
J
H
E
P
0
5
(
2
0
1
5
)
1
1
3

Published for SISSA by Springer

Received: March 6, 2015

Revised: April 16, 2015

Accepted: April 27, 2015

Published: May 21, 2015

An algorithm for the Baker-Campbell-Hausdorff

formula

Marco Matone

Dipartimento di Fisica e Astronomia “G. Galilei”, Istituto Nazionale di Fisica Nucleare,
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Abstract: A simple algorithm, which exploits the associativity of the BCH formula, and

that can be generalized by iteration, extends the remarkable simplification of the Baker-

Campbell-Hausdorff (BCH) formula, recently derived by Van-Brunt and Visser. We show

that if [X,Y ] = uX + vY + cI, [Y, Z] = wY + zZ + dI, and, consistently with the Jacobi

identity, [X,Z] = mX + nY + pZ + eI, then

exp(X) exp(Y ) exp(Z) = exp(aX + bY + cZ + dI)

where a, b, c and d are solutions of four equations. In particular, the Van-Brunt and Visser

formula

exp(X) exp(Z) = exp(aX + bZ + c[X,Z] + dI)

extends to cases when [X,Z] contains also elements different from X and Z. Such a

closed form of the BCH formula may have interesting applications both in mathematics

and physics. As an application, we provide the closed form of the BCH formula in the

case of the exponentiation of the Virasoro algebra, with SL2(C) following as a subcase.

We also determine three-dimensional subalgebras of the Virasoro algebra satisfying the

Van-Brunt and Visser condition. It turns out that the exponential form of SL2(C) has a

nice representation in terms of its eigenvalues and of the fixed points of the corresponding

Möbius transformation. This may have applications in Uniformization theory and Confor-

mal Field Theories.
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1 The algorithm

Very recently Van-Brunt and Visser [1] (see also [2] for related issues) found a remarkable

relation that simplifies, in important cases, the Baker-Campbell-Hausdorff (BCH) formula.

Namely, if X and Y are elements of a Lie algebra with commutator

[X,Y ] = uX + vY + cI , (1.1)

with I a central element and u, v, c, complex parameters, then [1]

exp(X) exp(Y ) = exp(X + Y + f(u, v)[X,Y ]) , (1.2)

where

f(u, v) = f(v, u) =
(u− v)eu+v − (ueu − vev)

uv(eu − ev)
. (1.3)

In the following we formulate an algorithm which exploits the associativity of the BCH

formula. Set α+ β = 1 and consider the identity

exp(X) exp(Y ) exp(Z) = exp(X) exp(αY ) exp(βY ) exp(Z) . (1.4)

If

[X,Y ] = uX + vY + cI , [Y, Z] = wY + zZ + dI , (1.5)

then, by eq. (1.2),

exp(X) exp(αY ) = exp(X̃) , exp(βY ) exp(Z) = exp(Ỹ ) , (1.6)

where

X̃ := gα(u, v)X + hα(u, v)Y + lα(u, v)cI ,

Ỹ := hβ(z, w)Y + gβ(z, w)Z + lβ(z, w)dI , (1.7)

with gα(u, v) := 1 + αuf(αu, v), hα(u, v) := α(1 + vf(αu, v)) and lα(u, v) := αf(αu, v).

Imposing

[X̃, Ỹ ] = ũX̃ + ṽỸ + c̃I , (1.8)
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fixes α, ũ, ṽ and c̃. This solves the BCH problem, since, by (1.1), (1.2), (1.4) and (1.6)

exp(X) exp(Y ) exp(Z) = exp(X̃) exp(Ỹ ) = exp(X̃ + Ỹ + f(ũ, ṽ)[X̃, Ỹ ]) . (1.9)

Note that the commutator between X and Z may contain also Y

[X,Z] = mX + nY + pZ + eI . (1.10)

This is consistent with the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 , (1.11)

that constrains e,m, n and p by a linear system. Setting Y = λ0Q and λ− := λ0α,

λ+ := λ0β, eq. (1.4) includes, as a particular case,

exp(X) exp(Z) = lim
λ0→0

exp(X) exp(λ−Q) exp(λ+Q) exp(Z) . (1.12)

This explicitly shows that the algorithm solves the BCH problem for exp(X) exp(Z) in

some of the cases when [X,Z] includes elements of the algebra different from X and Z.

The complete classification of the commutator algebras, leading to the closed form (1.9)

of the BCH formula, is investigated in [3]. The algorithm has been applied to the case of

semisimple complex Lie algebras in [4].

In the next section we implement the above algorithm. In particular, we write down

the linear system coming from the Jacobi identity and then find the explicit expression for

c̃, ũ and ṽ. We also find the equation, which is the key result of the algorithm, satisfied by

α. In section 3, as an application, we consider the exponentiation of the Virasoro algebra

and derive the solution of the corresponding BCH problem. This includes, as a particular

case, the closed form of the BCH formula for SL2(C). We also determine three-dimensional

subalgebras of the Virasoro algebra satisfying the Van-Brunt and Visser condition (1.1).

In the last section we apply the algorithm to find the exponential form of SL2(C) matrices.

Furthermore, we reproduce the same results, using an alternative method, and extending

them to GL2(C) matrices. In this respect, it seems that in the literature, similar expressions

for γ ∈ SL2(C) are usually given only separately for three distinguished cases, depending

if γ211 + γ12γ21 is negative, vanishing or positive. It turns out that the expression of X in

γ = exp(X) has a geometrical representation which is not directly evident in γ. Namely, it

turns out that X can be nicely expressed in terms of its eigenvalues and of the fixed points

z±, solutions of the equation z = γz, where γz is the Möbius transformation

γz :=
γ11z + γ12
γ21z + γ22

. (1.13)

Such a geometrical representation of γ may be of interest in the framework of Uniformiza-

tion theory and Conformal Field Theories.
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2 Implementation of the algorithm

Let us write down the linear system that follows by the Jacobi identity (1.11)

uw +mz = 0 ,

vm− wp+ n(z − u) = 0 ,

pu+ zv = 0 ,

c(w +m) + e(z − u)− d(p+ v) = 0 . (2.1)

Replacing X̃ and Ỹ on the right hand side of (1.8) by their expressions in terms of X, Y

and I, and comparing the result with the direct computation, by (1.5), (1.7) and (1.10), of

[X̃, Ỹ ], yields

c̃ = (hβ(z, w)−gβ(z, w)lα(u, v)m)c+(hα(u, v)− gα(u, v)lβ(z, w)p)d+gα(u, v)gβ(z, w)e ,

ũ = hβ(z, w)u+ gβ(z, w)m,

ṽ = gα(u, v)p+ hα(u, v)z ,

ũhα(u, v) + ṽhβ(z, w) = gα(u, v)hβ(z, w)v + gα(u, v)gβ(z, w)n+ hα(u, v)gβ(z, w)w .

(2.2)

The first three equations fix c̃, ũ and ṽ in terms of α = 1 − β. Replacing the expressions

of ũ and ṽ in the fourth equation provides the following equation for α

hα(u, v)[hβ(z, w)(u+z)+gβ(z, w)(m−w)]+gα(u, v)[hβ(z, w)(p−v)−gβ(z, w)n] = 0 . (2.3)

This is the basic equation of the algorithm and is further investigated, together with the

linear system (2.1), in [3]. Note that

gα(u, v) =
v − αu

v

eαu/2 sinh(v/2)

sinh[(v − αu)/2]
,

hα(u, v) =
v − αu

u

ev/2 sinh(αu/2)

sinh[(v − αu)/2]
. (2.4)

We then obtained a closed form of the BCH formula for cases in which the commutator

contains other elements than the ones in the commutator. The above algorithm can be

extended to more general cases, e.g. by considering decompositions like the one in (1.4) for

exp(X1) · · · exp(Xn) . (2.5)

3 Exponentiating the Virasoro algebra

In this section we apply the algorithm, leading to closed forms of the BCH formula, in the

case of the exponentiation of the Virasoro algebra

[Lj ,Lk] = (k − j)Lj+k +
c

12
(k3 − k)δj+k,0I , (3.1)
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j, k ∈ Z. In particular, we find the closed form for W in

exp(X) exp(Y ) exp(Z) = exp(W ) , (3.2)

where

X := λ−kL−k , Y := λ0L0 , Z := λkLk . (3.3)

This is particularly interesting because we do not know alternative ways to get it. The

case of SL2(C) follows straightforwardly since the sl2(R) algebra

[Lj , Lk] = (k − j)Lj+k , (3.4)

j, k = −1, 0, 1, is a subalgebra of (3.1). Note that setting E− = L1, H = −2L0 and E+ =

−L−1, reproduces the other standard representation of the sl2(R) algebra [H,E+] = 2E+,

[E+, E−] = H and [H,E−] = −2E−. Note that,

[X,Y ] = kλ0X , [Y, Z] = kλ0Z , [X,Z] = λ−kλk

[

2k

λ0

Y +
c

12
(k3 − k)

]

, (3.5)

where, besides c = d = v = w = 0, we have, consistently with the Jacobi identity,

m = p = 0. The other commutator parameters are

u = z = kλ0 ,

n = λ−kλk
2k

λ0

,

e = λ−kλk
c

12
(k3 − k) . (3.6)

By (2.3) it follows that α satisfies the equation

ngα(u, 0)gβ(u, 0) = 2uhα(u, 0)hβ(u, 0) , (3.7)

so that, using

hα(u, 0) = α , gα(u, 0) =
αu

1− e−αu
, (3.8)

and recalling that λ− := λ0α, λ+ := λ0β, one gets

e−kλ± =
1 + e−kλ0 − k2λ−kλk ±

√

(1 + e−kλ0 − k2λ−kλk)2 − 4e−kλ0

2
. (3.9)

Next, observe that, by (2.2), ũ = kλ+, ṽ = kλ−, and ck ≡ c̃ = egα(kλ0, 0)gβ(kλ0, 0), that is

ck =
λ−λ−k

1− e−kλ−

λ+λk

1− e−kλ+

c

12
(k5 − k3) , (3.10)

that, by (3.9), is equivalent to

ck =
λ−kλk

λ+ − λ−

(

λ+

1− e−kλ+
− λ−

1− e−kλ−

)

c

12
(k4 − k2) . (3.11)
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Finally, eq. (1.9) yields

exp(λ−kL−k) exp(λ0L0) exp(λkLk) =

exp
{ λ+ − λ−

e−kλ− − e−kλ+

[

kλ−kL−k +
(

2− e−kλ+ − e−kλ−

)

L0 + kλkLk + ckI
]}

. (3.12)

In the case λ0 = 0 we have

exp(λ−kL−k) exp(λkLk) = exp

[

λ+

sinh(kλ+)
(kλ−kL−k + k2λ−kλkL0 + kλkLk + ckI)

]

,

(3.13)

with

ck = λ−kλk
c

24
(k4 − k2) . (3.14)

Let us report the relevant case corresponding to SL2(C), obtained by setting k = 1 in the

above formulas. We have

exp(λ−1L−1) exp(λ0L0) exp(λ1L1) =

exp

{

λ+ − λ−

e−λ− − e−λ+

[

λ−1L−1 +
(

2− e−λ+ − e−λ−

)

L0 + λ1L1

]

}

, (3.15)

and

exp(λ−1L−1) exp(λ1L1) = exp

[

λ+

sinh(λ+)
(λ−1L−1 + λ−1λ1L0 + λ1L1)

]

. (3.16)

Interestingly, the algorithm for the BCH formula may be extended to any three-dimensional

subalgebras of the Virasoro algebra. In this respect, it can be easily seen that the highest

finite dimensional subalgebras of the Virasoro algebra are the four-dimensional ones gen-

erated by L−n, L0, Ln and the central element I, for all n ∈ Z\{0}. Above we solved the

BCH problem for all such subalgebras. Since all the remanent non-trivial Virasoro subal-

gebras are either three-dimensional, each one containing I, or two-dimensional, it follows

that all of them satisfy the condition (1.1) and therefore the corresponding BCH problem

of finding Z such that exp(X) exp(Y ) = exp(Z) is easily solved by (1.2). In this respect,

note that it can be easily seen that the two dimensional subalgebras are generated by Ln

and L0, for all n ∈ Z\{0}. A two-parameter family of three-dimensional subalgebras of the

Virasoro algebra, is the one where each subalgebra is generated by

Xn(δ, ǫ) := δL0 + ǫLn , X−n(ǫ, δ) , I , (3.17)

whose commutator is

[Xn(δ, ǫ), X−n(ǫ, δ)] = −nǫXn(δ, ǫ)− nδX−n(ǫ, δ) + δǫ
c

12
(n3 − n)I . (3.18)

Other three-dimensional subalgebras of the Virasoro algebra are the one-parameter family

of subalgebras, each one generated by

Xn(α) := L2n + αLn +
2

9
α2L0 , Y−n(α) := L−n +

3

α
L0 , I , (3.19)

whose commutator is

[Xn(α), Y−n(α)] = −6
n

α
Xn(α)−

2

9
nα2Y−n(α) + α

c

12
(n3 − n)I . (3.20)
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4 Geometrical constructions

Note that, in the case of SL2(R), therefore for real λk’s, depending on the values of the λk’s,

the factor λ+−λ−

e−λ−−e−λ+
in (3.15) may take complex values. This is in agreement with the non-

surjectivity of the exponential map for sl2(R) into SL2(R). In particular, exponentiating

sl2(R) cannot give SL2(R) matrices whose trace is less than −2. The case with trace −2

and non-diagonalizable matrices is critical, both for SL2(R) and SL2(C).

Let us express eq. (3.15) in terms of the associated SL2(C) matrix

γ =

(

A

C

B

D

)

. (4.1)

Replace then the Lk’s in the left hand side of (3.15) by their matrix representation

L−1 =

(

0

0

−1

0

)

, L0 =

(

−1

2

0

0
1

2

)

, L1 =

(

0

1

0

0

)

, (4.2)

using

exp(L−1) =

(

1

0

−1

1

)

, exp(L0) =

(

e−
1

2

0

0

e
1

2

)

, exp(L1) =

(

1

1

0

1

)

. (4.3)

Comparing the result with γ yields

A = eλ0/2(e−λ0 − λ−1λ1) , B = −λ−1e
λ0/2 , C = λ1e

λ0/2 , D = eλ0/2 , (4.4)

so that

e−λ± =
t±

√
t2 − 1

D
, (4.5)

where t := 1

2
tr γ. Since the eigenvalues of γ, solutions of the characteristic polynomial

ν2 − 2tν + 1 = 0, are ν± = t±
√
t2 − 1, we have

e−λ± =
ν±
D

, (4.6)

so that

exp(λ−1L−1) exp(λ0L0) exp(λ1L1) = exp

{

ln(ν+/ν−)

ν+ − ν−
[CL1+(D−A)L0−BL−1]

}

. (4.7)

Note that when γ is parabolic, that is for |t| = 1, and therefore ν+ = ν−, we have

ln(ν+/ν−)

ν+ − ν−
= t . (4.8)

Also, note that when γ is elliptic, that is for |t| < 1, one has ν+ = ν̄− = ρeiθ, so that

ln(ν+/ν−)

ν+ − ν−
=

θ

ρ sin θ
. (4.9)
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Eq. (4.7) implies
(

A

C

B

D

)

= exp

[

ln(ν+/ν−)

ν+ − ν−

(

(A−D)/2

C

B

(D −A)/2

)

]

, (4.10)

equivalently, using ν+ν− = 1,

γ = exp

[

ln(t+
√
t2 − 1)√

t2 − 1
(γ − tI2)

]

, (4.11)

which is indefinitely iterable by replacing γ on the right hand side, by its exponential form,

that is by the expression on the right hand side itself.

The relation (4.11) can be derived in an alternative way. First note that γ = exp(X)

does not uniquely fix X. For example, exp(X) = exp(X) exp(2πikI2) = exp(X + 2πikI2),

k ∈ Z. However, X can be consistently fixed to be traceless, so that, being X2 proportional

to I2, one has γ = exp(X) = aX+ tI2. Therefore γ = exp[a−1(γ− tI2)] for some a. For dis-

tinct eigenvalues the diagonalization of both sides (by the same matrix), reproduces (4.11),

since it fixes

a =
ν+ − ν−
2 ln ν+

. (4.12)

A particular case of (4.11) is when D = A−1

γ = exp

[

lnA

(

1
2C

A−A−1

2B
A−A−1

−1

)

]

, (4.13)

where, since AD − BC = 1, either B = 0 or C = 0. It follows that, when D = A−1,

with A2 = 1, γ admits exponentiation only if A = 1. For example,

(

−1

0

1

−1

)

cannot

be expressed as the exponential neither of sl2(R) nor of sl2(C). Of course, this is not a

problem in the case such a matrix is seen as an element of PSL2(R) = SL2(R)/{±I}.
Let us derive a more geometrical representation of (4.11), useful, e.g., in the frame-

work of Uniformization Theory and in Conformal Field Theories. Consider the Möbius

transformation

γz :=
Az +B

Cz +D
, (4.14)

and the solutions of the fixed point equation γz = z

z± =
(A−D)/2±

√
t2 − 1

C
. (4.15)

If B = 0, then
(

A

C

0

D

)

= exp

[

ln(ν+/ν−)

z+ − z−

(

z+ + z−
1

0

−z+ − z−

)

]

, (4.16)

otherwise, in the case of Möbius transformations, one can fix B = 1 to get
(

A

C

1

D

)

= exp

[

ln(ν+/ν−)

z+ − z−

(

z+ + z−
1

z+−z−
ν+−ν−

−z+ − z−

)

]

. (4.17)
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We conclude by observing that our findings trivially extend to GL2(C). In particular,

multiplying both sides of (4.11) by
√

|γ|I2, |γ| := det γ, one gets for γ ∈ GL2(C)

γ = exp

[

ln(t+
√

t2 − |γ|)
√

t2 − |γ|
(γ − tI2) +

1

2
ln(|γ|)I2

]

. (4.18)
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