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1 Introduction

A general program in the study of supersymmetric gauge theories is the connection between

dualities in various dimensions. A systematic approach to the case with four supercharges

in four and three dimensions has been recently proposed in [1].

The connection is somewhat subtle, it turns out that a plain dimensional reduction

is too naive. This fact can be understood considering that in three dimensions there are

extra, axial, symmetries, whose 4d parents would be anomalous. A careful analysis requires

keeping the 4d theory on a circle with finite radius, whereby a superpotential breaking the

axial symmetry is generated. This mechanism generates a well-defined, new, IR duality

in three dimensions from a four dimensional parent. By adding real masses such 3d dual

pairs flow to more canonical dualities. Along the flow the superpotential disappears and

the axial symmetry emerges.

This stepwise reduction has been performed for four dimensional SQCD in [1, 2],

reproducing the dualities of [3–7]. There is an extension of Seiberg duality for SQCD by

adding an adjoint multiplet studied by Kutasov, Schwimmer and Seiberg (KSS) in [8–10].

Recently [11] the above technology has been applied to this duality reproducing the results

of [12].1

1See [13] for another application of the stepwise reduction to the case of s-confining theories.
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Exact results in supersymmetry, as from the recent progress in localisation, lead to

efficient tests of dualities. For example, the superconformal index on S3 × S1 [14, 15]

has been matched between Seiberg dual phases [16–18]. A similar matching has been

done in [6, 19] for the partition functions on the (squashed) S3 [20–22]. In both cases the

identification is equivalent to non-trivial integral identities involving elliptic and hyperbolic

Gamma functions respectively, recently analysed in the mathematical literature [23–25].

Moreover, the integral expressions for the index and the partition function provide a

powerful tool for supporting the reduction set-up described above. It is possible to follow

the reduction and the mass deformation on the integral expressions. This has been done

in [1] for SQCD where the relations of [25] have been recovered from the ones of [23].

In this paper, we study the dimensional reduction of SQCD with an adjoint [11] at the

level of the index and the partition function. Thereby we generate new integral identities

involving hyperbolic Gamma functions, generalising some of the results in [25].

The paper is organised as follows. In section 2 we recap the electric-magnetic dualities

discussed in the paper. We also give a brief review of the mechanism relating them by

dimensional reduction. In section 3 we implement the reduction in the matrix integrals of

the 4 and 3 dimensional theories, deriving the integral identities. In section 4 we conclude

with some comments. We added an appendix A with few details about the partition

function on the squashed three sphere.

2 Dualities and dimensional reduction

In sections 2.1 and 2.2 we review the four and three dimensional dualities with adjoint

matter that are of interest in this paper. In section 2.3 we then review the dimensional

reduction connecting them.

2.1 4d duality with adjoint matter

KSS duality [8–10] involves four dimensional SQCD theories with a chiral multiplet in the

adjoint representation.

The electric phase is a SU(Nc) gauge theory with Nf (anti-)fundamentals Q and Q̃

and one adjoint X. There is a superpotential

W = trXk+1 (2.1)

with k < Nc. The global symmetry group is SU(Nf )L × SU(Nf )R × U(1)B × U(1)R, we

denote the R charges of the (anti-)quarks as RQ. The R charge of the adjoint is fixed

by (2.1) as RX = 2/(k + 1). The mesonic operators are

Mj = QXjQ̃ , j = 0, . . . , k − 1 (2.2)

The theory has stable vacua if Nf >
Nc
k .

The magnetic phase is an SU(kNf −Nc) gauge theory, with Nf dual (anti-) fundamen-

tals q and q̃ and one adjoint Y . There is also a set of k gauge singlets, which correspond
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to the mesons (2.2) of the electric phase. The superpotential is

W = trY k+1 +

k−1∑
j=0

MjqY
k−1−j q̃ (2.3)

The R charges of the dual (anti-)quarks are Rq = RX −RQ.

By gauging the non-anomalous global U(1)B in the electric and in the magnetic phase

one can extend the duality to the unitary gauge groups U(Nc) and U(kNf −Nc). This is

the case considered in this paper.

2.2 3d dualities with adjoint matter

A similar duality exists in three dimensions. It generalises the duality studied in [3] by the

inclusion of an adjoint and has been discussed by Kim and Park in [12].

The electric phase is a U(Nc) YM gauge theory with Nf (anti-)fundamentals Q and

Q̃ and one adjoint X. The superpotential is (2.1), as in the 4d case. The global symmetry

group is SU(Nf )L × SU(Nf )R × U(1)A × U(1)R × U(1)J . Recall that in three dimensions

there is a topologically conserved current J = ∗dF , where F is the field strength of the U(1)

inside the U(N) gauge group. The charges of the chiral fields under the global symmetries

are v There is a 2k dimensional unlifted Coulomb branch, parametrised by tj,±, where

j = 0, . . . , k− 1. These coordinates have an UV interpretation as monopole operators t0,±,

dressed with powers of the adjoint

tj,± = tr (t0,±X
j) (2.4)

The operators t0,± correspond to an excitation of the magnetic flux (±1, 0, . . . , 0).

The magnetic phase is a U(kNf−Nc) YM gauge theory with Nf dual (anti-) fundamen-

tals q and q̃ and one adjoint Y . As in the 4d case there are k gauge singlets corresponding

to the electric mesons Mj . However in 3d we have additional 2k gauge singlets, tj,±, cor-

responding to the electric monopole operators (2.4). They couple to the magnetic theory

through the superpotential

W = trY k+1 +
k−1∑
j=0

MjqY
k−j−1q̃ +

k−1∑
j=0

(
tj,+t̃k−1−j,− + tj,−t̃k−1−j,+

)
(2.5)

where the 2k “monopole operators” t̃j,± are the Coulomb branch coordinates of the mag-

netic theory. In the UV theory they correspond to monopole operators dressed with powers

of the adjoint, t̃j,± = tr (t0,±Y
j). The chiral fields and their charges under the global sym-

metries are

SU(Nf )L SU(Nf )R U(1)A U(1)R U(1)J

Q Nf 1 1 ∆Q 0

Q̃ 1 Nf 1 ∆Q 0

X 1 1 0 2
k+1 0

(2.6)
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SU(Nf )L SU(Nf )R U(1)A U(1)R U(1)J

q Nf 1 −1 2
k+1 −∆Q 0

q̃ 1 Nf −1 2
k+1 −∆Q 0

Y 1 1 0 2
k+1 0

Mj Nf Nf 2 2∆Q + 2j
k+1 0

tj,± 1 1 −Nf Nf (1−∆Q)− 2
k+1(Nc − 1− j) ±1

t̃j,± 1 1 Nf Nf (∆Q − 1) + 2
k+1(Nc + 1 + j) ±1

(2.7)

Theories with CS terms. There is another 3d duality with adjoint matter, having

Chern-Simons (CS) interactions [26, 27]. The electric phase is a U(Nc)K gauge theory

(where K is the CS level). The magnetic phase has gauge group U(kNf − Nc + |K|)−K .

The Coulomb branch is lifted and no monopole operators appear in the description of the

low energy theory.

2.3 From four to three dimensional dualities

In this section we review how one can obtain three dimensional from four dimensional

dualities [1]. It turns out that a naive dimensional reduction on R3 × S1 does not lead to

the right result. This can be understood as a consequence of Seiberg duality being an IR

property, where the IR limit does not commute with the limit of the shrinking circle. More

precisely, Seiberg duality is valid for energies much below the electric and the magnetic

strong coupling scales, E � Λe,Λm, which are each related to their coupling as Λb ∼ e−1/g24 .

Here b is the coefficient of the 4d β-function. When dimensionally reducing the theory on

the circle S1 with radius r the coupling scales as g2
4 ∼ rg2

3 which implies that Λ → 0.

Hence the IR limit E � Λ is not well defined in three dimensions and in that sense the

two limits do not commute. This argument mirrors the one presented in the introduction

where we mentioned the existence of axial symmetries in 3d, whose 4d counterparts would

be anomalous. We are hence looking for a reduction which commutes with the low-energy

limit of Seiberg duality and forbids the existence of the axial symmetry.

In order to obtain well-defined three dimensional dualities from four dimensional par-

ents we leave the theories on a circle S1 with a finite radius r. At energies E � 1/r that

describes effectively three dimensional dynamics.

The finite radius implies that the Coulomb branch is compact. Recall that the adjoint

scalar σ of the 3d vector multiplet comes from the forth component of the 4d gauge field,

σ = A4. To make
∫
S1 A4 gauge invariant, one needs to require the periodicity σ ∼ σ+ 1/r.

As a consequence of this compactness, there is an additional Affleck-Harvey-Witten (AHW)

superpotential for the unlifted coordinates of the Coulomb branch,2 for U(N) theories

2Recall that the Coulomb branch for pure SYM is completely lifted, whenever two coordinates approach

each other the gauge group is enhanced to SU(2) and instantons generate an AHW superpotential as

in [28]. For theories with matter fields charged under the gauge group, some directions of the Coulomb

branch remain unlifted. Similarly, when the Coulomb branch is compact, additional SU(2) enhancements

can take place leading to the additional WR3×S1 .
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generically looking like [29]

WR3×S1 = η Y+Y− (2.8)

Here η ∼ e−1/(rg3)2 and Y± denote the unlifted directions of the Coulomb branch, with

respective U(1)J charge ±1. From the perspective of the effective 3d field theory the Y ’s are

just the low-energy coordinates parametrising the Coulomb branch. One can though embed

the η deformed theory in a purely 3d UV completion, where the high-energy operators Y±
typically correspond to monopole operators.

Let us point out that (2.8) breaks the axial symmetry. Since this was the symmetry

without 4d counterpart the construction indeed overcomes the problem of the mismatching

symmetries. In order to obtain conventional 3d theories with the axial symmetry, one can

switch on a deformation by large real masses for some of the matter fields, generating a

flow to theories without superpotential (2.8).

Reducing KSS to 3d. By generalising this analysis one can obtain the theories in sec-

tion 2.2 from the ones in section 2.1. In the presence of an adjoint with superpotential (2.1)

the Coulomb branch of a U(N) theory has 2k unlifted directions, parametrised by ti,±. The

η superpotential in the electric theory is [11]

WR3×S1 = η

k−1∑
j=0

tj,+tk−1−j,− (2.9)

With an analogue superpotential in the magnetic phase we end up with a pair of dual three

dimensional theories.

Flowing to the Kim-Park duality. One can obtain Kim-Park duality by deforming

the theories with η superpotential. As in [11] we consider Nc colours and Nf + 2 flavours,

where in the electric theory we assign large real masses

mQNf+1
= −mQNf+2

= −m
Q̃Nf+1

= m
Q̃Nf+2

= M (2.10)

In the large M limit this theory flows to the electric phase of Kim-Park duality.

The magnetic phase has k(Nf+2)−Nc colours and Nf+2 flavours. The real masses for

the dual quarks follow from the electric ones, according to the global symmetries. In [11] the

theory is perturbed by a polynomial superpotential in the adjoint. This breaks the gauge

group to k sectors U(ni) with
∑

i ni = k(Nf+2)−Nc. In order to preserve the duality there

is a non trivial vacuum structure for the scalar σ in each U(ni) vector multiplet, further

breaking the gauge symmetry into U(ni − 2) × U(1)2. The 2k U(1) subsectors can be

dualised to 2k XY Z models [30], made of gauge singlets. These singlets interact through a

superpotential with the monopoles of the U(ni− 2) sectors. By turning off the polynomial

deformation in the adjoint while taking the large M limit, one finds the magnetic phase

of Kim-Park duality, with gauge group U(kNf − Nc) and superpotential (2.5). The 2k

surviving gauge singlets of the XY Z models are identified with the electric monopoles.

In section 3 we reproduce this reduction mechanism on the index and the partition

function. Actually, when restoring the dual gauge symmetry U(
∑
ni) the k U(1)2 sectors

– 5 –
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become enhanced to U(k)2, each with one flavour and one adjoint. In [11] it is assumed

that this enhancement does not affect the duality. We support this assumption by using a

duality discussed in [31].

3 Superconformal index and partition function

In four dimensions a powerful check of Seiberg duality comes from matching the index

on S3 × S1 between the electric and the magnetic phases. The matching involves non-

trivial integral identities as shown in [16–18]. A similar test exists for three dimensional

N = 2 dualities [6, 19], involving the partition function on the squashed S3 [22]. It is

known that one can obtain the partition function from the index in the limit of a shrinking

circle [32–36].

In this section we will check the mechanism for obtaining 3d dualities with an adjoint

from KSS duality at the level of these mathematical quantities. We start from the integral

identity between the indices of the KSS pair in 4d. By dimensional reduction we obtain

an identity for the partition functions of the 3d pair with η superpotential. The identity

for Kim-Park duality is then obtain by implementing the real mass deformation (2.10).

Eventually we flow to the duality of [26, 27] with CS terms.

3.1 From KSS duality to 3d

Let us consider the duality reviewed in section 2.1. The electric phase is a U(Nc) gauge

theory with one adjoint and Nf + 2 (anti-)fundamental flavours. The partition function on

S3 × S1 is

Iel =
(p; p)Nc(q; q)Nc

Nc!
Γe
(
(pq)

1
k+1
)Nc ∫ Nc∏

i=1

dzi
2πizi

∏
i<j

Γe
(
(pq)

1
k+1 (zi/zj)

±1
)

Γe
(
(zi/zj)±1

)
×
Nf+2∏
a,b=1

Nc∏
i=1

Γe
(
(pq)

RQ
2 sazi

)
Γe
(
(pq)

RQ
2 t−1

b z−1
i

) (3.1)

where

(x; p) =
∞∏
j=0

(
1− xpj

)
Γe(z) =

∞∏
j,k=0

1− z−1pj+1qk+1

1− zpjqk
(3.2)

The function Γe is the elliptic Gamma function [23, 24]. We also have defined Γe((z)±1) ≡
Γe(z)Γe(1/z). The parameters p and q are the chemical potentials of the superconformal

algebra, zi the ones of the U(Nc) gauge symmetry and sa and ta the ones of SU(Nf )L and

SU(Nf )R respectively.

– 6 –
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The magnetic phase is a U(k(Nf + 2) − Nc) ≡ U(Ñc + 2k) gauge theory with one

adjoint, Nf + 2 (anti-)fundamental flavours and the k electric mesons. The index is

Imag =
(p; p)Ñc+2k(q; q)Ñc+2k

(Ñc + 2k)!
Γe
(
(pq)

1
k+1
)Ñc+2k

k−1∏
j=0

Nf+2∏
a,b=1

Γe
(
(pq)

j
k+1

+RQsat
−1
b

)
∫ Ñc+2k∏

i=1

dzi
2πizi

∏
i<j

Γe
(
(pq)

1
k+1 (zi/zj)

±1
)

Γe
(
(zi/zj)±1

) Nf+2∏
a,b=1

Ñc+2k∏
i=1

Γe
(
(pq)

Rq
2 t−1

a zi
)
Γe
(
(pq)

Rq
2 sbz

−1
i

)
(3.3)

KSS duality predicts the integral identity Iel = Imag. In [18] this identity has passed some

partial nontrivial checks. Note that for the identity to hold, the chemical potentials in the

index have to satisfy the balancing condition

Nf+2∏
a=1

sat
−1
a = (pq)Nf+2−2Nc/(k+1) (3.4)

In order to reduce the four dimensional index to the three dimensional partition func-

tion, reviewed in appendix A, we redefine the chemical potentials as

p = e2πirω1 q = e2πirω2 z = e2πirσ sa = e2πirma ta = e2πirm̃a (3.5)

where σ, ma and m̃a parameterise the Cartan of the U(Nc) gauge and the SU(Nf )L ×
SU(Nf )R flavour group respectively. In the limit r → 0 the index reduces to the partition

function. In particular, the elliptic Gamma function Γe reduces to the hyperbolic Gamma

function Γh (A.2) as [1]

lim
r→0

Γe
(
e2πirz

)
= e
− iπ

6ω1ω2r
(z−ω)

Γh(z) (3.6)

The divergent term in the r.h.s. of (3.6) is proportional to the contribution of each multiplet

to the gravitational anomaly. Hence it will drop out when comparing the partition functions

of two dual phases. As discussed in [1, 34] also the four dimensional FI reduces to the three

dimensional one. With this prescription the index (3.1) reduces to the partition function

for the three dimensional electric theory with the η superpotential (2.9)

Zel = WNc,0

(
µ; ν;ω∆X ;λ

)
(3.7)

where the function WNc,k is defined in (A.1) and ∆X = 2/(k + 1) denotes the R charge of

the adjoint. From (3.5) we obtain

µa = ω∆Q +ma νa = ω∆Q − m̃a (3.8)

where in three dimensions we call the R charge RQ = ∆Q. The balancing condition (3.4)

reduces to
Nf+2∑
a=1

(µa + νa) = ω(Nf + 2−Nc ∆X) (3.9)

– 7 –
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While in 4d the balancing condition reflects the anomaly cancellation for the R symmetry,

in 3d it is imposed by the superpotential (2.9).

In the magnetic phase the index reduces to the partition function

Zmag =

Nf+2∏
a,b=1

k−1∏
j=0

Γh
(
µa + νb + jω∆X

)
WÑc+2k,0

(
ω∆X − ν;ω∆X − µ;ω∆X ;−λ

)
(3.10)

The four dimensional integral identity Iel = Imag reduces to Zel = Zmag, with the con-

straint (3.9).

3.2 Flowing to Kim-Park duality

Next we turn on the real masses in the electric theory as in (2.10). The parameters µ and

ν become

µa =



ma +mA + ω∆Q

M −
mANf

2
+ ω∆QM

−M −
mANf

2
+ ω∆QM

νa =



−m̃a +mA + ω∆Q

−M −
mANf

2
+ ω∆QM

M −
mANf

2
+ ω∆QM

a = 1, . . . , Nf

a = Nf + 1

a = Nf + 2

(3.11)

Observe that the global SU(Nf + 2)2 symmetry is broken to SU(Nf )2×U(1)A in the large

M limit. Indeed in this limit the η superpotential that prevents the U(1)A symmetry

disappears [1]. At large M (3.7) becomes

Zel = e
− iπ

2ω1ω2
(4MNc(mANf−2ω(∆QM

−1)))
WNc,0

(
µ; ν;ω∆X ;λ

)
(3.12)

In the magnetic case the situation is more involved. The real masses can be read from the

electric theory. However, in order to reproduce the divergent prefactor in (3.12) also on

the dual side, we need to turn on a non-trivial vacuum structure for the scalar σ in the

vector multiplet

σi =


0 i = 0, . . . , kNf −Nc

M i = kNf −Nc + 1, . . . , k(Nf + 1)−Nc

−M i = k(Nf + 1)−Nc + 1, . . . , k(Nf + 2)−Nc

(3.13)

This is consistent with the vaccum structure choosen in [1, 11]. Note that in absence of the

R symmetry breaking polynomial in the adjoint the gauge symmetry U(Ñc + 2k) is broken

to U(Ñc)×U(k)2. In the large M limit (3.10) becomes

Zmag = e
− iπ

2ω1ω2
(4MNc(mANf−2ω(∆QM

−1)))
k−1∏
j=0

Nf∏
a,b=1

Γh (µa + νb + j ω∆X)

× WkNf−Nc,0 (ω∆X − νa;ω∆X − µa;ω∆X ;−λ) Z+ Z−

(3.14)
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The additional terms Z± are the partition functions of the two U(k) sectors

Z± =
k−1∏
j=0

Γh(mj,±) Wk,0 (µ±, ν±, ω∆X , λ±) (3.15)

with

mj,± = −mANf + 2ω∆QM + j ω∆X , µ± = ν± =
1

2
mANf + ω (∆X −∆QM ) (3.16)

and effective FI terms

λ± = −λ± (Nf mA + ω (2Nf∆Q + 2∆QM − (Nf + 1)(k − 1)∆X)) (3.17)

Recall that the U(k)2 sector is the enhancement of the k U(1)2 sectors discussed in [11].

As we mentioned at the end of section 2.3 the U(k)2 sector can be dualised to a set of 6k

singlets. We can see this on the partition function exploiting the integral identity [25]

WNc,0(µ; ν;ω∆X ;λ)=
N−1∏
j=0

Γh

(
ω − µ+ ν

2
− j ω∆X ±

λ

2

)
Γh(µ+ ν + j ω∆X) (3.18)

4k singlets acquire mass from a superpotential and are integrated out. On the partition

function this is reflected in the relation Γh(z)Γh(2ω − z) = 1. In this process we used the

constraint on the R charges coming from (3.9)

Nc∆X +Nf (∆Q − 1) + 2 (∆QM − 1) = 0 (3.19)

We are left with

Z+Z− =
k−1∏
j=0

Γh

(
± λ

2
−mANf + ω ((j −Nc + 1) ∆X +Nf (1−∆Q))

)
(3.20)

This is the contribution to the partition function from the 2k singlets which remain light.

They have exactly the right global charges for coupling through the superpotential inter-

action (2.5) with the magnetic monopoles t̃i,±. It is hence natural to identify them with

the electric monopoles ti,±. Eventually we arrive at the identity

WNc,0 (µ; ν;ω∆X ;λ) =
k−1∏
j=0

Nf∏
a,b=1

Γh(µa + νb + j ω∆X)

×
k−1∏
j=0

Γh

(
± λ

2
−mANf + ω ((j −Nc + 1) ∆X +Nf (1−∆Q))

)
×WkNf−Nc,0 (ω∆X − ν;ω∆X − µ;ω∆X ;−λ)

(3.21)

Note that as expected this identity holds without any balancing condition. In the limiting

case Nf = 1 and k = Nc it corresponds to the identity (3.18) from [25]. This fact is as a

consistency check of the procedure.
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3.3 Flowing to the case with CS terms

In [26, 27] another three dimensional duality with adjoint fields has been discussed. It

has a CS gauge interaction and extends the duality [5]. The electric phase is a U(Nc)K
gauge theory at CS level K with Nf (anti-)fundamentals and one adjoint, with superpo-

tential (2.1). The magnetic phase is a U(k(Nf + |K|) − Nc)−K gauge theory at CS level

−K with Nf (anti-)fundamentals, one adjoint and k singlets, with superpotential (2.3).

The duality can be derived from Kim-Park duality by an RG flow. In the electric

phase we consider a U(Nc)0 gauge group and Nf + K (anti-)fundamentals, giving a large

real mass to K of them. In the dual U(k(Nf + K) − Nc) theory the fields acquire their

masses accordingly. More explicitly, K magnetic flavours (q, q̃), the electric monopoles tj,±
and K2 + 2KNf components of each meson Mj become heavy. In the large mass limit

these fields are integrated out. This procedure generates the CS levels and one recovers

the duality of [26, 27].

One can study this RG flow at the level of the partition function. Assigning the masses

as described above and taking the large mass limit, the identity (3.21) becomes3

WNc,K (µ; ν;ω∆X ;λ) = e
iπ

2ω1ω2
φ
ζ−k(2+K2)

k−1∏
j=0

Nf∏
a,b=1

(µa + νb + j ω∆X)

×Wk(Nf+K)−Nc,−K (ω∆X − ν;ω∆X − µ;ω∆X ;−λ)

(3.22)

where ζ = exp
(πi(ω2

1+ω2
2)

24ω1ω2

)
and the extra phase is

φ = ωmA

(
2kNf (2(K −Nf )∆Q − 2Nc∆X − 2Nf +K(k − 1)∆X)

)
+ 2km2

ANf (K −Nf )− kλ2

2
+ kK

Nf∑
a=1

(
µ2
a + ν2

a

)
− kω2

((
2Nc (Nc + (k + 1)Nf (∆Q − 1)− kK) +

k2
(
11K2 + 2

)
+K2 − 2

12

)
∆2
X

− 2Nf

(
K

(
∆2
Q + (k − 1)∆Q∆X +

5

3
(∆X − 1)− 1

)
−Nf (∆Q − 1)2

))
(3.23)

Equation (3.22) is the identity between the electric and the magnetic partition functions

of the duality in [26, 27]. Note that the limiting case Nf = 0, K = 1 and k = Nc is the

third integral identity in theorem 5.6.8 of [25]. Similar dualities appeared in the physics

literature [36–39].

Comments on the phases and CS terms. In this section we studied RG flows by

turning on real masses. These flows generate not only CS terms for the gauge but also

for the global symmetries. The real masses arise as vevs after weakly gauging the global

symmetries and the global CS give rise to a phase, quadratic in ω and in the mass param-

eters [6]. When flowing from the duality with η superpotential to Kim-Park duality, we

3Here we choose without loss of generality positive real masses for the electric quarks.
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checked that the generated CS all cancel. In fact, in the relation 3.21 there is no extra

phase. However in the flow to the duality of [26, 27] we found a global CS action. We

checked that it precisely corresponds to the phase (3.23).

4 Conclusions and further directions

In this paper we studied the dimensional reduction of four dimensional dualities to three

dimensions. We considered the reduction of KSS duality discussed in [11]. This yields a

new 3d duality with the superpotential (2.9). Other previously studied 3d dualities can be

deduced from this by an RG flow. We studied how the identity of the 4d superconformal

index leads to identities between 3d partition functions. As a partial check of these identities

we observed their agreement with theorem 5.6.8 of [25]. Furthermore we matched the phases

in the integral identities with the global CS terms generated along the RG flows.

Let us comment on the validity of the mathematical identities of section 3. The parent

relation in four dimensions Iel = Imag has not been rigorously proven in the mathematical

literature, though several partial checks have been performed (see [18] for references). Our

derivation of the identities between hyperbolic hypergeometric integrals Zel = Zmag in

section 3 is not a proper mathematical derivation. However we can think of this as an

instance where physical intuition may be helpful in making predictions about unknown

mathematical results.

We conclude with an outlook of some possible lines of future research. Note that the

relation between the partition functions of the SU(N) duality [40] can be found by the

“ungauging” procedure of [1]. Alternatively one can apply the reduction discussed in [11]

to the 4d superconformal index. It would be desirable to extend the dualities studied

in this paper by considering a chiral flavour sector, as done for the case without adjoint

in [6]. This would also be useful in studying the inverse flow from the dualities with CS

terms in [26, 27] to Kim-Park duality, along the lines of [41–43]. On the partition function

this corresponds to deriving the identity (3.21) from (3.22). Moreover, one might want to

reduce the 4d dualities with multiple adjoint matter [44] to 3d, obtaining additional integral

identities. Another interesting extension of the programme is the analysis of dualities with

real gauge groups and tensor matter.
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A The three dimensional partition function

The partition function on the squashed S3 for a gauge group U(Nc)K is a matrix integral

over the Cartan of the gauge group, parametrised by the scalar σ in the N = 2 vector
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multiplet [20–22]. For Nf (anti-)fundamental flavours and one adjoint the matrix integral is

WNc,K

(
µ; ν; τ ;λ

)
=

Γh(τ)Nc

Nc!

∫ Nc∏
i=1

dσi e
iπ

2ω1ω2
(2λtrσ−2Ktrσ2)

∏
1≤i<j≤Nc

Γh(τ ± (σi − σj))
Γh(±(σi − σj))

×
Nc∏
i=1

Nf∏
a,b=1

Γh(µa + σi)Γh(νb − σi) (A.1)

where ω1 and ω2 are related to the real squashing parameter b of S3 as ω1 = ib and ω2 = i/b,

and ω ≡ (ω1 +ω2)/2. The function Γh is the hyperbolic Gamma function, it can be written

as [25]

Γh(z;ω1, ω2) ≡ Γh(z) ≡
∞∏

n,m=1

(n+ 1)ω1 + (m+ 1)ω2 − z
nω1 +mω2 + z

(A.2)

We also introduced the shorthand notation Γh(±x) ≡ Γh(x)Γh(−x). Let us comment on the

different terms in the partition function and their physical interpretation. The exponential

is the contribution from the CS action and the FI term ξ = 2λ. The hyperbolic Gamma

functions are the 1-loop contributions of the various multiplets, their arguments reflect the

charges under the local and global symmetries. More precisely, ±(σi − σj) are the weights

of the adjoint representation while ±σi the ones of the (anti-)fundamental. Similarly τ, µ

and ν are collective parameters for the weights under the global symmetries for the adjoint,

the fundamental and the anti-fundamental respectively.

B Some comments on the infinite mass limit of the partition function

In this appendix we discuss some issues concerning the large M limit on the partition

function. As stated in section 3 when taking the large mass limit (3.11) one needs to

choose the non-trivial vacuum (3.13) in the magnetic theory in order to preserve the duality.

The necessity, in order to preserve the duality, of different vacua in such real mass flows

is well known in field theory [1, 11, 41], here we want to discuss it at the level of the

partition function. We repeat the analogue discussion for SQCD in [1], including also

adjoint matter fields.

Recall that we start from the identity Zel = Zmag between the formulae (3.7) and (3.10),

which is valid whenever the balancing condition (3.9) is satisfied. The integrals are over

the Cartan of the gauge group and match as functions of the complex parameters4 µ and ν,

the integer k and the real FI parameter λ. The identity descends directly from the identity

between the corresponding 4d indices and reflects the duality of effective 3d theories on

the circle.

When parametrising the real masses as in (3.11) and (3.13), the integrals still coincide

for any finite value of M , taking σ → σ + M is just a shift in the integration variables.

However, in the limit M → ∞ the integrals are divergent. Their leading contribution for

4Recall that µ and ν are holomorphic combination of the real masses and the R-charges, see equa-

tions (3.8).
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large M is approximated by a saddle point.5 Shifts in σ of order M correspond to picking

up saddle points from regions at order-M -distance in the Coulomb branch.

Let us use the field theory intuition to associate saddle points to the vacua [41] in

the massive theory. At these points some charged fields remain light and give a finite

contribution to the integral. In general, there are more than one such saddle points, we

want to pick the leading one. Which saddle point gives the leading contribution to the

integral depends on the range of parameters. From the equations of motion we see that

for real masses (3.11) we can have the two vacua σ = 0 and the Higgsed (3.13). We have

checked that for an R-charge of the quarks ∆Q smaller then the critical R-charge

∆0 = 1− Nc − k
Nf

∆X (B.1)

the saddle point at the vacuum σ = 0 gives the leading contribution to the electric inte-

gral (3.7), while for ∆Q > ∆0 the leading contribution comes from the Higgsed vacua (3.13).

The leading large-M contribution in a trivial vacuum on the electric side (3.7) coincides

with a Higgsed vacuum on the magnetic side (3.10) (where also the contribution from the

mesons is included).6 In particular, also for the magnetic integral the critical R-charge

is (B.1), but here the saddle point in the trivial vacuum dominates for ∆Q > ∆0 while the

one in the Higgsed vacuum dominates for ∆Q < ∆0.

However, both choices ∆Q > ∆0 and ∆Q < ∆0, or, correspondingly, the two choices

of (mutually different) vacua for the electric and the magnetic side yield the same pure 3d

relation, one valid for ∆Q < ∆0 and one for ∆Q > ∆0 − 2k∆X/Nf . This covers the whole

range of ∆Q and we conclude the general validity of (3.21).

Let us finish with a comment. Looking at the partition functions one might wonder

how to discriminate between the magnetic the electric side. Indeed they differ only by the

appearance of the mesons, which can be carried from one to the other side using the identity

Γh(2ω − z)Γh(z) = 1 (B.2)

Multiplying both sides of the integral identity between (3.7) and (3.10) with

Nf∏
a,b=1

k−1∏
j=0

Γh(2ω − (µa + νb + (k + 1− j)ω∆X)) (B.3)

and using

Nf∏
a,b=1

k−1∏
j=0

Γh(µa + νb + jω∆X)Γh(2ω − (µa + νb + (k + 1− j)ω∆X)) = 1 (B.4)

we obtain the same integral identity with the roles of the electric and magnetic sides

interchanged. I.e. the mesons are on the side which was the electric integral before and

5We assume the generic case of non-degenerate saddle points.
6For pure SQCD the same mapping of the vacua has been shown in [35] by analysing the parameter

range of validity of the partition function.
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we re-obtain the identity between (3.7) and (3.10) where now Nc → Mc = Ñc + 2k and

Ñc → M̃c = kNf −Mc.

We can rephrase this ambiguity in field theory language. Multiplying the term (B.3)

in the magnetic side of the partition function corresponds to add, to the magnetic super-

potential, the contribution of k extra singlets Nj , constrained by an interaction of the form

∆Wmag =
k−1∑
j=0

MjNk+1−j (B.5)

Integrating out these massive fields corresponds to using the relation (B.2). The term (B.5)

is dual to

∆Wel =
k−1∑
j=0

NjQX
k+1−jQ̃ (B.6)

where Nj is identified with qY j q̃. This extra term corresponds to the contribution of the

term (B.3) in the electric partition function. The superpotential (B.6) only constraints the

charges of the fields Nj .

The net effect of this transformation has been to “move” the mesons from the r.h.s. to

the l.h.s. of the equality between the partition functions. However, this operation does not

change the ranks of the gauge and flavor groups involved in the duality. Also the scaling

properties of the matrix integrals, for a given choice of R-charges, has not been modified.

It follows that the same vacua in the electric and in the magnetic case have to be kept,

even when the mesons are moved on the electric side.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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