+s̃a)Kε

GεK
na
ε

cGε (1−Gε)
e−(α+sb)Kε

K1−mb
ε

Vk

[
c,
e−(α+s̃b)Kε

GεK
nb
ε

]

× [Kε, Gε]c (1−Gε)
e−(α+sa)Kε

K1−ma
ε

+ [the last term with (a) ⇄ (b)] . (B.7)

W
(a,b)
0,3 (sa, sb, s̃a, s̃b).

W
(a,b)
0,3 = −ε

∫
Bc (1−Gε)K

mb
ε e−(α+sb)KεcKcVk

e−(2α+sa+s̃b)Kε

K1+nb−ma
ε

V−k

[
c,
e−(α+s̃a)Kε

GεK
na
ε

]
Gε

− ε

∫
BcV−kK

mb−na
ε e−(2α+sb+s̃a)KεcKcVk

e−(α+s̃b)Kε

GεK
nb
ε

cGε (1−Gε)
e−(α+sa)Kε

K1−ma
ε

.

(B.8)

W
(a,b)
1A,2A(sa, sb, s̃a, s̃b).

W
(a,b)
1A,2A = W

(a,b)(1)
1A,2A + ξaW

(a,b)(2)
1A,2A , (B.9)

with

W
(a,b)(1)
1A,2A =

∫
c V−kK

mb−na
ε e−(2α+s̃a+sb)KεcKcVkK

ma−nb
ε e−(2α+s̃b+sa)Kε , (B.10)

W
(a,b)(2)
1A,2A = ε

∫
BcV−kK

mb−na
ε e−(2α+sb+s̃a)KεcKcVk

e−(α+s̃b)Kε

GεK
nb
ε

cGε (1−Gε)
e−(α+sa)Kε

K1−ma
ε

+ ε

∫
Bc (1−Gε)K

mb
ε e−(α+sb)KεcKcVk

e−(2α+sa+s̃b)Kε

K1+nb−ma
ε

V−k

[
c,
e−(α+s̃a)Kε

GεK
na
ε

]
Gε.

(B.11)
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W
(a,b)
1A,2B(sa, sb, s̃a, s̃b).

W
(a,b)
1A,2B = (1− ξb)W

(a,b)(1)
1A,2B + ξb W

(a,b)(2)
1A,2B + ξa (1− ξb)W

(a,b)(3)
1A,2B + ξaξb W

(a,b)(4)
1A,2B , (B.12)

with

W
(a,b)(1)
1A,2B = ε

∫
Bc (1−Gε)K

ma
ε e−(α+sa)Kεc V

−k

e−(2α+sb+s̃a)Kε

Kna−mb
ε

c Vk

e−(α+s̃b)Kε

GεK
nb
ε

cGε + [(a) ⇄ (b)] ,

(B.13)

W
(a,b)(2)
1A,2B =

(
1− k2

){
ε

∫
BcKcVk

e−(2α+sa+s̃b)Kε

Knb−ma
ε

c V
−k

e−(α+s̃a)Kε

GεK
na
ε

cGε (1−Gε)
e−(α+sb)Kε

K1−mb
ε

+ ε

∫
BcKcVk

e−(α+s̃b)Kε

GεK
nb
ε

cGε

[
(1−Gε)K

ma
ε e−(α+sa)Kε , c

]
V
−k

e−(2α+sb+s̃a)Kε

K1+na−mb
ε

}

+ ε2
∫

Bc (1−Gε)K
ma
ε e−(α+sa)Kεc V

−k

e−(2α+sb+s̃a)Kε

K1+na−mb
ε

c Vk

e−(α+s̃b)Kε

GεK
nb
ε

cGε

+ ε2
∫

Bc (1−Gε)
e−(α+sb)Kε

K1−mb
ε

c Vk

e−(2α+sa+s̃b)Kε

Knb−ma
ε

c V
−k

e−(α+s̃a)Kε

GεK
na
ε

cGε, (B.14)

W
(a,b)(3)
1A,2B = −ε2

∫
BcV

−k

e−(2α+sb+s̃a)Kε

Kna−mb
ε

c Vk

e−(α+s̃b)Kε

GεK
nb
ε

cGεc (1−Gε)
e−(α+sa)Kε

K1−ma
ε

+ ε2
∫

BcV
−k

e−(α+s̃a)Kε

GεK
na
ε

cGεc (1−Gε)K
mb
ε e−(α+sb)Kεc Vk

e−(2α+sa+s̃b)Kε

K1+nb−ma
ε

, (B.15)

W
(a,b)(4)
1A,2B =

(
1− k2

){
−ε2

∫
BcKcVk

e−(α+s̃b)Kε

GεK
nb
ε

cGεc (1−Gε)
e−(α+sa)Kε

K1−ma
ε

V
−k

e−(2α+sb+s̃a)Kε

K1+na−mb
ε

+ ε2
∫

BcV
−k

e−(α+s̃a)Kε

GεK
na
ε

cGεc (1−Gε)
e−(α+sb)Kε

K1−mb
ε

[K, c]Vk

e−(2α+sa+s̃b)Kε

K1+nb−ma
ε

}

− ε3
∫

BcV
−k

e−(2α+sb+s̃a)Kε

K1+na−mb
ε

c Vk

e−(α+s̃b)Kε

GεK
nb
ε

cGεc (1−Gε)
e−(α+sa)Kε

K1−ma
ε

+ ε3
∫

BcV
−k

e−(α+s̃a)Kε

GεK
na
ε

cGεc (1−Gε)
e−(α+sb)Kε

K1−mb
ε

c Vk

e−(2α+sa+s̃b)Kε

K1+nb−ma
ε

. (B.16)

C Seven integration regions for three 1/Kε

In section 4.2.1, we explained how to evaluate correlators with two 1/Kε by dividing the

integration region of the corresponding Schwinger parameters into three subregions (4.17).

Here, we extend this to the case of three 1/Kε with the corresponding Schwinger parameters

(t1, t2, t3).

First, we parametrize (t1, t2, t3) in terms of another set of variables (u, x, p) as

t1 =
u

ε
x, t2 =

u

ε
(1− x) p t3 =

u

ε
(1− x) (1− p) , (C.1)

which satisfies t1 + t2 + t3 = u/ε. The integration range of (u, x, p) is 0 ≤ u < ∞,

0 ≤ x, p ≤ 1. For a correlator multiplied by a positive power of ε, we have only to consider

the integration regions where at least one of the three ti are large, and, in the present case,

there are seven such regions shown in table 1.
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Region t1 t2 t3

IA finite finite ∞
IB finite ∞ ∞
IC finite ∞ finite

IIA ∞ finite ∞
IIB ∞ ∞ ∞
IIC ∞ ∞ finite

III ∞ finite finite

Table 1. Seven integration regions.

In each of the seven regions, we adopt the following set of three integration variables:

IA : (u, y, z) with x = (ε/u) y, p = (ε/u) z,

IB : (u, y, p) with x = (ε/u) y,

IC : (u, y, z) with x = (ε/u) y, 1− p = (ε/u) z,

IIA : (u, x, z) with p = (ε/u) z,

IIB : (u, x, p),

IIC : (u, x, z) with 1− p = (ε/u) z,

III : (u, y, p) with 1− x = (ε/u) y. (C.2)

In each region, we Laurent-expand the integrand with respect to ε by regarding the specified

integration variables kept fixed. The integration ranges, [0, 1] for x and p, and [0, u/ε] for

y and z, should be appropriately modified to avoid overlaps among the seven regions as

given in (4.19)–(4.21) for x and y. Finally, the u-integration should be carried out in the

range u > ε as given there.
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