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Abstract: Within gauge/gravity duality, we consider finite density systems in a helical

lattice dual to asymptotically anti-de Sitter space-times with Bianchi VII symmetry. These

systems can become an anisotropic insulator in one direction while retaining metallic be-

havior in others. To this model, we add a U(1) charged scalar and show that below a

critical temperature, it forms a spatially homogeneous condensate that restores isotropy

in a new superconducting ground state. We determine the phase diagram in terms of the

helix parameters and perform a stability analysis on its IR fixed point corresponding to a

finite density condensed phase at zero temperature. Moreover, by analyzing fluctuations

about the gravity background, we study the optical conductivity. Due to the lattice, this

model provides an example for a holographic insulator-superfluid transition in which there

is no unrealistic delta-function peak in the normal phase DC conductivity. Our results

suggest that in the zero temperature limit, all degrees of freedom present in the normal

phase condense. This, together with the breaking of translation invariance, has implica-

tions for Homes’ and Uemuras’s relations. This is of relevance for applications to real world

condensed matter systems. We find a range of parameters in this system where Homes’

relation holds.
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1 Introduction

Significant progress has recently been achieved in applying gauge/gravity duality to

strongly coupled systems of relevance to condensed matter physics. In particular, dif-

ferent approaches were proposed to include a lattice into the dual gravity background,

in order to holographically study the conductivity in systems with broken translation in-

variance. Systems with manifest translation invariance display an unrealistic δ-function

at zero-frequency in the conductivity; breaking the symmetry weakly broadens this into a

realistic Drude peak known from condensed matter physics as a consequence of momentum

dissipation. Holography allows moreover the exploration of the consequences of transla-

tional symmetry breaking for strongly correlated systems beyond the Drude peak, both in

the weak Drude regime and for stronger lattice potentials. We will follow this avenue in

the present paper.

Within holography, translation breaking approaches include explicit breaking by a

modulated Ansatz for the chemical potential [1–4], the use of massive gravity [5, 6] or

linear axions [7–9], or other lattice Ansätze such as the Q-lattices [10] or the method used

in this work, Bianchi symmetric solutions [11, 12]. In some cases, translation invariance

is also spontaneously broken, for instance when Chern-Simons or F ∧ F terms are present

in the gravity action [13–20], or in an external SU(2) magnetic field [21, 22]. Explicit

breaking with an interesting phenomenological consequence is realized in the helical lattice

approach [11, 12, 23–27]. The original motivation to study this model was that the helical

symmetry allows for momentum relaxation along one spatial direction without the need to

solve PDEs. The helix in one of the field theory directions along the boundary is encoded

in a non-trivial background U(1) gauge field on the gravity side of the holographic duality,

and its shape is protected by a so-called Bianchi VII0 symmetry. In addition to that ‘helix

U(1)’, the five-dimensional gravity action (2.1) that we study involves a separate ‘charge

U(1)’ dual to a globally conserved charge current in the boundary theory. This is needed to

encode a field theory at finite density. As discussed in [26], the natural finite density state

of this model is a conducting metal, but it can display a transition to an insulating phase

as a function of the helix momentum. The remarkable aspect is that this new phase is uni-

directional and anisotropic: it is an insulator only along the direction of broken translation

invariance along the helical axis. In the orthogonal directions the system remains a metal.

From a condensed matter point of view, this system resembles a so-called quantum smectic.

The specific objective we shall be interested in this paper is the consequences of trans-

lational symmetry breaking for the transition to superconductivity. This was also recently

studied in a holographic Q-lattice in [10, 28] and in axion and related holographic super-

conductor models in [29, 30]. In both cases only isotropic models were considered, though

both models can support anisotropic lattices [31, 32]. In our intrinsically anisotropic helical

lattice, the dual gravitational dynamics imply that the favored ground state will neverthe-

less be an isotropic s-wave superconductor. In fact the only Bianchi VII0 symmetric and

time-independent Ansatz for the scalar field dual to the order parameter is just a constant

in boundary direction. This is the system we shall study. We show that a scalar field

added to the helical lattice action and charged under the second U(1) gauge field con-
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denses below a critical temperature, both in the insulating and in the conducting phase.

We explore the phase diagram which is determined by the amplitude and the momentum of

the translationally symmetry breaking helix, both at finite and at vanishing temperature.

Moreover, we analyse the thermodynamical as well as transport properties of the different

phases — metallic, insulating, condensed — of the helical lattice model, and obtain the

finite temperature phase diagram of the system.

Our findings can be summarized as follows:

The superconducting phase transition: in section 2 we investigate the finite temperature

phase diagram of our model, which displays a second order mean field transition from both

the insulating as well as metallic phase to a superfluid phase. We in particular show that

the critical temperature Tc depends strongly on the amplitude of the helix, but to a first

approximation rather weakly on its momentum. This indicates that the strength of the

translational symmetry breaking (the depth of the potential wells) is more important than

their spatial distribution. For large amplitude, Tc can in principle be suppressed all the

way to zero, and a quantum phase transition to the uncondensed phase may be expected.

The critical temperature Tc does depend mildly on the helix momentum p, in a curious

way. Starting in the phase at small helix momentum which is originally a zero-temperature

insulator in the normal phase, Tc decreases with increasing helix momentum. However,

Tc grows again for even larger helix momentum. This might be understood from the

observation that initially with increasing momentum the underlying original insulating

system changes to a zero temperature conductor in the normal phase, but then for even

larger momentum turns back into an insulator.

The optical conductivity: in section 3 we calculate the optical conductivity in the direc-

tion of translational symmetry breaking in the insulating, conducting as well as condensed

phases. In the insulating and conducting phases we reproduce the results of [26]. In the

condensed phase we observe the appearance of a gap at low frequencies as expected for

spontaneous symmetry breaking. The spectral weight is transferred to a δ-function contri-

bution at zero frequency: this is confirmed with the Ferrell-Glover-Tinkham sum rule.

The virtue of the helix model is that this δ-function is now cleanly interpreted as the

consequence of spontaneous symmetry breaking. There is no artificial contribution due to

translational symmetry. The strength of this δ-peak therefore defines the superfluid den-

sity in the condensed phase. For weak momentum relaxation, λ/µ� 1 we find that in the

limit T → 0, the superfluid density coincides with the total charge density in the system,

as measured by the second U(1) gauge field. This can be understood by the fact that the

zero-temperature normal state of our system is already in a cohesive phase, in which no

uncondensed charged degrees of freedom are present in the deep IR. This however does not

mean that we are dealing with a plain vanilla superconductor. At any finite temperature,

the horizon does carry charge. This reflects itself in the temperature dependence of the

superconducting gap. We find that the low T behavior of the superconducting gap is alge-

braic, i.e. σ(ω∗) ∼ T#, rather than exponential. Nevertheless as stated earlier, computing

the thermodynamical charge density ns and the superfluid density ρs independently, we

find that they coincide in the limit of zero temperature, in the regime of weak momentum

relaxation.
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The helical system considered has therefore two important properties: translation sym-

metry is broken and all charged degrees of freedom condense at very low temperatures. The

combination of both these facts enables us to take a further look at Homes’ relation in the

context of holography. This empirical law, found experimentally [33, 34], states that there

is a universal behaviour for classes of superconductors that relates the superconducting

density ρs at zero temperature to the DC conductivity σDC at Tc

ρs(T = 0) = CσDC(Tc) · Tc. (1.1)

The constant C, which is dimensionless in suitable units, is experimentally found to be

around C = 4.4 for in-plane high-Tc superconductors as well as clean BCS superconductors

and around C = 8.1 for c-axis high-Tc materials and BCS superconductors in the dirty

limit [33, 34]. Generally, a relation of this type is expected for systems which are Planckian

dissipators [35]. Homes’ relation was first considered in the context of holography in [36],

where it was found that for a holographic realization, both translation symmetry breaking

and the condensation of all charged degrees of freedom are necessary conditions. Both of

these conditions are realized in the helical lattice system in the present paper. It was found

in [4] that a simple breaking of translation invariance by a modulated chemical potential is

not sufficient for a holographic realization of Homes’ relation, essentially since in the limit

of vanishing chemical potential, the DC conductivity diverges while the superconducting

density remains finite. Indeed, Homes’ relation cannot hold for weak momentum relaxation.

However, motivated by the arguments given above, we considered Homes’ relation in the

context of the helical lattice model for strong momentum relaxation. In a parameter

region around the minimum of Tc found in section 2, C appears to be roughly constant for

a significant region in parameter space. We find a value of about

C = 6.2± 0.3, (1.2)

which lies between the experimental results for high Tc and dirty limit BCS supercon-

ductors. These encouraging results call for further detailed analysis, which we leave for

future work.

The zero-temperature ground state: in section 4 we provide a preliminary analysis of

the zero-temperature ground states of the condensed system. The starting point is the

IR geometry of the insulating ground state geometry of the helical model in the absence

of a condensate [26]. We show that this Ansatz for the IR geometry can naturally be

extended to the superconducting solution. Besides this, the insulating as well as metallic

ground states of [26] continue to exist. We perform the usual IR fluctuation analysis and

delineate the various IR relevant directions, if present, and the IR irrelevant directions. This

allows us to understand the RG flow of the model in principle (figure 1). We in particular

find a difference in the instability mechanisms of the insulating and metallic fixed points

of [26]: while the metallic AdS2 × R3 becomes dynamically unstable at low temperatures

towards condensation of the superconducting order parameter, the insulating fixed point

stays dynamically stable, but most presumably becomes thermodynamically disfavored

compared with flows to the superconducting fixed point. Since our finite temperature
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Figure 1. Sketch of the holographic renormalisation group flows without (left panel) and with

superconducting order parameter (right panel), for the case of large κ ≥ 0.57 in which no additional

unstable bifurcation fixed points appear in the model of [26]. Without the superconducting order

parameter, the transition from the insulating (red dotted) to the metallic AdS2 × R3 (blue solid)

ground states occurs as the helix pitch p/µ is increased [26]. With the superconducting order

parameter a new superconducting (green dash-dot-dotted) ground state, (4.1), appears. While the

metallic ground states becomes dynamically unstable and presumably flows to the superconductor,

the insulating states stay dynamically stable but are presumably thermodynamically disfavoured

compared to flows to the superconducting fixed point.

phase diagram (figure 5) indicates the possibility of a zero temperature phase transition

between the condensed and insulating solution, these results calls for a more detailed study

of the phase diagram at finite and zero temperature in a future work [37].

We conclude in section 5 where we discuss in particular the implications of our results

for the holographic realization of Homes’ relation. We end by giving an outlook to further

investigations.

2 Holographic s-wave superconductors on a helical lattice

In this section we first explain our setup, which is based on the model of [26]. We then

discuss and present our results for the finite temperature phase diagram.

– 5 –
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2.1 Holographic setup

The holographic model that dualizes to a field theory in the presence of a helical lattice

has the action [26]

Shelix =

∫
d4+1x

√−g
[
R+ 12− 1

4
FµνFµν −

1

4
WµνWµν −m2BµB

µ

]

− κ

2

∫
B ∧ F ∧W. (2.1)

Here gµν is the metric of a 5-dimensional asymptotically anti-de-Sitter spacetime including

the 3 + 1 field theory dimensions and the additional radial coordinate r. R is the Ricci

scalar of this metric. There are two field strengths: Fµν = ∂µAν − ∂νAµ is the Maxwell

field which accounts for the U(1) charge dynamics. The additional massive Proca field

Bµ generates the ‘helix U(1)’ with field strength Wµν = ∂µBν − ∂νBµ, and supports the

helical structure. In addition, there is a Chern-Simons term which couples the fields Aµ
and Bµ with coupling constant κ. In the above action, the AdS radius L has been set to

one. Furthermore, Newton’s constant has been fixed to κ2
5 = 1/2. This can be achieved

by redefining the remaining couplings such that 1/(2κ25) becomes a total factor multiplying

the action. To encode the U(1) order parameter, we add to this action a scalar field with

charge q and mass mρ minimally coupled to Aµ,

Stotal = Shelix+

∫
d4+1x

√−g
[
− |∂ρ− iqAρ|2 −m2

ρ|ρ|2
]
. (2.2)

The equations of motion following from the action (2.2) are

Rµν −
1

2
Rgµν − 6gµν = T (A)

µν + T (B)
µν + T (ρ)

µν , (2.3)

where

T (A)
µν =

1

2
FµαF

α
ν −

1

8
gµνF

2,

T (B)
µν =

1

2
WµαW

α
ν −

1

8
gµνW

2 − m2

2
BµBν ,

T (ρ)
µν = Re

[
(∇µρ∗ + iqAµρ

∗)(∇νρ− iqAνρ)
]
− 1

2
gµν
(
|∂ρ− iqAρ|2 +m2

ρ|ρ|2
)
, (2.4)

are the energy-momentum tensors of the two vector fields A and B, and of the complex

scalar ρ. Furthermore, we have the scalar equation

0 =
[
(∇µ − iqAµ)(∇µ − iqAµ)−m2

ρ

]
ρ, (2.5)

and the Maxwell equations

∇µFµν = iq [ρ∗(∂ν − iqAν)ρ− ρ(∂ν + iqAν)ρ∗] +
κ

4
√−g ε̃

µναβγ∂α(BµWβγ), (2.6)

∇µWµν = m2Bν +
κ

8
√−g ε̃

µναβγ [2∂γ(BµFαβ)− FµαWβγ ] . (2.7)

– 6 –
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ω2-one form field
in yz-plane

x

Figure 2. Plot of the one-form ω2 along the x-axis for one period. Being periodic with period

2π/p, ω2 is not translationally invariant for p 6= 0. The vector field B = w(r)ω2 acts as a source for

the helix and imprints the helical, translational symmetry breaking structure on the system.

Here ε̃µναβγ is the totally antisymmetric Levi-Civita symbol in 5 dimensions with ε̃01234 = 1.

As in [26], the wedge product in the action (2.2) is normalized such that the Chern-Simons

term evaluated on the chosen Ansatz equals SCS =
∫
dr pκw2a′/2.

We now construct solutions to the equations that have the following properties. First

we aim to study the system with the helix structure in order to break translational sym-

metry. For this purpose, the one-forms

ω1 = dx ,

ω2 = cos(px) dy − sin(px) dz ,

ω3 = sin(px) dy + cos(px) dz , (2.8)

are introduced. They provide a basis for the spatial (x, y, z) part of the metric and the two

vector fields Aµ and Bµ. In figure 2, one period of ω2 is plotted along the x-coordinate.

The forms ω2 and ω3 have the structure of a helix with periodicity 2π/p. In the following, we

focus on the case m = 0, i.e. we are considering a massless helix field B. In our setup, the

role of B is to introduce a lattice in a phenomenological way and thus break translational

symmetry. Since this can be achieved with a massless helix field, m = 0 is chosen for

simplicity. This choice follows [26]. Using these one-forms we make the Ansatz for the

helix field B = Bµdx
µ to be

B = w(r)ω2, w(∞) = λ, (2.9)

where r = ∞ denotes the boundary of the asymptotically anti-de-Sitter space. Since this

Ansatz shows that By and Bz do not vanish at the boundary, the field theory interpretation

is that we explicitly introduce a source λ for the operator dual to B, i.e. we are deforming

the homogeneous theory by a lattice operator. λ can be interpreted as the lattice strength.

The field B extends along ω2 and therefore breaks translational symmetry in the x-direction

for p 6= 0. Via backreaction on the metric, this helical structure is imprinted on the whole

– 7 –
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gravitational system. This is manifested in a metric Ansatz [11]

ds2 = −U(r) dt2 +
dr2

U(r)
+ e2v1(r) ω2

1 + e2v2(r) ω2
2 + e2v3(r) ω2

3. (2.10)

From a technical point of view, the usefulness of this Ansatz is that it is compatible with

the so-called Bianchi VII0 symmetry and is therefore guaranteed to be self-consistent —

näıvely the spatial dependence in the one-forms should imply that all the components of

the metric become spatially dependent. Thanks to the symmetry this is not so. Instead,

all x-dependence is carried by the one-forms of eq. (2.8) such that the resulting equations

of motion are ordinary differential equations in the radial coordinate r. It is therefore con-

sistent to assume that all fields are functions of r only, even though translational symmetry

is broken.

In the dual field theory the blackening factor U encodes the energy density and the

vi are related to the pressures in the system. In the finite temperature phase, the metric

function U has a zero at a finite value of r, which defines the thermal horizon radius rh,

U(rh) = 0. (2.11)

We will consider solutions which, for large values of r, satisfy

U(r) = r2 + . . . , vi(r) = ln(r) + . . . , for i = 1, 2, 3. (2.12)

This guarantees that at the boundary (for r → ∞) the metric is of anti-de Sitter form,

ds2 = dr2 /r2 + r2(− dt2 + dx2). Field theoretically, this means that the theory has an

ultraviolet fixed point with conformal symmetry. The introduction of the helix through

the source for the operator dual to Bµ deforms away from this UV fixed point, as we will

see below, cf. eq. (2.37).

To model a field theory at finite density, we make the additional Ansatz

A = a(r) dt , a(∞) = µ. (2.13)

Field theoretically the operator dual to Aµ is a conserved current jµ. As this Ansatz again

does not vanish at the AdS boundary it means that we introduce a source for the zero

component of jµ. We work in the grand canonical ensemble with chemical potential µ

rather then a system at fixed density.

We furthermore choose the charged scalar, which is the gravitational encoding of our

superconducting order parameter, to respect the Bianchi VII0 symmetry, i.e. to be invariant

under the vector fields dual to the Bianchi VII0 one-forms in eq. (2.8),

ωµi ∂µρ(t, x, y, z, r) = 0, i = 1, 2, 3. (2.14)

Since the Bianchi one-forms (2.8) are linearly independent, this restricts the charged scalar

to be at most of form ρ(t, r). For the background we choose a time-independent Ansatz

ρ(r). Note that choosing a superconducting order parameter compatible with the helix

symmetries corresponds, in condensed matter terminology, to the statement that the su-

perconducting order parameter must respect the crystal symmetry of the underlying lattice.

– 8 –
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The resulting coupled ordinary differential equations for the functions a, w, U , v1, v2, v3

and ρ can be found in appendix A. Making use of the U(1) symmetry associated with Aµ,

ρ is chosen to be real. The total differential order of the equations of motion is 13, corre-

sponding to the three second order equations for a,w and ρ, three second order Einstein

equations and one first order Einstein equation, the constraint equation.

It will be shown that this system exhibits a second order phase transition at finite

temperature: above some critical temperature Tc, the system is in a state with a vanish-

ing scalar field; below Tc a phase with a non-vanishing scalar field is thermodynamically

preferred. The order parameter of the phase transition is the vacuum expectation value

〈Oρ〉 of the operator dual to ρ, and the low temperature phase is characterized by breaking

the global U(1) under which Oρ is charged. Since we will only consider the case of Oρ
not being sourced explicitly, the U(1) symmetry is broken spontaneously. The supercon-

ducting phase transition can be understood in terms of an effective scalar mass becoming

sufficiently negative: from the scalar field equation

0 = ρ′′ + ρ′
(
U ′

U
+ v′1 + v′2 + v′3

)
+ ρ

(
a2q2

U2
−
m2
ρ

U

)
, (2.15)

we can deduce the effective r-dependent scalar mass m2
eff = m2

ρ − q2a2/U . The second

term shifts the effective mass squared towards smaller values and causes an instability as

m2
eff becomes sufficiently negative. Both larger values of q and more negative values of m2

ρ

favor the appearance of the instability. Most studies on holographic superconductors with

a scalar condensate focus on tachyonic scalar masses corresponding to relevant operators.1

From studies on translationally invariant s-wave superconductors it is however known that

condensation to a superconducting state also appears for a massless (and even irrelevant)

scalar [39]. As in the case of translationally invariant s-wave superconductors studied

in [40], it is expected that the zero temperature infrared geometry depends on the mass

of the scalar field and that the massless scalar represents one of several distinct cases. In

the following, we focus on the case mρ = 0 and leave the case of general scalar masses to

further studies. One reason for this choice will become clear in section 4: we have only

been able to construct extremal (zero temperature) geometries for this value of the scalar

mass. The mass of the scalar field mρ is related to the scaling dimension ∆ of the operator

dual to ρ via ∆ = 2 +
√

4 +m2
ρ. Therefore, the case mρ = 0 corresponds to a marginal

operator with ∆ = 4.

The Chern-Simons term couples the Maxwell field Aµ and the helix field Bµ. The

authors of [26] point out that in their case the Chern-Simons coupling allows for the ex-

istence of a cohesive phase, i.e. a phase without electric flux through the horizon. This

requires some field or coupling that sources the electric field outside of the horizon. The

insulating geometry of [26] is of this type and it is stabilized by the Chern-Simons in-

teraction, inducing the necessary charge density via the coupling to the helix field. In

1Tachyonic scalar masses are allowed in asymptotically anti-de Sitter spaces as long as they are above

the Breitenlohner-Freedman bound [38] m2
ρ ≥ −d2/4. For such fields the tendency towards an instability

driven by the negative mass squared is stabilized by the curvature of the AdS space.

– 9 –
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particular, for larger values of the Chern-Simons coupling κ > 0.57 [26] the phase diagram

simplifies due to the absence of an under RG flow unstable bifurcation critical point. Due

to this added simplicity, and in order to be compatible with the results of [26], we focus

in this work on the case of relatively large Chern-Simons coupling and choose κ = 1/
√

2.

Furthermore, in order to be able to compare the physics of our model better to the usual

holographic superconductor [41, 42], we also investigate the case of vanishing Chern-Simons

coupling κ = 0.

2.1.1 Asymptotic expansions

As an important step towards solving the equations of motion, asymptotic expansions are

calculated at the thermal horizon rh and at the boundary, i.e. for large values of r. These

are the two points where the boundary conditions on the fields are imposed. In addition

to its defining property as the zero of the metric function U , the horizon rh is also a zero

of the Maxwell potential a due to regularity (cf. for example [43])

U(rh) = 0, a(rh) = 0. (2.16)

The remaining fields are finite at the horizon. At the boundary r →∞, the conditions

a = µ, w = λ, ρ = 0, vi = ln(r), (2.17)

are imposed. The first three conditions determine the sources of the operators dual to

a,w and ρ. For general scalar field masses mρ, the leading power of ρ at the boundary

is r−(4−∆), where ∆ is the scaling dimension of ρ. The massless scalar considered here

has ∆ = 4, such that it is constant to leading order in 1/r. Therefore, the source of the

operator dual to ρ is chosen to vanish by imposing ρ = 0 at the boundary. A solution with

a non-vanishing scalar field in the bulk then breaks the U(1) symmetry associated with

the Maxwell field spontaneously. As discussed before, the conditions on vi ensure that the

metric is asymptotically anti-de Sitter. For an asymptotically AdS space it is also required

that U(r) = r2 at the boundary. This condition, however, follows from the equations

of motion (in particular the constraint, the sixth line in (A.1)) and does not need to be

imposed explicitly. In order to determine the asymptotic horizon expansion respecting the

conditions stated above, we make the Ansatz

a = ah1(r − rh) + ah2(r − rh)2 + · · · , w = wh0 + wh1 (r − rh) + · · · ,
U = Uh1 (r − rh) + Uh2 (r − rh)2 + · · · , vi = vh(i,0) + vh(i,1)(r − rh) + · · · ,
ρ = ρh0 + ρh1(r − rh) + · · · ,

(2.18)

and solve the equations of motion order by order in r − rh. The horizon expansion has

seven free parameters which are chosen to be

(ah1 , w
h
0 , ρ

h
0 , U

h
1 , v

h
(i,0)). (2.19)

All higher order expansion coefficients can be expressed in terms of these parameters. Uh1
is related to the Hawking temperature by

T =
U ′(rh)

4π
=
Uh1
4π

. (2.20)
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The asymptotic horizon expansion will be used to define initial conditions for the numerical

integration of the equations of motion.

At the boundary, a double expansion in 1/r and in ln(r)/r is carried out. The ln(r)-

terms introduce a scale and indicate the presence of a scaling anomaly, which is related

to the lattice structure. This will be discussed in more detail in section 2.1.2, where the

stress-energy tensor of the system is calculated. The following Ansatz is used as a building

block for the asymptotic expansion at the boundary

fN (r) =

N∑

k=0

N−k∑

j=0

ak,j

(
1

r

)k ( ln r

r

)j

= a00 +

(
a10

1

r
+ a01

ln r

r
+ · · ·

)

+

(
a20

1

r2
+ a11

ln r

r2
+ a02

(ln r)2

r2
+ · · ·

)
+ · · · . (2.21)

The constant N defines the order of the expansion. Since both 1/r and ln(r)/r are small for

large values of r, higher powers in the expansion are truly subleading. fN (r) is used to

define an Ansatz for the matter fields a,w and ρ. The Ansatz for U is given by r2fN (r),

and the Ansatz for the metric functions vi by ln(r)+fN (r). This accounts for the fact that

r2 is the leading behavior of U and of e2vi for large values of r. Solving the equations of

motion order by order in 1/r, we obtain an asymptotic expansion with the leading terms

a = µ+
ν

r2
+ · · · , w = λ+

β − p2λ ln(r)/2

r2
+ · · · ,

U = r2 − ε/3 + p2λ2 ln(r)/6

r2
+ · · · , v1 = ln(r) +

g1 + p2λ2 ln(r)/24

r4
+ · · · ,

v2 = ln(r) +
g2 − p2λ2 ln(r)/12

r4
+ · · · , v3 = ln(r) +

g3 + p2λ2 ln(r)/24

r4
+ · · · ,

ρ =
ρb
r4
− q2µ2ρb

12r6
+ · · · .

(2.22)

Here we find that g3 satisfies

g3 = −g1 − g2. (2.23)

As we will see later, the parameters gi are related to the pressure of the system and ε is the

energy density. The subleading mode of a denoted by ν, is related to the charge density and

β, the subleading mode of w, to the vacuum expectation value of the operator dual to w.

The leading mode of ρ has been set to zero and the subleading mode, ρb, is proportional

to the vacuum expectation value 〈Oρ〉. In total there are 8 physical parameters at the

boundary, namely

(ε, g1, g2, µ, ν, λ, β, ρb). (2.24)

There is another, non-physical parameter present in the asymptotic boundary expansion,

which has been set to zero above to keep the expressions clear. This parameter is related
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to a shift in the r coordinate. It can be reinstated into the boundary expansion by the

transformation

r → r +
α

2
, g1 → g1 +

α4

64
, g2 → g2 +

α4

64
. (2.25)

α gives rise to odd powers of 1/r in the boundary expansion. These odd powers are in general

present in the (numerical) solutions to the equations of motion. However, in contrast

to the remaining parameters of the asymptotic expansion, α has no physical meaning.

It can be thought of as an artifact of the coordinate choice. Note that the Ansatz of

eq. (2.10), and therefore also the equations of motion, do not explicitly depend on the

radial coordinate r. As a consequence, the system exhibits a shift-symmetry r → r+const.

in the radial direction. The presence of α in the boundary expansion reflects precisely this

shift-symmetry.

2.1.2 Thermodynamics and the conformal anomaly

The temperature of our strongly coupled field theory is given by the Hawking temperature

of the bulk black hole, eq. (2.20). The Bekenstein-Hawking entropy is calculated according

to the area law as

S = 4πAh = 4π

∫
dτ d3x

√
γ

∣∣∣∣
r→rh

= 4π ev1(rh)+v2(rh)+v3(rh) V. (2.26)

Here Ah denotes the area of the black hole horizon, γab is the induced metric and V =
∫

d3x
denotes the 3-dimensional volume of the field theory. In order to determine the grand

canonical potential, we calculate the Euclidean (imaginary time) on-shell action. Applying

appropriate integrations by part with respect to r, the Euclidean action reduces to a

boundary term upon use of the equations of motion. We obtain the two versions

Ibulk =
V

T

[
−a ev1+v2+v3 a′ − 1

2
aκpw2 + ev1+v2+v3 U ′

]r=rb

r=rh

,

Ibulk =
V

T

[
1

2
U ev1−v2+v3 ww′ + U ev1+v2+v3 v′2 + U ev1+v2+v3 v′3

]r=rb

r=rh

, (2.27)

which will give rise to two expressions for the grand canonical potential Ω. A regularizing

ultraviolet cutoff rb � rh has been introduced. Eventually, after determining appropriate

counterterms, the limit rb →∞ will be taken. The renormalized Euclidean on-shell action

is given by Ios = Ibulk + IGH + Ict, where IGH is the Gibbons-Hawking boundary term and

Ict stands for the counterterms necessary to make Ios finite.2 The factor 1/T = β originates

from the τ -integration and V =
∫

d3x is the three-dimensional volume. Note that the

second expression for Ibulk receives no contribution from the horizon since U(rh) = 0. The

Gibbons-Hawking term is evaluated as

IGH = −2

∫
dτ d3x

√
γ ∇µnµ

=
V

T

[
− ev1+v2+v3 U ′ − 2U ev1+v2+v3 v′1 − 2U ev1+v2+v3 v′2 − 2U ev1+v2+v3 v′3

]
. (2.28)

2For a review of holographic renormalization, see [44].
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Here γab is the induced metric at r = rb, and n =
√
U∂r is the outward pointing normal

vector to the surface at r = rb. The sum Ibulk + IGH is divergent in the limit rb → ∞.

Using the asymptotic expansion of section 2.1.1, the diverging terms can be written as3

Ibulk + IGH =
V

T

[
−6r4

b − p2λ2 ln (rb)−
1

2
pκµλ2 + 2ε+ 2µν +O

(
1

rb

)]
. (2.29)

Here the first expression for Ibulk of eq. (2.27) was used. The divergent terms are, however,

the same for both expressions. They only differ in terms that are finite at the boundary.

There are two types of divergences: the −6r4
b -term is due to the infinite volume of the

asymptotically anti-de Sitter space and can be canceled by a counterterm proportional

to the volume
∫

dτ d3x√γ of the surface at r = rb. The second type of divergence is

logarithmic in rb and, in order to cancel it, a counterterm proportional to ln(rb) needs

to be introduced. As shown later, this causes a scaling anomaly. Roughly speaking, the

logarithm present in the counterterm introduces a scale and therefore breaks conformal

symmetry. The total on-shell action Ios = Ibulk + IGH + Ict can be made finite by means

of the counterterm

Ict =

∫
dτ d3x

√
γ

[
6− 1

4
ln(rb)W

abWab

]
. (2.30)

In this expression, indices are contracted using the induced metric γab. Since the scalar

field ρ does not cause any new divergences, these counterterms are identical to the one

of [26].4

According to the AdS/CFT correspondence, the field theory partition function is re-

lated to the on-shell action by Z = exp(−Ios). Therefore, the grand canonical potential

can be expressed as Ω = TIos. Using the asymptotic boundary expansion of eq. (2.22), Ω

can be written as

Ω

V
= ε+ 2µν − 1

2
κλ2µp− ev1(rh)+v2(rh)+v3(rh) U ′ (rh) ,

Ω

V
= 4g1 +

α4

16
− ε

3
− βλ− λ2p2

8
, (2.31)

corresponding to the two expressions for Ibulk of eq. (2.27). The non-physical shift-

parameter α, which is explicitly indicated here, can be removed by the redefinition (2.25).

The first expression for Ω can be brought into the more familiar form

Ω

V
= ε− µn− Ts, (2.32)

by rewriting the horizon contribution in terms of the temperature T and the entropy S

and by defining the particle density as

n = −2ν +
κλ2p

2
, (2.33)

3For the sake of clarity, the shift parameter α is set to zero in this expression. It can be reinstated using

the transformation of eq. (2.25).
4In the corresponding expression of [26], an additional term proportional to

√
γ ln(rb)F

abFab is included.

This term is present for general gauge fields Aµ but vanishes if Aµ has only a time component.
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where s = S/V denotes the entropy density, and ε is the energy density. This will be

confirmed by an explicit computation of the field theory stress-energy tensor. Since the

scalar ρ has a vanishing source, there is no explicit scalar contribution to the grand canonical

free energy.5 Therefore the above expression agrees with the one given in [26].

The expectation value of the field theory stress-energy tensor [45, 46] is calculated from

the extrinsic curvature θab at r = rb, its trace θ = γabθab, and the real-time counterterm

action Sct as

〈Tab〉 = lim
rb→∞

2r2
b

(
−θab − γabθ −

2√−γ
δSct

δγab

)
. (2.34)

Using the asymptotic boundary expansion, the resulting expression for 〈Tab〉 can be ex-

pressed in terms of boundary parameters as

〈T 〉 =




ε 0 0 0

0 8g1 − 1
4λ

2p2 + ε
3 0 0

0 0 Tyy Tyz
0 0 Tyz Tzz


 , (2.35)

with

Tyy =
ε

3
− 4g1 −

1

8
λ2p2 +

(
4g1 + 8g2 +

1

8
λ2p2

)
cos(2px),

Tyz = −
(

4g1 + 8g2 +
1

8
λ2p2

)
sin(2px),

Tzz =
ε

3
− 4g1 −

1

8
λ2p2 −

(
4g1 + 8g2 +

1

8
λ2p2

)
cos(2px). (2.36)

For p 6= 0, the stress-energy tensor is spatially modulated and anisotropic. Indeed, ε = T00

is the energy density, and the parameters gi are related to the pressure terms T11, T22,

and T33. The trace of the stress-energy tensor 〈T aa 〉 = ηab 〈Tab〉 determines the conformal

anomaly. It is given by

〈T aa 〉 = −1

2
λ2p2. (2.37)

In the presence of the lattice, i.e. for p 6= 0 and λ 6= 0, the conformal symmetry of the

ultraviolet fixed point is broken by an anomaly. The fact that 〈T aa 〉 is proportional to p2 has

the intuitive interpretation that the lattice momentum p introduces a scale and therefore

breaks conformal symmetry.6 In addition to the temperature T and the sources µ and λ,

the system is characterized by the dimensionful scale p. Out of these four dimensionful

parameters, we can form the dimensionless ratios T/µ, λ/µ and p/µ. These ratios will be used

to parameterize the system (in addition to the scalar charge q, which is dimensionless). Note

however that p itself is a parameter in the state of the boundary field theory, but not a

source switched on and hence, as explained in detail in appendix D, should not be counted

as an independent UV integration constant.

5The grand canonical free energy does, however, implicitly depend on the scalar. When existent, a

solution with a non-vanishing scalar has lower free energy than the normal phase solution, as the superfluid

transition is second order in our model.
6Note that the Tµµ transforms under the scaling transformation (D.1) with weight 4, as it should.

– 14 –



J
H
E
P
0
5
(
2
0
1
5
)
0
9
4

3

Ω
/µ

4

T/Tc

s /
µ
3

T/Tc 〈O
〉

T/Tc

Figure 3. In the left panel, the free energy for solutions with and without a scalar condensate are

shown. The blue curve corresponds to solutions without and the red curve with a scalar condensate,

respectively. Having a lower value of the grand canonical potential Ω, the solution with a scalar

condensate is thermodynamically preferred. The phase transition is second order since the derivative

of the entropy is discontinuous at T = Tc, see inset. In both graphs κ = 1/
√
2, q = 5, p/µ = 5.2, and

λ/µ = 3.3. In the right panel, the scalar condensate order parameter 〈O〉 is shown for p/µ = 4.8,

5.0, 5.2 and λ/µ = 3.0, 3.3, 3.6, 3.9. The graph shows that the strength of the order parameter is

affected much stronger by changes in λ/µ than by changes in p/µ: different λ leads to each of the

four curves shown, while the different p/µ lead to nearly the same curves for each value of λ/µ.

2.2 Phase transition with a scalar order parameter

Numerically, we find that above some critical temperature Tc, there is only a solution to the

equations of motion with a vanishing scalar field.7 For T < Tc, a second branch of black hole

solutions arises which has a non-vanishing scalar field and therefore a non-vanishing vacuum

expectation value 〈Oρ〉. Since the source of Oρ is set to zero, the condensate 〈Oρ〉 breaks

the U(1) symmetry associated with the Maxwell field Aµ spontaneously. By comparing

the free energy in the grand canonical ensemble, we find that the solution with a scalar

condensate is thermodynamically preferred, cf. figure 3. The phase transition is second

order, since the derivative of the entropy is discontinuous at the transition temperature.

The order parameter of the phase transition is the vacuum expectation value 〈Oρ〉, which is

proportional to the boundary mode ρb of ρ. It is plotted as a function of the temperature

in figure 3. The numerical data are consistent with a mean field behavior of the order

parameter near the transition temperature, 〈Oρ〉 ∼
√

1− T/Tc. This is expected in the

large-N limit, which is intrinsic to our holographic model. For each set of parameters

(p/µ,λ/µ,q), the transition temperature Tc/µ can be determined as the temperature where

the order parameter 〈Oρ〉 vanishes. In this way, the phase diagram of the strongly coupled

field theory can be studied numerically. The transition temperature increases as a function

of q as is shown in figure 4. This can be understood in terms of the effective scalar mass

m2
eff = −q

2a2

U
. (2.38)

7The numerical method used is a simple shooting method adjusting the free parameters of the horizon

expansion in such a way that we arrive for certain fixed values on the boundary. For a detailed exposition,

see appendix D.
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q

T
c /
µ

κ = 0 @ p/µ = 1.2

q

T
c /
µ

κ = 1/
√
2 @ p/µ = 1.2

Figure 4. The superfluid phase diagram as a function of the scalar charge q close to the minimal

Tc-value in the phase diagram, i.e. p/µ = 1.2 for κ = 0 (left figure) and κ = 1/
√
2 (right figure).

As one can see the critical temperature is decreasing with decreasing scalar charge q or increasing

backreaction ∼ 1/q, respectively. This result agrees nicely with the plain s-wave superconductor

behavior. Moreover for κ = 1/
√
2 and for sufficiently high values of λ/µ (color coding of the lines

represent the following values of λ/µ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) we expect a quantum critical point,

where the superconducting phase transition happens at zero temperature. On the other hand, for

κ = 0 it seems that the curves are asymptotically approaching zero charge as Tc = 0, and thus

there may be no quantum critical point in the q direction.

As the scalar charge increases, the effective mass squared becomes more negative which

favors the instability. Therefore, the phase transition already appears at higher temper-

atures. The same behavior was found for translationally invariant holographic s-wave

superconductors in [42].

Analyzing the transition temperature as a function of p/µ and λ/µ for different q reveals

a more interesting structure as shown for q = 5 and q = 10 in figure 5. In the case of

κ = 0 the critical temperature is observed to decrease monotonously as a function of λ/µ.

As a function of p/µ, it first decreases for small p/µ, then assumes a minimum at p/µ ≈ 1.7,

which is slightly shifted towards larger values i.e. p/µ ≈ 2.3 for increasing λ/µ ≤ 10, and

then returns again to the homogeneous value Tc(p/µ = 0) for large values of p/µ. This

minimum is more pronounced for larger values of λ/µ which shows that larger values for the

source of the helix field indeed increases the effect of the lattice on the system, while the

helix momentum dependence has a smaller effect on the transition temperature. This is

consistent with the expectation that generally, it is the depth of a lattice of potential valleys

which influences the physical behaviour more than the lattice constant or spacing between

the individual potential depths. However, for large values of p/µ the critical temperature

seems to, at least for κ = 0, asymptotically approach the p = 0 value which might imply

that Tc(p→∞) ∼ Tc(p = 0).

In the case of κ = 1/
√

2 there is not only a minimal value of Tc for p/µ ≈ 1.2 that is

robust under changes in λ/µ, but allows for higher values of Tc above p/µ ≈ 2.6, . . . , 3, as

displayed in the lower row of figure 5. Curiously, there the behavior of λ/µ is inverted,

i.e. with increasing λ/µ the transition temperature, Tc is increasing. However, this regime
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p/µ

T
c /
µ

κ = 0 & q = 6

p/µ

T
c /
µ

κ = 1/
√
2 & q = 5

p/µ

T
c /
µ

κ = 1/
√
2 & q = 10

Figure 5. The superfluid phase diagram computed for κ = 0 and scalar charge (or inverse back-

reaction) q = 6 in the top panel and for κ = 1/
√
2 and q = 5, 10 in the lower panel. Below the

respective Tc-curve, the condensate is non-zero indicating a superfluid phase. Different colored

curves correspond to different values of λ/µ with the following color coding: 0, 0.3, 0.6, 0.9, 1.2,

1.5, 1.8, 2.1, 2.4, 2.7, 3, 3.3, 3.6, 3.9, 4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6. Note that the case of κ = 0 the

minimum of the critical temperature is moving from p/µ = 1.8 at λ/µ = 1.2 over p/µ = 2 at λ/µ = 3

to p/µ = 2.4 at λ/µ = 6, whereas in the case of κ = 1/
√
2 the minimum is fixed respect to λ. However

for different values of the scalar charge q = 4, . . . , 10 we find a slight increase starting from p/µ = 1.2

and ending at p/µ = 1.6.

might very well lie far outside of the range of applicability of condensed matter physics since

p > µ, suggesting that the “energy stored” in the lattice exceeds the chemical potential.

It appears that the critical temperature is unbounded from above unlike in the κ = 0 case

where it seems to be bounded by its initial value at p = 0.

Finally, note that in both cases κ = 0 and κ = 1/
√

2 the data suggests the existence

of a quantum critical point for high values of λ/µ ≥ 6 and strong backreaction, i.e. q ≤ 5,

similar to the observations made in [30]. One may hence speculate that for a finite range of

q there exists a critical value of λ/µ at zero temperature where the superfluid phase breaks

down above a certain p/µ. We will analyse this possibility further in future work [37].
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3 Optical conductivity

A main focus of our work is to study the optical conductivity in the x-direction, in which

translation symmetry is broken for p 6= 0. The conductivity is given by the Kubo formula

in terms of the retarded Green function of the current operator,

σx(ω) = lim
k→0

GRxx(ω, k)

iω
. (3.1)

3.1 Numerical computation of the optical conductivity

We calculate the retarded Green function using the well-established extension of the gauge/-

gravity correspondence to real-time problems pioneered in [47]. Accordingly, the conduc-

tivity is determined by linearized perturbations around the background solutions. In a

physical picture, the system is slightly perturbed around thermal equilibrium by an exter-

nal force, the external electric field. The conductivity describes the induced response of the

system to these small perturbations. Since the gauge field Aµ corresponds to a conserved

current on the field theory side, the electric conductivity is related to the perturbations of

Aµ. In particular, the fluctuation δA = A dx governs the conductivity in the x-direction.

There are certain fields coupling to δA = A dx . To determine them, we write all fields

including the metric as a sum of the background solution and a perturbation. Then, the

action of (2.2) is expanded to second order in the perturbations. In this way, a quadratic

action Sq for the perturbations is obtained, which determines the linearized equations of

motion for the perturbations. By analyzing Sq, all fields coupling to δA = A dx are deter-

mined.8 The block of coupled perturbations containing δA = A dx is

δ
(
ds2
)

= ht1(t, r) dt ⊗ω1 + h23(t, r)ω2 ⊗ ω3 + hr1(t, r) dr ⊗ω1,

δA = A(t, r)ω1,

δB = B(t, r)ω3.

(3.2)

The remaining perturbations can be set to zero, consistently. The fluctuation fields are

chosen to depend on r and t only since the conductivity is evaluated in the limit of vanishing

spatial momentum for the Kubo formula (3.1). The equations of motion for the above

perturbations are obtained by varying the quadratic action. After variation, we impose a

radial gauge in which hr1 ≡ 0. In this gauge, the equation for hr1 becomes a constraint for

the remaining fields. Furthermore, the equations become ordinary differential equations in

the radial coordinate after Fourier transforming the time coordinate. In total, we obtain

one first order equation (the constraint originating from the hr1-equation after choosing

radial gauge), and four second order equations for A,B, ht1 and h23. One of the second

order equations can be replaced by the constraint, hence the total differential order of the

system is 7 = 1+2×3. The equation of motion are given in appendix A.1. The asymptotic

expansions of the fluctuation fields, which are necessary for obtaining numerical solutions,

are discussed in appendix B. As usual we implement infalling wave boundary conditions

at the thermal horizon rh. For A, we find that

A = (r − rh)±iω/(4πT )

(
Ah0 +Ah1(r − rh) + · · ·

)
. (3.3)

8The full set of the most general couplings at vanishing momentum is shown in the appendix A.1, table 1.
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The exponent in the prefactor can assume the values ±iω/(4πT ), which correspond to out-

going and infalling waves, respectively. This can be seen by taking into account the phase

factor e−iωt of the Fourier transform,

e−iωt (r − rh)±iω/(4πT ) = eiω(±r̄−t) with r̄ =
ln(r − rh)

(4πT )
. (3.4)

The infalling solution, i.e. the one with the minus sign, should be used in order to obtain

the retarded Green function. The leading behavior of A near the boundary is found to be

A = Ab0 +
Ab2 +Ab0ω

2 ln(r)/2

r2
+ · · · . (3.5)

For calculating the conductivity, we have to identify the degrees of freedom coupling to

A by imposing gauge invariance. Even after imposing radial gauge, in which all radial

fluctuations vanish, there are still residual gauge transformations left. These consist of the

diffeomorphisms and U(1) transformations that do not change the radial gauge hrµ ≡ Ar ≡
Br ≡ 0. The residual gauge transformations are worked out in detail in appendix B.1,

following a calculation carried out in [48] in the framework of the holographic p-wave

system. We find that the relevant physical fields are (i) A, which is already gauge invariant,

(ii) h23, which is gauge invariant at the boundary r →∞, and (iii) the linear combination

G = −iωB + wp e−2v1 ht1. (3.6)

The field ht1 is not gauge invariant and does therefore not carry physical degrees of freedom.

In order to calculate the Green function corresponding to A, we impose the condition that

the remaining physical fields, h23 and G, have no source term, i.e. that their leading modes

for r → ∞ vanish.9 In this case the renormalized on-shell action for the fluctuations (cf.

appendix E), expressed in terms of the asymptotic modes of A, is10

Son-shell =

∫
dω

2π
d3xAb0(−ω)

(
Ab2(ω)

Ab0(ω)
− ω2

4

)
Ab0(ω). (3.7)

In this expression, the frequency dependence of the modes is indicated explicitly. The

Green function does not follow directly from (3.7). Following the prescription of [47], one

needs to analytically continue the kernel in (3.7). It follows that

GRxx(ω, 0) = 2

(
Ab2(ω)

Ab0(ω)
− ω2

4

)
, (3.8)

and, using the Kubo formula (3.1),

σ(ω) =
2Ab2(ω)

iωAb0(ω)
+

iω

2
. (3.9)

The numerical steps in calculating the conductivity for a given solution to the background

equations of motion are described in appendix D.

9Alternatively, we can make use of a method devised for treating holographic operator mixing, as ex-

plained in appendix E.
10Only the boundary contribution is indicated. According to the prescription of [47], the horizon contri-

bution is to be discarded.
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3.2 Comparison to the Drude-model and the two-fluid-model

For holographic metallic systems in homogeneous translation invariant backgrounds, one

finds an ideal metallic behavior related to the conservation of momentum. Thus, strictly

speaking the Drude model is not applicable. In the presence of a lattice, momentum is not

a conserved quantity and therefore charge carriers can dissipate their momentum within a

typical timescale τ by interactions with the lattice. According to the Drude model (cf. for

example [36] for a review and more details),

σ(ω) =
σDC

1− iωτ
, Reσ(ω) =

σDC

1 + (ωτ)2 , (3.10)

the dissipation time scale τ is inversely proportional to the width of Re(σ) near ω = 0, and

the Drude peak can be seen as a direct consequence of the translation symmetry breaking

lattice. The same reasoning carries over to holographic superconductors. However, in the

absence of a momentum dissipating mechanism such as a lattice, the holographic system

describes an ideal metal in the normal phase and a mixture of a holographic superconductor

and a remaining ideal metal in the condensed phase. In the limit of restored translational

symmetry, the Drude peak degenerates into a delta peak at ω = 0 In our helical setup,

translational symmetry can be restored by setting p = 0 and/or λ = 0.11 In this case, the

helix field w decouples from the system and we obtain the classical holographic model of

an s-wave superconductor as introduced in [41, 42]. We can understand the translationally

invariant case as a limit in which the relaxation time τ tends to infinity: for ωτ � 1, the

Drude conductivity reduces to a 1/ω pole in Im(σ),

σ = i
σDC
ωτ

, (3.11)

which indicates an infinite DC conductivity as explained below (3.12). Charge carriers

which are accelerated by the external field cannot dissipate their momentum and there-

fore the resulting response is infinite. Consequently, there are two physical mechanisms

leading to an infinite DC conductivity in the translationally invariant case. First, there is

a contribution for T < Tc which is caused by superconductivity. Additionally, there is a

contribution due to momentum conservation. It is, therefore, necessary to break transla-

tional symmetry in order to determine the superconducting degrees of freedom separately.

In figure 6, we consider the translationally invariant case, and indeed observe the absence

of a Drude peak, and the presence of a delta peak δ(ω) both in the normal as well as

superconducting phases.

Turning on the helical structure p 6= 0 and λ 6= 0, linear momentum is no longer

conserved12 and we find, at last for a weak helix λ/µ� 1, a bona fide Drude-model behavior.

In figure 7, the optical conductivity is shown for p/µ = 2.4, λ/µ = 1, and q = 6 for a certain

11Setting p = 0 restores translational symmetry but the system is placed in an external magnetic field.

In order to fully restore the plain holographic s-wave superconductor, the helix field needs to vanish, i.e.

λ = 0. The magnetic field however points in the direction of the helix director (the x-direction), and hence

does not lead to a gap in the conductivities considered in this paper.
12The canonical momentum related to the Bianchi VII group translations is still conserved, albeit it is

not accessible on the boundary field theory.
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Figure 6. The left panel displays the optical conductivity in the translationally invariant system,

i.e. p/µ = 0, or λ/µ = 0, respectively. The curves correspond to q = 6 and T = 1.22Tc. The 1/ω

pole indicating an infinite DC conductivity is also present in the normal phase due to momentum

conservation. Accordingly, there is no momentum relaxation possible and hence there is no Drude

peak at small frequencies. In the superconducting phase, shown in the right panel by the blue lines,

the delta peak is enhanced by the superconducting degrees of freedom and the system is a mixture

of an ideal metal and a superconductor for finite temperatures T = 0.41Tc, as shown in the inset.

Comparing the ω → 0 value of the red line in the left panel ω Imσ/µ2
∣∣
ω=0
≈ 0.8 to the black in

the inset in the right panel ω Imσ/µ2
∣∣
ω=0
≈ 0.5, the “strength” of the ideal metal is reduced but

it remains present, whereas the superfluid strength obtains a value of approximately 1.9.

ω/µ

R
e
σ

µ
,

ω
Im

σ
µ
2

normal metallic phase

ω/µ

R
e
σ

µ
,

ω
Im

σ
µ
2

condensed phase

Figure 7. The optical conductivity for q = 0, κ = 0, p/µ = 2.4,13 λ/µ = 4 and T = 0.57Tc
in the normal phase (left panel) and in the thermodynamically preferred condensed phase (right

panel). The real part of the optical conductivity exhibits a broad Drude peak for small frequencies

in the normal phase related to the non-conserved linear momentum in the Bianchi type VII helical

background. Comparing the normal phase real part of the optical conductivity (blue line) in the

left panel with the condensed phase real part of the optical conductivity in the right panel, the

developement of a soft gap becomes apparent. The gap scales algebraically with the temperature.

choice of temperature in the broken phase and for the transition temperature Tc. For

small frequencies, a Drude peak in the real part of the conductivity is observed both in

the normal phase at Tc and in the superconducting phase. Since we are not strictly at zero

13This value of p/µ allows for the minimal Tc in the case κ = 0 cf. figure 5.
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ω/µ

normal phase @
T = Tc
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@ T = 0.7Tc

R
e
σ /

µ

ω/µ

normal phase @
T = Tc

condensed phase
@ T = 0.7Tc

Im
σ /

µ

Figure 8. The small-frequency behavior of the optical conductivity in the metallic phase for

q = 6, κ = 0, p/µ = 2.4 and λ/µ = 1. The solid lines are fits of the Drude model (3.10) to the

numerically determined optical conductivity. The normal phase solution is given by σDC = 13.6873

and τ = 17.4352. In the superconducting phase the 1/ω pole has been subtracted from Im σ and

there is a remaining “residual” Drude-like peak σreg as shown in the left panel. As explained in

the main text and in figure 13, this residual contribution to the two-fluid model (3.14) shows the

coexistence of the superconducting phase and a “normal” holographic metal.

temperature, there is a remaining small Drude-like peak after subtraction of the i/ω pole.

Figure 8 shows the small-frequency regime of the optical conductivity σ and a corresponding

fit to the Drude model. Furthermore, in the condensed phase the imaginary part of the

optical conductivity exhibits a 1/ω pole for T < Tc indicating a delta peak in the real part

of the optical conductivity related to an infinite DC conductivity, which is a characteristic

of superconductivity. This can be inferred from the Kramers-Kronig relation

Imσ(ω) = −2ω

π
P
∫ ∞

0
dω̃

Reσ(ω̃)

ω̃2 − ω2
. (3.12)

According to this relation, a 1/ω pole in the imaginary part of the conductivity is related

to a delta function at zero frequency in the real part by

Imσ(ω) =
2ρs
π

1

ω
←→ Reσ(ω) = ρsδ(ω). (3.13)

This equation defines the superfluid density ρs as the coefficient of the zero frequency delta

function in Re(σ).14

As shown in figure 9, a small Drude peak remains present in the superconducting

phase. To describe the system, it is thus necessary to apply the two-fluid model [4], which

supplements (3.13) with the metallic Drude model defined in (3.10),

Reσ(ω) = σreg(ω) + ρsδ(ω) =

(
χn(T )

τ

1 + ω2τ2
+
π

2
χs(T )δ(ω)

)
, (3.14)

where χn(T ) describes the Drude-like contribution resembling a normal fluid and χs(T ) the

superconducting contribution. In the normal state, we have χn(T > Tc) = nn and χs(T >

14In the conventions of [33, 34, 36], ρs is defined via Re(σ) = ρsδ(ω)/8, i.e. it differs by a factor of 8 from

the definition used here.
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Figure 9. The left plot shows the “insulating” low-temperature phase optical conductivity with

vanishing imaginary part as ω → 0, which indicates the absence of a delta peak at ω = 0 and

allows for a proper Drude-like shape. In the right plot the superfluid phase shifts “spectral weight”

from the finite frequency part which condensed in a ω = 0 delta peak, thus generating the gap

in the superconducting state in the region ω/µ ∈ [0, 1.5]. Note that this is not a hard gap due

to its algebraic temperature scaling on approaching the zero temperature limit and that there

is a non-zero contribution coming from a residual Drude-like peak σreg even at small T in the

superfluid phase. As expected from the Kramers-Kronig relations the imaginary part of the optical

conductivity displays a 1/ω pole. Both plots are generated for κ = 1/
√
2, q = 6, p/µ = 1.2, λ/µ = 1.9,

and T = 0.46Tc.

Tc) = 0, whereas a pure superconducting state would be described by χn(T < Tc) = 0 and

χs(T < Tc) = ns.
15 Due to charge conservation χn(T ) + χs(T ) = n.16

Moreover, from figure 9 we observe that the conductivity in the superconducting state

develops a gap at low frequencies, i.e. Re(σ) is significantly suppressed. This gap is a

characteristic of a superconducting system; it indicates that low-energy charged degrees of

freedom have condensed into the delta function at ω = 0. An important issue is whether

σreg(ω) in (3.14) vanishes in the limit T → 0 for frequencies below ωgap. This would imply

ns = ρs at T = 0, with ns the thermodynamic density. In general, the following scenarios

are possible. One possibility is the presence of a hard gap, in which at low frequencies

0 < ω < ωgap we have an exponential suppression σ(ω, T ) ∼ exp((ω − ωgap)/T ). On the

other hand, for a soft gap there is an algebraic (power law) scaling σ(ω, T ) ∼ T c1ωc2 . In

this case, it is much harder to determine numerically whether there exists an additional

constant contribution σ0 to σ(ω, T ). As we discuss below, for the model considered in this

paper, we find an algebraic scaling. Moreover, by calculating ns and ρs independently, we

find that ns = ρs for T → 0 to good numerical accuracy, at least for small p/µ and λ/µ.

This implies that σ0 = 0 in this case, i.e. our system exhibits a soft gap.

15In order to restore the proper units of the two-fluid model, the charge density is given in units of e
2
/m∗,

i.e. the number density and the charge density are related by ncharge = e2nnumber/m
∗. Note that we work

with charge densities and not number densities throughout the paper, as the quantities e and m∗ are not

directly accessible in holographic models. Furthermore, this choice of dimensions has the advantage that

the superfluid strength ρs and the charge density n have the same units (in natural units).
16Throughout the paper n denotes a general charge density, while nn denotes the charge density in the

normal phase, and ns the charge density in the superfluid phase.

– 23 –



J
H
E
P
0
5
(
2
0
1
5
)
0
9
4

T/Tc

ρ
s
|n

κ = 0, q = 6, p/µ = 3 & λ/µ = 0.3

T/Tc

ρ
s
|n

κ = 0, q = 6, p/µ = 3 & λ/µ = 1.5

T/Tc

ρ
s
|n
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T/Tc

ρ
s
|n

κ = 1/
√
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Figure 10. The superfluid density ρs and the normalized17 charge density n as a function of T/Tc.

For T > Tc, the superfluid density vanishes, i.e. the DC conductivity is finite. As T is lowered,

the superfluid density ρs increases, similar to the order parameter, cf. figure 3, and curiously the

normalized charge density ns as well. The gap between ρs and ns is independent of the value of
p/µ, but increases with increasing λ/µ. For small λ/µ, it is suggestive that at T = 0 the superfluid

density and the condensed phase charge density coincide. Thus, the longitudinal response i.e. the

plasma frequency in the superconducting phase is sufficient to determine the superfluid strength.

For translationally invariant holographic s-wave superconductors in 2 + 1 dimensions,

it is known that, even though highly suppressed, Re(σ) remains nonzero at T = 0 but finite

frequency [40] and one finds an algebraic scaling. On the other hand, p-wave superconduc-

tors are reported to exhibit a hard gap [49]. Also for the helical lattice, by straightforwardly

generalising the low frequency analysis in the appendix of [26], we conclude that the gap

scales algebraically in ω.

In addition, we compute ρs and ns individually at very low temperatures and find indi-

cations that they agree to good numerical accuracy. ρs is read off from the zero frequency

pole of the conductivity, while the thermodynamic density ns is obtained from (2.33). In

figure 10, the superfluid density ρs and the charge density ns, cf. eq. (2.32), are plotted

17Normalization of the charge density entails a rescaling by e2/m∗ compared to the usual number den-

sities in the Drude model, thus the dimension of ns is (length)−2 matching the dimension of ρs =
π/2 limω→0 ω Imσ(ω), namely [ρs] = (length)−2.
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as a function of temperature for two sets of parameters. The superfluid density, being

a measure for the superconducting degrees of freedom, increases as the temperature is

lowered beyond Tc and it vanishes for T > Tc. Of course, in order to finally conclude

whether ρs agrees with ns for T = 0, as the extrapolation of our data suggests, we need to

carefully analyze the zero temperature transport properties, which we are planning to do

in future work [37]. Nonetheless, for small p/µ and λ/µ the difference becomes sufficiently

small already at finite temperatures about T ≈ 0.6Tc. The difference between ρs and ns
at this temperature seems to be independent of the helix pitch,18 parametrizing the helical

lattice constant, but grows with increasing λ/µ. This difference may be accounted for by

the residual contribution in the condensed phase for ω → 0, which is not added to the

zero mode delta peak. The optical conductivity of high Tc superconductors is known [50]

to feature residual absorption at very small frequencies, which gives rise to an additional

contribution to the imaginary part of σ(ω, T < Tc). For small helix strengths λ/µ � 1,

this residual part can be read off by a simple Drude-fit inside the superconducting gap as

shown in figure 8. The spectral weight inside the residual Drude peak accounts exactly

for the difference between ρs and ns. On the other hand, for larger helix strengths, i.e.

stronger momentum dissipation, the gap cannot be accounted for by the residual spectral

weight inside the superconducting gap. We discuss two possible reasons for this behavior

in section 5.2.

3.2.1 Intermediate and high frequency regimes

Let us also discuss the behaviour of the optical conductivity in further frequency regimes.

First we note that in the intermediary frequency regime T � ω � µ, we have not been

able to find a scaling law of |σ(ω)|. Such a scaling has been observed in the strange metallic

phase of the cuprates and interpreted as a consequence of quantum criticality in [51]. While

some holographic models [1, 4, 5, 52] seem to show such a scaling, others [26] do not, and

our model seems to be in the latter class. So far a theoretical understanding of the origin

of this scaling regime in holographic models is still missing.

Concerning the nature of the superconducting gap, there are two more intriguing

features: in the case of κ = 0, we find in the vincinity of particular parameter values

such as e.g. p/µ = 0.8, λ/µ = 3, plateau-like solutions where the energy scale of the gap as

a well as the superfluid density ρs is drastically reduced, see figure 11. Curiously, these

solutions seem to arise for very low temperatures contrary to the intuition that the gap

should grow with decreasing temperature, cf. the orange line compared to the purple line

in figure 11. A similar behavior has been found in figure 16 of [29], although in our case

there is no Drude-like peak for higher temperatures close to the transition temperature,

which may be attributed to the fact that almost all degrees of freedom have condensed.19

The same intriguing features are seen for κ = 1/
√

2 in the vicinity of particular parameter

values such as the ones shown in figure 12. Compared to the more generic result of the

optical conductivity shown in figure 8 and 9, the gap seems to develop a new feature in the

intermediary frequency regime that resembles a peak at a non-zero frequency (as shown in

18Technical problems arise for p/µ� 1 due to numerical instabilities.
19See also the discussion below figure 13 and the FGT-section 3.3.
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Figure 11. For κ = 0, p/µ = 0.8 and λ/µ = 3 we find that the “superconducting gap” is replaced by

a plateau-like decay in stark contrast to the right panel of figure 9, which shows the typical form

of the optical conductivity. It is suggestive to compare this result to figure 16 in [29] where the

authors find a similar behavior for low temperatures. Again, the color coding for the temperature

is as follows: T/Tc = 0.47, 0.42, 0.37, 0.33, 0.28, 0.23, 0.19, 0.14, 0.09, 0.05. Counter-intuitively, the

gap is drastically diminished with decreasing temperature, whereas one would expect the gap to

become more pronounced for low temperatures.

ω/µ

R
e
σ /

µ

κ = 1/
√
2 & q = 6

ω/µ

ω
Im

σ /
µ
2

κ = 1/
√
2 & q = 6

Figure 12. Different shapes of the optical conductivity with additional features compared to

figure 9 for p/µ = 0.2 and λ/µ = 2. In the case of κ = 1/
√
2 for decreasing temperature the gap seems

to get smaller and a new peak arises, interestingly at lower temperatures. The color coding for the

temperature is as follows: T/Tc = 0.41, 0.37, 0.33, 0.29, 0.25, 0.2, 0.16, 0.12, 0.08, 0.04. Note that

in all cases there is a delta peak in the real part indicating the superfluid phase.

figure 12 at ω/µ ≈ 1.78) at lower temperatures in the superconducting phase. Again not only

the gap is reduced but also the superfluid density; this is evident since the Ferrell-Glover-

Tinkham sum rule holds, as proven in the following section 3.3. These curiosities appear to

be due to the contributions of additional resonances below the gap. We plan to investigate

these further in future work [37]. Finally, in all cases considered, we find that for large

frequencies, ω � µ, the real part of the conductivity is proportional to ω. This behavior is

a property of the ultraviolet fixed point of the field theory: since σ has energy dimension

one, it scales linearly in ω once the frequency is larger than any other scale of the system.
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3.3 Ferrell-Glover-Tinkham sum rule

Sum rules are exact identities following from the analytic structure of Green functions.

The Ferrell-Glover-Tinkham sum rule [53, 54] can be expressed as the integral over the real

part of the optical conductivity, being a constant regardless of the details of the system,

∫ ωc

0
dωReσ(ω) = const., (3.15)

Note that the integral includes possible contributions from the lower bound in the form of

a delta function at ω = 0. Furthermore, while actual condensed matter systems typically

become transparent at frequencies larger than the typical electronic energy scales and

hence the integral in (3.15) and (3.16) converges, in holographic setups it is generically UV

divergent due to the UV conformal fixed point behavior of Re σ(ω). In order to regulate this

divergence, we introduced a UV cutoff frequency ωc, to be taken larger than max(T, µ). In

appropriate formulations of the sum rule such as (3.17) the UV divergence cancels between

the two integrals, and the regulator can be removed.20 Physically, the sum rule expresses

the conservation of charged degrees of freedom, which are measured by the spectral weight,

i.e. the area under Re(σ). For example, in the normal phase, eq. (3.15) allows to identify

the plasma frequency as a measure of the charge density in the system via

ω2
Pn

8
=

∫ ωc

0
dωReσn(ω). (3.16)

In the superfluid phase, this definition excludes the delta function at ω = 0. In the case

of the superconducting phase transition, where the spectral weight is transferred into the

delta function at ω = 0, the degrees of freedom can rearrange themselves but they cannot

be lost. The Ferrell-Glover-Tinkham sum rule can also be expressed in the form

ρs =
π

2
lim
ω→0

[
ω Imσs(ω)

]
=

∫ ∞

0+
dω
[

Reσn(ω)− Reσs(ω)
]
. (3.17)

Here σn denotes the optical conductivity in the normal phase, i.e. for some T ≥ Tc, σs
the conductivity for some temperature below Tc, and ρs is the superfluid density at that

temperature. The contribution from ω = 0 has been separated out explicitly giving rise to

20A more elegant way of regularizing (3.15) and (3.16) is nicely described in [55]: instead of working with

the Green’s functions obtained naively from a holographic calculation, which typically do not vanish in the

upper half frequency plane and on the real axis for |ω| → ∞, defining a subtracted Green’s function with

these problematic contributions removed ensures that the sum rules are valid. These local subtractions

correspond to the addition of local finite counterterms to the holographically renormalized partition func-

tion. In this way a particular preferred renormalization scheme can be chosen without invoking additional

requirements such as supersymmetry [56]. An example is described around eq. 12 of [39], where a local

iω/2 term (also present in (3.9)) was removed by a finite counterterm
∫
d4x
√
−γF 2

ij . We thank Martin

Ammon for pointing us to the latter reference. Note however that whatever renormalization scheme is

chosen, UV counterterms can only affect the ultralocal terms in the Greens function and hence the UV

asymptotics of the conductivity. The physical part of the conductivity which we are interested in, and

which after renormalization should fulfill the Kramers-Kronig relations (3.12) (i.e. causality), comes from

the current-current two point function at different points in space-time and hence cannot be affected by

this choice, but must be renormalization scheme invariant.
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Figure 13. Visualization of the FGT sum rule as explained in the text. The blue area indicates the

spectral weight which is transferred into the zero mode. Note the tiny regular contribution which

resembles a key property of high-temperature superconductivity and might be responsible for the

small possible offset in the computation of ρs, in particular it might account for the missing charge

density in the superfluid phase, i.e. the offset between ns and ρs displayed in figure 10.

the term ρs determined by σs. According to (3.17), the superfluid density is equal to the

missing spectral weight, i.e. the difference in the area under the conductivity curve in the

normal and in the superconducting state, cf. figure 13. Note that (3.17) assumes already

that the translational symmetry is broken, i.e. a δ(ω) contribution or diamagnetic pole in

the normal phase is absent. It is convenient to define21

I(ωc) =
1

ρs

∫ ωc

0+
dω [Reσn(ω)− Reσs(ω)] , (3.18)

in order to apply the sum rule to the numerically calculated conductivities. Here ωc is a

cutoff frequency and the sum rule is satisfied if I(∞) = 1. In figure 14, I(ωc) is plotted

in the condensed phase for two different temperatures T/µ = 0.1, 0.05. As expected, I(ωc)

approaches unity for large enough cutoff frequencies. This confirms the sum rule for the

system under consideration and can be seen as a powerful consistency check of the holo-

graphic model and of the calculation including the numerics. Physically, it shows that the

charged degrees of freedom of the system are conserved. In particular, it uncovers the main

obstacle in defining a proper superfluid density in the translational invariant system, since

the FGT sum-rule as defined in (3.18) does not hold due to the coexistence of the normal

state ideal metal contributing to the diamagnetic pole, cf. the black line in figure 14. Once

we turn on our helical structure the “spurious” contribution due to momentum conservation

are removed from the diamagnetic pole and the FGT sum rule confirms the conservation

of charged degrees of freedom.

21Additionally, the definition of ρs in (3.13) includes the factor of π/2 arising from the integration in the

Kramers-Kronig relations, i.e. ρs = π/2 limω→0 ω Imσ(ω).
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FGT sum rule for q = 6 & κ = 0

ωc

I(
ω
c
)

FGT sum rule for q = 6 & κ = 1/
√
2

Figure 14. The Ferrell-Glover-Tinkham sum rule holds in the condensed phase for different values

of λ/µ color coded as in figure 5. The left panel displays the FGT sum rule in the case κ = 0 at

the temperature T/µ = 0.1 and λ/µ (p/µ) = 0.3 (0.4, 1), 1.5 (0.2, 1.4), 3.3 (0.2, 1), 6 (2.4), where the

numbers in brackets denote the corresponding values of p/µ. The right panel shows the FGT sum

rule for κ = 1/
√
2, T/µ = 0.05 and λ/µ (p/µ) = 0.3 (0.3, 1), 1.2 (0.2), 3 (0.2, 1, 1.4), 6 (1.4). The integral

I(ωc) defined in (3.18) measures the missing spectral weight up to the cutoff ωc and is normalized

so that, if the sum rule is satisfied, I(∞) = 1. As can be seen e.g. from figure 6 for ω/µ > 8 the

optical conductivity enters the conformal regime, i.e. for d = 3 + 1, σ(ω) ∼ ω, irrespective of the

existence of the “superconducting gap”. In the conformal regime the normal phase and condensed

phase optical conductivity becomes identical and thus will not contribute to I(ω). Note that the

thick black line in the left panel represents the translationally invariant case, p/µ = λ/µ = 0, and

as expected the FGT sum rule fails spectacularly, owing to the coexistence of a ideal metal and

a superconductor. Thus, in this case the diamagnetic pole in the imaginary part of the optical

conductivity includes not only the missing spectral weight, but also the ideal metal contribution.

3.4 Checking Homes’ and Uemura’s relations

There are two very intriguing relations that were found experimentally, namely Homes’

relation [33, 34, 57] and Uemura’s relation [58]. The former is given by

ρs(T = 0) = CσDC(Tc)Tc. (3.19)

whereas the latter reads

ρs = BTc , (3.20)

with B being a proportionality constant of units mass in natural units. Uemura’s relation

is found to hold for underdoped cuprates only, while, as demonstrated in [33, 34], Homes’

relation holds for a much broader class of materials. Concerning the units of Homes’

constant, as defined in section 3.2, ρs is given in units of µ2 and σDC as well as T in units

of µ. Thus, Homes’ constant given by ρs/(σDCTc) is dimensionless in our unit system.

Checking both Homes’ and Uemura’s relations by plotting ρs against Tc and σDCTc,

we conclude that Uemura’s relation does not hold in our helical superconducting system.

Homes’ linear scaling relation, on the other hand, is clearly visible in figure 15, where we
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σDCTc

ρ
s

Homes’ relation for q = 6 & κ = 0

p/µ
ρ
s

σ
D
C
T
c

Homes’ constant @ κ = 0

1.8

2.4

4.2

3.8

4.2
4.2

4.4

Figure 15. A log-log-plot of the superfluid density ρs with respect to σDC(Tc)Tc. The color coding

for λ/µ is identical to the phase-diagram plots presented in figure 5, λ/µ = 4.5, 4.8, 5.1, 5.4, 5.7

, whereas values of different p/µ are not resolved, except for the outliers where the value of p/µ is

explicitly attached to the point. If Homes’ relation holds, the points should roughly fall on a line

with a slope of unity, according to log(ρs) = logC + log(σDCTc) denoted by the black line. The

inset shows the value of Homes’ constant C for λ/µ = 4.5, 4.8, 5.1, 5.4, 5.7. The relation is not

expected to hold in the limits of p/µ→ 0 and p/µ→∞. There the constant approaches zero due to

the absence of momentum relaxation and the corresponding divergence of σDC. These data points

may be faithfully discarded. Doing so, we see that, in the reasonably applicable range of p/µ ∈ [1, 2]

Homes’ relation seems to hold within the dashed lines given by C ≈ 6.17± 0.31. This value for the

constant is extracted from a least-squares fit represented by the thick black line in the main figure.

show a log-log plot of ρs vs σDCTc for various (λ/µ, p/µ) with κ = 0. In the range of

λ

µ
≈ 4.5, . . . , 6 and

p

µ
≈ 1, . . . , 2. (3.21)

the relation is linear and extracting Homes’ constant, we find it to be

C ≈ 6.2± 0.3, (3.22)

Here the uncertainty is not statistical, but refers to the ±5% band bounded by the dashed

lines in the inset in figure 15. Intriguingly, comparing our Homes’ constant with the

experimentally found values [33, 34], after correcting for the factor 8 in our definition of

the superfluid density, cf. footnote 14, the helical system seem to be interpolating between

the dirty limit BCS superconductors with C = 65/8 ≈ 8.1 and the in-plane high Tc cuprates
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result C = 35/8 ≈ 4.4 [34]. The error bound may be retrieved from [33] by converting

from the dimensionful constant in units of cm−1/Ω−1K to our dimensionless unit system22

and yields C = 4.4 ± 0.9. In fact the value of C ∼ 6.2 presented in figure 15, seems to

be almost the arithmetic mean of the two experimentally determined values. Additionally,

one may compare to the most recent results found for organic superconductors in [57], i.e.

C = (110 ± 60) cm−1/Ω−1K, again in dimensionful units. Converting to our dimensionless

Homes’ constant and including the additional factor of 8, we find C = 4 ± 2.1, which is

very close to the original result in [33].

Homes’ relation appears to hold for high values of λ/µ & 4.5. This is the regime

where the Drude peak in the optical conductivity becomes very broad such that the Drude

regime, the intermediary frequency regime and the conformal regime are shrinking together,

indicating a mixing of IR and UV degrees of freedom. One observation from the finite

temperature thermodynamic phase diagram, cf. figure 5, is that for such high values of λ/µ

we may hit a quantum critical point at a critical value of p/µ. On the other hand, Homes’

relation, as shown in the inset of figure 15, seems to work over a finite range of p/µ beyond

the possible quantum critical point at T = 0, which clearly calls for further investigation

of the zero temperature system.

Alternatively, according to the single scaling argument given in [59] Homes’ relation

seems to require two competing timescales. In our system the helical lattice introduces an

additional timescale for momentum relaxation, controlled by λ/µ, which is very different

from the diffusive timescale in the original holographic s-wave superconductor cf. [36], at

least for small values of λ/µ. It is compelling to speculate that in the large λ/µ regime, where

the applicability of the Drude model may be problematic, these two timescales may become

almost identical. Let us stress that for a complete understanding of the aforementioned

scaling relations it is imperative to understand the zero temperature phases of the helical

system. Nonetheless, the optical conductivity with its broad Drude peak resembles the

dirty limit BCS superconductors, where Homes’ relation follows naturally from the missing

spectral weight argument: due to the broad peak, we may think of the missing spectral

weight area roughly as a square spanned by σDC and the width of the gap, which is set by

22In the data analyzed in [33] the unit of Homes’ constant is given by

[C] =
[ρs]

[σDC] [Tc]
=

cm−2

Ω−1cm−1K
=

cm−1

Ω−1K
.

To convert to a dimensionless unit system used in our holographic system one needs to introduce the natural

constants, e.g. for the conversion of the temperature we have

T [K] =
c · h
KB
· 100 T

[
cm−1] ,

which amounts to 1 K = 0.695 cm−1. Similarly, 1 Ω−1cm−1 = 4.935 cm−1 and our final conversion factor

reads 1 Ω−1K = 3.42983 cm−1. Thus, the values given in [33] are converted by

(120± 25)
cm−1

Ω−1K
=

120± 25

3.43
≈ 35± 7.3.

Taking into account the correction factor for our different definition of ρs we arrive at C = 35±7.3/8 ≈
4.4± 0.9.
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the universal gap equation at T = 0 to be a number times Tc, see also [60]. We comment

on this further in our discussion in section 5.

4 Zero temperature solutions and holographic RG flows

In order to solve the system at zero temperature and to understand its zero temperature

phase diagram and quantum phase transition structure, it is necessary to identify the cor-

rect infrared geometries. Classifying all possible IR geometries is in general a complicated

task which can only be done by restricting to certain Ansätze and symmetry requirements,

but within that class may yield interesting physical insights [61–63]. As a possible candi-

date for such a solution, we now generalize the insulating geometry of [26] to the case of an

additional massless charged scalar. We want to emphasize that this insulating geometry is

different from the usual gapped AdS-Soliton geometry: instead of the holographic direc-

tion ending at some particular point, the IR of this solution is an anisotropic hyper-scaling

violating Lifshitz throat. This anisotropy forces the system to be a smectic material, i.e.

an insulator in the direction of the helix (the x direction), and a metal in the other two

orthogonal directions.

For reasons explained in section 2.1 we work with a non-vanishing Chern-Simons cou-

pling κ = 1/
√

2 (but still m = mρ = 0).23 The solution can be written as a power series in

r1/3 with the leading terms being

w = w0 + w1r
4/3 + · · · , ρ = ρ0 + ρ1r

4/3 + · · · , a = a0r
5/4 + · · · ,

ev1 = ev10 r−1/3 + · · · , ev2 = ev20 r
2/3 + · · · , U =

18

5
r2 + · · ·

ev3 = ev30 r
1/3 + · · · .

(4.1)

The coefficients of this expansion can be expressed in terms of the parameters ρ0, v20 and

v30.24 In particular, it follows from the equations of motion that

a0 =
36κ sgn(p) e2v20−2v30

5
(
6κ2 + q2ρ2

0 − 4
) , w0 =

√
3 e2v30−v20 , ev10 =

1

2
|p| ev30−v20 ,

ρ1 = − κ2q2ρ0 e4v20−4v30

(
6κ2 + q2ρ2

0 − 4
)2 , w1 =

√
3
(
q2ρ2

0 − 4
)

e3v20−2v30

2
(
6κ2 + q2ρ2

0 − 4
) .

(4.2)

This fixed point describes a cohesive IR geometry with a superconducting order parameter

turned on. Note that the charged scalar is not subleading or leading compared to the

original geometry without it, it rather has the same IR behavior as the helix field w.

23One reason is that it seems harder to find IR scaling geometries for non vanishing masses. We plan to

return to this question in the near future [37].
24There is an additional free parameter, namely the expansion point r+, which has been set to zero for

simplicity. It can be reinstated by shifting r → r − r+.
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In order to understand whether this fixed point is stable under perturbations, we

follow [26] and calculate power law perturbations around (4.1) by writing

w = w0 + w1r
4/3(1 + cwr

δ), ρ = ρ0 + ρ1r
4/3(1 + cρr

δ), a = a0r
5/4(1 + car

δ),

v1 = v10 + log(r−1/3) + c1r
δ, v2 = v20 + log(r

2/3) + c2r
δ, U =

18

5
r2(1 + cUr

δ),

v3 = v30 + log(r
1/3) + c3r

δ.

(4.3)

The equations of motion are linearized in the perturbations and solved to leading order in

r. All scaling exponents and the corresponding eigenvectors for the radial perturbations

around (4.3) are listed in appendix C.3. In summary, we find that the condensed insulating

solution (4.3) does not show any condensation instabilities in which some of the IR operator

dimensions δ violate the Breitenlohner-Freedman bound by becoming complex. Instead,

we find two IR irrelevant deformations, i.e. deformations with explicitly positive exponent,

namely the δ+ mode of point 6 and 7 in appendix C.3,

δ1 =
1

6

(√
145− 5

)
, δ2 =

1

6

(√
185− 5

)
. (4.4)

These perturbations will be useful in generating the RG flows to the UV by shooting

numerically from the IR fixed point perturbed with these deformations (cf. appendix D

for more details). These exponents are the same as the ones found in [26]. As will be

explained in detail in appendix D, these two modes are sufficient to generate the two-

parameter family of zero temperature RG flows labeled by the chemical potential µ/p and

the lattice strength λ/p.

Besides the above superconducting IR geometry our model admits, at least for large

enough Chern-Simons couplings such as our choice κ = 1/
√

2,25 two other IR fixed points:

for a vanishing charged scalar, there is a metallic AdS2 × R3 fixed point dominating for

larger p [26], whose geometry including perturbations reads

w(r) = cwr
δ, ρ(r) = cρr

δ, a(r) = 2
√

6r(1 + car
δ),

v1(r) = v10(1 + c1r
δ), v2(r) = v20(1 + c2r

δ), U(r) = 12r2(1 + cUr
δ),

v3(r) = v30(1 + c3r
δ).

(4.5)

The metallic AdS2 × R3 geometry has several deformation exponents, which are spelled

out together with the corresponding eigenvectors in appendix C.1. Here we focus solely on

the condensation instabilities. In particular, there are two modes corresponding to scalar

condensation in this AdS2 near horizon geometry, with scaling exponents

δ± =
1

6

(
−3±

√
3(3− 2q2 +mρ

2)

)
. (4.6)

If these exponents become complex, the charged scalar destabilizes the AdS2, and the

system presumably flows to the superfluid IR geometry above. Furthermore, there are two

25For Chern-Simons couplings smaller than the critical value κc ≈ 0.57 another unstable IR scaling fixed

point appears [26], which complicates the phase structure at zero temperature. Here we discuss only the

simpler case of large κ.
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exponents connected to the condensation of the helix field,

δ± = −1

2
±

√(
(m2 + 3) + p2 e−2v10 − 2

√
6κp ev10−2v20

)

2
√

3
. (4.7)

Because the lattice is explicitly introduced, the crucial aspect for the physics is now whether

the exponent becomes relevant. This happens when δ+ < 0, see [26]. In that case the

system will flow to the insulating geometry. If the exponents become complex, then the

AdS2 geometry can spontaneously destabilize to the insulator, but we will not consider

this particular case. The insulating geometry of [26], given by (4.1) with the charged

scalar ρ switched off, is also unstable towards condensation of the charged scalar within

the system (2.2), although in a slightly different way. Analysing the radial perturbations

for the case of vanishing scalar mass mρ = 0 one finds an additional mode for the charged

scalar alone,

δρ = c0 + c1r
−5/3. (4.8)

If the charged scalar had a non vanishing mass, its exponents would change from (4.8) to

δρ = c0r
− 5

6

(
1−
√

1+ 2
5
m2
ρ

)
+ c1r

− 5
6

(
1+
√

1+ 2
5
m2
ρ

)
. (4.9)

Note that the IR dimension of the charged scalar in the insulating background of [26] is

independent of its charge q, due to the cohesive nature of the extremal horizon. In the

regime

− 4 ≤ m2
ρ < −

5

2
, (4.10)

the charged scalar obviously violates the IR Breitenlohner-Freedman bound while pre-

serving the UV Breitenlohner-Freedman bound, and the condensation mechanism will be

analogous to the metallic AdS2 ×R3 case. On the other hand, for the massless case (4.8),

no condensation instability is found. In this case, condensation can still happen thermody-

namically if the condensed zero temperature RG flow obtained from the IR geometry (4.1)

has a lower free energy compared to the uncondensed one (eq. (4.1) with ρ0 = 0). We

numerically constructed the holographic RG flow geometries up to the asymptotic AdS

boundary for both the insulating and superconducting fixed points for a certain range in

parameter space, and confirmed that they have lower free energy. For completeness, we

collect all the operator dimensions and the corresponding modes for each fixed point in

appendix C.

5 Discussion and outlook

In this work we analysed the transition to s-wave superconductivity in an anisotropic five-

dimensional holographic model with a helical Bianchi VII0 symmmetry. This corresponds

to a 3+1 dimensional field theory in the presence of a helical lattice [26]. The advantage of

this model is that it allows us to cleanly separate the IR dynamics in the system. This is

hard to identify in the simplest holographic superconductors for two reasons: due to trans-

lation invariance there is already in the normal phase a delta peak at zero frequency in the
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conductivity. In the superconducting phase this mixes with the protected fluctuations of

the order parameter. Secondly, most well-known examples of holographic superconductors

are accompanied by a remaining gapless Lifshitz sector in the IR that mixes dynamically

with the order parameter physics. This is especially so at finite temperature. We im-

proved on the former point by explicitly breaking translation invariance along one of the

field theory directions using the above-mentioned Bianchi VII0 helix, and on the latter by

using the fact that this model (2.2) has an anisotropic insulating ground state [26]. We

established that this model indeed undergoes a superconducting transition at low temper-

atures. Studying the optical conductivity we can see that the IR dynamics is more cleanly

controlled by order parameter physics. This allowed us to extrapolate to a first holographic

example where Homes’ relation holds. Let us discuss the physics of each of these points.

5.1 Phases at finite and zero temperature

The phase diagram of the holographic helical Bianchi VII0 lattice model is quite rich and

this is reflected in the ways it approaches superconductivity. For large enough charge q

of the scalar order parameter, both the insulating phase at small helix pitch as well as

the metallic phase at large helix pitch are unstable towards condensation of the charged

scalar. The second order mean field superfluid transition typically happens at a critical

temperature Tc(λ/µ, p/µ), but the data in figure 5 suggests that a quantum phase transition

between condensed and uncondensed phases is possible for larger values of λ/µ, similar to

the situation in a recently investigated axion-based system [30].

The curious aspect is that the critical temperature does not have a monotonic behavior

as a function of the helix parameters. Näıvely the presence of a lattice should form an

obstacle for s-wave superconductivity. This is true at very small helix parameters. There

Tc decreases compared to the translationally invariant system. However, for a given value

of the amplitude λ there is a critical value of the helix pitch p beyond which Tc starts to

rise again. In the presence of the Chern-Simons coupling, κ = 1/
√

2, Tc can even increase

beyond its isotropic value for very large p/µ. In the absence of the Chern-Simons coupling,

arguably, the tendency to return to its original homogeneous and isotropic value for large
p/µ can be understood as the effect of the helix diminishing if it rotates too fast around

the x-axis: the valleys between the maxima become so narrow that they do not influence

the condensation dynamics any longer, and homogeneity is approximately restored. It is

an open question whether all observables return to their homogeneous values at large p/µ,

and at which rate.

In neither case, however, is the physics behind this behavior of Tc very clear. There

is a strong indication, on the other hand, that it is correlated with the zero temperature

ground state of the system in the normal phase. We did not construct all of these, but

one can infer from the finite temperature optical conductivity qualitatively whether the

true ground state is insulating or conducting, see figure 16.26 These do indicate a second

insulating phase occurs at large helix pitch p or equivalently small helix wavelengths. One

26Note that the finite temperature solution is uniquely determined from the boundary conditions. It

therefore already knows whether it originates from an insulating or a conducting zero-temperature geometry.
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p/µ

λ /
µ

κ = 0

p/µ

λ /
µ

insulator
undetermined
metal

κ = 1/
√
2

Figure 16. The nature of the zero-temperature ground state from the finite temperature conduc-

tivity. The surprise is that for fixed helix amplitude λ the system transitions from an insulating to

a metallic and then back to an insulating phase. For p/µ � 1 and λ/µ � 1, we expect a metallic

phase designated by the shaded green area due to the fact that momentum relaxation is removed

in the limit where either of these parameters vanishes. This part of the metallic phase could not

be distinguished from the insulating phase since we are using very coarse measure to determine

the nature of the ground state i.e. a qualitative measure of the conductivity. The thick blue line

denotes the location of the minimal critical temperature Tmin
c extracted from figure 5. In the case

κ = 0, shown in the left panel, this minimum tracks qualitatively the metallic phase inferred from

the conductivity, whereas for κ = 1/
√
2 the minimal critical temperature Tmin

c is invariant under

changes in p/µ and λ/µ. Note that at high values for λ/µ the critical temperature is very low and

thus our numerical code cannot reach Tmin
c anymore. Homes’ relation holds in the region marked

by the white dashed box.

now sees that there is a rough correlation between high Tc with an anisotropic insulating

ground state in the normal phase and low Tc and a metallic ground state in the normal

phase. The correlation is not exact, however. Clearly, an independent analysis from ther-

modynamic quantities as well as a complete calculation of the zero temperature phase

diagram is required to establish this concretely and unambiguously decide the fate of this

new insulating phase.27 The correlation of the behavior of Tc with the zero-temperature

normal phase ground states indicates that the näıve insight that homogeneity is approxi-

mately restored is probably incorrect, as then the system is expected to be in a conducting

rather than an insulating phase. A brief investigation into the possible zero temperature

ground states, allowed us to construct an IR geometry dual to the superconducting phase

based on the original insulating solution of [26], cf. figure 1. Interestingly, the charged

scalar shows the same approach to the IR as the helix field, indicating that they might

be able to compete in quantum phase transitions. We analysed the static radial perturba-

tions around these three IR fixed points, in order to understand which RG flows between

them are allowed. The situation is summarised in figure 1: the metallic AdS2 × R3 IR

geometry behaves conventionally. It can be unstable towards either the insulating state

27We thank Aristomenis Donos for discussions on this point.
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and/or superconductivity [41]. At the same time the condensed superconducting IR geom-

etry we constructed is nicely stable, indicating that it is the true ground state [26]. The

insulating IR geometry is indeed unstable towards superconductivity, but curiously not for

the mass of the scalar field considered here. We suspect, however, that in this case the

superconducting IR geometry, is still the thermodynamically preferred ground state, i.e.

the state of lowest free energy. The insulating but not superconducting geometry of [26] is

hence dynamically stable, but thermodynamically unstable. This would indicate that they

are separated by a first order transition. We will support this claim by an analysis of the

thermodynamics and transport at zero temperature in a forthcoming work [37].

5.2 Transport

In our system, the linear momentum relaxation introduced by the Bianchi VII0 structure of

the geometry allows us to reliably analyse the physics behind the low-frequency transport

properties of our system. Our computation reveals that the superconducting system is well

described by a two-fluid Drude model at small frequencies in the regime of weak momentum

relaxation λ/µ � 1, a fact also observed in the models of [29, 30]. On the other hand, in

the regime of stronger momentum relaxation, λ/µ ≈ 1, the two-fluid Drude model seems to

work less and less well, again similar to [29, 30].

It is the absence of a diamagnetic pole in the normal phase, that allows us to reliably

extract the superfluid density from the 1/ω pole in the imaginary part of the optical con-

ductivity in the superconducting phase. Näıvely the cohesiveness of the superconducting

phases in our system at zero temperature literally forces all charge carriers in the system

to condense into the matter fields outside the extremal black hole horizon.28 Since the

U(1) gauge field sourcing the helix itself is not charged under the ‘charge’ U(1) and since

the Chern-Simons term in (2.2) only induces currents but not a charge density for the

‘helix’ U(1), one would expect all the charge density (as carried by the ‘charge’ U(1)) in

the system at zero temperature to be carried completely by the charged scalar dual to the

superconducting order parameter. The charge simply has no other place to go within this

system. By comparing the charge density in the superfluid phase at very low tempera-

tures to the superfluid density as extracted from the optical conductivity (cf. figure 10), we

showed numerically that these indeed become identical for small lattice strengths λ/µ� 1.

In more detail, we found that when the Drude model is a good approximation to the opti-

cal conductivity at small frequencies, i.e. when λ/µ� 1, the difference between the charge

density at small temperatures and the superfluid density is accounted for by the additional

spectral weight residing in a small residual Drude peak at low frequencies. The fact that we

are analyzing the system correctly is confirmed by the fact that the Ferrell-Glover-Tinkham

sum rule holds (cf. figure 14) when crossing the phase transition from the normal to the

superconducting phase, i.e. that there is no missing spectral weight in our system. This is

to be contrasted with the translationally symmetric case (the black line in the left panel

of figure 14), in which the sum rule fails spectacularly due to the non-accounted spectral

28Note that a translationally invariant cohesive phase still can have a zero frequency delta function due

to the presence of the charge density, as explicitly shown in [64].
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weight residing in the δ(ω) poles related to momentum conservation in both the normal

and superconducting phases.

For weak lattice strengths λ/µ � 1, the model considered here is therefore in several

respects under better control compared to the simple holographic superconductor analyzed

e.g. in [36]. A puzzle appears for stronger momentum relaxation λ/µ ≈ 1. Now the charge

density and superfluid density do not approach each other up to the small temperatures

probed in our numerics, and the difference cannot be accounted for any more by a normal

fluid Drude component. Even so, the FGT sum rule continues to hold. A possibility is that

some of the low frequency spectral weight gets transferred to intermediate frequencies rather

than the superfluid pole. Another explanation for the failure could be that our identification

of ρs from the optical conductivity does not match with the superfluid density as calculated

from the transverse response via the magnetic/London penetration depth, which is another

important cross-check [37]. This deserves further study. Based on the new insulating phase

found at high p/µ, a distinct possibility is that the phase structure of the system is more

complicated and interesting for strong lattice potentials at high λ/µ. It is precisely in this

novel regime where we can find a region in parameter space in which Homes’ relation is

valid to a good accuracy.

5.3 About Homes’ relation

Homes’ relation [33, 34] — the experimental result that for high Tc superconductors as well

as conventional BCS superconductors, there is a universal relation of the form

ρs(T = 0) = CσDC(Tc) · Tc, (5.1)

with a nearly universal, material independent constant C — would follow naturally from

an argument based on the shortest possible time scale in a strongly coupled quantum

critical state [35, 51], a so-called Planckian dissipator. The basic idea is that in a quantum

critical system there is no other scale than the temperature, and hence the relaxation time

responsible for the finite electric conductivity in the system must depend on the inverse of

the temperature alone, up to numerical factors of O(1). Holography is unique in its ability

to model interacting quantum critical systems and the notion of Planckian dissipation is

clearly visible in the universal holographic result for the ratio of shear viscosity over entropy

density [65]. A holographic foundation for Homes’ relation therefore has the potential to

confirm that a similar universal mechanism is at work in superconductivity.29

In our system, however, the timescale is not the intrinsic timescale associated with the

strongly coupled dynamics of the system. Instead it is the external momentum relaxing

timescale introduced by the lattice. This is evident from the validity of the Drude re-

sponse, where σDC ∼ τmomentum. The relaxation time scale that controls the low-frequency

conductivity is thus a function of the lattice strength and helix pitch,

τrelax =
f(T/µ, λ/µ, p/µ, . . . )

T
. (5.2)

29Of course, though actual transport in high Tc cuprates does have Planckian dissipative features, it

cannot be a pure quantum critical state, see e.g. [59, 66].
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We have extracted an explicit factor of T such that the function f is dimensionless. A

Planckian dissipator would have a mostly constant function f of order O(1) in a CFT.

Clearly, for weak momentum relaxation, the relaxation time is typically very large, τT � 1,

non-universal and far from a Placnkian dissipator.

The breaking of translation invariance and the introduction of an external scale is, how-

ever, important in studying Homes’ relation with gauge/gravity duality. As we emphasized,

in a translationally invariant system there is already an infinite δ-function contribution to

the DC-conductivity. To extract the superfluid density reliably, one needs to resolve this

either into a Drude peak behaviour for weak breaking or to something beyond [67–69].

Additionally the system should be in a cohesive phase at low temperatures in order to pre-

vent the existence of additional IR charged degrees of freedom, hidden behind the extremal

horizon. It was found in [1, 4, 52] that a modulated chemical potential is not sufficient to

realise Homes’ relation in the simple model considered there. In view of the above, these

works probably did not access the regime of strong momentum relaxation that could po-

tentially make Homes’ relation work. For example, in [1, 4, 52] the two-fluid Drude model

works well for all lattices considered, pointing to a regime in which momentum relaxation

is weak. Instead, in this work a clearer picture emerges: due to the cohesive nature of the

superconducting ground state, as well as the broken translation invariance in the helix di-

rection, we were able to eliminate, respectively, the additional charged degrees of freedoms

in the IR and the zero frequency delta function, hence obtaining a clearer account of the

reshuffling of charge density as well as spectral weight during the superfluid transition. As

noted already in [36], to successfully analyse Homes’ relation in a holographic model it is

essential to be able to keep track of all charged degrees of freedom at low/zero tempera-

tures. Since our helical lattice model admits an insulator/superconductor transition with

a cohesive phase at low temperatures, this setup allows for a fresh look at Homes’ relation,

addressing both of these points.

Figure 10, which shows the agreement between the superfluid density and the total

charge density in the limit T → 0, illustrates this cleanly, together with our verification that

the Ferrell-Glover-Tinkham sum rule holds. The validity of the sum rule is of particular

importance, as it can be used to obtain Homes’ relation if the underlying system is a

Planckian dissipator [36]. With these results as well as (5.2), (5.1) can be reformulated as30

ns(T = 0)

nn(T = Tc)
= C(λ/µ, p/µ)f(Tc/µ, λ/µ, p/µ, . . . ). (5.3)

with C the coefficient in Homes’ relation. In simple systems, with a single species of charge

carriers and a reasonable gap in the superconducting phase, the charge density at zero

temperature in the superfluid phase is approximately equal to the charge density at the

critical temperature in the normal phase. From (5.3), Homes’ constant must hence vary

30Note that compared to the standard condensed matter notation we absorbed the effective masses and

numerical factors in the respective phases (which are not directly accessible in holographic models) into n

by nne
2/m∗ 7→ nn and nse

2/m∗ 7→ ns, i.e. we used σDC = nτ and ρs = ns. This redefinition gives nn and

ns units of (length)−2, which coincides with charge and not number densities in five dimensions.
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inversely with the function f parametrising the momentum relaxation time scale,

C ∼ 1/f. (5.4)

In a bona fide Planckian dissipator, f would be a universal constant of O(1), and is in this

way seen to explain Homes’ relation. We also investigated the l.h.s. of (5.3). Figure 17

shows that numerically the charge density in the system does not vary much between

T � Tc and Tc.
31 Hence in combination with our results from section 3.2 that the charge

density and superfluid density are approximately equal at low T , also the ratio of charge

densities in (5.3) is seen to be close to unity. This is so in the weak momentum relaxation

regime where λ/µ � 1, but also for rather large λ/µ, i.e. strong momentum relaxation in

which the Drude model is not readily applicable. in this case Homes’ relation may hold.

As we found in section 3.4, explicitly computing the functional relation between ρs and

σDC(Tc)Tc we indeed find that in our holographic superconductor in a helical lattice Homes’

relation holds with coefficient

C ≈ 6.2± 0.3 (5.5)

in the range of parameters

λ

µ
≈ 4.5, . . . , 6, and

p

µ
≈ 1, . . . , 2, for κ = 0. (5.6)

It can, however, not be explained as a consequence of the simple ratio of charge densities

at Tc and T = 0. This is also the regime where a difference between ρs and ns opens (cf.

figure 10), and the simple relation between (5.3) and (5.1) breaks down.

As we now argue, the fact that Homes’ relation does hold in the parameter range

given above may on the contrary be due to a strong deviation from the simple Planckian

dissipation behavior.32 We may parametrize the difference between ρs and ns as

ρs(T = 0) = ns(T = 0) + δρs(T = 0). (5.7)

Furthermore, let us assume33 the DC conductivity is still roughly proportional to the charge

density times a relaxation time,

σDC = nnτ. (5.8)

Substituting Homes’ relation on the l.h.s. of (5.7) together with (5.8), and using that the

ratio (5.3) is close to unity, we arrive at

Cf(Tc, λ/µ, p/µ, . . . ) = 1 +
δρs(T = 0, λ/µ, p/µ, . . . )

nn(Tc, λ/µ, p/µ, . . . )
. (5.9)

31Figure 17 does indicates that for most choices of λ/µ and p/µ our system has slightly (∼ 5 . . . 10%) more

charged degrees of freedom in the superfluid than in the normal phase. While in the normal phase the

system is anisotropic, the system becomes more isotropic in the superfluid phase due to the isotropic s-wave

order parameter. An explanation for the rise could be that charged degrees of freedom from the metallic

transverse directions also contribute to the charge density in the helix direction.
32We are grateful to E. Kiritsis for pointing out this possibility.
33We make this assumption in hindsight of the parameter regime in which Homes’ relation is valid (see

below) to be not too far into the regime of strong scattering, such that this Drude-like approximation still

should yield reasonable results. Also, it is reasonable to assume that a system conducts better if more

charged degrees of freedom are present.
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T/Tc

n /
µ

Charge density for κ = 0 & q = 6

T/Tc

n /
µ

Charge density for κ = 1/
√
2 & q = 5

Figure 17. The charge density as a function of T/Tc for p/µ = 0.4 and for various values of λ/µ,

using the same color coding as in figure 5: 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7, 3, 3.3, 3.6, 3.9,

4.2, 4.5, 4.8, 5.1, 5.4, 5.7, 6 in the case of κ = 0 (left panel) and 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4,

2.7, 3 for κ = 1/
√
2 (right panel). Curiously, the charge density at the phase transition seems to be

minimal and hence ns(T < Tc) > nn(Tc). Note that this is more prominent at vanishing Chern-

Simons coupling κ. The decrease of the charge density in the normal phase can be attributed

to the effects of the insulating phase, i.e. there are less charged degrees of freedom available for

lower temperature. However, in the superconducting phase the system turns completely into the

condensed state which is growing with lower temperatures. Therefore, the superconducting degrees

of freedom are increasing for lower temperatures and may be drawn from the metallic directions,

due to partial restoration of the isotropy.

Then, for Homes’ relation (5.1) to be valid and C to be a univeral constant of O(1), we see

that the gap δρs and the function f cannot vary independently from each other, but must

conspire. As δρs varies with the parameters, f cannot be constant, and hence the system is

not a Planckian dissipator. A more detailed investagation of the function f directly as well

as other relaxational scales is hence of great interest, as well as how the gap δρs behaves

in the regime of strong(er) scattering. Since this is no longer Drude physics, it requires a

more detailed response analysis to extract these. We do note that the regime of p/µ and
λ/µ where we find Homes’ relation to hold is near the apparent insulator-metallic quantum

phase transition in the normal phase, see figure 16. It will hence be very interesting to

investigate in more detail the behavior of the above quantities in the zero temperature

ground states [37].

To conclude, we would like to emphasize that in our model we have found an example

of the validity of Homes’ relation in a holographic model with strong momentum relaxation.

This is similar to the experimental result [33, 34] in which the c-axis high Tc cuprates as

well as the dirty limit BCS superconductors, both materials with strong scattering and

momentum relaxation, follow the same Homes’ relation. As explained above, in the strong

momentum relaxation regime there is a nontrivial difference between ρs and ns at low

temperatures, whose origin needs to be investigated in more detail [37]. An important

consistency check will be to compute the superfluid strength not from the longitudinal re-

sponse, i.e. the plasma frequency and the Drude weight, but from the transverse response

by determining the magnetic/London penetration depth. This requires to solve for the
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transverse propagator by finding a solution at small but non-zero momentum. Indeed, an

analysis of the dynamical conductivity σxx(ω,~k) and possible finite momentum instabil-

ities [70] will allow us to determine the spectrum of quasi-particle excitations, and also

whether the superconducting phase (4.1) is really the thermodynamically preferred ground

state in our system. There is another interesting aspect to consider, that is the case of

spontaneously generated helical ground states. Similar to the case of spontaneous gener-

ated charge density waves [14, 16, 18, 20] this might even dynamically fix the preferred helix

pitch p, leaving fewer free UV parameters. If Homes’ relation hold for all such spontaneous

helix models, then one would have a more satisfying reason to explain its universality. At

this stage, all these results are still preliminary and for κ = 0 only, and we plan to analyze

the question under which exact conditions Homes’ relation holds and related questions, in

a future work [37].
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A Equations of motion for s-wave superconductors on a helical lattice

The equations of motion for the metric fields U, v1, v2, v3, the Maxwell fields A and B, and

the scalar field ρ following from the action (2.2) are

0 = a′′ + a′
(
v′1 + v′2 + v′3

)
− 2aq2ρ2

U
+ κp e−v1−v2−v3 ww′,

0 = w′′ + w′
(
U ′

U
+ v′1 − v′2 + v′3

)
+
w

U

(
κp e−v1+v2−v3 a′ −m2 − p2 e−2(v1−v2+v3)

)
,

0 = 2ρ2

(
m2
ρ −

a2q2

U

)
+ a′2 + w2

(
m2 e−2v2 + p2 e−2(v1+v3)

)
+ 4p2 e−2v1 sinh2 (v2 − v3)

+ 2U
(
v′1 + v′2 + v′3

)
− U

(
2ρ′2 + e−2v2 w′2 − 4v′1v

′
2 − 4v′1v

′
3 − 4v′2v

′
3

)
− 24,

0 = 2ρ2

(
m2
ρ

U
− a2q2

U2

)
− a′2

U
+
w2

U

(
m2 e−2v2 − p2 e−2(v1+v3)

)

+
p2

U

(
−2 e−2v1 + 3 e−2(v1+v2−v3) − e−2(v1−v2+v3)

)
+ 2ρ′2 +

2U ′′

U

+ 4

(
U ′

U

(
v′1 + v′2

)
+ v′21 + v′2v

′
1 + v′22

)
− 24

U
+ e−2v2 w′2 + 4

(
v′′1 + v′′2

)
,
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0 =
2w2

U

(
p2 e−2(v1+v3) −m2 e−2v2

)
+

4p2

U

(
e−2(v1−v2+v3) − e−2(v1+v2−v3)

)

+
4U ′

U

(
v′3 − v′2

)
− 2 e−2v2 w′2 + 4

(
−v′22 − v′1v′2 + v′23 + v′1v

′
3

)
+ 4

(
v′′3 − v′′2

)
,

0 =
p2

U

(
e−2v1 − e−2(v1+v2−v3)

)
+
U ′

U

(
v′3 − v′1

)
− v′21 + v′23 − v′1v′2 + v′2v

′
3 − v′′1 + v′′3 ,

0 = ρ′′ + ρ′
(
U ′

U
+ v′1 + v′2 + v′3

)
+ ρ

(
a2q2

U2
−
m2
ρ

U

)
. (A.1)

The third equation is first order and originates from the rr-component of the Einstein

equations. There is another second order equation

a2q2ρ2

U2
+ ρ′2 +

1

2
e−2v2 w′2 + v′21 + v′22 + v′23 + v′′1 + v′′2 + v′′3 = 0, (A.2)

which follows from the above equations. Therefore, the first order equation is a constraint.

In the above equations, we have made use of the U(1) symmetry associated with Aµ to

choose ρ real.

A.1 Linear response for s-wave superconductors on a helical lattice

We consider linearized fluctuations around the background solution. Therefore, we write

gµν = gbµν + hµν , Aµ = Abµ +Afµ,

Bµ = Bb
µ +Bf

µ, ρ = ρb + ρf ,
(A.3)

where the fields with a superscript ‘b’ denote the background solutions, h denotes the

metric fluctuation, and fields with a superscript ‘f ’ denote the matter fluctuations. The

metric and the vector fields are expanded in the basis (dt , dr , ω1, ω2, ω3). The background

fields are r-dependent only and are written in the Ansatz of eqs. (2.13), (2.9) and (2.10).

The fluctuation fields are chosen to depend on r and t because the retarded Green function

leading to the conductivity is evaluated at zero spatial momentum, eq. (3.1). Expanding

the action of eq. (2.2) to second order in the fluctuations, we obtain an action Sq that

determines the linearized equations of motion. The term linear in the fluctuations vanishes

upon use of the equations of motions for the background fields. Analyzing the action Sq, we

can determine which fields couple to each other. The result of this analysis is summarized

in table 1 on page 45. The block of fluctuations which contains Af1 and decouples from all

other fluctuations is (
A ≡ Af1 ,B ≡ Bf

3 , ht1, h23, hr1

)
. (A.4)

It is more convenient to work with the fields

E = (gb)11 ht1 = e−2v1 ht1, (A.5)

F = (gb)22 h23 = e−2v2 h23, (A.6)

instead of ht1 and h23. The reason is that E and F have a finite limit for r →∞, whereas

ht1 and h23 are proportional to r2 for large values of r. The equations of motion for the
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fluctuations are obtained by varying the action Sq. After variation, we can set hr1 = 0

choosing radial gauge in which all radial field components vanish. Carrying out a Fourier

transform of the time coordinate, i.e. choosing a harmonic time dependence e−iωt , we

obtain the following linearly coupled ordinary differential equations in r for the fluctuation

fields A, B, E , and F :

0 = A′′ +A′
(
U ′

U
− v′1 + v′2 + v′3

)
+A

(
ω2

U2
− 2q2ρ2

U

)

+
iBκ ev1−v2−v3 ωw′

U
− κpE ev1−v2−v3 ww′

U
+

e2v1 a′E ′
U

,

= B′′ + B′
(
U ′

U
+ v′1 + v′2 − v′3

)
+ B

(
κpa′

U
ev3−v1−v2 − m2

U
− p2

U
e2(v3−v1−v2) +

ω2

U2

)

+
κ

U

(
Fp e−v1+v2−v3 wa′ − iA e−v1−v2+v3 ωw′

)
− Fp

2w

U

(
e−2v1 + e−2(v1−v2+v3)

)

+ 2Fw′
(
v′3 − v′2

)
+

ipEwω
U2

−F ′w′

0 = F ′′ + F ′
(
U ′

U
+ v′1 + 3v′2 − v′3

)
− ipE e2v3−2v2 ω

U2
+

ipEω
U2

+ e−2v2 B′w′

+ F
[
ω2

U2
− e−2v2 w′2 − m2 e−2v2 w2

U
− 2p2

U

(
e−2v1 + e−2(v1+v2−v3)

)]

+
Bm2 e−2v2 w

U
− Bp

2 e−2(v1+v2)w

U

0 = E ′ +A e−2v1 a′ +
iFpU
ω

(
e−2(v1+v3)ww′ + 2 e−2v1 v′2 − 2 e−2v1 v′3

)

+
ipU

ω

(
B e−2(v1+v2)w′ − e−2(v1+v3)wB′

)
+

ipUF ′
ω

(
e−2v1 − e−2(v1−v2+v3)

)
. (A.7)

The first three equations are second order. The last one — the constraint — is first order

and originates from the metric mode hr1 after choosing radial gauge. There is a forth

second order equation,

0 = E ′′ + E ′
(
3v′1 + v′2 + v′3

)
+ e−2v1 a′A′ + 2aAq2ρ2 e−2v1

U

+ E p
2

U

(
2 e−2v1 − e−2(v1+v3)w2 − e−2(v1+v2−v3) − e−2(v1−v2+v3)

)

+ i
pω

U

(
B e−2(v1+v3)w −F e−2v1 + F e−2(v1−v2+v3)

)
, (A.8)

which follows from the above equations and the equations of motion for the background

fields. The background equations of motion have been used to eliminate second order

derivatives of background fields in the above equations.
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B Asymptotic expansions

Asymptotic expansions of the fluctuation fields are computed near the thermal horizon rh
and near the boundary. The expansion around rh has the leading terms

A = (r − rh)−iω/(4πT )

(
Ah0 +Ah1(r − rh) + · · ·

)
,

B = (r − rh)−iω/(4πT )

(
Bh

0 +Bh
1 (r − rh) + · · ·

)
,

E = (r − rh)−iω/(4πT )

(
Eh1 (r − rh) + Eh2 (r − rh)2 · · ·

)
,

F = (r − rh)−iω/(4πT )

(
F h0 + F h1 (r − rh) + · · ·

)
.

(B.1)

Infalling wave boundary conditions have been chosen, which lead to the retarded Green

function. The expansion has three free parameters which are chosen to be Ah0 , Bh
0 , and F h0 .

All remaining expansion coefficient can be expressed in terms of these three parameters by

means of the equations of motion. We can choose three linearly independent points in the

(Ah0 , Bh
0 , F h0 )-space to define initial conditions for a numerical integration starting from a

point rh+δ with δ numerically small. In this way, we obtain three linearly independent sets

of solutions. These can be linearly combined to satisfy three conditions at the boundary.

Two of these conditions are given by requiring that gauge invariant fields are built from B
and F , and that these have no source at the boundary. The third condition corresponds to

the normalization of the solution. At the boundary, a double expansion in 1/r and log(r)/r

is carried out. The leading terms of the expansion34 are

A = Ab0 +
Ab2 + ω2 log(r)Ab0/2

r2
+ · · · ,

B = Bb
0 +

2Bb
2 + log(r)

[(
ω2 − p2

)
Bb

0 + pλ
(
iωEb0 − 2pF b0

)]

2r2
+ · · · ,

E = Eb0 +
Eb4 − pλ log(r)(pλEb0−iωBb0)/4

r4
+ · · · ,

F = F b0 +

(
ω2 − 4p2

)
F b0

4r2
+
F b4 + log(r)

[(
ω2 − 4p2

)2
F b0 − 4p2λBb

0

]
/16

r4
+ · · · .

(B.2)

This expansion has seven free parameters, namely Ab0, Ab2, Bb
0, Bb

2, Eb0, F b0 , and F b4 . The

coefficient Eb4 and higher order coefficients can be expressed in terms of these parameters.

B.1 Residual gauge transformations and physical degrees of freedom

In order to determine the physical degrees of freedom corresponding to the fluctuation

fields, the residual gauge transformations of the radial gauge and their action on the fluc-

tuation fields are worked out. The physical fields are those being invariant with respect

to a residual gauge transformation. To determine them, we follow a similar calculation

carried out in [48] in the context of the holographic p-wave model. The gauge transfor-

mations of the action of eq. (2.2) with a massless helix field and vanishing Chern-Simons

34For the sake of clarity, the shift parameter α is set to zero here. It can be reinstated using the

transformation of eq. (2.25) and additionally F b4 → F b4 − 3α2(4p2−ω2)/16.
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coupling are diffeomorphisms xµ → x′µ = xµ − Σµ(x), U(1) transformations of Aµ, and

U(1) transformations of Bµ. Their infinitesimal action on the fluctuation fields is given by

δhµν = ∇µΣν +∇νΣµ,

δAfµ = (∂µΣν)Abν + (∂νA
b
µ)Σν + ∂µΛ,

δBf
µ = (∂µΣν)Bb

ν + (∂νB
b
µ)Σν + ∂µΓ,

δρf = (∂νρ
b)Σν + iqΛρb.

(B.3)

The vector Σµ parameterizes the diffeomorphisms, and the scalars Λ and Γ the U(1) trans-

formations. The transformations depend implicitly on the background metric. Since we

work at zero spatial momentum, we can focus on r- and t-dependent diffeomorphisms and

U(1) transformations. Furthermore, we work in frequency space assuming a harmonic time

dependence e−iωt of Σµ, Λ and Γ. The residual gauge transformations of radial gauge are

those satisfying

δhrµ = 0, δAfr = 0, δBf
r = 0. (B.4)

Using the transformation rules of eq. (B.3), a system of differential equations for Σ, Λ and

Γ is obtained. It has the solution

Σt = Kt − iKrω

∫ r

1

dr̄

U(r̄)3/2
, Σr = Kr

√
U, Σx = Kx,

Σy = Ky, Σz = Kz, Γ = KΓr,

Λ = KΛ + iKrω

∫ r

1

dr̄ a(r̄)

U(r̄)3/2
,

(B.5)

with Kt, Kr, Kx, Ky, Kz, KΛ, and KΓ being constants. Having determined the residual

gauge transformations, we can write down their action on the fluctuation fields:

δA = 0, δB = −Kxpw,

δht1 = −i e2v1 Kxω, δh23 = Kxp( e2v3 − e−2v2 ).
(B.6)

The gauge transformation of A vanishes and, since e2v2 = r2 and e2v3 = r2 for large

values of r, the metric fluctuation h23 is also gauge invariant at the boundary, where the

Green function is read out. ht1 and B can be combined into the gauge invariant field

G = −iωB + wp e−2v1 ht1. (B.7)

We therefore have three physical fluctuation fields, namely A, G, and F = e−2v2 h23. The

field E = e−2v1 ht1 is not gauge invariant and does, therefore, not carry dynamical degrees

of freedom.

C Radial perturbations of zero-temperature fixed points

We list below the radial perturbations (IR operator dimensions) and their corresponding

eigenvectors in the three IR geometries found in our system (2.2). The below notation for

the eigenvectors ~v is connected to the notation in (4.1) respectively by

(cU , c1, c2, c3, ca, cw, cρ) = cv = c(v1, v2, v3, v4, v5, v6, v7). (C.1)
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Note that the definitions of the (cU , c1, c2, c3, ca, cw, cρ) slightly change in (4.1), which has

to be taken into account when using the here-quoted results. In the below tables, M denotes

an IR marginal, R an IR relevant, and I and IR irrelevant mode.

C.1 Metallic AdS2 ×R3 fixed point

Within the system (2.2) including the charged scalar, the insulating geometry of [26] has

the following radial perturbations:

1. x-rescalings (M): δ = 0 and v = (0, 1, 0, 0, 0, 0, 0),

2. Combined y/z rescalings (M): δ = 0 and v = (0, 0, 1, 1, 0, 0, 0),

3. Constant shift of the chemical potential (R): δ = −1 and v = (0, 0, 0, 0, 1, 0, 0),

4. Combined vi mode (R): δ = −1 and v =
(

0,−2v30v10
, 1, 1, 0, 0, 0

)
,

5. Mode in the blackening factor (R): δ = −1 and v = (1, 0, 0, 0, 0, 0, 0),

6. Constant shift of the blackening factor (R): δ = −2 and v = (1, 0, 0, 0, 0, 0, 0),

7. Combined gauge field and geometry mode (I):

δ = 1 and v =
(

14
9 ,− 2

3v10
,− 2

3v30
,− 2

3v30
, 1, 0, 0

)
,

8. Scalar condensation mode (if real: δ− (R), δ+ (I) for m2
ρ > 2q2 and (R) for m2

ρ <

2q2): v = (0, 0, 0, 0, 0, 0, 1) and δ± = 1
6

(
−3±

√
3(3− 2q2 +m2

ρ)
)

. Note that for

the massless charged scalar used in this work, the δ+ mode is always relevant if the

exponents are real, i.e. for q2 < 3/2.

9. Helix condensation mode (if real: δ− (R), δ+ (I) for m2 +p2 e−2v10 −2
√

6 e−v10 pκ > 0

and (R) for m2 + p2 e−2v10 − 2
√

6 e−v10 pκ < 0):

δ± = −1
2

(
1∓

√
1
3

(
3 +m2 + p2 e−2v10 − 2

√
6 e−v10 pκ

))
and v = (0, 0, 0, 0, 0, 1, 0).

Note that for the massless helix field chosen in this work, δ+ in tendency will be

irrelevant if p e−v10 is large, but the actual value of v10 is of course given by UV data.

10. Additional geometry mode (δ− (R), δ+ (I)): δ± = −1
2

(
1∓

√
1 + 4

3p
2 e−2v10

)
and

v = (0, 0,−1, 1, 0, 0, 0). Note that while for the other modes considered above the

U ′′(r) equation enforces c2 = c3, this is not the case for this mode, since here the

U ′′(r) equation is proportional to the quadratic polynomial in δ which vanishes for

the solutions δ± considered here, and hence is automatically fulfilled to first order in

the perturbations.

Note that the background has v20 = v30 in the deep IR. Interestingly, only the last mode

breaks this as one flows up to the UV. Also, all modes are either marginal, have δ = −1,

or come in pairs which sum up to −1. This is obvious for the modes 8,9,10, but in fact

modes 6 and 7 are also a pair arising from the polynomial δ2 + δ − 2. Finally, note that

several modes (5,6,7) contribute to the perturbation of U(r) and hence can contribute to
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the temperature perturbation. This means that one must continue these IR perturbations

to the UV by constructing the perturbed RG flow in order to understand the different

contributions of these modes. We will come back to this in future work [37].

C.2 Insulating fixed point

By switching off the scalar by setting ρ0 = 0 in the zero temperature solution (4.1), (4.2)

implies ρ1 = 0 and hence the Ansatz (4.3) would have no radial perturbation for the

charged scalar ρ. In calculating the above modes we hence used a slightly different Ansatz

for ρ compared to (4.3), namely

ρ = ρ0 + ρ1r
4/3

︸ ︷︷ ︸
=0

+cρr
δ. (C.2)

Within the system (2.2) including the charged scalar with mass mρ, the insulating geometry

of [26] (i.e. (4.1) with ρ0 = 0) has the following radial perturbations:

1. Blackening factor mode (R): δ = −5/3 and v = (1, 0, 0, 0, 0, 0, 0),

2. Gauge field mode (R): δ = −5/3 and v = (0, 0, 0, 0, 1, 0, 0),

3. Constant shift of the leading helix parameter w0 (M): δ = −4/3 and

v = (0, 0, 0, 0, 0, 1, 0),

4. Charged scalar mode (if real: δ− (R), δ+ (I) if m2
ρ > 0 or (R) if m2

ρ < 0, (M) if

m2
ρ = 0): δ± = −5

6

(
1∓

√
1 + 2

5m
2
ρ

)
and v = (0, 0, 0, 0, 0, 0, 1).

5. Combined gauge and helix field mode: δ± = 1
6

(
−9±

√
1 + 120κ2

)
and

v± =
(

0, 0, 0, 0, −1±
√

1+120κ2

12κ2
, 1, 0

)
, with δ− < 0 always (R), and δ+ < 0 (R) (δ+ > 0

(I)) for |κ| <
√

2/3 ≈ 0.817 (|κ| >
√

2/3 ≈ 0.817),

6. Combined matter and geometry mode: δ± = 1
6

(
−5±

√
145
)

(δ+ (I), δ− (R)) and

v+ =

(
2

17

(
14−

√
145
)
,−1,− 1

17

(
3 +
√

145
)
, 1,

− 10
(
3
(
116105 + 9643

√
145
)
κ2 + 1081

√
145 + 13103

)

17
(
15
(
26309 + 2185

√
145
)
κ2 − 70009

√
145− 843005

) ,

4
(
−12

(
7720 + 641

√
145
)
κ2 + 8071

√
145 + 97211

)

17
(
3
(
4105 + 341

√
145
)
κ2 − 2185

√
145− 26309

) , 0
)

v− =

(
2

17

(
14 +

√
145
)
,−1,− 1

17

(
3−
√

145
)
, 1,

10
((

348315− 28929
√

145
)
κ2 − 1081

√
145 + 13103

)

17
(
15
(
2185

√
145− 26309

)
κ2 − 70009

√
145 + 843005

) ,

4
((

92640− 7692
√

145
)
κ2 + 8071

√
145− 97211

)

17
(
3
(
341
√

145− 4105
)
κ2 − 2185

√
145 + 26309

) , 0
)
,
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7. Combined geometry mode: δ± = 1
6

(
−5±

√
185
)

(δ+ (I), δ− (R)) and

v± =

(
− 2

13

(
71∓ 5

√
185
)
,

1

13

(
31∓ 2

√
185
)
,− 2

13

(
31∓ 2

√
185
)
, 1,

1

26

(
205∓ 17

√
185
)
,− 4

13

(
31∓ 2

√
185
)
, 0

)
,

8. Combined matter and geometry mode (M): δ = 0 and v = (0,−1, 2, 1, 2, 4, 0),

9. Combined matter and geometry mode (R): δ = −1 and v = (6,−1, 2, 1, 5, 4, 0).

Here modes 1,6,7,9 can contribute to the temperature mode. Besides the obvious pairs

(4,5,6,7) which sum up to −5/3 (4,6,7) and −3 (5), there seem to be single modes (3,8,9)

as well.

C.3 Condensed fixed point

For convenience, we switch back to the Ansatz for the perturbations (4.3). Within the

system (2.2) including the charged scalar, our insulating geometry with charged scalar

hair (4.1) has the following radial perturbations:

1. Combined blackening factor, gauge field and charged scalar mode (R): δ = −5/3 and

v = (−1, 0, 0, 0,−1, 0, 5) (corresponds together with mode 2 below to mode 1 and 2

in appendix C.2),

2. Combined blackening factor, gauge field and helix mode (R): δ = −5/3 and v =(
9(q2ρ20−4)

10q2ρ20
, 0, 0, 0,

13(q2ρ20−4)

20q2ρ20
, 1, 0

)
(corresponds together with mode 1 above to mode

1 and 2 in appendix C.2, ρ0 → 0 not obvious),

3. Constant shift of the leading helix parameter w0 (M): δ = −4/3 and

v = (0, 0, 0, 0, 0, 1, 0),

4. Charged scalar modes:

Constant shift in ρ0 (M): δ = −4/3 and v = (0, 0, 0, 0, 0, 0, 1) (corresponds to δ+ of

mode 4 in appendix C.2),

IR relevant scalar mode: δ = −3 and v = (0, 0, 0, 0, 0, 0, 1) (corresponds to δ− of

mode 4 in appendix C.2 for m2
ρ = 0, as for this mode δρ ∼ r−5/3),

5. Combined gauge, helix and charged scalar mode:35 δ±= 1
6

(
−9±

√
1+120κ2+20q2ρ2

0

)

and

v± =

(
0, 0, 0, 0,

(q2ρ20−4)(−1±
√

1+120κ2+20q2ρ20)

48κ2
, 1,

3(q2ρ20−4)(−9±
√

1+120κ2+20q2ρ20)

10κ2(−4+6κ2+q2ρ20)

)
, with

δ− < 0 always (R), and δ+ < 0 (R) (δ+ > 0 (I)) for 1 + 120κ2 + 20q2ρ2
0 < 81

(1 + 120κ2 + 20q2ρ2
0 > 81),

35Compared to [26], there is a shift of 2/3 in this exponent because the perturbations of the matter fields

are written differently with respect to the background.
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6. Combined matter and geometry mode: δ± = 1
6

(
−5±

√
145
)

(δ+ (I), δ− (R)) and

v+ =

(
1,−7

3
−
√

145

6
,

1

6

(
−11−

√
145
)
,

1

6

(
14 +

√
145
)
,

30
(
71 +

√
145
)
κ2 + 5

(
71 +

√
145
)
q2ρ20 + 178

√
145− 2050

6
(
6
(
7
√

145− 115
)
κ2 +

(
7
√

145− 115
)
q2ρ20 − 10

√
145 + 514

) ,

− 2
(
6κ2

((
1295 +

√
145
)
q2ρ20 − 4

(
1565 + 91

√
145
)))

3 (q2ρ20 − 4)
(
6
(
47
√

145− 335
)
κ2 +

(
47
√

145− 335
)
q2ρ20 − 242

√
145− 46

)

− 2
(
q2ρ20 − 4

) ((
1295 +

√
145
)
q2ρ20 − 2

(
5209 + 263

√
145
))

3 (q2ρ20 − 4)
(
6
(
47
√

145− 335
)
κ2 +

(
47
√

145− 335
)
q2ρ20 − 242

√
145− 46

) ,

2
(
6
(
41
√

145− 1985
)
κ2 +

(
41
√

145− 1985
)
q2ρ20 − 614

√
145 + 10262

)

18
(
205 + 23

√
145
)
κ2 +

(
615 + 69

√
145
)
q2ρ20 − 798

√
145− 8922

)

v− =

(
1,

1

6

(√
145− 14

)
,

1

6

(√
145− 11

)
,

7

3
−
√

145

6
,

30
(√

145− 71
)
κ2 + 5

(√
145− 71

)
q2ρ20 + 178

√
145 + 2050

6
(
6
(
115 + 7

√
145
)
κ2 +

(
115 + 7

√
145
)
q2ρ20 − 2

(
257 + 5

√
145
)) ,

− 2
(
6κ2

((√
145− 1295

)
q2ρ20 − 364

√
145 + 6260

))

3 (q2ρ20 − 4)
(
6
(
335 + 47

√
145
)
κ2 +

(
335 + 47

√
145
)
q2ρ20 − 242

√
145 + 46

)

− 2
((
q2ρ20 − 4

) ((√
145− 1295

)
q2ρ20 − 526

√
145 + 10418

))

3 (q2ρ20 − 4)
(
6
(
335 + 47

√
145
)
κ2 +

(
335 + 47

√
145
)
q2ρ20 − 242

√
145 + 46

) ,

2
(
6
(
1985 + 41

√
145
)
κ2 +

(
1985 + 41

√
145
)
q2ρ20 − 2

(
5131 + 307

√
145
))

18
(
23
√

145− 205
)
κ2 +

(
69
√

145− 615
)
q2ρ20 − 798

√
145 + 8922

)
,

7. Combined geometry mode: δ± = 1
6

(
−5±

√
185
)

(δ+ (I), δ− (R)) and

v+ =

(
1,

1

64

(
−27−

√
185
)
,

1

32

(
27 +

√
185
)
,

1

64

(
−71− 5

√
185
)
,

10
(
3
(
35 + 3

√
185
)
κ2 +

(
67 + 5

√
185
)
q2ρ20 − 22

(
13 +

√
185
))

30
(
21 +

√
185
)
κ2 + 5

(
21 +

√
185
)
q2ρ20 − 4

(
355 + 23

√
185
) ,

(
q2ρ20 − 4

) (
5
(
87 + 7

√
185
)
q2ρ20 − 524

√
185− 6940

)
− 120κ2

(
3q2ρ20 + 7

√
185 + 87

)

(q2ρ20 − 4)
(
30
(
31 + 3

√
185
)
κ2 + 5

(
31 + 3

√
185
)
q2ρ20 − 4

(
665 + 53

√
185
)) ,

2
(
60
(
83 + 9

√
185
)
κ2 + 5

(
1057 + 81

√
185
)
q2ρ20 − 176

(
85 + 7

√
185
))

30
(
479 + 35

√
185
)
κ2 + 5

(
479 + 35

√
185
)
q2ρ20 − 4

(
9225 + 677

√
185
)
)

v− =

(
1,

1

64

(√
185− 27

)
,

1

32

(
27−

√
185
)
,

1

64

(
5
√

185− 71
)
,

10
(
3
(
3
√

185− 35
)
κ2 +

(
5
√

185− 67
)
q2ρ20 − 22

(√
185− 13

))

30
(√

185− 21
)
κ2 + 5

(√
185− 21

)
q2ρ20 − 92

√
185 + 1420

,

(
q2ρ20 − 4

) (
5
(
7
√

185− 87
)
q2ρ20 − 524

√
185 + 6940

)
− 120κ2

(
−3q2ρ20 + 7

√
185− 87

)

(q2ρ20 − 4)
(
30
(
3
√

185− 31
)
κ2 + 5

(
3
√

185− 31
)
q2ρ20 − 212

√
185 + 2660

) ,

2
(
60
(
9
√

185− 83
)
κ2 + 5

(
81
√

185− 1057
)
q2ρ20 − 176

(
7
√

185− 85
))

30
(
35
√

185− 479
)
κ2 + 5

(
35
√

185− 479
)
q2ρ20 − 2708

√
185 + 36900

)
,
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8. Combined matter and geometry mode (M): δ = 0 and v = (0,−1, 2, 1, 2, 4, 4),

9. Combined matter and geometry mode (R): δ = −1 and v = (6,−1, 2, 1, 5, 4, 4).

Here modes 1,2,6,7,9 can contribute to the temperature mode. Besides the obvious pairs

(4,5,6,7) which sum up to −5/3 (4 after taking into account the different Ansatz for the

fluctuations,6,7), and −3 (5), there seem to be single modes (3,8,9) as well.

D Numerical method for background and fluctuations

From a numerical perspective, we have to solve a boundary value problem for a set of

coupled, non-linear, ordinary differential equations. This is done using a shooting method

consisting of the following steps:

1. Choosing an initial guess of horizon parameters, the asymptotic horizon expansion

is used to set up initial conditions at rh + δ with δ numerically small. The horizon

radius rh can be set to one by a radial rescaling (cf. the scaling symmetries discussed

below).

2. The equations of motion are integrated numerically between rh+δ and rb � rh using

Mathematica’s numerical integrator NDSolve.

3. The difference between the numerical solution and the desired boundary values at rb
is read out.

4. The integration between the horizon and the boundary is iterated. Using Broyden’s

method [71] as a root finding algorithm, the horizon parameters for which the nu-

merical solutions satisfies the boundary conditions are determined.

5. The boundary parameters are determined by matching the asymptotic boundary

expansion to the numerical solution.

Alternatively, some of the boundary conditions can be imposed making use of the following

scaling symmetries of the equations of motion:

(I) r → γr, t→ t

γ
, U → γ2U, a→ γa,

(II) x→ γx, p→ p

γ
, e2v1 → e2v1

γ2
,

(III) (y, z)→ γ(y, z), w → w

γ
, e2v2,3 → e2v2,3

γ2
.

(D.1)

Using scaling (II) and (III), we can set e2v1 = r2 for r � rh and either e2v2 = r2 or

e2v3 = r2. In this way, the scaling symmetries reduce the number of boundary conditions

which have to be imposed on the numerical solution by means of the shooting method. They

are in particular useful for finding a first solution to the equations of motion. However,

the scalings (II) and (III) change the value of p and the asymptotic value of the helix field
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w. Once a branch of solutions is found, it is therefore more convenient to use the shooting

method as explained above to satisfy all boundary conditions. Once the backgrounds are

generated, we use the following numerical procedure to calculate the conductivity for a

given solution:

1. Using Mathematica’s NDSolve, three linearly independent sets of solutions are con-

structed by numerical integration between rh + δ and rb (with δ � 1 and rb � rh).

2. The three sets of solutions are linearly combined to a solution for which G and h23

have a vanishing source and which satisfies the (arbitrary) normalization condition

A(rb) = 1.

3. The boundary expansion modes of the fluctuations are determined by matching the

asymptotic expansion valid for r � rh to the numerical solution.

Given that the work of [26] was not very explicit about the number of free UV and IR

parameters in the zero temperature RG flows of our model, let us conclude this section by

a more detailed explanation of the situation: as noted above, due to the broken conformal

symmetry (2.37) and the five asymptotic conditions

U(r) ∼ r2, vi(r) ∼ ln r, i = 1, 2, 3, Jρ = 0, (D.2)

we expect that the zero temperature RG flows are labeled by the two parameters (λ, µ). In

the IR, the conditions (D.2) are fixed by the five IR parameters (ρ0, v20 and v30, and the two

coefficients of the two IR irrelevant modes (4.4)). We are hence left with a two-parameter

family of solutions, labeled by the two parameters (λ, µ). The vacuum expectation values

in the UV are then fixed by the requirement of regularity in the IR, i.e. by the vanishing of

the coefficients of the IR relevant perturbations around the condensed geometry (the modes

under point 1,2,4,5,6,7,9). Dropping the charged scalar both in the UV and in the IR, the

same argument applies to the uncondensed insulating solutions. The metallic AdS2 × R2

solutions however are unique (i.e. a zero-parameter family) due to the vanishing of the helix,

λ = 0, as well as the charged scalar, and hence the restored conformal symmetry (2.37).

This is matched in the IR by two free parameters v10, v20 (v20 = v30) and the coefficients

of four IR irrelevant perturbations (modes 7,8,9,10 in appendix C.1), and hence there

are no free parameters left (except of p) in this holographic RG flow. In particular the

vanishing of mode 8 and 9 in appendix C.1 sets the charged scalar and the helix field to

zero, respectively. An important outcome of this whole discussion is that the helix pitch p

should not be counted as an independent UV parameter, as it is not a source in the usual

quantum field theoretic sense, but rather a parameter of the boundary geometry.

E Holographic renormalization and operator mixing

In order to calculate the retarded Green function, the on-shell action of the fluctuations is

evaluated. As for the background, the on-shell action can be reduced to a boundary term
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by partial integration since the bulk term vanishes upon use of the equations of motion.

Fourier transformation of the fluctuation fields,

A(t, r) =

∫
dω

2π
e−iωtA(ω, r) (E.1)

and similarly for the remaining fluctuation fields, results in an action bilinear in the Fourier

modes. It has the form

Sq =

∫
dω dr d3x

2π

[
Φ′′−ωM1Φω + Φ−ωM2Φ′′ω + Φ′−ωM3Φ′ω + Φ′−ωM4Φω

+ Φ−ωM5Φ′ω + Φ−ωM6Φω

]
(E.2)

where Φ is the vector of fluctuation fields and Mi are matrices of r-dependent functions

containing the background fields. The derivatives of modes that are evaluated at (−ω)

can be eliminated by partial integration. Upon use of the equations of motion the bulk

term vanishes and Sq reduces to a boundary term. The horizon contributions to this

boundary term are discarded following the prescription of [47]. To regularize divergences,

we introduce an ultraviolet cutoff rb, which will be removed eventually. The full on-shell

action of the fluctuations Sfos is given by the sum of Sq, the Gibbons-Hawking term

SGH = 2

∫
dt d3x

√−γ∇µnµ, (E.3)

expanded to second order in the fluctuations, and appropriate counterterms Sfct, ensuring

that Sfos = Sq +SGH +Sfct is finite in the limit rb →∞. The counterterms needed to make

Sfos finite are

Sfct =

∫
dt d3x

√−γ
[
−6− 1

2
Rγ + log(rb)

(
1

4
FabF

ab +
1

4
W abWab −

1

4
Rabγ Rγ,ab

)]
. (E.4)

Here γab denotes the induced metric at r = rb, Rγ is the Ricci scalar of the induced

metric, and Rγ,ab is the Ricci tensor. The studies [48, 72] were taken as references in

finding possible counterterms. In order to extract the retarded Green function, we can

either switch off the sources of the physical fields G and F by hand, or use the holographic

operator mixing method [48, 73] as explained in the following. Arranging the physical fields

in a vector, Φ(phys) = (A,G,F), the terms of the on-shell action containing these fields can

be written as

Sfos ⊃ V
∫

dω

2π

[
Φ

(phys)
−ω MAΦ(phys)′

ω + Φ
(phys)
−ω MBΦ(phys)

ω

]
r=rb

. (E.5)

Here MA and MB are the two matrices

−U
2




ev2+v3−v1 0 0

0 ev1+v2−v3
ω2 0

0 0 ev1+3v2−v3


 and



− e−v1+v2+v3 ω2 log(r)

2
√
U

κw
4 0

κw
4 ∗ ∗
0 ∗ ∗


 ,
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respectively. The entries marked with an asterisk correspond to rather longish functions

of r containing the background fields. Their precise form is not needed since we are

only interested in the retarded Green function corresponding to A. Numerically, we can

construct three sets of linearly independent solutions Φphys
1 ,Φphys

2 , and Φphys
3 by integration

of the equations of motion with three linearly independent initial conditions. Arranging

the solutions in a matrix,

H =



| | |

Φphys
1 Φphys

2 Φphys
3

| | |


 , (E.6)

the matrix of the retarded Green function corresponding to (A,G,F) can be calculated as

GR(ω) = 2
(
−MA(ω, rb)H

′(ω, rb)H
−1(ω, rb)−MB(ω, rb)

) ∣∣∣∣
rb→∞

. (E.7)

A derivation of this result can be found in [72, 73]. The basic idea consists in constructing

sets of solutions to the equations of motion with each set sourcing only one particular

fluctuation on the boundary. Finally, a generalization of the prescription of [47] to the case

of multiple fluctuation fields results in the above formula for the retarded Green function.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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