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1 Introduction

We are used to dealing with local effective Lagrangians. However, one can also use non-

local effective actions to summarize the one-loop predictions of a theory containing light or

massless particles (see e.g. [1]). The non-locality occurs because light particles propagate

a long distance within loop processes. In this paper, we explore some of the properties of

such non-local effective actions in a simple context — that of the energy momentum tensor

in gauge theories with massless particles.

One of the simplest and most instructive derivations of the QED trace anomaly is also

one of the least known. Let us present a quick treatment of this derivation, which we will

then explore in more detail in the body of this paper. In the massless limit, the classical

electromagnetic action with charged matter is invariant under the continuous rescaling

Aµ(x) → A′

µ(x
′) = λ−1Aµ(x) ,

ψ(x) → ψ′(x′) = λ−3/2ψ(x) ,

φ(x) → φ′(x′) = λ−1φ(x) . (1.1)
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with x′ = λx. Associated with this symmetry is a scale or dilatation current1

Jµ
D = xνT

µν (1.2)

and the invariance of the action then leads to the tracelessness of the energy momentum

tensor

∂µJ
µ
D = T µ

µ =
∂L̂λ

∂λ

∣

∣

∣

∣

λ=1

= 0 (1.3)

where L̂λ = λ4L(A′, ψ′, φ′) is independent of λ when the action is scale invariant. With

the symmetric energy momentum tensor for the photon,

Tµν = −FµσF
σ
ν +

1

4
gµνFαβF

αβ (1.4)

this property is readily apparent.

If we consider loops of the massless charged fields,2 the vacuum polarization diagram

will contain a divergent piece which goes into the renormalization of the electric charge. It

also contains a ln q2 in momentum space, where qµ refers to the momentum of the photon.

Rescaling the gauge field by the bare electric charge Aµ → Aµ/e0, we can write a one-loop

effective action describing both of these effects

S =

∫

d4x− 1

4
Fρσ

[

1

e2(µ)
+ bi ln(✷/µ

2)

]

F ρσ (1.5)

where bi is the leading coefficient of the beta function, bs = 1/(48π2) for a charged scalar

and bf = 1/(12π2) for a charged fermion, and ✷ = ∂2.

Under a scale transformation, we see that the ln✷ term violates the scaling invariance

since ln✷ → ln✷− lnλ2. From eq. (1.3), we now infer that

∂µJ
µ
D =

bi
2
FρσF

ρσ. (1.6)

After reverting to the usual definition of the field this yields the usual form of the trace

anomaly

T µ
µ =

bie
2

2
FρσF

ρσ. (1.7)

This derivation is instructive because it highlights the key physics — that the anomaly

is related to the scale dependence of the running coupling, which breaks the classical scale

invariance. However, the procedure is also unusual in that the anomaly is associated

with an infrared effect, the ln q2 or ln✷ behavior. Most derivations and discussions of

anomalies emphasize the ultraviolet origin of the effect, either through regularization of

the path integral or through the UV properties of Feynman diagrams. Of course, the UV

1There are subtleties associated with the exact relation between the dilatation current and the energy-

momentum tensor [2, 3] which we briefly discuss in appendix A.
2All fields will be treated as massless in this paper. While there are no strictly massless charged parti-

cles, the results will apply at momentum transfer well above the particle mass. Moreover, these massless

calculations are illustrative of other interesting situations, such as QCD or gravity, where strictly massless

particles do appear.
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(the renormalization of the charge) and the IR (the ln q2) are tied together when using

dimensional regularization with massless fields, so there is not a contradiction. However, it

is satisfying to our effective field theory sensibilities to see a derivation that is insensitive

to the UV regularization. No matter how one regulates or modifies the high energy end of

the theory (consistent with gauge invariance of course) the infrared behavior and the trace

anomaly will remain unaffected.3

The Lagrangian of eq. (1.5) is written in quasi-local form, which we will explain in

more detail below. The ln✷ term is a shorthand for a non-local object

〈x| ln
(

✷

µ2

)

|y〉 ≡ L(x− y) =

∫

d4q

(2π)4
e−iq·(x−y) ln

(−q2

µ2

)

. (1.8)

However, under rescaling, this behaves in the same way as described above with a local term

L(x− y) → λ−4
(

L(x− y)− lnλ2δ4(x− y)
)

(1.9)

yielding the same trace anomaly equation. It is well known that the anomaly does not

follow from any local Lagrangian. Here, we have seen that it does follow from the variation

of a non-local Lagrangian.

As far as we know, this derivation was first sketched by Deser, Duff and Isham in a

paper on gravitational conformal anomalies [8]. One can find echoes of it throughout the

gravitational literature, for example in [9, 10, 12–14, 16, 17], which is surely an incomplete

list. The local anomaly itself has been thoroughly discussed in the literature and we have

little new to add. However, our objective in this paper is two-fold. The first concerns the

connection of anomalies to non-local effective actions which is not regularly discussed in

the gauge theory literature. Our purpose here will be to give a thorough discussion of this

non-local effect for QED and to use this simple example to make a concrete exploration of

non-local effective actions. A second goal is to discuss the extra novel features when we

include the gravitational coupling in the non-local actions. This provides a simple example

of non-local gravitational actions, which is an interesting but more complicated subject.

After finding a local trace anomaly from a non-local action, it is natural to consider the

full energy-momentum tensor which yields the appropriate trace. Due to the propagation

of massless particles in the loop, it will also be a non-local object. To our knowledge, this

object has not been constructed before in the literature. This step is indeed important if

one wants to fully understand the phenomenology of the trace anomaly. We will construct

this object for a charged scalar field in the loop and later display the result for fermions

by consulting the matrix element calculation of [20, 21]. An extra motivation for using

a charged scalar is that, unlike fermions, the scalar’s minimally coupled action is not

conformally invariant. This provides an interesting insight into the connection between

conformal/scale invariance and the anomaly. Our non-local form also has several interesting

properties, which we discuss.

3There are also infrared derivations of the chiral anomaly [5] and the trace anomaly [6, 7] which make

use of dispersion relations, with the integrand in the dispersive integral being dominated by low energy

contributions.
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In regard to gravity, we also provide a partial non-linear completion of the perturbative

result using the gravitational curvatures, although we reserve a detailed discussion of this

aspect to a companion publication [22]. Our result for the traceful part of the energy-

momentum tensor can be obtained by varying a covariant action

T anom.
µν =

(

2√
g

δΓ[g,A]

δgµν

)

g=η

(1.10)

where

Γ[g,A] =

∫

d4x
√
g

(

nRFρσF
ρσ 1

✷
R+ nCF

ρσF γ
λ

1

✷
C λ
ρσγ

)

. (1.11)

Here, C λ
ρσγ is the Weyl tensor and ✷ is the covariant d’Alembertian. We will find that the

first coefficient is determined by the beta functions of fermions or bosons

n
(s,f)
R = −β(s,f)

12e
(1.12)

while the last coefficient is not related to the beta functions and does not contribute to the

trace. Note the 1/✷ pole which appears in the action which is required by direct calculation

of the effective action.

Since the energy momentum-tensor describes the coupling of photons to gravity, we

also look at the scattering of a photon by the gravitational field of a massive object. The

quantum corrections carry an extra energy dependence that leads to violations of some

of the predictions of classical general relativity. For example, the equivalence principle

requires that the bending of light is the same for photons of all energies. We show that this

is no longer the case when non-local loop effects are present. We should expect that this

quantum violation of the equivalence principle should be a general phenomenon, as noted

in [18]. Within our calculation it could be described as a “tidal” effect since the photon’s

coupling is no longer a local object but samples the gravitational field over a long distance

through quantum loops of massless particles. Quantum mechanics does this in general by

producing spatial non-localization and our example provides a non-trivial demonstration

of this property.4

2 The background field method and the non-local effective action

Here we give a brief derivation of the non-local effective action using the background field

method. The classical action for QED coupled to a charged field reads

S = SEM +

∫

d4x (Dµφ)
⋆Dµφ (2.1)

where

Dµφ = (∂µ + ie0Aµ)φ , SEM =

∫

d4x− 1

4
FµνF

µν (2.2)

and e0 is the bare electric charge.

4Of course, since all charged particles in Nature have mass, the results will only be applicable in the real

world for photons with energies well above the electron mass.
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The one loop effective action is obtained by integrating out the charged scalar field

Γ[A] =
1

e20
SEM − i ln

(
∫

Dφ⋆Dφ eiS
)

=
1

e20
SEM + i ln(DetD2) (2.3)

where we rescaled the gauge field. The operator reads

D2 = ✷+ i(∂ ·A) + 2iAµ∂µ −A2. (2.4)

In perturbation theory we can expand the logarithm in powers of the interaction

ln(DetD2) = Tr

(

1

✷
v − 1

2

1

✷
v
1

✷
v + . . .

)

+ const. (2.5)

where

v = i(∂ ·A) + 2iAµ∂µ −A2. (2.6)

Introducing position-space eigenstates such that

〈x| 1
✷
|y〉 = i∆F (x− y) (2.7)

and using dimensional regularization, we have that ∆F (0) = 0, and hence the first term in

the expansion vanishes. Integrating by parts to place the derivatives on the propagators

and noting that the latter is a function of the geodesic distance |x−y|, we find the order-A2

contribution

Γ[A] =
1

e20
SEM + i

∫

dDx dDy Aµ(x)Mµν(x− y)Aν(y) (2.8)

and

Mµν(x− y) = ∂µ∆F (x− y)∂ν ∆F (x− y)−∆F (x− y)∂ν∂µ∆F (x− y) (2.9)

and all derivatives act on x. By Fourier transforming and using standard manipulations in

momentum space, one obtains the following relations

∆F (x)∂µ∆F (x) =
1

2
∂µ∆

2
F (x)

∆F (x)∂µ∂ν∆F (x) =
[

d∂µ∂ν − gµν✷
] ∆2

F (x)

4(d− 1)

∂µ∆F (x)∂ν∆F (x) =
[

(d− 2)∂µ∂ν + gµν✷
] ∆2

F (x)

4(d− 1)
. (2.10)

These combine to produce a tensor

Mµν(x− y) =
[

gµν✷− ∂µ∂ν
]∆2

F (x− y)

2(d− 1)
(2.11)

which is conserved in any dimension. Converting one x-derivative back to one with respect

to y and integrating by parts we convert the result to a manifestly gauge invariant form

Γ[A] =
1

e20
SEM − i

∫

dDxdDy Fµν(x)

[

∆2
F (x− y)

4(d− 1)

]

Fµν(y) . (2.12)
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We can represent the squared propagator by a Fourier transformation

∆2
F (x− y) = −

∫

dDq

(2π)D
e−iq(x−y)I2(q) (2.13)

where I2(q) is the scalar bubble function which reads

I2(q) =
i

16π2

[

1

ǭ
− ln

(−q2

µ2

)]

,
1

ǭ
=

1

ǫ
− γ + ln 4π . (2.14)

with ǫ = (4 −D)/2. Now it is easy to renormalize the electric charge5 and hence express

the 4D effective action in a quasi-local form

Γ[A] =

∫

d4x− 1

4
Fµν

[

1

e2(µ)
+ bi ln

(

✷

µ2

)]

Fµν (2.15)

where we find for the scalar loop (and by analogy for the fermion loop)

bs =
1

48π2
, bf =

1

12π2
. (2.16)

3 Including the energy momentum tensor in the effective action

The trace of the energy momentum tensor is a local object. What about the full energy-

momentum tensor Tµν itself? One might try following the conventional procedure by

employing the translation invariance of the quasi-local action in eq. (1.5) to find Tµν , but

the non-local term renders this task impossible. One elegant pathway is to compute the

effective action in curved space from which we can identify the energy momentum tensor

through the relation

δΓ[g,A] =
1

2

∫

d4x
√
g δgµν Tµν . (3.1)

Hence we are interested in the non-local effective action including gravity. Of course we

cannot complete this program for an arbitrary gravitational field. However it is sufficient

to use perturbation theory if our aim is just the flat space result. Moreover, as we show

in section 6, perturbation theory can be used to propose a non-linear completion of the

effective action apart from subtleties that we address in [22]. We perform the computation

for bosons and consult [20, 21] to read off the result for fermions. The starting point is the

action

S = SEM +

∫

dDx
√
g
[

gµν(Dµφ)
⋆(Dνφ)− ξφ⋆φR

]

(3.2)

where all derivative operators are covariant.

We have included the ξφ⋆φR coupling, with ξ = 0 being minimally coupled and ξ = 1/6

being conformally coupled, in order to separately follow scale and conformal symmetry.

5Note that since [1/(d − 1)]1/ǫ = 1/(3ǫ) + 2/3, there is an extra constant factor of 2/3 when using

modified Minimal Subtraction renormalization. This constant is irrelevant for our purposes and we do not

display it.
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Figure 1. Triangle diagram.

For ξ = 1/6 the above action is invariant under local Weyl transformations, i.e. conformal

transformations. Namely,

gµν → e2σ(x)gµν , φ → e−σ(x)φ , Aµ → Aµ . (3.3)

On the other hand, the minimally coupled action is invariant only under scale trans-

formations. The scalar field energy-momentum tensor

Tµν = (∂µφ)
⋆(∂νφ) + (∂νφ)

⋆(∂µφ)− gµν(∂λφ)
⋆(∂λφ)

+ 2ξ(gµν✷− ∂µ∂ν)φ
⋆φ− 2ξ

(

Rµν −
1

2
gµνR

)

φ⋆φ (3.4)

is traceless only for ξ = 1/6. For future reference, we point out that the trace of the energy-

momentum tensor could be directly determined by performing a conformal transformation

and then varying the action with respect to σ, namely

δσS = −
∫

d4xσ T µ
µ . (3.5)

Turning to our calculation, we start by performing the path-integral which yields

eq. (2.3) but with the curved space operator

D2 =
√
g (∇µ∇µ + 2iAµ∂µ + i∇µA

µ −AµA
µ + ξR) . (3.6)

The perturbative calculation is set up by expanding the metric around flat space

gµν = ηµν + hµν (3.7)

and all other geometric quantities accordingly. From eq. (3.1), it suffices to compute the

effective action linear in the perturbation hµν up to terms quadratic in the gauge field.

There exist three diagrams which contribute at this order, a triangle figure 1 and two

bubble-like diagrams figure 2. We evaluate the effective action on-shell, and thus impose

both on-shellness of external photons p2 = p′2 = 0 and transversality p·A(p) = p′·A(p′) = 0.

The calculation is performed using the Passarino-Veltman (P-V) reduction tech-

nique [19], the details of which are included in an appendix. The result of the triangle

diagram is

T =

∫

p

∫

p′
h̃µν(−q) Ãα(p) Ãβ(−p′)PT

µν,αβ (3.8)

– 7 –
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Figure 2. Bubble diagrams.

where

PT
µν,αβ = [4H +Bq2]ηµνηαβ + 4H(ηµαηνβ + ηµβηνα) + [4I − 4J + Cq2 −Dq2]ηµνp

′

αpβ

+ [4I + 4E +B]QµQνηαβ + [4J −B]qµqνηαβ

+ [4K + 4F + C − 4M − 4G−D]QµQνp
′

αpβ + [4M − C − 4L+D]qµqνp
′

αpβ

+ [4I + 2E − 4J ](p′αpµηνβ + p′µpβηνα + p′αpνηµβ + p′νpβηµα)

− 4ξ(qµqν − q2ηµν)
(

Bηαβ + (C −D)p′αpβ
)

, (3.9)

with Qµ = (p + p′)µ and qµ = (p′ − p)µ. Here the various coefficients are the result of

performing the momentum integration — these are given in the appendix. The first of the

bubble diagrams reads

B1 =

∫

p

∫

p′
h̃µν(−q) Ãα(p)Ãβ(−p′)PB1

µν,αβ (3.10)

where

PB1

µν,αβ =

[

D − 2

4(D − 1)
− ξ

]

(q2ηµν − qµqν)ηαβI2(q) . (3.11)

The last diagram reads

B2 = 2

∫

p

∫

p′
h̃µν(−q) Ãα(p) Ãβ(−p′)PB2

µν,αβ (3.12)

where

PB2

µν,αβ =
1

2

(

ηβµpνpα + ηβνpµpα − 1

2
ηµνpβpα

)

I2(p)

− D

4(D − 1)

(

ηβµpνpα − ηβνpµpα +
1

2
ηµνpαpβ

)

I2(q) . (3.13)

This last diagram vanishes simply due to the condition p · Ã(p) = 0.

Combining the three diagrams we find that to this order in perturbation theory the

effective action reads

Γ[g,A] = SEM − i

∫

p

∫

p′
h̃µν(−q) Ãα(p) Ãβ(−p′)Mµν,αβ (3.14)

where

Mµν,αβ = PT
µν,αβ − PB1

µν,αβ

=

(

1

12
M0

µν,αβ+
1

q2
[

aQµQν(p
′

αpβ−p · p′ηαβ)+b(qµqν−q2ηµν)(p
′

αpβ−p · p′ηαβ)
]

)

I2(q)

(3.15)

– 8 –
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and

a = − 1

24
(D − 4) , b =

[

5

24
− ξ

]

(D − 4) (3.16)

and M0
µν,αβ is the lowest order photon energy momentum matrix element

M0
µν,αβ = p′µpνηαβ + pµp

′

νηαβ + ηµνp
′

αpβ − pµp
′

αηνβ − p′µpβηαν − pνp
′

αηµβ

− p′νpβηαµ + p · p′(ηµαηβν + ηµβηνα − ηµνηαβ) . (3.17)

We have taken the limit D = 4 in all terms except for those of eq. (3.16).

There are a couple of interesting calculational features in this computation. One is

that although we are calculating a triangle diagram, the scalar triangle integral

I3(p, p
′) =

∫

dDk

(2π)D
1

(l2 + i0)
(

(k + p2) + i0
)(

(k + p′)2 + i0
) (3.18)

does not appear in the result. The above integral is infrared divergent, and thus despite

the massless loops the on-shell conditions yielded an infrared finite effective action up to

this order in perturbation theory. The P-V reduction has expressed all of the integrals in

terms of the bubble integral and the answer only contains

I2(q) =

∫

dDk

(2π)D
1

(k2 + i0)((k + q)2 + i0)
=

i

16π2

[

1

ǭ
− ln

(−q2

µ2

)]

(3.19)

with 1
ǭ = 1

ǫ − γ + ln 4π. Also interesting is that the bubble integral as a function of an

external momenta

I2(p
2 = λ2) =

∫

dDk

(2π)D
1

(k2 + i0)((k + p)2 + i0)
=

i

16π2

[

1

ǭ
− ln

(−λ2

µ2

)]

(3.20)

does not appear in the answer. In doing the P-V reduction shown in the appendix, we

kept the off-shell condition p2 = p′2 = λ2 in potentially divergent contributions in order to

regulate the infrared aspects of the integrals, and inspection of these integrals shows I2(λ
2)

occurring frequently. However, all such terms drop out of the final result.

3.1 Renormalization

It is expected that the divergent part of the effective action is proportional to SEM which

reads in momentum space

SEM =
1

4e20

∫

p

∫

p′
h̃µν(−q) Ãα(p) Ãβ(−p′)M0

µν,αβ (3.21)

and e0 is the bare electric charge. As usual, the bare electric charge is replaced by its

renormalized counterpart via

e0 = µǫ Z
−1/2
3 e . (3.22)

Working in the modified MS-scheme the renormalization constant is easily determined

to be

Z3 = 1− e2

48π2 ǭ
. (3.23)

– 9 –
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It is now easy to determine the beta function from the RGE

βs(e) =
e3

48π2
. (3.24)

After renormalization, we pass to the limitD = 4 and write down the renormalized effective

action

Γren[g,A] =
1

4

∫

p

∫

p′
h̃µν(−q) Ãα(p) Ãβ(−p′)

[(

1

e2(µ)
− 1

48π2
ln

(−q2

µ2

)

)

M0
µν,αβ +Ms

µν,αβ

]

(3.25)

where we identified the finite tensor for the charged scalar leaving the value of the conformal

coupling arbitrary

Ms
µν,αβ(ξ) =

1

48π2q2
(

QµQν − (5− 24ξ)(qµqν − q2ηµν)
)

(p′αpβ − p · p′ηαβ) . (3.26)

We see that only for ξ = 1/6 does the photon’s energy momentum tensor have the

expected trace relation. The lack of Weyl invariance in the scalar sector when ξ 6= 1/6

carries over to the photon interaction and modifies the trace. As we show below, this feature

is not present for fermions since the classical theory is Weyl invariant. On the other hand,

it is satisfying to observe that, using the beta function, the renormalized effective action is

indeed scale-independent.

3.2 Fermions and non-universality

At this stage, it is quite straightforward to read off the result for fermions from the matrix-

element computation of [20]

Γren[g,A] =
1

4

∫

p

∫

p′
h̃µν(−q) Ãα(p) Ãβ(−p′)

[(

1

e2
− 1

12π2
ln

(−q2

µ2

)

)

M0
µν,αβ +Mf

µν,αβ

]

(3.27)

where the finite tensor now becomes

Mf
µν,αβ =

1

24π2q2
(−QµQν − qµqν + q2ηµν)(p

′

αpβ − p · p′ηαβ) . (3.28)

We also find the fermionic beta function

βf (e) =
e3

12π2
. (3.29)

An interesting aspect of this result is the non-universality of the structure of the finite

tensor which is responsible for the anomalous trace. Here the phrase non-universality

refers to the fact that the tensor structure is different for bosons and fermions. However,

we will show below that the trace of this tensor reproduces the correct anomaly for both

bosons and fermions.
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3.3 Position space effective action

Let us collect these calculations into a position space effective action. After integrating out

the massless charged particle, it has the general structure

Γ[A, h] =
1

e2(µ)
SEM[A, h] + Γ(0)[A] + Γ(1)[A, h] (3.30)

where

SEM[A, h] = −1

4

∫

d4x
(

FµνF
µν + 2hµν T cl

µν

)

(3.31)

with T cl
µν(x) given by eq. (1.4) and Γ(0)[A] being the non-local piece in eq. (1.5). The loop

corrections linear in hµν are contained in Γ(1)[A, h]. Written in quasi-local form, it has the

structure6

Γ(1)[A, h] = −1

2

∫

d4xhµν
[

bs log

(

✷

µ2

)

T cl
µν −

bs
2

1

✷
T̃ s
µν

]

(3.32)

for conformally coupled scalars, where bs is the beta function coefficient and T̃ s
µν is the

operator

T̃ s
µν = 2∂µFαβ∂νF

αβ − ηµν∂λFαβ∂
λFαβ . (3.33)

For fermions, the structure is similar

Γ(1)[A, h] = −1

2

∫

d4xhµν
[

bf log

(

✷

µ2

)

T cl
µν −

bf
2

1

✷
T̃ f
µν

]

(3.34)

except now T̃ f
µν is a different operator

T̃ f
µν = −Fαβ∂µ∂νF

αβ − 1

2
ηµν∂λFαβ∂

λFαβ . (3.35)

Both of these are genuine non-local actions. To display the non-locality we recall that

the log✷ factor is to be interpreted as in eq. (1.8), and equivalently the 1/✷ term is the

representation of the Feynman propagator as in eq. (2.7).7 Then the explicitly non-local

form reads

Γ(1)[A, h] = −1

2

∫

d4xhµν(x)

∫

d4y

[

bi L(x−y)T cl
µν(y)− i

bi
2
∆F (x−y)T̃ i

µν(y)

]

, i = s, f .

(3.36)

We see both a logarithmic non-locality and a mass-less pole non-locality.

From eq. (3.1), one can readily obtain the energy momentum tensor itself from these

expressions. In doing so, we rescale the photon field by a factor of e(µ) in order to obtain

the conventional normalization. The result is given by the non-local object

T i
µν(x) = T cl

µν(x)− e2bi

∫

d4y

[

L(x− y)T cl
µν(y) +

i

2
∆F (x− y)T̃ i

µν(y)

]

, i = s, f .

(3.37)

6From now onwards, we use ξ = 1/6.
7When using the in-in formalism, the causal prescription for the ln✷ piece was computed in [25] and

evidently the 1/✷ would be the retarded propagator.
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Note that this form does contain a dependence on the scale µ within the logarithm. Using

the on-shell condition ✷Aµ = 0 we have that

∂λFαβ∂
λFαβ =

1

2
✷(FµνF

µν) (3.38)

and thus one can easily verify that the above tensor reproduces the correct trace anomaly.

Moreover, to show that it is conserved one merely notices that both non-local functions

are functions of the geodesic distance and hence convert derivatives to be with respect to

the y variable and then uses integration by parts. Eq. (3.37) is one of the main results of

this paper.

One can gain some insight into this structure if one decomposes the boson and fermion

tensors into a universal term which yields the proper trace and a non-universal term that

is traceless. Here we find

T̃ i
µν = ai1Aµν + ai2Sµν , i = s, f (3.39)

where

Aµν = ∂µFαβ∂νF
αβ + Fαβ∂µ∂νF

αβ − ηµν∂λFαβ∂
λFαβ (3.40)

Sµν = 4∂µFαβ∂νF
αβ − 2Fαβ∂µ∂νF

αβ − ηµν∂λFαβ∂
λFαβ (3.41)

and

as1 = af1 =
2

3
, as2 =

1

3
, af2 = −1

6
. (3.42)

The trace of Aµν gives the anomaly, while Sµν is traceless. The different ai2 coefficients

for bosons and fermions is equivalent to the comments on non-universality of the energy

momentum tensor described earlier in this section. There is of course an ambiguity in any

such decomposition — one can add any traceless tensor to Aµν while subtracting it from

Sµν . We have chosen the linear combinations to match the nonlinear completion that we

will display in section 6, such that Aµν corresponds to the F 2(1/✷)R term and Sµν to the

F 2(1/✷)C term.

4 Conformal and scaling properties of the effective action

In the one loop effective action, we have found two terms that are proportional to the

beta function coefficient, bi. These can be referred to as the ln✷ term and the 1/✷ term.

We will see that both of them are required, but by somewhat different scale symmetry

transformations. As we will describe below, the ln✷ responds directly to dilations while

the 1/✷ responds to conformal transformations. The existence of both allows us to relate

the two symmetries in this context. The ln✷ behavior and the 1/✷ behavior are much

discussed in the literature. For example, Deser and Schwimmer [14] refer to the ln✷ terms

as Type B anomalies and 1/✷ as Type A. It is interesting that both types emerge in this

calculation. The 1/✷ terms are also associated with the Riegert anomaly action [30], which

will be commented on in section 6.
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Let us now discuss the dichotomy between scaling and conformal symmetry breaking

in the effective action constructed in the previous section. The scaling behavior of Γ(0)[A]

was discussed in the introduction. Before we repeat the same exercise for Γ(1)[A, h], we note

that since hµν has a mass dimension zero, it has a vanishing scaling dimension. Accordingly,

under a scale transformation the 1-loop EA transforms as follows

Γ(1)[A, h] → Γ(1)[A, h] +
bi
2

∫

d4xhµν
[

log λ2T cl
µν

]

. (4.1)

Using eq. (1.3) and taking Γ(0)[A] into account as well, we find

T µ
µ =

bi
2

(

ηµαηνβFµνFαβ + 2hµνT cl
µν

)

(4.2)

which is indeed the desired anomalous operator expanded around flat space.

Notice in particular the feature that when performing this rescaling, the 1/✷ portion

of the answer is scale invariant. However, when forming the energy momentum tensor,

it is precisely the 1/✷ part that yields the traceful contribution to the energy-momentum

tensor. To explain this, we need to understand the violation of conformal symmetry present

in the effective action. Once again, we need to determine the transformation properties of

the metric perturbation hµν . This is best achieved by linearizing the classical action and

performing an infinitismal conformal transformation, namely

gµν → (1 + 2σ)gµν . (4.3)

This allows to read off the transformation of the metric perturbation

hµν → hµν + 2σηµν (4.4)

One can readily check that the linearized action of eq. (3.2) is indeed invariant under the

above transformation provided φ → (1 − σ)φ. Both SEM[A, h] and Γ(0)[A] are invariant.

Moreover,

Γ(1)[A, h] → Γ(1)[A, h]− bi

∫

d4xσ
1

✷

(

∂λFµν∂
λFµν

)

. (4.5)

By using eqs. (3.38) and (3.5), one reproduces the flat space limit of the anomalous operator

T µ
µ =

bi
2
ηµαηνβFµνFαβ (4.6)

We have seen that when expanding to first order around flat space, two terms arise

which are both related to the anomaly. When forming the energy momentum tensor, the

log term multiplies the classical energy momentum tensor and hence is itself traceless.

However under scale transformations the log produces an anomaly which combines with

the lowest order piece in the proper way. On the other hand, conformal transformations

directly produce the trace of the energy-momentum tensor, and this is manifest in the 1/✷

term of the one-loop result.
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Figure 3. Photon self-energy diagrams needed for the matrix element.

5 The on-shell energy-momentum matrix element at one loop

For completeness, let us display the matrix element of the energy momentum tensor found

in the previous section. The energy momentum tensor for on-shell photons has the gen-

eral form

〈γ(p′)|Tµν |γ(p)〉 = ǫ∗β(p
′)ǫα(p)

[

M0
µν,αβG1(q

2)

+QµQν

(

p′αpβ − p · p′ηαβ
)

G2(q
2)

+
(

qµqν − q2ηµν
)(

p′αpβ − p · p′ηαβ
)

G3(q
2)
]

(5.1)

where

M0
µν,αβ = p′µpνηαβ + pµp

′

νηαβ + ηµνp
′

αpβ − pµp
′

αηνβ − p′µpβηαν − pνp
′

αηµβ

− p′νpβηαµ + p · p′(ηµαηβν + ηµβηνα − ηµνηαβ) (5.2)

is the tree level matrix element and G1,2,3 are form-factors.

We can extract this result from the energy momentum tensor found in the previous

section. Unlike the effective action, the photons are dynamical in the matrix element com-

puation and thus we include the field-strength renormalization graphs shown in figure 3.

These remove the dependence on the unphysical parameter µ and bring in mass singular-

ities, and we have evaluated using the off-shellness condition p2 = p′2 = λ2 to regulate

these. The net effect is to replace the µ2 dependence within the logarithm with λ2. The

results for the massless conformally coupled scalar are

G1 = 1 + e2bs ln(q
2/λ2) , G2 =

e2

96π2q2
, G3 = − e2

96π2q2
. (5.3)

Note also the pole, 1/q2, in G2, G3, which we also saw in the effective action. The equivalent

result for a massless fermion [20] corresponds to

G1 = 1 + e2bf ln(q
2/λ2) , G2 = − e2

48π2q2
, G3 = − e2

48π2q2
. (5.4)

We note that the trace anomaly relation emerges correctly in both cases, in that

〈γ(p′)|Tµ
µ|γ(p)〉 = ǫ∗β(p

′)ǫα(p)
[

(p′αpβ − p · p′ηαβ)q2
(

−G2(q
2)− 3G3(q

2)
)]

(5.5)
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with

q2
(

−G2(q
2)− 3G3(q

2)
)

=
β(s,f)

e
. (5.6)

In each case, the result is consistent with the relation

T µ
µ =

β(s,f)

2e
FµνF

µν (5.7)

with the appropriate β function. Although the matrix element has a 1/q2 pole, the trace

is a constant.

6 Gravity and a non-linear completion of the action

The connection between the non-local effective action and the trace anomaly is more ob-

vious if we construct a non-linear form of the action using gravitational curvatures. There

has been a lot of controversy in the literature about the correct form of the non-local

action that gives rise to the anomaly. Some authors, see for example [7, 27, 28], argue

for the Riegert action first obtained in [30, 31] while others dismissed it based on several

arguments [15, 17, 29] and proposed alternative forms. Moreover, another group of authors

has used a renormalization group approach to argue that both forms exist in the effective

action [32]. One might try developing a non-linear completion based on the perturbative

result [25], however this opens up extra questions about general covariance and uniqueness

of the result. The answer to these questions will be addressed collectively in a companion

publication [22].

When dealing with massive charged fields, the covariant form involving the curvatures

could readily be found by one of two ways; non-linear completion or heat kernel methods.

For massive fields, all Lagrangians are local and the expansion in the curvatures coincides

with the energy or derivative expansion — higher powers of the curvature involve higher

derivatives. To shed light on the difficulties of the construction when dealing with non-

locality, we review a local action given by Drummond and Hathrell [26] corresponding to

the one-loop effect of a massive charged fermion

Γlocal[g,A] =
e2

m2

∫

d4x
√
g
[

l1 FµνF
µνR+ l2 FµσF

σ
ν Rµν+ l3 F

µνFα
β R

β
µνα + l4∇µF

µν∇αF
α
ν

]

(6.1)

These operators comprise a complete basis up to third order in the generalized cur-

vature expansion. In [26] they were determined using the two methods mentioned above;

matching the above operators onto the perturbative calculation of [20] in the low-energy

limit and using the Schwinger-DeWitt technique to compute the heat kernel. Indeed the

outcome of the two methods agreed, with the result

l1 = − 1

576π2
, l2 =

13

1440π2
, l3 = − 1

1440π2
, l4 = − 1

120π2
. (6.2)

With non-local actions the curvature expansion is not equivalent to the derivative or

energy expansion because the calculations require factors of 1/q2 or 1/✷. Higher powers
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of (1/✷)R are not suppressed in the energy expansion. Since there is no mass scale in the

problem, derivatives acting on curvatures can not be deemed small and thus all powers

of derivatives must be taken into account. One can think of the non-local form as a

non-analytic expansion summarizing the results of a one-loop calculation. Nevertheless,

the curvature expansion as in eq. (6.1) is useful because it accommodates the general

covariance of the theory in a more explicit fashion.

In the local expansion the term involving the constant l4 in eq. (6.1) is the only term

which survives in flat space. It comes from the vacuum polarization and is the analogue of

the ln✷ of our non-local form. However, this coefficient has no relation to the beta function.

For the other terms, the factors of 1/m2 have to be replaced by a different factor with the

same dimensionality. This can be done schematically by replacing 1/m2 by 1/✷ in eq. (6.1).

The 1/m2 is the leading term in the low-energy expansion of a massive propagator, and

thus for massless particles 1/✷ is the obvious generalization. Of course, the replacement is

not exact, and we need to adjust the coefficients to match the perturbative result.

We find the following form to be the most informative

Γanom.[g,A] =

∫

d4x
√
g

[

nRFρσF
ρσ 1

✷
R+ nCF

ρσF γ
λ

1

✷
C λ
ρσγ

]

. (6.3)

In this basis, ✷ = gµν ∇µ∇ν is the covariant d’Alembertian and C λ
ρσγ is the Weyl tensor

which in 4D reads

Cµναβ = Rµναβ −
1

2
(gµαRνβ − gµβRνα − gναRµβ + gνβRµα)+

R

6
(gµαgνβ − gµβgνα) (6.4)

and

n
(s,f)
R = −β(s,f)

12e
, ns

C = − e2

96π2
, nf

C =
e2

48π2
. (6.5)

The term with the Weyl tensor is unrelated to the beta function and the trace anomaly.

While in principle possible, there is no term involving Rµν as it is not needed to match any

of the formfactors which we have calculated. The term involving the scalar curvature in the

form (1/✷)R is the nonlinear completion of the 1/✷ effects which leads to the conformal

anomaly above. The latter is consistent with the leading part of the Riegert action whose

non-local piece reads

ΓRiegert =
b

4

∫

d4x
√
g F 2 1

∆4

(

E − 2

3
✷R

)

(6.6)

where E is the 4D Gauss-Bonnet topological invariant and ∆4 is the fourth order opera-

tor [30]

∆4 = ✷
2 − 2Rµν∇µ∇ν +

2

3
R✷

2 − 1

3
(∇µR)∇µ . (6.7)

The Riegert action has additional contributions which are purely gravitational that we do

not display. One immediately sees that the piece relevant for a linear expansion around flat

space has the required form F 2(1/✷)R with b = β/2e. This aspect of the effective action

was noticed before in [7] as well.
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Figure 4. Gravitational scattering of a photon off a static massive target. The diagram on the left

is the tree level process, while the square in the right diagram represents the non-local effects.

7 Quantum equivalence principle violation

Quantum loops will upset the predictions of classical general relativity. In this section,

we display the quantum corrected formula for the bending angle of light and show the

violation of the equivalence principle. The classical prediction of general relativity can be

found in almost every textbook on general relativity. There is no reliable fully quantum

treatment that can be applied to the bending of light. We follow the semiclassical approach

presented in [18]. The inverse Fourier transform of the amplitude is first obtained, from

which one can define a semiclassical potential describing the interaction between a photon

and a massive object like a star. This allows the bending angle to be computed via

θ ≈ b

E

∫

∞

∞

du
V ′(b

√
1 + u2)√

1 + u2
(7.1)

where b is the classical impact parameter and E is the photon energy. Although this

formula might look naive, it was shown in [18] that it indeed yields the correct result for

the post-Newtonian correction to the bending angle when gravitaton loops are considered.

Because there are no completely massless charged particles,8 our result would only

apply in the real world at energies far above the particle mass. However, it is interesting

as a theoretical laboratory. What aspects of the equivalence principle can be violated by

quantum effects? As a technical aspect, we allow the mass to provide an infrared cutoff to

the infrared singularity of the energy-momentum matrix element. The coupling of photons

to gravity is given by the one-loop energy-momentum tensor given in the previous section

with λ replaced by m.

Since we work in the static limit, the scalar particle mass is large compared to the

momentum transfer M⊙ ≫ |q| and so we ignore the recoil. We also remind that the

polarization vectors for physical photons are purely spatial and thus the amplitude takes

the simple form

M =
(κM⊙)

2

2q2

[

1− β(s,f)

e
ln

(

q2

µ2

)]

(

E2ǫ⋆ · ǫ(1 + cos θ)− k · ǫ⋆k′ · ǫ
)

(7.2)

where E is the photon energy, k is the incoming 3-momentum, k′ is the outgoing 3-

momentum and the polarization vectors are purely spatial.

8However, note that in the early universe above the electroweak phase transition, the elementary particles

are massless.
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It is convenient to work with circularly polarized photons, and we find that the helicity

conserving amplitude includes the contribution of the logarithm, yielding

M(++) = M(−−) =
(κM⊙E)2

2q2

[

1− β(s,f)

e
ln

(

q2

m2

)]

(1 + cos θ) (7.3)

In the non-relativistic limit, the semiclassical potential is simply

V (r) = − 1

4M⊙E

∫

d3q

(2π)3
eiq·xM(q) (7.4)

where the prefactor accounts for non-relativistic normalization. Employing the following

relations,
∫

d3~q

(2π)3
e−iq·r

q2
ln

(

q2

m2

)

= − ln(mr) + γE
2πr

,

∫

d3~q

(2π)3
e−iq·r ln

(

q2

m2

)

= − 1

2πr3
,

cos θ = 1− q2

2E2
(7.5)

we simply find

V++(r) = V−−(r) = −2GM⊙E

r
+

16πGM⊙

E
δ(3)(x) +

4βGM⊙E

er

(

1

4E2r2
− lnmr − γE

)

(7.6)

Notice in particular that the corrections to the Newtonian piece are not necessarily attrac-

tive. The short-range delta function does not lead to any modifications to the bending

angle. Using eq. (7.1), we find

θnon-flip ≈ 4GM⊙

b
+

8βGM⊙

eb
(lnmb+ γE − ln 2)− 4βGM⊙

eE2b3
(7.7)

In contrast to this, the 1/q2 portion of the energy momentum tensor leads to helicity

flip amplitudes. Here, one finds the result

M(+−) = M(−+) = −(κeM⊙E)2

q2
bs +

(κeM⊙)
2

4
bs (7.8)

for bosons and

M(+−) = M(−+) =
(κeM⊙E)2

q2
bf +

(κeM⊙)
2

4
bf (7.9)

for fermions. This result has interesting features; first of all the sign in front of the Coulomb-

like piece is different for both species. Moreover, the 1/q2 terms do not modify the helicity

non-flip part of the amplitude. Thus the non-relativistic potential is spin-dependent. If we

proceed with the calculation of the bending angle, we find

θflip ≈
{

−4e2bsGM⊙/b , bosons

4e2bfGM⊙/b , fermions
(7.10)

The interpretation of this result is less clear. However, the overall picture is clear: quantum

physics has modified the classical prediction for light bending. In particular, photons of

different energies will follow different trajectories.
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8 Conclusion

We have been discussing low energy aspects of the conformal (trace) anomaly of QED

using the one-loop effective action obtained by integrating out the massless charged parti-

cles. This is non-local because of the long distance propagation of the massless particles.

However, after renormalization it is this non-local object that encodes the information on

the anomaly. We also constructed the non-local energy-momentum tensor quadratic in

the gauge field. This has the correct non-vanishing trace arising from a 1/q2 pole, which

nevertheless yields a local trace. In the effective action, both the log✷ and 1/✷ terms

were required, with the log piece being related to scale symmetry and the 1/✷ piece being

related to conformal symmetry. These non-local terms are interesting in their own right.

For example, we showed that such corrections lead to an energy dependence of the bending

of light, signaling a violation of some classical versions of the Equivalence Principle.

Another aspect of our exploration is an initial construction of the non-local action for

a curved background, the correct form of which has been an ongoing controversy since the

seminal work on gravitational anomalies by Deser, Isham and Duff [8]. This construction

constitutes a fundamental ingredient if one wants to consider the effects of the anomaly

on various gravitational phenomena beyond the linear approximation. Over the years,

multiple authors have investigated the effects of anomalies on different phenomena ranging

from cosmology and astrophysics [33–38] to black holes [39, 40]. We will continue the

discussion of the covariant form of the effective action in [22].
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A Scale currents

Let us give a quick review of scale and conformal symmetries in a bit more detail than

described in the introduction. In general the consequence of dilatation symmetry is to

generate a current

Jµ
Noether = Θµ

νx
ν − jµ (A.1)

where jµ is called the virial current and Θµν is the canonical energy-momentum tensor.

Scale symmetry then implies that

∂µJ
µ
Noether = Θµ

µ − ∂µj
µ (A.2)

For example, if we apply Noether’s theorem to SEM we find

Jµ
Noether = Θµ

νx
ν − FµαAα (A.3)

where Θµν is

Θµν =
1

4
gµνFαβF

αβ − Fµα∂νA
α. (A.4)
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The current is easily seen to be conserved upon using the classical equation of motion,

but notice that it looks quite different from the dilatation current in eq. (1.3). Moreover,

the asymmetric canonical energy-momentum tensor is not the same as Tµν quoted in the

same equation. The trick is to use scale invariance to construct an improved traceless tensor

much like using the Belinfante procedure for finding a symmetric energy-momentum tensor

exploiting the Lorentz invariance of the theory. These aspects are well explained in [23, 24].

The procedure is to judiciously add a conserved symmetric second-rank tensor to form the

Belinfante tensor such that its trace reads

T µ
µ = ∂µJ

µ
Noether

∣

∣

off-shell
(A.5)

and hence the improved tensor Tµν will be traceless on-shell. For electromagnetism, the

Belinfante procedure yields the desired tensor without any further modifications9

Tµν = −FµσF
σ
ν +

1

4
gµνFαβF

αβ . (A.6)

With this object in hand, eq. (1.3) defines the dilatation current. When coupled to gravity,

the photon action is conformally invariant.

A similar story holds for the scalar field, starting from the Lagrangian of eq. (3.2).

For the minimally coupled field, the energy momentum tensor is not traceless and the

dilatation current is

Jµ
Noether = T (ξ=0) µ

ν xν −
[

φ⋆∂µφ+ (∂µφ⋆)φ
]

(A.7)

However, if we use the improved energy momentum tensor with conformal coupling, the

energy momentum tensor is now traceless

T (ξ=1/6) µ
µ = 0 (A.8)

and we do not need the virial current. The scalar field is only conformally invariant for

ξ = 1/6.

B Reduction of the triangle and bubble integrals

B.1 Bubbles

∫

dDk

(2π)D
kµ

(k2+i0)
(

(k+l)2+i0
) = −1

2
lµI2(l) (B.1)

∫

dDk

(2π)D
kµkν

(k2+i0)
(

(k+l)2+i0
) =

1

4(D−1)

[

Dlµlν − l2ηµν
]

I2(l) (B.2)

∫

dDk

(2π)D
kµkνkα

(k2+i0)
(

(k+l)2+i0
) =

1

8(D−1)

[

l2(ηµν lα+ηµαlν+ηαν lµ)−(D+2)lµlν lα
]

I2(l)

(B.3)

where l is an arbitrary four-momentum and I2 is the scalar bubble function

I2(p) =

∫

dDk

(2π)D
1

(k2 + i0)
(

(k + p)2 + i0
) (B.4)

9Note that the energy-momentum tensor is traceless even off-shell.
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B.2 Triangles

∫

dDk

(2π)D
kµ

(k2+i0)
(

(k+l)2+i0
)(

(k+l′)2+i0
) = AQµ (B.5)

∫

dDk

(2π)D
kµkν

(k2+i0)
(

(k+l)2+i0
)(

(k+l′)2+i0
) = Bηµν + CQµQν +Dqµqν (B.6)

∫

dDk

(2π)D
kµkνkα

(k2+i0)
(

(k+l)2+i0
)(

(k+l′)2+i0
) =

E(Qµηνα + perm) + FQµQνQα +G(Qµqνqα + perm)
∫

dDk

(2π)D
kµkνkαkβ

(k2+i0)
(

(k+l)2+i0
)(

(k+l′)2+i0
) =

H(ηµνηαβ + perm) + I(ηµνQαQβ + perm) + J(ηµνqαqβ + perm)

+KQµQνQαQβ + Lqµqνqαqβ +M(QµQνqαqβ + perm) (B.7)

where

l2 = l′2 = λ2 → 0 , Q = l + l′ q = l − l′ (B.8)

We ignored any analytic dependence on λ2, and only retained it inside logarithms. The

different coefficients read

A =
1

q2
(

I2(q)−I2(l)
)

, B =
1

2(D−2)
I2(q) , C =

1

q2

(

1

4
I2(l)−

D−3

2(D−2)
I2(q)

)

D =
1

q2

(

1

4
I2(l)−

1

2(D−2)
I2(q)

)

, E = − 1

4(D−1)
I2(q)

F =
1

4q2(D−1)

(

(D−3)I2(q)−
D

4
I2(l)

)

, G =
1

4q2(D−1)

(

I2(q)−
D

4
I2(l)

)

H = − q2

8D(D−1)
I2(q) , I =

1

8D
I2(q) , J =

1

8D(D−1)
I2(q)

K =
1

8q2

(

D+2

8(D−1)
I2(l)−

D−3

D
I2(q)

)

, L =
1

8q2(D−1)

(

D+2

8
I2(l)−

3

D
I2(q)

)

M =
1

8q2

(

D+2

8(D−1)
I2(l)−

1

D
I2(q)

)

(B.9)
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