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ABSTRACT: In this work we present a minimal parametrization of the light-cone distribu-
tion amplitudes of the baryon octet including higher twist contributions. Simultaneously
we obtain the quark mass dependence of the amplitudes at leading one-loop accuracy by the
use of three-flavor baryon chiral perturbation theory (BChPT), which automatically yields
model-independent results for the leading SU(3) flavor breaking effects. For that purpose
we have constructed the nonlocal light-cone three-quark operators in terms of baryon octet
and meson fields and have carried out a next-to-leading order BChPT calculation. We were
able to find a minimal set of distribution amplitudes (DAs) that do not mix under chiral
extrapolation towards the physical point and naturally embed the A baryon. Additionally
they are chosen in such a way that all DAs of a certain symmetry class have a similar quark
mass dependence (independent of the twist of the corresponding amplitude), which allows
for a compact presentation. The results are well-suited for the extrapolation of lattice data
and for model building.
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1 Introduction

Due to the unstable nature of the weakly decaying hyperons there are no scattering experi-

ments with hyperons in the initial state. However, they naturally occur in the final state, for

instance in baryon-antibaryon pair production via electron-positron annihilation eTe™ —

BB, in deeply virtual exclusive meson electroproduction v*p — KtTA, K+t%0 KO¥+

and in decays of heavy quarkonia to baryon-antibaryon pairs like J/¥, T — BB. The



standard way to parametrize the nonperturbative information contained in such exclusive
processes are (transition) generalized parton distributions or ordinary form factors. At high
momentum transfer the contributions from Fock states containing more than the minimal
number of partons are power-suppressed and the process can be approximated by a con-
volution of the involved distribution amplitudes (DAs) with the process-dependent hard
scattering kernel. The requirement of large momentum transfer, the instability of the final
state hadrons and the fact that distribution amplitudes only occur in convolutions require
high luminosity and high granularity detectors to extract information on the hyperon DAs
from experiment.

Another type of process where hyperon DAs are involved are the exclusive rare decays
of b-baryons, like Zp, Ay, ¥p and Qp, into octet baryons (plus v, [T17, ...). Due to the
large mass difference one can hope that higher order Fock states are sufficiently suppressed
to allow for a description by three-quark DAs. Since the bottom baryons are produced
with increasing rates at LHC and at B-factories worldwide, we have to expect that ever
more precise experimental results will be available in future, even for rare decays containing
flavor-changing neutral currents, which are sensitive to new physics. Notwithstanding the
fact that b-baryons are produced at much lower rates than b-mesons, they are not less
interesting since they allow for an examination of the helicity structure of the b — s
transition and thus complement the measurements in the meson sector [1]. As shown in
refs. [2, 3] there are possible scenarios where deviations from the standard model are not
seen in the branching ratio of A, — AlTI™ but only in the A baryon polarization. It
is therefore mandatory to establish a theoretical basis for the description of such decays,
and the knowledge of hyperon DAs is one important ingredient. Even the higher twist
components can yield relevant contributions [4]. Note that constraining the shape of wave
functions by calculating the moments of the DAs with lattice QCD plays an even more
important role for hyperons than for nucleons, since experimental bounds are less strict
than in the nucleon sector.

A first parametrization of the leading twist contributions in hyperon wave functions was
already presented in ref. [5]. A complete parametrization (including all contributions from
higher twist) of baryon-to-vacuum matrix elements was first performed for the case of the
nucleon in ref. [6], where it turned out that higher twist contributions can yield substantial
effects in the baryon sector, since the corresponding normalization constants A and \) are
large compared to the leading twist wave function normalization constant f~. The same
procedure has later on been reused in refs. [7, 8] to give similar parametrizations for matrix
elements of the hyperons in the baryon octet, namely Y%, ¥ == =% and A. Our work
unifies these different approaches and we find relations between the distribution amplitudes
for different baryons even if SU(3); symmetry is broken. The obtained relations are exact
including terms up to first order in the quark masses. In this sense we call our results
model-independent. However, one should keep in mind that higher order contributions
which lie beyond the accuracy of our analysis are model-dependent indeed, since they are
affected by the neglection of higher order terms during operator construction and by the
choice of the regularization scheme.



As shown in refs. [7, 8] one has to introduce six additional DAs if one extends the
formalism from the nucleon doublet to the complete baryon octet. Our results show that
these additional DAs are determined by the eight independent DAs already known from
the nucleon sector. Le., if one knows the eight standard DAs (and their dependence on the
mass splitting between light and strange quarks) for the A and for at least two types of octet
baryons with nonzero isospin, one can predict all the rest. Using the parametrization given
in refs. [9-11], where contributions of Wandzura-Wilczek type [12] are taken into account,
and applying the approximation advocated in ref. [9], where contributions that can mix
with four-particle operators are systematically neglected, we need only 43 parameters to
describe the complete set of baryon octet DAs, including their dependence on the splitting
between light and strange quark mass. For details see section 5.3. This amounts to a
significant reduction of parameters compared to an ad hoc linear extrapolation without
the knowledge of SU(3); symmetry breaking, which would require 72 parameters for the
given setup. Therefore our results are useful for the extrapolation of lattice data. In a first
step it can be checked whether the nontrivial relations between the different DAs that we
have obtained are realised in lattice simulations. If this is the case to a satisfactory degree,
one can perform a simultaneous fit to all DAs, which, owing to the significant reduction
of parameters mentioned above, has much higher precision. Note that the parameters
occurring in the approximation described above are determined by the zeroth, first and
second moments of the leading twist DAs and by the zeroth and first moments of twist 4
DAs, which are, apart from the first moments of the higher twist amplitudes, within reach
of state of the art lattice simulations (see ref. [13]).

Let us note that SU(3)s breaking effects can be of considerable strength: e.g. sum
rule estimations of the symmetry breaking for leading twist wave function normalization
constants range from ~ 10%, see ref. [5], to ~ 50%. The latter is obtained if one takes
the values for f~ and f= from refs. [7, 8]. In ref. [5] it is stated that the impact on the
shape of the wave function is even larger (at a scale of 1 GeV). One therefore has to
expect substantial effects also at intermediate scales which are relevant for phenomenolog-
ical computations. We expect lattice QCD calculations to provide quantitative results for
SU(3) ¢ breaking effects at physical mean quark mass in the near future. These will provide
the means to determine the strength of the symmetry breaking terms in our formalism,
allowing us to draw more definite conclusions.

At this point we want to highlight a conclusion that can be drawn from our results,
which is of conceptual importance and also affects the nucleon sector: we find that the
nonanalytic chiral behaviour of moments of DAs does not depend on the twist of the
amplitude. Instead, the leading chiral logarithms in the chiral-odd sector are determined by
the type of amplitude to which the corresponding moment contributes. The ones occurring
in Qf,i (@B ) amplitudes, which will be defined in eq. (5.7), have the same chiral logarithms
as fB (AP). The odd moments of the leading twist DA therefore behave like AP instead of
fB, which is quite contrary to the intuitional expectation. The shape parameters occurring
in ref. [9] can all be assigned uniquely to one of the two classes, which means that the
destinction between moments described above is to some extent already present in currently
used parametrizations.



This work is organized as follows: in section 2 we present some fundamental definitions
to lay the base for the parametrization of the nonlocal three-quark operators in terms of
baryon and meson fields, which is performed in section 3. A sketch of the leading one-loop
baryon chiral perturbation theory (BChPT) calculation is given in section 4, where we
also explain how we have matched our results to the standard DAs given in ref. [6]. In
section 5 we present our main results. We provide a definition for DAs that do not mix
under chiral extrapolation and naturally embed the A baryon. The result section is to the
most part self-contained such that the reader can skip the details of the derivation at will.

We summarize in section 6.

2 Fundamental definitions

There exist various possible realizations of chiral symmetry, which all lead to equal results.
In the following we only present the definitions we use in this work. For a detailed treatment
of the effective field theory framework we refer to [14-19]. The pseudoscalar fields are
contained in

u=VU = exp(2;0)\a¢a) = exp<2;0¢> , (2.1)

where A, ..., A% are Gell-Mann matrices and Fy is the pion decay constant in the three-
flavor chiral limit, which corresponds to the convention where Fr = Fy+O(m2, m%, m%) ~

92 MeV. The matrix ¢ can be written in terms of meson fields

%WO + %17 T Kt
=72 ™ 5™+ KOO (2.2)
- 70 2
K K — 5"
The 3 x 3 matrix B contains the baryon octet:
1 0, 1 +
\/52 ’ \/6A 1 201 1 !
=— =0 _lA ( . )
. . V6

= RKpp + kpn + Kp-X~ + k5020 + kst BT + k2o BT + k=020 + kaA

where the second line defines the matrices kp. Let us from now on use X € {L, R} and, as
a convenient notation, L = R and R = L. Where they are not used as an index, L and R
are meant to be elements of SU(3),/g. Defining ug = v and uy = ul the transformation
properties of meson and baryon fields under chiral rotations read

ux —X>XuXKT:KuXXT, (2.4a)
B % KBKT, (2.4b)

with the so-called compensator field K, which is a common, nonlinear realization of chiral
symmetry [17, 20]. The covariant derivative acting on a baryon field is defined as

DyB = 0,B + [y, B], (25)



r U
1 1 -1 1 1
Y5 -1 -1 -1 1
Yo (=D 1 L~
Y5 —(-1), -1 1 -1
ow (D1, 111

Table 1. The constants n%, n<, nk and n characterizing the symmetry properties of the elements
of the Clifford algebra, where (—1), is 1 for 4 =0 and —1 for p =1, 2, 3.

where I', is called the chiral connection and is given by
Lot t
r,= §(u Opu + udyu’) . (2.6)
The chiral vielbein u,, and the quark mass insertions x+ are defined as

Uy = i(ufﬁuu = u@MuT) , (2.7a)
X4 = uTqu + uXTu, (2.7b)

where xy = 2By M includes the quark mass matrix, and transform under chiral rotations as
follows:

Uy X, Ku, K, (2.8a)
Yo 25 KyoKT . (2.8b)

Finally we define for the elements of the Clifford algebra in a unitary representation

' =nfyl0, (2.9a)
r’ =yfcre, (2.9b)
' = nfyoT, (2.9¢)

T =507, (2.9d)

where C' = iy2? is the charge conjugation matrix. The different 1’s are collected in table 1.

3 Operator construction

In this section we will construct the light-cone (n is a lightlike four-vector) three-quark

operator

qg(aln)qg(@n)qﬁ(agn), (3.1)

in terms of baryon octet and meson octet fields. The antisymmetrization in color indices
(which makes the operator a color singlet) and the Wilson lines connecting the quark fields
(providing gauge invariance) are not written out explicitly. a, b, ¢ are flavor and «, 3, v



Dirac indices. Note that there are many possible parametrizations owing to the freedom
of choice one has by neglecting higher order effects. The task is therefore not only to find
a parametrization, but to find one that is most convenient for the loop calculation to be
performed and can be easily matched to the standard decomposition given in ref. [6]. For
the parametrization of the nonlocal operator one needs functions, where the moments of the
functions play the role of low energy constants (LECs). For the parametrization presented
below these functions can be easily matched to standard distribution amplitudes.

3.1 Symmetry properties

To perform the construction of an operator within the effective theory we have to know its
symmetry properties. To make use of chiral symmetry it is convenient to split the quark
fields in left- and right-handed parts

g4 (arn)qh(agn)qs(asn) = OFf 4p- (a1, as, as) + OFF o5, (a1, a2, a3)

b b
+ OaRf,a,B'y(al? az, a3) + O%Ig,aﬁ'y (ala az, a3)

cab cab (32)
+ ORI yaplas; a1, a2) + OFR - op(as, a1, a2)
+ Ol})%czﬁ’ya(a% as, al) + Olic}%”gva (GQ, as, al) s
where the operators Oxy for X, Y € {L, R} are given by
O a5 (a1, az, a3) = q% o (a1n)dk g(azn)qs, (asn) , (3.3)

where the left-/right-handed quark fields are defined as qr,/r = /g ¢ With the projection
matrices vz, g = (1 F75)/2. These operators can be characterized by their transformation
properties under parity transformation (p), charge (¢) and hermitian (f) conjugation and
chiral rotations (Y):

D
O a5 (a1,a2,a3) == (70)aa’ (10) 85 (10)1y OFs o gy (015 a2, @3) (3.4a)
s
O()l(b%aﬁ,y(al, as, (13) c—f —Coéa/Cgﬁ/Cwy Og(b%a/ﬁ/,y/ (al, as, CL3) 5 (34b)
O 5 (ar, a2, a3) = Xoo Xpy Yo O%5 S 5, (a1, a2, a3) , (3.4c)

where in eq. (3.4b) charge conjugation is performed first. Additionally we know that each
operator transforms under a translation in n-direction as

Ogé’gam(aﬁ da,az+ da,az+ da) = exp {z dan- 15} (’)%’%a/gv(al, ag, as) exp {—i dan- 15} ,
(3.5)

where P is the momentum operator which acts as a generator of translations. Another
symmetry of the three-quark operators defined in eq. (3.3) is the invariance under the
exchange of the quark in the first and the second position or even an invariance under
exchange of all three quarks in case of the operators containing right-handed or left-handed
fields exclusively. On top of this the operator is invariant if one simultaneously rescales
a; — Aa; and n, — n, /A, which we will call scaling property.



i Tyely  af,=n8 nfa, we, d° 4
1 il —1 -1 -1 2 -1
2 1®1 1 -1 11 0
3 oMmep 1 1 -1 2 =2
4 "R, 1 1 -1 2 -1
5 oMo, 1 1 1 1 0
6 ic"®1l —1 1 1 1 -1
7T oo, 1 1 11 -1
8 o"®q, 1 1 -1 0 0
9 " Qoun 1 1 1 3 =2

Table 2. List of I'y ® I'. 77113’ ;, = 1 by choice (see comment in the text). We have multiplied

structures 1 and 6 with a factor of 7 such that 771@,1- = 7719, ; for all structures and, thus, 77’135 ¢ =1

In cases where four-vectors are used in the place of Lorentz indices the notation means that the
corresponding Lorentz index is contracted with the index of the vector; e.g. 02" = o oun,.

3.2 Low energy operators

Using the previously defined fields ur and wu; we can write down the operators, which
contribute to baryon-to-vacuum matrix elements of three-quark currents at leading one-
loop level and have correct transformation properties under chiral rotations in the following
compact form:

k;
65,k i XXY 1jk,XXY
O%’f/’aﬁw(al, ag,as) = /[dw] Z Z}";gy (z1,22,23) F;BMS B(]S,abc (2), (3.6)
ig k=1

where the correct transformation behaviour under translations in n-direction is ensured by
2y =Mny > x;a; and the constraint that x1 + z2 + 23 =1 in

/[dm] = /dxldazgdxg S(1=) x), (3.7)

where the integrations run from 0 to 1. The F’s are functions of x1, x2, x3 only and k; is
given in table 3. The I'’s are defined as

Tais = (XTI Clap(rzl (™ o5 (n - 0)% (38)

where I'y, Fjé, d* and d}' can be taken from table 2. The occurring derivatives act on the
B’s. We have introduced adequate powers of i@ to have functions F of mass dimension 2,
which is compatible with the standard mass dimension of distribution amplitudes. Using
i@ (which leads to a factor mp in the final result) instead of the baryon mass in the
chiral limit mg (which would be the standard choice) has the advantage that it allows for
a straightforward matching of our parametrization to the general decomposition given in
ref. [6] and to refs. [7, 8] (see also section 4.3). The power of (n-0) is chosen such that the
scaling property is fulfilled. Note that in the chiral-odd sector one can actually write down



j B{ﬁ Bg B§ trace’ k;
1 Bs 1 1 1 3
2 By 1 1 tr{xs+}mg® 3
3 Bs ximp® 1 1 6

Table 3. In this table we list only terms which contribute to the one-loop calculation of baryon-
to-vacuum matrix elements of the operator. x4 is defined as x4 — tr {x+} /3. This is a convenient
choice since this combination (in a leading one-loop calculation) vanishes along the symmetric line,
where m,, = mg = ms.

more structures, which have the form I‘/ZBXO?EX or F;ngx. However, these structures are

XY . . .
using Fierz transformation.

not independent. They can be rewritten in terms of I'" aﬁ,y 5
In order to reduce the I'’s to the minimal set given in table 2 one has to use the identity
Moy = %E“V'D"opg and the fact that it is sufficient to construct structures of positive
parity (see explanation below eq. (3.15)). Additionally one has to use that multiplying
both structures Fix and F% with a 5 does not lead to a new, independent structure owing
to the projection with 77,/ in eq. (3.8).
The B’s in eq. (3.6) are defined as

ik XYZ

Byie  © = (ux)aa (wy )ow (UZ)CC’B§ Wbl (3.9)
where
5abc = (B §)aa(BY)uy (BY)cearrer  trace? , (3.10a)
6abc = (BY)aa (B 5o (BY)cwearer  trace , (3.10D)
Sabc = (B})aw (B (B] 5)ecrcarer X trace’, (3.10¢)
6abc = (B})aa (B] )bty (BY)cweanyer X trace’ , (3.10d)
5abc (B{,é)aa’(BJ)bb’(Bé)c Eae X trace (3.10¢)
Bl = (BY)aw (Bt (B g)cecaryer X trace . (3.10f)

For cases where Bg = Bé we only use Bg’abc, Bg Zbc and Bg”ibc and thus k; = 3. The different
possible combinations of B’s can be taken from table 3. All baryon and meson fields which
are connected to each other (by a summation over a shared flavor index) have to be at
the same spacetime position, owing to the fact that the compensator field K is a local
transformation. However, chiral symmetry actually also allows for the possibility that the
trace term in B is situated at a different spacetime position as the rest of the operator. We
consider this possibility in appendix D and show that such a parametrization only differs in
higher order terms. Note that no structures of the form [Bs, X+], {Bs, X+}, or tr {BsX+}
occur in table 3, since they can be reexpressed in terms of the third structure, which
means that we have only one second order structure (j = 3) that is responsible for SU(3) ¢
breaking. Also the operators which describe the behaviour along the SU(3)s symmetric
line (j = 1,2) are not linearly independent, but the situation is more complicated in this



case: since operators of the same class (i.e. same j but different k) are related to each other
(see eq. (3.30)) one has to take care that the symmetry properties of the operator under
quark exchange are respected. Therefore, we postpone this discussion to section 3.4.

There are no covariant derivatives acting on the baryon field within the B’s. In ap-
pendix D we show that they can always be traded for derivatives acting on the whole
structure plus higher order contributions, which can be neglected. This fact will turn out
to be very convenient for calculating loop contributions, since the derivatives acting on the
complete structure do not lead to additional loop momenta in the integrals.

The effective operator given in eq. (3.6) already transforms correctly under chiral ro-
tations and translations along the light-cone vector n. It also fulfills the scaling property.
The remaining symmetry properties given in section 3.1 will now be implemented by con-
straining the functions F. We consider

kXYZ P, kXYZ
BT s (v0)ss By 7 (3.11a)

kXYZé ik XY Z
gabc _f C st' abc ) (311b)

and
XYz

T Ly —nF: (30)aa(10)p8 (10)4y T s 2 (Y0)e7s (3.12a)
;g’ylgz c_? PC Caa/cﬁﬁ’c'y'y’ FOL//BIV/(S/ 05/5 . (312b)

Egs. (3.11b) and (3.12b) yield (together with egs. (3.4b) and (3.6) and since piF’¢ = 1)
(FH) =7 (3.13)

which would mean that the F’s are real-valued. However this argument relies on the
assumption that one gets no additional phases from charge conjugation of quarks and
baryons, which is not necessarily true. If we allow for such additional phases the above
equation has to be generalized to

(Fre?) = Fifet, (3.14)

where we have an additional overall phase which is equal for all distribution amplitudes.
However, this additional phase is unphysical and can be dropped. Egs. (3.11a) and (3.12a)
yield (together with egs. (3.4a) and (3.6) and since nf = 1)

FF=-Fik (3.15)
Therefore we only have to differentiate between chiral-even Fp; ’] G ’] F = FLIkE and
chiral-odd F L’f%k = - }Z?ik = ég(’f. Notice that we have chosen to only construct structures

I' 4 ® I'g which have positive parity. The negative parity structures, which one can obtain
by multiplying all I'p with a 5, would lead to the same operators since eq. (3.15) then
would yield an extra minus sign.



3.3 Symmetry under exchange of quark fields

In this section we use the symmetry of the original three-quark operators under exchange
of quark fields with the same handedness to reduce the number of amplitudes. Using the
constraint that the operators have to be equal under exchange of the first and the second

quark yields

j=12: }";g’/l (1,22, 23) = —nlgAviF;gf(xg, x1,3), (3.16a)
F (w1, w2, 3) = —nfa ,Fi (w2, 01, 33) | (3.16b)
j=3 .7-";;?;}1 (x1,x9,23) = —UlgA,iF;é?i}4($27 x1,T3), (3.16¢)
fg&?(xlal‘mm) = —UFCA,i]:;é?i’/s(ﬂCZa r1,23) (3.16d)
f§3§>3($17$2,$3) = —ngA,i}—;&%’/ﬁ(@a r1,73) - (3.16e)

In the chiral-odd sector one now uses these relations to eliminate .7-";(]3,2 (if j = 1,2) and

F3A4/5/6 - Additionally we can use that

(’nyA’}/Xc),YB(’}/XrB)m; =0, if X 7& YandI'4 € {]1’75?0-#1’} . (3.17)

Using Fierz transformation this leads to

3,XXY 4xxy |, looxxy
Loss =Tass §I‘a575 ) (3.18a)
roas’ =0, (3.18b)
6,XXY _ 14,XXY 7,XXY
Faﬁ'y& - Faﬁvz? - Faﬁvz? ’ (3'18C)
if X #Y. Therefore we have the freedom to choose
fgéjcik(xl’ o, {L‘3) = ‘Fg)&]&k({ph X9, 333) — ‘Fc?(;l]ék(qjla X9, 563) — 0 . (319)

In the chiral-even sector the projection with v, leads to similar constraints. The coun-
terpart of eq. (3.17) reads

(YxTavxC)y(7xTB)as =0, T4 € {yu, 775} - (3.20)

With a Fierz transformation one obtains

P A Vo L (3.21a)
TSN = I (3.21b)
Ioas™ =0, (3.21c)
Therefore, we can choose
Flh (@, ma, m3) = Fogly (w1, w2, w3) = Fouliy (w1, w2, 03) = 0 . (3.22)

,10,



The operators containing left-/right-handed quarks exclusively also have to be invariant
under an exchange of the first and the last quark. Performing a Fierz transformation and
using the identities given above we find

6
XXX XXX il
Ty =2 Toie (3.23)
i'=1
The matrix c is given by

1 1 3 1

2 (1) -3 —3 0 2

0 L 0 0 6 -1

0 0 1 0 0 O
c=| 1y 1.1 g 1 (3.24)

2 0 7273 0 7a

05 0 0 -3 g

0 0 0 0 0 1

By the use of this relation the symmetry property of the operator under exchange of the
first and the last quark translates to the following constraints on the amplitudes:

6
j=1,2: .F)éj’Xl(xl,xg,xg) ¢ .7-"X’j’ (3,2, 21), (3.25a)
=1
.7-}3)’( (r1,22,23) Z A ]-"X’J’ x3,x2,T1), (3.25b)
=1
6 !
. o
]-";&J)’?(xl, x9,X3) = — Z c ]:;(’g(’l(xg, x9,x1), (3.25¢)
i'=1
6 !
L
j=3: .7:;?}(1 (r1,29,23) = Z o ]-";(’:;56(:1:3, x9,x1), (3.25d)
i'=1
6 i
4 o
FEi (@, ma,m3) = = Iyt (w3, 30, 21) (3.25e)
=1
6 !
) o
]:;g?}’(?’(xl, To,T3) = — c” .7:;(’3)(’5<$3, T, 1), (3.25f)
=1
6 !
4 o
f;ézs)%4(x17x27x3) = - " ]:;(’3)(’2('%37-%271‘1) ) (325g)
i'=1
6 !
4 o
f}?}’f’(m, x9,x3) = — Z c ]:;(’:SX’S(:Ug, x9,x1), (3.25h)
et
3.6 .
Fyy (@, xe,3) = Z i ]-"XX’ (3,29,21) . (3.251)

— 11 -



Using these equations one finds for the operator with j = 3 that one can eliminate all
amplitudes apart from ]:;f}’(l, by using the following relations recursively:

6

F @, wo,s) = nfa ;Y " FR (w3, w1, w2) (3.26a)
Z’gl

F (w0, m3) = anA,i R (s wn) (3.26D)
=1

F% (1,79, 73) = 77? }-;'(3;(1(3;2,951, 3) (3.26¢)

FE (w1, w9, 33) = _771“A,i~7:)5)’( (x2,21,23) , (3.26d)

Foraman) = e P rnn ) o200

For the operators with 7 = 1,2 we can eliminate

F9Rran,25) = 1 P emansaa), 32m)
6

f)éj)’?(x17$27$3) - “ “/_-:XJ7 (1’3,.%'2,1‘1) ’ (327b)
=1

and additionally

]:plfgél($17$2,$3) = f?{’%’( (561,1'2,.%'3) + .7::;1(7&1(.%'1,.%'2,.%'3) - 2]: o ($1>$37$2) (3 98 )
.20a
f 01 (37171172,333),

J—‘?(’g’(l(xl,xg,xg,) = —4./—" 5,01 (33‘1,.%'2,.%'3) —I—Sf 20,1 (a:l,mg,wg) .7: 6,,1 (371,1’2,:6‘3), (3.28b)

}—}9’(’%’(1@1#’32»%3) —fx’%’( (1, 23, 22) (3.28¢)

FX (@1, w2, w3) = —FX (w1, w3, w2) . (3.284)

From the fact that the local operator at the origin, where a; = as = a3z = 0, is indepen-
dent of the light-cone vector n one can deduce constraints for the zeroth moments of the
distribution amplitudes

/[dm]}' IE (), w9, 23) =0, fori=1,3,4,6,7,9 . (3.29)

3.4 Elimination of linearly dependent structures

To avoid overparametrization we will now annihilate linearly dependent structures of those
given in table 3. Considering all possible three-quark operators and all baryons from the
octet, one finds (for j = 1,2) that only two out of the three structures Bg’ibc, Bg’abc and

Bg’ib . are linearly independent, since one has

0= Bgyabc + B6 abc + B5 abc (330)
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In the chiral-odd sector we can use this relation to replace 35 e = Bg ibc Bg 21)0’ which
is equivalent to the replacement

Fodi (@1, w2, w3) — Fofil (21,09, 03) = Foiy (w1, 02,03) = Fofi (w1, 02,23) . (3.31a)
'7 .72 2 J— 2 ‘, ',3

Foqd (@1, 2, 23) — foc{d (1,22, 23) = Foll (a1, w9, 23) — Fodd (1, 22,23),  (3.31b)

Fotd (@1, w0, w3) — Fod (@1, 20, 23) =0 . (3.31c)

Using egs. (3.16a) and (3.16b) one finds that the new functions have the same symmetry
properties as the old ones. Therefore we can choose

Foii (@1,@2,23) =0, j=1,2, (3.32)

in accordance with symmetry properties and without loss of generality. In the chiral-
even sector the situation is different since the amplitudes are already constrained by the
symmetry under exchange of the first and the third quark. An elimination of one structure
in favor of the two others would therefore not lead to a simplification. Instead one just
obtains a reparametrization of the problem for which it would be hard to implement the
symmetry properties under exchange of the first and the last quark.

4 Calculation at leading one-loop order

In this section we describe the leading one-loop calculation. In section 4.3 we explain how
we have matched to the standard DAs defined in ref. [6].

4.1 Meson masses and the Z-factor

We work in the limit of exact isospin symmetry, where m, = my = m;. Using the standard
leading order meson Lagrangian (see e.g. [16, 21]) one finds for the meson masses the
standard Gell-Mann-Oakes-Renner relations

m2 = 2Bym; = m%:1’273 = 2By(mg — dmy) , (4.1a)
m¥ = Bo(my +ms) =mi_y ;= Bo(2mg + 6my), (4.1b)
By
m,27 ?(le + dmyg) = mi_g = 2Bo(mg + omy), (4.1c)
where
B 1
my = §(2ml +ms), (4.2a)
om; = Mg —my, (4.2b)

and By is the LEC proportional to the quark condensate in the chiral limit. As additional
ingredient we need the first order meson-baryon Lagrangian, which we take from ref. [22]
(this version differs from refs. [18, 21] by a minus sign in the terms containing D and F' in
order to be consistent with the standard sign convention g4 ~ D + F' > 0):

_ _ D - F
ZJ&% = tr {By,iD"B} —mg tr {BB} —|—§ tr {Bvy,vs{u", B}} —i—; tr {By,ys[ut, B]} . (4.3)
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/ \
/ \
p p p—q p
© O O
(a) (b)
Figure 1. Feynman diagrams needed for the calculation of the self-energy.
For our calculation we need the baryon-meson-baryon vertex for an incoming baryon B,

an outgoing baryon B’ and an incoming meson (the k-th one in the Cartesian basis) with
momentum ¢, which is given by

-1
— tr{ng,(D{Ak,nB} + F[Ak,nB])} . (4.4)
2Fy
The self-energy to third chiral order is given by the sum of the irreducible diagrams shown

in figure 1 (where external legs are to be amputated) multiplied with an ¢. The contribution
of diagram (b) (in figure 1), which is relevant for the calculation of the Z-factor is given by

7 X (b) = SQB,ﬁf(mﬂ, mo,]Zﬁ) + 4gBny(mK, mo,p) + gB,nf(mn, mo,p) , (4.5)

where

((p2 — mg)plﬂ)(m,mo,p) +(p+ mo)(Iol(mo,p) - mQIll(m,mo,p))) .
(4.6)

f(m’m()?p) = 4;FO2

(1)

The loop functions Ij; and I kll are defined as in ref. [23] and the coefficients are given by

gNx = (D +F)?, INK = %DQ—DF%-gFQ, Ny = %(D—BF)Q,

gsa = g(D2 +6F?), gk = D*+ F?, gsn = §D2,

gz = (D= F)?, 9= K = %D2+DF+;F2, 9= = %(D+3F)2,

IAm = %DQ, A K = %(D2 +9F?), Ay = %DQ : (4.7)

These constants fulfill the constraints that the sums

4
398« +49B,K + 9By = §(5D2 +9F?), (4.8a)
4
29N,m + 39s,m + 292,00 + gam = §(5D2 +9F?), (4.8b)

are independent of the baryon/meson species. This yields similar baryon masses and Z-
factors along the line of equal quark masses and is a consequence of SU(3) ; symmetry. For
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a detailed study of baryon masses under symmetry breaking see [24]. The square root of
the Z-factor needed in our calculation is given by

1
VZg =1+ 52’ , (4.9)

where the prime indicates taking a derivative with respect to p and substituting p — mp,
while

Z:/B(TTL(]? 6ml) = 3gB,7rf,(m7T> mo, mB) + 4gB,Kf,(mKa mo, mB) + gB,nf,(mT]v mo, mB)

= X" (mg) + AX5(mg, dmy) (4.10)
with
5% (mg) = Yp(mg, 0) = (395~ + 498,k + g0) f (M7, Mo, M B) (4.11a)

4
3

4
3

AE/B(m(p 5ml> = E/B(mtp 5ml) - Z/B(ﬂ_,Lq? 0)

=398, (Mmx,mo, mB) + 49,k ' (MK, M0, mB) + gB 4 [ (M, M0, M B)

(
)

(5D + 9F?) f'(m},, mo, mp) = < (5D* + 9F?) f'(my,, mj, mj) ,

4
— 7(5D2 + 91?’2)]“/(771’;m mgy, MB

3
= 3gB,Wf,(mﬂ” mg? mg) + 4gB7Kf/(mK> mg, m;)() + gB,nf/(mm mg? mg)
4
— 502 4 98 (g mi ). (4.11)

where my = my, /b(mq) is the meson/baryon mass along the symmetric line (0m; = 0).
The dotted equal sign = means equal up to terms which are of higher order than our
level of accuracy (which is second order in chiral power counting). For explicit results see
appendix A.

4.2 Baryon-to-vacuum matrix elements of three-quark operators

In this section we describe the actual loop calculation. From a simple power counting
argument one finds that at leading one-loop level the only contributing graphs are the
ones shown in figure 2. One easily observes that the second order operator insertions only
occur without additional mesons. Therefore we only have to compute the vertices where
a single baryon couples to the operator. Contributions with additional mesons only occur
for the leading order operator insertion (j = 1). For the BChPT calculation mainly the
structure Bgﬁl’fyz is relevant. Graph (d) of figure 2 is an exception because the extra
~5 from the baryon-meson-baryon vertex has to be canceled with a 75 from the Dirac
structure of the operator. The calculation gets simplified considerably if one uses the fact
that (by construction) the Bg:gl’)‘fyz with k # 1 can be obtained from the case k = 1 by a
permutation of indices:

i2.XYZ _ il YZX i3.XYZ _ il ZXY 3A4XYZ _ pjlYXZ
Bé,abc - Bé,bca ) Bé,abc - Bé,cab ) §,abc - B&,bac )

7,5, XYZ 7,1, XZY 3,6, XYZ 7,1,ZY X

8,abc - _Bé,acb ’ 8,abc — " é,cha ) (412)
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\
p—q h P
1
/

(d)

Figure 2. Feynman diagrams needed for the calculation of the baryon-to-vacuum matrix ele-
ments. The squares depict the operator insertions given in egs. (4.14), the circle stands for the
vertex from the meson-baryon Lagrangian given in eq. (4.4) and the dashed/solid lines represent
mesons/baryons. Diagram (a) has to be multiplied with V/Z. However, one knows that at higher
orders all of the diagrams will receive a v/Z contribution, which can be used as an argument in
favor of the factorized version of our results (see eq. (5.18) in section 5).

which means that we actually only have to calculate the case k = 1. Defining

+1, for X =R
(-)x = ) (4.13)
-1, for X =1L

Y

we can write down the relevant operator insertions in a quite economic way:

1,1,XYZ
(2)

= (kp aalealbce*ip’zégﬁ , 4.14a
d,abc ( )

Be(p)
7

_ v (_1)X<)\kﬁB)aa’5bb’5cc’ + (_1)Y(ﬂB)aa’()\k)bb’5cc’
2Fy

+ (—1)z(kp)™ 8% (AF)ee [t emip 255, (4.14b)

1,1,XYZ
d,abc (Z)

Be(p—q)9*(q)

1,1, XYZ
B(S,abc ( )

Be(p—q1—q2)¢*(q1) ¢ (g2)

|:({)\k, )\Z}KB)aa’(sbb’(Scc’ + (’QB)(WI({AIC, )\l})bb’écc’ + (IiB)aa/(sbb,({)\k, )\l})cc'

-1

~16F2
4+ 2(_1)X(_1)Y()\kKB)aa'()\l)bb'(scc’ + 2(_1)X(_1)Z()\kHB)aa’5bb’()\l)cc’
+2(= Dy (=) z(kp)" AP ()™ + 2(=1)x (= 1)y (Wrp)™ (A5
+2(=1)x(=1)z(Nrp)™ 6" () + 2(—1)1/(—1)2(%3)““'(AZ)W(Ak)"d]

x @t T 255 (4.14c)
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The second order tree-level operator insertions read

PLXYVZC) = 4Bymg? tr {M} (rp) e 5, (4.14d)
Be(p)

(i;,all;i(YZ( ) = 430m0—2(KB)aa’Mbb'Ea/b’ce—ip-2566 , (4.14e)
Be(p)

where M = M —tr {M}/3. After performing the loop calculation one finds that the results
can be expressed as

(0|0%f apy (a1, a2,a3) + OFF 15 (a1, a2, a3)| B(p, 5)) =

i (4.15a)
— [ldalemmr S DT (0 1,72, 79),
<O’O%£,a5'y(a17 a2, a3) + O%}%aﬂv(alﬁ az, a3)‘B(p’ 8)> -
) ‘ (4.15b)
/ da]ei pzkwkakzr;;iguﬁ@, )iy eaa (@, 2, 75)
where uZ (p, ) is the baryon spinor,
jeven _ i,RRR LLL
Tasvi = Tams ~Tais - (10
ad LLR RRL
FLZ’WJ anﬁvé anﬂvts ’ (4.16b)
and
h%?iﬁen(xlv T2, 3) Z klgll;CRer\’/]elrf(wla T2,73) , (4.17a)
3k
hiBal;éd(fﬂhxz?xs = Z kLaLb% ogdk(xl’a:Q’x?’) : (4.17b)
3k

The coefficients ¢’; kXY , inherit the property that the ones with k£ # 1 can be obtained from
the case k = 1 by a permutation of indices:

2,abc  __ j,1,bca 3,abc  __ j,1,cab 4,abc ji,1,bac
CJB XYZ — C]B,YZX ’ C]B XYZ — CJB,ZXY’ CJB XYZ — _CJB,YXZ7
,b.abe j,1,ach ,6,abc j,1,cba
CJ B,XYZ — _CJB,XZY’ C] B, XYZ — _CjB,ZYX : (4'18)
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For those with k£ = 1 we find

1,1,abc 1,1,abc 1,1,abc 1,1,abc
CBXYZ = CBXYZ “ tCgxyz “ telpxyz| > (4.192)
BRYz| | =V Ipln) (4.190)
abc -1 aa’ cbb ccc! aa’ ! cec! aa’ sbb’ cc’
chlete, T SN )6 6 4 ()2 (NEXFY 5 4 (1) 6 (XEAF)
¢ k
4 2(_1)X(_1)Y()\kﬁB)aa/()\k)bb’(scc’
+ 2(_1)X(_1)Z()\k/€B)aa,5bb/()\k)CC/
2Dy (D) z0mm)™ (W (0] ¥ Iygomy), (4.19¢)
1,1,abc

—1 aa/ / CC/ aa/ , CC/
<>ZZ[<—1>X<A’%B> 65 + (<D (mp)™ ()6
d

+ (—1)2(53)‘1&’5%’(%)“’} tr {mE(D{Ak, KB} + F[AF, RB])} (4.19d)
X (Iw(mk)—i—(sz— m%)[ll(mk, mo, mB) — mB(mB + mo)Iﬁ)(mk, mo, mB))

In the contribution from graph (d) commuting 75 from the vertex with the Dirac structure
in the operator yields ngBJ(—l)dzm = —1 (compare table 2). In operators of type Oxpr the
75 has no effect owing to vgy5 = vr. The relative sign in the vertex in operators of type
Ox 1 is compensated by vr,vs = —7r. Therefore the result only contains structures of the
form given in eq. (4.16). This is no coincidence but has to happen in order to obtain a
result that behaves correctly under parity transformation. For the second order tree-level
contributions we find

CEY, = ABomy® tr {M} (1p) " e, (4.19¢)
0%71}?;7/02 — 4B0ma2("53)aa//\;lbb/6a,blc ) (4.19f)

Using eq. (3.2) the matrix element of the complete three-quark operator reads
(0193 (arn)gf(azn)gs (azn)|B(p, s)) =

—in- i i, ab i,odd ; 7,ab
- /[dx]e P 2y Tk Z(an%\’f;hZB?e\C/en(mhI%m?)) + F’LOZ%’Y(S}LZB(?O(Cid(xlva:x?)) (420)

i

i,odd 7 ¢,cab i,0dd 7 7,b
+ F;thggdd(ﬂ% T1,T2) + Fz;gaahjg,?zld(f’f% 3, wl))”aB(p, s) .
4.3 Projection onto standard DAs

In this section we relate our parametrization of the baryon-to-vacuum matrix element,
which was guided by the behaviour under chiral rotations, to the general decomposition
given in ref. [6], which is more convenient for daily use. To do so we have contracted
both our result (eq. (4.20)) and formula (2.3) of ref. [6] with Dirac structures of the form
Fﬁﬂ ® FE,W. It is sufficient to use structures where Lorentz indices are either contracted
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between T'4 and I'P or with the light-cone vector n or the momentum p. Afterwards
we have used the identity pu®(p) = mpu”(p) and have matched the prefactors of the
remaining Dirac structures (75 and ys). Using twist-projection, we obtain the results for
the distribution amplitudes SZ, PP, AP V:B and T? which are independent of the scalar
product n-p, due to the scaling property described in section 3.1 (For the details of the
twist-projection we refer to [6]). We have collected these lengthy matching relations in
appendix E. The amplitudes have the following symmetry properties under exchange of

the first and the second variable

($17$2>$3) ( 1)BS,LB($2,ZE1,:L‘3),
PP (21, 19,23) = —(—1)pPP (22, 71, 23)
AP (w1, 2, 23) = —(=1)pA] (w2, 21, 23) ,
VP (21,29, 23) = +(=1)gV;® (x9, 1, 23) ,
TP (21,29, 23) = +(—1) TP (29, 21, 73) (4.21)
where we use
+1, for B#A
(1) = | (122)
-1, for B=A

for brevity. To obtain these nice symmetry properties one has to choose the flavor content
in the operator as p = wud, n = ddu, ¥t = uus, ¥° = uds, ¥~ = dds, = = ssu, =~ = ssd,
A = uds, where the order of the flavors is relevant. The different sign for the A originates
from the antisymmetry of the isospin singlet state.

5 Results

In this section we present our results and provide a definition for DAs that do not mix under
chiral extrapolation. In section 5.3 we work out an explicit parametrization of baryon octet
DAs, where we follow the approach presented in refs. [9-11].

5.1 General strategy and choice of distribution amplitudes
We will split up every distribution amplitude in the following way:
DA(mgq, 6my) = DA(img, 0) + (DA(myg, 6my) — DA(mg, 0))
= DA*(mg) + ADA(mg, 0my) ,
DA*(m4) = DA*(0) + (DA*(mq) — DA*(O))
= DA° + ADA*(m,),

(5.1a)

(5.1b)

where the main idea is to use the second formula to parametrize everything in terms of
the DAs at the symmetric point, which are measurable on the lattice as opposed to the
amplitudes in the chiral limit. Lattice simulations where the mean quark mass is fixed at
its physical value while dm; is varied are already available for hadron masses and some
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form factors [25-27]. Corresponding simulations for the baryon octet DAs treated in this
work are in progress. This strategy has the additional advantage that one gets rid of the
parameters that describe the behaviour under variation of the mean quark mass. For the
presentation of the results it turns out to be convenient to write down the second order
tree-level and the loop contribution separately. We define for all baryons

ADA = ADA"°P 1 §m ADAYe (5.2)
where
Sm = 4305;m . (5.3)
my

Then we use the fact that we can rewrite ADA in terms of mj and DA™ using the cor-
responding expansions in m,. For a specific set of DAs, which do not mix under chiral
extrapolation (see below), this allows us to rewrite the loop contribution as the DA along
the symmetric line multiplied with a loop function f such that the results have the form

DA(mg, dm;) = DA*(m,)(1 + f) + ém ADA'®® (5.4)

By virtue of SU(3)s symmetry we find the following relations between DAs along the line
of symmetric quark masses m, = mg = ms:

2TIB/E($17x27x3) ( ) [V/G A1/6:| (.’El,l‘g,.ﬁbz)

(5.5a)
+ Vs — ATk (w2, 23, 21)

[T3/4 /8 + 51/2 1/2] (21,22, 23) = [V2/5 A2/5] (x9,x3,21) (5.50)
[V3/4 A3/4] (z3,71,72),

2T2€g($1,x2,:€3) =[ 3/2 7/8 51/2+ 13/5] (73,21, 72) 5.50)

+ [T)h = Tyjs + St + Pis) (w3, 22, 71) -

Note that we do not impose these relations. They are automatically fulfilled by our calcula-
tion (loop contributions included). For the nucleons these relations are fulfilled exactly also
for m; # 0 owing to isospin symmetry (again this is also true for the loop contributions),
which was already shown in ref. [6]. If we were only interested in the SU(3) ; symmetric case
(or in nucleons only), it would therefore be enough to define the independent amplitudes as

<I> 376 ¢(x1, 2, 23) = [Vl/G 1/6] (x1,x9,23), (5.6a)
b 17521, 2, 73) = [‘/2/5 2/5} (x1,x9,x3), (5.6b)
ol 17521, 2, 23) = [ 3/4 3/4] (1,29, 23), (5.6¢)
Els(@1, wa,w3) = [T, — Thg + ST + Py (w1, 22, 23) (5.6d)

where the <I>l]-3 and \Ilf describe the coupling to chiral-odd operators, while the Ef} describe
the chiral-even sector. The subscript indicates the twist. As it turns out the amplitudes
<I>ZB , \I/f and Efg are not yet the optimal choice for a description of the complete baryon
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octet, since they mix under chiral extrapolation. Additionally one finds that it is very
convenient to use differing definitions for the A, which we choose in such a way that the
DAs of the A coincide with the DAs of the other octet baryons in the limit of equal quark
masses. Therefore we define

+
ch
<I>£73/6(a;1,w2,3:3) ([Vl/G A{B/G} (x1,29,23) £ [Vf/;6 — A]19’/6] (z3, 22, 1)) , (5.7a)

<I>i4/5(:61,3327a:3) = CB([VQ/5 — AQB/5] (r1,29,23) £ (—1)p [1/554 — A?]?/d (2, x3, :El)), (5.7b)
55’4/5(331,3;2,333) = 3(— )BCB([T3/4 T7/8 + 51/2 + P52] (:L’l, 9, 1:3)

= [T3/4 7/8 + 51/2 + P1/2] (21,23, 12)) , (5.7c)
where
1, for B # A 1 for B # A
cp = : cp=1 " . 5.8
B \/5 for B = A B {—ﬁ, for B= A (58)

Being interested in SU(3) violation one can not use the constraints given in eq. (5.5) and
therefore one needs six additional DAs. Our choice are (up to differing prefactors for the
A and exchange of variables) the left-hand sides in eq. (5.5) since they coincide with the
DAs in eq. (5.7) in the SU(3), symmetric limit. We define

3)6(a1, 22, 23) = cp(—1)p Tﬁg(ﬂﬁl,ffzz,l‘z) (5.9a)
Hf/g,($1, x2, ZES) [T3/4 + T 7/8 + 51/2 1/2] (l’g, X1, xg) R (5,9b)
Y s(x1, 79, 33) = 6 Ty (w3, w2, 21) (5.9¢)

where the II; describe the chiral-odd sector, while the T; describe the chiral-even part. For
each octet baryon the standard DAs can be decomposed into the amplitudes defined in
egs. (5.7) and (5.9) (see appendix B). We find that the DAs for different nucleons, ¥’s and

=’s are related to each other exactly by isospin symmetry. Therefore we define

DAY = DA? = —DA", (5.10a)
DA® = DAY = —DA*" = v2DA™ | (5.10b)
DAZ = DAZ" = —DA%" | (5.10¢)

and give the results only for DAY, DA¥, DA and DA?. In the SU(3) # symmetric limit
all these DAs can be related to those of the nucleon:

*  — FN* Yk =x Ax Nx* Yk =x
o = 0N = ¥ = X = oM =TI, (5.11b)
—k _ =Nx __ :Z* _ :E* _ r—A* N* _ Xk ArEX
% _':N*_ .—‘Z* _':'E* _':A* A*
B* =M = BT =52 = =M = 1 (5.11d)
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5.2 Minimal parametrization of baryon octet distribution amplitudes

The choice of DAs presented in the previous section allows us to write down our results in
a very compact form:

o8, = %, (1 +IAY, + Aggi) +om ADE (5.12a)

=8, =21 (1+ 5a%5 + AgE) + om AZE (5.12b)

0P =1, (1+ 1A% + Agf ) +om AT, (5.12¢)

TF =21, (14 3A%), + AgE) + om AT, (5.12d)

where “£p” stands for “4+”7 if B # A and for “—” if B = A. The second term in the

equations above originates from quark mass insertions, while the first term (or, to be
more precise, AX; and Agg ) is generated by meson loops and contains chiral logarithms.
Owing to our choice of DAs the functions Agg o> Which are listed in appendix A together
with AX';, do not depend on the twist of the amplitude. AggA and AXY'; vanish for
equal quark masses (0m = 0). The nontrivial dependence on the mean quark mass of
the distribution amplitudes @;i and E’;H is presented in section 5.4. The amplitudes
describing the tree-level contribution to the SU(3)s symmetry breaking are not completely
free. It holds for all distribution amplitudes

ADA= = ~ADAY — ADA*> . (5.13)

Furthermore, the amplitudes AIT? and AYP can be expressed in terms of A®? iand A=B P

AITY = AQY ATY = AZY,, (5.14a)
3 1 _ 3
ATIF = ——A@E,i - §A¢_AM, AT} = —iA_E,l - §A~+ i (5.14b)
A Loah B Ags A Lo-a  3.=x
ALY = — AL — DAQY AT} = —JAEL; - SAED, (5.14c)

which means that the HZB and TiB are completely fixed by the other amplitudes. The
divergencies of leading one-loop order contained in AY; and Ag5, can be canceled by the
introduction of counterterms

*2B *2 B

m my, Cz _ —_
ARE, — ;4;;% L+ AT (), AZE, — 2iFe Sl T AE =25 (u), (5.15)

where L contains the divergence and the typical constants of the modified minimal sub-
traction scheme (see eq. (A.5)). F\ is the meson decay constant in the SU(3), symmetric
limit. The coefficients cg A are given by

N, = 9D+ 10DF —3F?) — 23524, ¥ = —9(D>+10DF — 3F2) +9,

gy = 18(D? — 3F?) + 10 + 12, — _A —18(D? — 3F?) — 18,
A, = —18(D? — 3F2) — 26+ 12 . (5.16)

oz
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Note that we give no values for c% 4 and cg, since the renormalization of the corresponding
amplitudes is already fixed via eq. (5.13). The renormalized amplitudes acquire a depen-
dence on the chiral renormalization scale p, which exactly cancels the scale dependence of
the leading chiral logarithms:

d . .B —1 m*cE, 0 ._B —1 m}2cE
ABren () — . L AEBren. oy b =g=* (517
Ma/l +,i (:LL) (47‘1’)2 24F3 +,i0 Mau +,i (M) (47_[_)2 24F*2 +,i ( )

The replacements given in eq. (5.15) also have to cancel the divergencies in the distribution
amplitudes for the = baryon and the HZB and T? distribution amplitudes, which is the case
and can be seen as a nontrivial check of our calculation. The higher order divergencies,
which are contained in our result as a consequence of using IR-regularization [28], have to
be set to zero by hand. This introduces an unphysical scale dependence in higher order
terms, which is usually solved by fixing the scale at a typical hadronic value like 1 GeV.
A variation of this scale within reasonable bounds, say between 0.8 GeV and 1.2 GeV, can
be used to estimate higher order effects.

If we neglect higher order contributions, we can rewrite egs. (5.12) in such a way that
the complete nonanalytic behaviour is encoded in an overall prefactor:

of, = Z—f (1 + qu&) ( Li+0m A(I)ii) , (5.18a)
EZ, = Z—f (1 + AgEB> (E; +om AEii) , (5.18b)
ny = \/Z»f(l + Agﬁ) <<I>;B,Z- +om AHF) , (5.18¢)
7= @ (1 + AgEB) (E;B,i +6m AT?) , (5.18d)

where
. 1 /
— =1+ §AZB . (5.19)

From eq. (5.18) it follows directly that at leading one-loop order the complete nonanalytic
structure is contained in the normalization of the distribution amplitudes, while their shape
only exhibits the simple dependence on dm shown in eq. (5.25). Therefore leading finite
volume effects do only affect the normalization. We want to emphasize that this is only
true by virtue of our specific choice of DAs. A similar behaviour was found for the meson
sector (see refs. [29, 30]). The zeroth moments of the given DAs are not independent, due to
eq. (3.29). In particular all DAs which correspond to operators of certain symmetry classes
are normalized by the same wave function normalization constants independent of the twist
of the corresponding amplitude. The zeroth moments define the following normalization
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constants:

Z
fB= /[daz] D@, o, w3) =4 B(l—l—Ag]q)Jr f*—|—5m AfB> (5.20a)
Z
\B = /[dgg] = a/5(@1, 22, 23) Z—B 1 + qu) T+ om AA?) , (5.20b)
Z
\B = /[da:]u+ a5(T1, 2, 03) =/ Z—B 1 + Ag~ )\* +om AX; ) (5.20c)
and
Z *
fr= /[dw]H (21,2, 23) = Z—f(l + Agﬁ) <f +dm Af%) , (5.20d)
= ZE = =
5= / (AU o1, 2, w5) = ([ 2= (14 AgR) (£ + 6m AFF) (5.20¢)
ZA
Y. /[dx] V(@12 m5) = | A1+ agh) (A +om ax) - (5.20f)
For the remaining zeroth moments one finds
N = /[d:c] N(xy,z9,23), (5.20g)
/ [da]®F 4 (w1, 3, 35) = / (A2l S8 4 5 (1, 22, 25) = / (da] T (w1, 22, 23), (5.20M)
AP for B#A
dz| Y8 (21, 29, 23) = ’ . 5.201
/[ ] 4/5(1 2 73) {O, for B=A ( )
Due to eq. (5.14),
3 1 = 3 1
AfF=—SAf - SAPE, ASF =AM DASE - AN,
AN} = —%m? imz (5.21)

In the equations above we have introduced convenient new definitions of f2, )\/1\, )\‘2\, f%,
fZ and A} such that, in the limit of exact SU(3) ¢ symmetry,

=N =rr=r=rt=fr=rr, (5.22a)
M=V = AT = 2F = A = AD, (5.22b)
N=X =X =)=\ (5.22c)

If the reader favors a different definition he or she can easily read off the conversion factor
from eq. (5.7), noting that additional signs can arise from eq. (5.10) if one uses different
baryons for the definition of the distribution amplitudes, and that one has to take into
account additional factors originating from differing definitions of S;, P;, V;, A; and T;
(we use the definitions of ref. [6]). We have performed this matching procedure for the
constants defined in refs. [5, 6] (see appendix C). Note that the constants f¥, f= and /\%
given above are (at leading one-loop accuracy) completely fixed by fZ and )\{3 . However,
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without the knowledge of the SU(3); breaking effects one would have to define them as
additional free normalization constants. f*, AfP, \* and AN are given by

o / (d2)®% (a1, 22, 73) AfB = / (] AD? (21, 23, 73) (5.23a)
M= / (d2]® oo, ams), ANP = / (d2]A®E (21, 3,35),  (5.23b)
= / (d2)Z% 45w, w00m3), AN = / [d2]AZE | (w1, 29, 33). (5.23¢)

where, as a consequence of eq. (5.13) (first line) and eq. (3.29) (second line) one has

AfE=—AfE - AV, ANF = —AXT — ANV, AN = —ANT — AN
AN = —ANT (5.24)

The zeroth moments of (I)]f,?) /6 and Hf)}/ﬁ (E’Ee 45 and T£/5) vanish by construction, since
they are antisymmetric under exchange of x; and x3 (x2 and z3). One possible approach
would be to normalize these amplitudes by their first moments. However, our main goal is
to divide the DAs by normalization constants in such a way that the nonanalytic prefactor
is canceled. This can be achieved without the definition of additional constants, since
all prefactors present in egs. (5.18) also occur in egs. (5.20). Explicitly, one can consider

the ratios
oF ., @1, +om AT, B, @ 4 m APE, o5
7B frromAfB N T i om AAE (5.252)
Ny @, +om ARY, A @, +0m AII} -
fo f*_|_5mAfN ’ Ei A’f+5mA)\% ’ ( )
/% @4, +6m AIL/Z

SE T SR (5.25¢)
T f* + (5m AfT

AP XS+ em AN AP N+ om AN (5.254)

The idea behind the latter choice is to normalize all DAs with similar behaviour under
chiral extrapolation (including the ones with vanishing zeroth moment) with the same
normalization constant containing the complete nonanalytic behaviour. In this way one
obtains a one-to-one correspondence between a normalization constant and a certain chiral
behaviour. Note that, following this argument, some of the moments of the leading twist DA
égB = @5’34—(1)’? 3 should be normalized with )\113 instead of f&. Otherwise the corresponding
shape parameters do contain chiral logarithms.

5.3 Example of application

In this section we will work out explicit expressions for the DAs defined in egs. (5.7)
and (5.9) in terms of the shape parameters given in refs. [9-11], where contributions of
Wandzura-Wilczek type [12] are taken into account explicitly. For brevity we apply the
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approximation advocated in ref. [9], where contributions that can mix with four-particle
operators are systematically neglected. We use the definitions of said references and we
define additionally

Prk (21, 22, 3) = ppiPnr(xs, x2,21) , (5.26)

where p,r = £1, depending on n and k. This definition is possible since the polynomials
Pk have definite parity under exchange of z1 and z3 [9]. We will call the polynomials with
Pnk = +1 (pnr = —1) even (odd). For the DAs we find

+3—fB‘I’Bt i (5.27a

cpff 5=l (5.27b

= 1w o Y. =8, = st
B WW B =4

4 _ )\B( 3 iy ) ,

BWW3 B W Wi B,t=5 —B B(=BWWi , —Bt=5
o8 —f P o), HE P0), (pate

OB = 2B (0 BWW3 BgVW4+(I>Bt 5))

where all chiral logarithms are contained in the prefactors. Analogous expressions for the

IT and T DAs will be given below in eq. (5.34). Genuine twist 5 contributions (@féé 5,

Ei’é:‘r’) will be neglected in this approximation. Also twist 6 DAs are neglected; one could
in principle take into account Wandzura-Wilczek contributions to the twist 6 DAs, but
the corresponding expressions are not known yet. The shape of the DAs is given by the

genuine twist 3 and twist 4 contributions

O (21, 09, 73) = 120217075 > or Pan(1, w2, 73) , (5.28a)
=

@?:323(951, 9, 3) = 120212923 Y Py Prk(w1, 72, 73) , (5.28b)
o=t

- 10 i

(I)sztl 4(x1, T9, xg) = 24179 (3(25[)1 — Ty — 21‘3)77ﬁ 4 .. ) , (5.28C)

(Dl—?f;ﬂl(xla X9, x3) = 247122 (77(% + 2(2 — 51‘2)771]30 + .. ) , (5.28d)

Effl: (w1, 2, 23) = 24962963( 5951)510 +. > (5.28¢)

—B,t=4 45

=_4 (1:17 x2, $3 = 24xox3 a1 -732 — 3 510 +. ) (5.28f)
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and the Wandzura-Wilczek contributions (see refs. [9-11])

W (5 o m):—Z% n—|—2—i 212223 Pk (21, 22, 23), (5.29a)
+.4 1,L2,L3 ( 8.’1)3 14243 Fnk\L1, L£2,L3), .

A= (n+ 2)(n+3)
Prk=+1
( 24055 0
CIDB’WW“:C,x,a: = — M(n—i—Q—)xwx? x1,x2,x3), (5.29b
Zu (@, @, w3) n;n(n+2)(n+3) Dg ) T1E2TS nk (21, 22, 23) , ( )
pnl;g_l
2407, 5, 5,
q)B,WW;:, _ nk 9_ 1— — ) — 2 2
v (L) zk; mrman |\"T2 5 )\nt g, )~ t2)
Prk=+1
X 12923 Pk (x1, T2, T3) , (5.29¢)
24055, 0 3,
(I)B,WVVg — nk 9_ 1— — | — 2 2
-5 (@neT) ; mimsy "2 e ) \nt gy, ) Y
pnl;g_l
X x1x2$373nk(x1, 9, 1’3) s (5.29(?1)
@f:ng“ (21,22, 23) = x5 (5(2] + 22023 — 23)1) +... ), (5.29¢)
(I)B7WW4( _ B B £
s x1, T, w3) = daz(1 — x2) (2ngy + 3(1 — Baa)ny + - - - ) (5.291)
— 27
=05 M (. w5) = dan (14 20)88 — 5 (4= dan + 23 = SRy + (5-29g)
- 27
:?’;’VWA‘ (z1, 9, x3) = =121 (29 — 23)E8 + (5 — x1 + 5a?) (w2 — x3)ER + ...,  (5.29h)

)

2

where the summation over n starts from 0 and, generally, goes to infinity, but is truncated
at n = 2 in the approximation of ref. [9].! Note that our separation into “+” and “—”
amplitudes at leading twist level corresponds to a separation of even and odd polynomials.
The normalization constants are still defined such that n& = pf = ¢£8 = 1, which are only
kept for a cleaner notation. Note also that the introduction of @fk and ﬁfk only amounts to
a redefinition of the shape parameters occurring in @5?3, @?:XVW:” and @?:ngi” by a factor
of fB/AP and the ones occurring in (1)5,7224 and @f:ng“ by a factor of AP/ f2 with respect
to ref. [9] (the corresponding anomalous dimensions have to be adjusted accordingly):

~B fB B ~B )‘13 B
Pk = \F Pk Mok = ffBﬁnk . (5.30)
1

!We do not take into account possible quark mass corrections to eq. (5.29) and eq. (5.38) below (compare
e.g. refs. [31, 32] where such computations have been performed for vector-meson and pseudoscalar-meson
DAs), since they can (by definition) be absorbed into the genuine higher twist terms in eq. (5.27) and (5.34).
Let us note in passing that our general result does not rely on the separation of Wandzura-Wilczek and
genuine higher twist terms at all, since the calculation within chiral perturbation theory does not distinguish
between these contributions.
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The dependence of the shape parameters on the quark mass splitting takes the follow-
ing form

~B Sb;k + om A@fk

B pp T OM A‘Pnk .
f - +1) - )
H Prk Prk N+ om ANP

Pk = £+ 1 om AfB )

if poe = —1, (5.31a)

g 1+ 0m Ajf B Mo+ om Anf

_ _ Mo T 9m Aip 5.31b
M= om AfB o= N om ANB (5.31b)
510 M (531C)

A5+ 6m A)\g ’

which corresponds directly to eq. (5.25), while the dependence of the normalization con-
stants is given in eq. (5.20). The parameters describing SU(3); symmetry breaking are
restricted by eq. (5.13) such that

Ax?%k - _A'xr]xc - Ax%k? for x € {907 9577777776} . (532)

For the original twist 3 and 4 DAs given in ref. [6] (see also eq. (5.6)) the new choice of
normalization yields

(I)év(xl,l’g,xg) = (@fg + (I)]j’;g) (51717‘73271’3)

N3 N3 (5.33&)
= fN(I) = (a;l,xg,wg) +)\‘1V(I)_:37 (1'1,1172,1'3),
1
CI)fLV(xl, X2, 1‘3) = 5 (@174 + (I)NA) (1'1, x2, .%'3) (5.33b)
N oNWWs o Ni—a MY N NWW3
27(‘1’+,’4 + 0L )(1‘1,1‘27133)+7(‘1) + o )(l‘lwzws),
1
U (21, 20, 23) = 3 ((I)fA - (IDZ_VA) (3,21, 22) (5.33¢)
N NWWs o Ni—a M Ni—a N,WWs
— 7(@_’_:4 —I—(I)+4 )(1‘3,1‘1,%’2) — 7(‘1)_:4 —I—‘I>_”4 )(xg,xl,xg),
4 (21,22, 23) E(Ef"l += )(561,»’627:133)
(5.33d)

where, as discussed above, the normalization of the odd moments of the leading twist
amplitude with A\ (instead of f*V) appropriately reflects their chiral behaviour. Note that
this is consistent with an earlier two-flavor BChPT calculation, where it was found that
the odd first and second moments of the leading twist amplitude have the same chiral
logarithms as AY (see appendix of ref. [13]).

For a description of the complete baryon octet one also needs the IT and T DAs defined
in eq. (5.9), which are relevant for the hyperons. These are completely fixed by the &, and
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= DAs. Consequently, the following equations do not contain any additional parameters:

my =aef,, T ==Y, (5.34a)
/% = A/ (5.34b)
Iy = MM =2 (5.34c)
/= = 2= (Hf/s,wvva T e 4) 7 TE = APrPi=t (5.34d)
4 = A4 (HA WWs | Hj}’t=4) , (5.34e)
1'[52/; _ g/: (Hg/E,WW:; i HZ/_,WW4 i Hz/u,t 5) ’ 1B — )\129 (Tf’WW“ n T5B,t:5) :
(5.34f)
I = A} (HQ’W% F ey HQ’tZ5) , (5.34g)

where the genuine twist 5 contributions H5B’t:5 and T?’t:5 will be neglected as above. The
genuine twist 3 and twist 4 contributions are

Hg/g’t:?’(l’h 9, .263) = 120%1%21‘3 Z ﬂfgg'])ﬂk(ml, 9, xg) s (535&)
e
3= (21, 02, 03) = 12017273 > Prk(z1, 72, 73) (5.35b)
p:kkfﬁl
=i 10
/5 @y, 29, 23) = 24x1x2< 5 (201 — 22 — 223)y FEE L > , (5.35¢)
T3~ (w1, w2, w3) = 243122 (G + 2( —522)Ciy +---) (5.35d)
Tf/E’t: (1,72, 73) = 243U23:3< 1 - 53:1)1}10# +.. > , (5.35¢)
Tf}’t: (.’El, x9, 1?3 = 24$2.’E3< X9 — I3 UlO +. ) . (535f)
The shape parameters are fixed:
S/E _ o+ om AWE/H A o+ om AFA v
Wnk 2/ 3 Thk = " A (536&)
Fr+om AfE AT+ 0m AN
2/2 _ T+ 0m AGF 1o + 0m Al
11 $/E ClO * A (536b)
f*+om AfE AT+ 0m AN}
B _ &fo +0m Avfy (5.36¢)

Y07 N om ANE

where A f? /= and AN} are defined in eq. (5.21). The parameters describing SU(3); sym-
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metry breaking can be determined by egs. (5.13) and (5.14):
3 A 3

1 -
Aﬁgk = _§A90§k - §A(P£k ) AT, = A‘Pnk A@%k )

= 3 1
AVIAES *Awﬁk + *A%Em — Al

51 1 3
ACH A’In Aﬁu ) ACﬁ) = —§A77{\o - §A771EOv

A = A7711‘*‘ A7711 A,

1 3
AU%O = —§A€10 - §A§10= AU{XO = —§A§{\o - iAfﬁJ,

= 3 1
Avyy = §A§{\o + §A§120 — ALY

The Wandzura-Wilczek contributions take the form

/2 WW: 24071'
H4/ 3($1,9€2,$3):—Zm
n,k<n

Pnk=+1

v/=

(5.37a)

(5.37b)

(5.37¢)

0
] <n+2 — M)xlxzmp”k(xl’ xo,x3), (5.38a)

2407 0
YW (21, w9, 5) == (nk< +2—6$3>$1$2$37’nk($1, z2,23), (5.38b)

. n+2)(n+3)
pnk:_l

3/E
S/E,WWs _ 2407 _ Ka _ 9 _ 2
H5 (m11x27x3)_2(n+2)(n+3) |:<7’L+2 81’1 n+1 8372 (n+2)

n,k<n
Pnk=-+1

X x12223 Pk (1, 2, 3) ,

(5.38¢)

AWWs _ 240ﬁ£k 9 _ i 2
11 (x1,x2,x3)—2—(n+2)(n+3) n+2— e n+1 oy —(n+2)

n,k<n
Pnk=—1

X 212223 Pk (1, T2, 23)

/=
1‘1,1‘2,1‘3) = 4:E3(5($% + 2x013 — :U%) 11/ +.. ) ,

HEI}7WW4('%'17 x2, x3) = 4‘T3(1 - 1.2)(2C(1)X0 + 3( - 5$2)<{\() + .. ) ;

H?/51WW4 (

- 27
Tg/“’WW4(3§1, To,w3) = 4wy (1 + ajl)v(z):o/“ — 7(4 41 + 331 5$1)U?0/H +...
27
T?’WW4(m1, x9,x3) = —12x1 (29 — xS)UOO + 7(5 —x1+ 5331)(372 - x3)vi\0 o

(5.38h)

To conclude this section we want to point out the merits of our calculation. First of all,

we found that the behaviour under chiral extrapolation of a certain moment correlates to

its parity in the sense of eq. (5.26). Therefore it is advantageous to normalize the odd

moments of the leading twist DA with AP instead of fZ. Quantitatively more important,

however, is the significant reduction of parameters: we find that (within the approximation

used above) we only need 43 parameters to describe the complete set of baryon octet three-

quark DAs (including their dependence on the quark mass splitting). In contrast, an ad hoc
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linear extrapolation without the knowledge of SU(3)s symmetry breaking would require
72 parameters for the given setup, since one can not make use of egs. (5.21), (5.24), (5.32)
and (5.37).

5.4 Dependence on the mean quark mass

The distribution amplitudes @ft,i and E;i have a nontrivial dependence on the mean quark
mass my. This is not really interesting from a phenomenological point of view, since the
number of independent distribution amplitudes can not be further reduced compared to
eq. (5.18), even if one expands everything around the chiral limit. However, the dependence
is of importance for the analysis of lattice data if one wants to include data points from
simulations with unphysical mean quark mass. The mass dependence reads

o= 0%, (135" + g ) + mA®L,, (5.39)
Ei: =54, (1 + 52+ gi) +mAEL (5.39D)

where
M = 1252;”" (5.40)

9%, 9= and ¥'* are functions of the mean quark mass that can be taken from appendix A.
The divergencies occurring at linear order in the mean quark mass can be canceled via the
following introduction of counterterms

*2* *2 ok

* m ren m C'-' —0 r—!* ren

where L contains the divergence (see appendix A) and the coefficients are
* 4 2 2 * 4 2 2
Chy = g(6(5D +9F?) +13+6), ck = g(6(5D +9F?) +9) . (5.42)
This leads to the following scale dependence in the renormalized amplitudes:

0 —1 m}2e 0 —1 mr2ck
A(I)*ren _ b “d+ ) A:*ren _ b Ezo
Hout e W= o adre YR PapfE W= g g

(5.43)

The divergencies occurring together with higher orders of the quark masses have to be
canceled by hand as discussed in section 5.2. If one takes eq. (5.39) and plugs it into
eq. (5.18) one finds (up to terms of higher order)

OF = V75 (1+ gos + Agk. ) (9%, +m ADY, + 0m ADE ), (5.44a)
=8, = (1 +gi+ Ag~> (Ei +m AZY, + om Azii) , (5.44b)
VZ(1+ Gas, + Agf) (92, +m A®Y  +om ATIF), (5.44c)

- \/Zs (1 + gt + AgE ) (E;Bﬂ- +m AL, +0m ALB) : (5.44d)
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where
. ]- % 1 /

Starting from this point everything can be worked out analogously to the case of fixed
mean quark mass.

6 Summary

In this work we have presented the first analysis of baryon octet light-cone DAs in the
framework of three-flavor BChPT. At next-to-leading order accuracy in the chiral counting
scheme, we obtain the leading quark mass dependence and (automatically) the leading
SU(3) ¢ breaking effects. Describing the baryon octet simultaneously we are able to unify
and systemize the efforts made in refs. [5-8, 33].

An important insight to be gained from our results is of qualitative nature: in the
chiral odd sector the chiral behaviour (i.e. the contained chiral logarithms) of a specific
moment does not depend on its twist, but on whether it contributes to the @f’i or <I>5i
amplitudes (see eq. (5.7)). Those contributing to the “+” (“—”) amplitudes have the same
chiral logarithms as fZ (AP). Therefore the odd moments of the leading twist DA behave
like AP instead of (as one might have expected) fZ. This result is consistent with an earlier
two-flavor calculation, where it was found that the odd first and second moments of the
leading twist DA have the same chiral logarithms as A\ (see appendix of ref. [13]).

In section 5 we provide a set of DAs that parametrize the complete baryon octet
(including the A baryon) in a minimal way and do not mix under chiral extrapolation.
Egs. (5.18) and (5.44) are our main results. They describe the quark mass dependence of
the baryon octet DAs (including all higher twist amplitudes) in a very compact manner.
Eq. (5.20) contains explicit extrapolation formulas for the wave function normalization
constants, while the dependence on the quark mass splitting of the shape parameters,
which describe contributions of higher conformal spin, is shown in egs. (5.31) and (5.36).
The results will be of particular importance for the interpretation and extrapolation of
forthcoming lattice QCD data, due to the significant decrease in number of parameters
(compare section 5.3). For the same reason our results are relevant for QCD sum rule
analyses and for model building.
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A Loop contributions
The functions gf,, and Agg A are given by

6F2g4, = —19H(m},) + 2(5D + 6F) Hy(m},)

6F2gs_ = —7THi(m%,) — 10D Ho(m%,),
6F2gE = —9Hy(m},) — 18F Hy(m},),

24F2Agy, = —57 AHy(my) — 18 AHy (mg) — AHy(my,) + 30(D + F) AHz(my)
+12(D + F') AHp(mg ) + (—2D + 6F) AHa(my) ,

24F?Ag3, = —12 AHy(my) — 60 AHy (mg) — 4 AHy(my) + 24D AHy(my)
+24(D + 2F') AHy(mg) — 8D AHa(my,)) ,

24F?Ag5, = —9 AH;(my) — 66 AHy (mg) — AHy(my) + 18(—D + F) AHa(m,)
+ (60D + 36F) AHy(mg) — 2(D + 3F) AHy(m,))

24F2Ag8, = —36 AHy(my) — 36 AHy (mg) — 4 AHy(my) + 24D AHy(my)
+8(D + 6F) AHy(mg ) + 8D AHy(my,)) ,

24F2AgY = —9 AH;(m,) — 18 AHy(mg) — AHy(my) — 18(D + F) AHa(my,)
+ (=20D + 12F) AHy(mg) + (—2D + 6F) AHz(m,) ,

24F2Agy_ = —12 AHy(my) — 12 AHy (my) — 4 AH;y(my,) — 8D AHa(m,)
— 24D AHs(my) — 8D AHa(my),
24F2Ag3_ = —9 AHy(m,) — 18 AHy (mg) — AHy(my,) + 18(—D + F) AHa(m,)
—4(5D + 3F) AHa(mp) — 2(D + 3F) AHa(my,)
24F2Agh_ = —36 AHy(my) + 12 AHy (mg) — 4 AHy(my)) — 72D AHy(my)
+ 24D AHy(mg) + 8D AHa(my,),
Agﬁv = Ag(IIL )

24F?Agh = —24 AH;(my) — 36 AH; (mg) — 16 AHy(my,) + 48F AHa(m,)
+ 24D AHy(mg) + 16D AHa(my)

24F2Agh = —9 AH;(my) — 42 AH (mg) — 25 AHy(my,) + 18(D — F) AHy(m)
+12(D + 3F) AHa(mg) + 10(D + 3F) AHa(my),

24F?Agly = —12 AHy(mg) — 16 AHy (m,)) — 24D AHy(mg) — 16D AHa(my) ,

24F?AgY = —9 AHy(my) — 18 AH; (mg) — 9 AHy(my)) — 18(D + F) AHa ()
+12(D — 3F) AHay(my) + 6(D — 3F) AHy(m,) ,

UF2AgE = —24 AH (my) — 12 AHy (mg) — 48F AHy(my) — 24F AHs(my),

24F2AGE = —9 AHy(my) — 18 AHy (mg) — 9 AHy(m,) + 18(D — F) AHa(my,)
—12(D 4 3F) AHy(mg) — 6(D + 3F) AHa(my,) ,

2UF2AGA = —36 AH, (my) — 72F AHy(m) . (A1)
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The Z-factor contributions are given by

4
= g(5D2 +9F*) Hz(my,),
AY’; = 39 AH3(mz) + 49,k AH3(mk) + B,y AHs(my), (A.2)

where the coefficients gp s are defined in eq. (4.7). The auxiliary functions AHy are
defined as

AHy(m) = Hy(m) — Hi(my,) , (A.3)
with
2 m?
Hi(m) =2m [L + 39,2 log <M2>] , (A.4a)
m? m? m? m3 2 m

H = L 1 — — _
2(m) my? [ T 3o Og(,ﬂ )] 32m2mr? | 8aim amy? arccos( 2mg> :
(A.4D)

L contains the divergence and the finite constants typical for the modified minimal sub-
traction scheme in 4 — e dimensions:

L= (4;1)2 (1 4 % (1 + log (47) — w:)) . (A.5)

Note that we have shown that the divergencies of leading one-loop order can be canceled.
For practical purposes one can therefore set L to zero everywhere if one simultaneously
replaces the corresponding DAs by the renormalized ones (compare section 5). Within our
level of accuracy it is legitimate to replace mj and Fy by their values at the symmetric

. __ _phys
point, where my = mg .

B Handbook of distribution amplitudes

In this section we express the the 24 standard DAs occurring in the general decomposition
derived in ref. [6] (SP, PP, V.B, AB TP) in terms of the DAs defined in section 5. The
equations given below follow directly from the definition of the DAs in egs. (5.7) and (5.9)
together with the symmetry properties of the standard DAs under exchange of the first and
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the second variable given in eq. (4.21). For the twist 3 and twist 6 amplitudes one finds

(131_3 3/6($1,z2,w3)> (—1)3 <q)f 3/6(x2,:c1,a:3) CD? 3/6(90273317;53))
) + k) + k) — ,

1 ®f73/6(73171"27$3)
V1/6 T2 ch * Cq 2 ch c
B B B B
4B 1 ‘I’E,3/6(x179627x3) ®€’3/6($17x27x3) (-1)p @573/6(962,9617963) (1)53/6(9627901,903)
1/6= 5 o + = + 5 T + = )
B B B B

HB (z1,x3,22)
3/6 1,L3,L2 (Bl)

B
— (1)
1/6 ( )B Cé 5

where the DAs on the Lh.s. are functions of (z1,z2,x3). The twist 4 and twist 5 ampli-

tudes read

=B =B —B
—474/5(331,902,903)) 1 <=+74/5(I2,r1,13) N _.74/5(902,931@3))

=B
g8 _ (FDp (Eraploeen 1
1/2 24 g & 51 T -
1 Hf/f,(xz,ma,zl) H43/5(151,13,22)
+ 4\~ (-)p——"——),
CB CB
Pl,= =Dz 55’4/5(11,12’13) 354/5(‘%1’:”2"703) 1 53,4/5(952,11713) 554/5(222,9:1,903)
1/2 - 24 C+ * Cp B ﬂ C+ + co
B B z -
1 H4B/5(Cﬂ2,$3,ibl) Hf/f)(xl’%’m?)
-\,
CB CB
1 (fr eaas) PP, OB o
B _ +4/5 1,%2,73 —,4/5 T1,T2,T3) (-1)B +’4/5(3:2,x1,x3) 7’4/5(332@1@3)
e i " ‘B T ct; + o ;
B 5 =
1 <I)+ ,4/5 (961,932,13) ®§,4/5 (z1,22,23) (_1)3 (I)f,4/5(962,z1,z3) (1)54/5(12’11’13)
e= i 5 " B Ty T + - ,
‘B cp et =

(—1)3 <(I>+74/5(x3,x1,w2) B (1)374/5(903,901,:22)) N 1 <<I>E,4/5(x3,x2,x1) B <I>B,4/5(x3,x27x1)>
+ )

Vi, =
3/4 4 CE Cp 4 ch Cp
4B (—1)B ‘1)574/5(13,931,12) B q)§74/5(13,$1,$2) N 1 (I)f,4/5(963,22,961) B @54/5(953,12,11)
e h 5 A 5 )
TB (z3,22,21)
g LaslEseaa
2/5= 7 o=
B
T3 - (-1)p <Ef,4/5(m1,12,23) N EB74/5(5E17IB27:B3)> N 1 <Ei4/5($2,1171"3) N EB74/5(:B2,931,963)>
/ 24 CE Cp 24 CE Cp
N 1 <H43/5(962,963,11) (1) Hf/g)(ﬂﬁl,xs,xz))
N+ -p—/—m— |,
4 cp Cp
TB (*1)3 5574/5(961@2,1“3)+E§4/5(11,I27$3) 1 5574/5(372,961,963)+E§4/5($27$17903)
/87 24 ch Ch 24 ch Ch
B B B B
B B
1 /I (z2,23,21) IT) ) (21,23,22)
+ (4/5 + —1)34/5> . (B.2)
4 cp Cp
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C Matching to other definitions in the literature

Since we use the same definitions as ref. [6] it is no surprise that
= fw(6)), A= (6], A= a(06]) - (C.1)

We can also match some of our constants to the leading twist normalization constants given
in ref. [5]. Note that for the ¥ and = a relative minus sign originates from the fact that
ref. [5] uses ©F and =~ for the definition, while our choice is ¥~ and Z° in order to have
the same sign as for the proton.

7 = fv (), (C.20)
1= = 15 (150). £5 = —FL(). (C.2b)
f==—f=(5), 17 ==, (C.2¢)
P =\ 2D, [ldsler@ (o1, 20,3) = VG (5] (C.2d)

Due to some misprints, obvious errors and inconsistencies within refs. [7, 8, 33] we are not
able to give reliable matching formulas for their definitions.

D Some construction details

In the first part of this section we will describe why we can trade covariant derivatives acting
on the baryon field for normal derivatives acting on the complete current. This choice is
very convenient since the external derivatives (in contrast to the covariant derivatives acting
on the baryon field) do not lead to additional loop momenta in the integrals. To show that
this formulation only differs in higher order contributions we use the identities

e e (D.1a)

e = (uN) g (uh )y (ul) e | (D.1b)
0 = ((Optt) aa by cer + Uaar (Optt)bytcer + Ugartipyy (Fputt) )€ (D.1c)
0 = (D aar () (") eer + () (Fpute o (W) + () g (1o (Byutu")eer) e

(D.1d)

which follow from det(u) = 1. From these one obtains

(DuB)awe™" = ((0uB)aa Oty 0cer + (TuB)aa Oy Sect — (BT ) aa Opty Secr )
= ((8uB)aa by 0cer + (LuB)aa Opy e + (B)aar (Tpn)op Ocer (D.2)
+ (B)aar Sy (Tyi)eer )&V
Additionally we need
1

duux = ux(ugxdyuyx) = ux (Fu — (—1)X§uu> =uxly, (D.3a)

8MXM = DMXM — [FM,XM] = —[PM,XM] , for X € {ul/7X:t} . (D3b)
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Putting everything together we find for a general structure with arbitrary mesonic building
blocks X1, X9, X3 € {uy, x+}

(ux X1DyB) aar (uy X2 )ppr (U7 X3) eV
— ((UXXlauB)aa’(UYXQ)bb/(’LLZXg)CC/ + (ux X1T . B) aar (uy Xo)py (uzX3) e
+ (ux X1 B)aa (wy XoT )iy (w2 X3)cer + (ux X1 B)aar (uy Xo ) (17 X3T ) eer )7
= aﬂ((uXXlB)aa’(UYXQ)bbl(UZXg)CC/)ga/b/c, ) (D.A)

In the last step we have used
UXXlru = ’U,XaMX1 + UXFqu = uX8HX1 + (8MUX)X1 = au(u_)(Xl) R (D5)

and the same for uy Xo and uzX35.

In the following we will argue that structures involving baryon and meson fields at
different positions can be dropped. We can choose the structure containing the baryon to
be situated at x, while we call the second position y such that we can write schematically
B(z,y) = f(x)g(y), where g only contains mesonic building blocks. Every derivative acting
on g therefore has to be counted as first order in the chiral power counting. It follows
trivially that

f@)g(y) = (@) (9(@) + (@ =) -99(@) +...) = f(@)g(x) - (D-6)

E Matching relations

In this section we provide the result of the matching described in section 4.3, which is needed
in intermediate steps of our calculation (in practical applications one can always use the
readily evaluated expressions shown in appendix B). For the twist projected amplitudes
introduced in ref. [6] one finds

B 2,abc 2,abc
ST =2h (z1,22,23) + Qthdd(wl,wz,iEs) ,

B,even
SP = — ARy (1 mams) + 2R, (@r.2ims) — AR (e1,ma.s) + 2B 1 2,5
PlB = 2h%ilebvcen(xl’x2’x3) B 2h%?0b§d(xl’x2’x3) ’
P2B = _4h27ebvcen(xlvx27$3) + Qh%ilebvcen(xl’x?’%) + 4h§i§)§d(m,x2,x3) - Qh%iﬁd(m,xz,xs) ’
ViB = —4]1%?53(1(12@3,11) — 4h%fg§d($3@1@2) ,
Vi = 2h g anms.an) + 20 g (@ms.an) — 2hic (wams.an)
B I DA
V3B = —2h%?§gd(x275037901) + 2h7§?§3d($27$37$1) - 2h§37?§gd($2’$3’x1)
+ 20 adaram.a) + 2 g ws.m ) — 2B (s e
VP = ahg @ams.) — 20508 (wa.msa0) + A ey (w2ms.01) + 2h g eqq (z2.5.21)
- 2h%€7§§d($2@3,w1) - 4h}éfggd(fﬂ3@1»$2) + 2h%?§gd(f”3’“’“) ™ 4h4§,€§3d(£3’“’$2)
+ QhE’ngd(mg,ml,mg) — 2h%’cggd(m3,rl,12) 5
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B 2,bca 4,bca 7,bca
‘/5 = —4hB Odd(zz,zg,zl) + 2hB Odd(zg,zg,ml) hB Odd(zg,mg,xl) hB Odd(:rg,xg,xl)

8,b 1,cab 2,cab 4,cab
hg ggd(”"r?“zl) + 4hBngd(13,11,12) - QhB?gdd(137x1,x2) + 4hB,C§dd(“3vx17m)
7 8
+ Qthgdd(xg,lj,l‘g) Qthgdd(‘ZB’xl’mQ)
VB 8h +8h7bca _ h 16h
6 — B odd(IQ’x3’x1) B odd(x27x3’x1) B odd(xQ:xS:xl) B, dd($27$3711)

4,cab 7,cab 8,cab 9,cab
+ 8thgdd(Ct3,I1,I2) + 8thgdd(x3,:c1,:cg) - 4hB7ngd(:C3,CC1,CC2) - 16hBngd(x3,x1,x2)

B 8
Al = 4thadd(x3,w1,z2) 4h Odd(zz,z5,z1)
B 2,b 7,b
A2 == 2h'B ggd(:vg,x:;,xl) + 2h’B ggd(l’g,l‘g,x1) 2h’B odd($2’x3’x1)
2,cab 7,cab 8,cab
+ 2hjp Jodd (T3:71,22) — 2hg odd (T3:1,w2) + 2hg odd (T3:21,72) 5

B 7,bca 8,bca
A3 = 2hB Odd(Z27I371‘1) hB Odd(l'271'37$1) + 2hB Odd(IQ’wS’wl)

2,cab 7,cab 8,cab
+ 2hB Odd(mg,ml,mg) + 2hB,Odd(m3’I1’I2) — 2hB,odd(r3’z1’z2) R
B 1,bca 2,bca 4,bca 7,bca
A4 = —4hB Odd(mg,mg,ml) + 2hB Odd(mg,mg,ml) - 4hB Odd(mz,mg,ml) - QhB Odd(mz,rg,ml)
8,bca 1,cab 2,cab 4,cab
hB Odd(z2,zg,zl) hB Odd(zg,ml,mg) hB Odd(mg,ml,mg) + 4hB Odd(mg,ml,mg)
7,cab 8,cab
+2hyg Jodd (@3:21,22) — hB,odd(T’S’zl’z?) )
AB = —ahy 2p2bea anphea 2h%
5 — 3B Odd(zz,zg,m) + 21 oqq(@2@a.@1) + Ahp Jqq(e2.3,01) + 2hp Odd(x%x&xl)
1 2 4,cab
2hB Odd(127$37$1) 4th§dd(x37$17x2) + Qthadd(xswhm) 4hBC§dd(563,x1,I2)
7,cab 8,cab
_ 2th§dd(x3’x1’x2) + Qthgdd(x&me)
AP = sn}; 8hi 4R 16h%
6 — B odd(x271?3,.1‘1) + B Odd(x27$5,xl) - B Odd(IQ’Id’xl) - B dd(ﬁz,xs,:tl)
4 7, 8,cab
— Sthgdd(:c3,a:1,a:2) hBngd(arg,xl,xg) + 4hB?§dd(x37$17$2) + 16hB gdd(x;;,zl,zz)
B 8,abc
17 = h’B Odd(wl,xg,xg)
B 5,abc
TQ = _16hB,even(x1’w2’w3)’
B 5,abc 6,abc 7,abc 8,abc
T3 — —8hB even(xl,xg,mg) + QhB,even(xl’xQ’aB) - QhB,Odd(xl’xQ’xS) + 2hB70dd(x1,x2,x3) 3
B 3,abc 4,abc 5,abc 6,abc
Ty = _4hB ,even(%1,22,23) — 4hB ,even (¥1,82,3) — 8hB ,even (P1,72,23) — 2hB,even(xl’;m’aB)
4,abc 7,abc
- 4hB Odd($17$27$3) hB Odd(ml,xgwg) + 2hB Odd(achacg,acg)
B 4,abc 5,abc
T5 - _8hB even(zl,zg,l‘g,) — 16hB even(xl,ivz,:Cg),
TE = —8n™ shibe A% 16h5°
g = —oNhg Odd(z1,$27$3) —Shp dd(:h,:m,xs) + B, odd(T1:72,23) + B Odd(ﬂfl,m,xs)
B 5,abc 6,abc 7,abc 8,abc
T7 = 8h’B,even(x1’x2’x3) — 2hB,even(xl’12’m3) — 2hB,odd(xl’12’x3) + 2hB Odd(xl,xg,xg) s
B 3,abc 4,abc 5,abc 6,abc
T8 = 4h’B even(xl’xQ’x?’) + 4h’B,even(x1’x2’x3) + 8hB,even(x1’x2’x3) + 2hB even(x17x27x3)
4,abc 7,abc 8,abc
— 4hB Odd(ml,mg,mg) 2hB,Odd(m1’I2’IS) + 2hB,odd(I1’12’z3) 5 (El)

where the DAs on the Lh.s. are functions of (z1,x2,x3). The functions on the r.h.s. are
given in eq. (4.17). For the flavor indices a, b, c on the r.h.s. one has to insert the flavors
of the operators for which the Lh.s. is defined. A standard choice is p = uud, n = ddu,
Yt = qus, ¥9 = uds, ¥~ = dds, 20 = ssu, 2= = ssd, A = uds, where the order of the
flavors is relevant for the symmetry properties of the DAs.
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