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1 Introduction

The duality between N = 4 super Yang-Mills theory in four dimensions and type IIB

superstring theory on AdS5 × S5 is undoubtedly the most studied and best understood

example of the AdS/CFT correspondence [1–3]. Theories on both sides of the duality are

also known to be integrable, meaning that one can hope to access non-perturbative regimes

in both of them, which is highly non-trivial to do using conventional tools and methods

(see the seminal paper [4], also see [5] for a recent review of integrability in AdS/CFT).

Non-perturbative calculations in gauge theories are rare in general, yet they are crucial

for deeper insights into the structure of these theories. In particular, they allow us to

better understand the AdS/CFT correspondence, which is a strong/weak duality. One

of the important observables for which exact computations are possible is the anomalous

dimension of a cusped Wilson line, which is related to the potential between a quark

and an antiquark on S3 and also to the energy emitted by a moving quark, called the

Bremsstrahlung function. The first result for the Bremsstrahlung function valid for any

coupling was obtained in [6] by relating it to the expectation value of a certain Wilson loop.

Shortly after, it was reproduced in [7] by considering a correlation function of a Wilson

operator and a local operator. This observable was generalized and computed from the

integrability approach in planar N = 4 SYM in the near-BPS regime in [8, 9] and [10].

The observable considered in the last three papers is a cusped Wilson line with the cusp

angle φ and an angle θ regulating the coupling to the N = 4 SYM scalars (see figure 1); in
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addition there is a scalar operator of R-charge L inserted at the cusp. This observable is

BPS for θ = φ = 0 and for θ = φ, an exact solution at arbitrary coupling was found in the

leading order expansion around those points. The calculation led to the formula for the

cusp anomalous dimension ΓL which involved determinants of size proportional to L. The

result was subject to different kinds of tests, including weak and strong coupling expansions.

While it is easy to perform a weak coupling expansion of the result, strong coupling is not

so straightforward. By the AdS/CFT duality the cusped Wilson line operator is dual to

an open string in AdS5 × S5, the classical solution of which was studied in [8, 9] and

described here in section 4. The cusp anomalous dimension is then dual to the energy of

the string. By inspecting the classical solution one can see that all global conserved charges

of the solution scale with the coupling. In our setup this means taking both the ’t Hooft

coupling λ and the R-charge L to infinity, while keeping L/
√
λ finite. Since L determines

the size of the determinants in the formula for ΓL, we can not directly take the large L

limit. The solution to this problem is to reformulate the formula as an expectation value

in some matrix model. Then the classical value of ΓL will be given by the saddle-point

approximation of a matrix integral. An elegant way to describe the solution in the classical

limit is the algebraic curve method [11–15] which we adopt in this paper. For the review

of the method, see [16]. Again, let us notice that the algebraic curve construction works

in the regime L ∼
√
λ→∞, otherwise the curve is degenerate, with its cuts collapsing to

poles. In the limit of θ = 0, φ � 1 the algebraic curve in question was found in [9](the

L = 0 case was also considered in [17]) and here we generalize this construction for the

general near-BPS case φ ≈ θ.
The paper is organized as follows. We start in section 2 by reviewing the results

of [10], which will be the starting point for this work. Then in section 3 we reformulate the

problem in the language of matrix models, showing how the cusp anomalous dimension can

be expressed as an expectation value in the aforementioned matrix model. In section 4 we

review the corresponding classical string solution and in section 5 we find the algebraic curve

for θ ≈ φ and using it derive the classical energy. Using the identity of [25] relating even

and odd order terms of the expansion at strong coupling, we derive the 1-loop correction to

classical energy. We show that our results indeed agree with the known classical expansions

for the cusp anomalous dimension. Finally, in section 6 we conclude by discussing our

results and possible directions for continuing this work.

2 Cusp anomalous dimension of a Wilson line

The observable which we will be considering is the same as in [8, 9] and [18]: it consists of

two rays of a supersymmetric Wilson line forming a cusp with the angle φ and an operator

ZL inserted at the cusp, where Z is a scalar of N = 4 SYM (see figure 1). To completely

define a supersymmetric Wilson line we should also specify the coupling to scalars, which

is parameterized by a six-dimensional unit vector ~n(t) at each point of the line (t being

a parameter on the line). In our case ~n(t) is constant and equal ~n on one ray and ~nθ on

another ray, so that ~n ·~nθ = cos θ. Due to the R-symmetry the observable depends on ~n, ~nθ
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Figure 1. The cusped Wilson line with an operator insertion.

only through θ. Explicitly the observable is defined as

WL = P exp

0∫
−∞

dt
(
iA · ẋq + ~Φ · ~n |ẋq|

)
× ZL × P exp

∞∫
0

dt
(
iA · ẋq̄ + ~Φ · ~nθ |ẋq̄|

)
. (2.1)

Due to the cusp the expectation value of such an observable diverges as

〈WL〉 ∼
(

ΛIR
ΛUV

)ΓL(λ)

, (2.2)

where ΛIR and ΛUV are the infra-red and ultraviolet cut-offs respectively [6, 19]. The

quantity ΓL, which we will call the cusp anomalous dimension, will be the main object of

our studies. When θ2 − φ2 = 0 the observable WL becomes BPS and the cusp anomalous

dimension vanishes [20]. In [9] the anomalous dimension in the near-BPS limit θ = 0, φ→ 0

was calculated using the method of Y-system or Thermodynamical Bethe Ansatz [21–23].

In [10] the calculation was generalized to the case of arbitrary, but close to each other

angles θ2 − φ2 → 0. In this general case the cusp anomalous dimension was found to be

ΓL(λ) =
φ− θ

4
∂θ log

detM2L+1

detM2L−1
+O((φ− θ)2), (2.3)

where MN is an (N + 1)× (N + 1) sized matrix defined as

(MN )ij = Iθi−j+1, (2.4)

Iθn = in+1In

( √
λ

sinβ

)
sinnβ, with sinβ =

1√
1− θ2/π2

,

and In(x) are modified Bessel functions of the first kind. In [26] the result for the case

L = 0 , θ = 0 was re-derived in a significantly shorter way by using the novel Pµ-system.

The AdS/CFT duality allows one to relate the observable in N = 4 SYM described

above to an open string in AdS which ends on a cusped line on the boundary of AdS. In

particular, in the classical scaling limit when L and λ are both taken to infinity with L/
√
λ

fixed, we can match ΓL with the energy of the classical string. However, since the result

contains determinants of (2L + 1) × (2L + 1) sized matrices it is not obvious how to take

the large L limit. In the subsequent sections we develop the apparatus for this, describe

the classical string solution and finally compare the results for the energy.
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3 Matrix model reformulation

Taking the classical limit L→∞ keeping L/
√
λ fixed becomes considerably easier once we

realize that the cusp anomalous dimension (2.3) can be expressed in terms of an expectation

value of some operator in a matrix model. In this section we will show how to use this

approach to find the large N expansion of the determinant of MN defined in (2.4).

One can check that the quantities Iθn defined in the previous section can be rewritten

in the following integral representation

Iθn =
1

2πi

∮
dx

xn+1
sinh(2πg (x+ 1/x)) e2gθ(x−1/x), (3.1)

where the integration contour is the unit circle and g =
√
λ

4π . This makes it possible to write

the determinant of MN as

detMN =

∮ N+1∏
i=1

dxi
2πi

e
2g θ

(
xi− 1

xi

)
sinh

(
2πg

(
xi +

1

xi

))
× detX, (3.2)

where

detX =

∣∣∣∣∣∣∣∣∣∣∣∣

x−2
1 x−1

1 . . . xN−1
1 xN−2

1

x−3
2 x−2

2 . . . xN2 xN−1
2

...
...

. . .
...

...

x−N−1
N x−NN . . . x−2

N x−1
N

x−N−2
N+1 x−N−1

N+1 . . . x−3
N+1 x

−2
N+1

∣∣∣∣∣∣∣∣∣∣∣∣
=

∏N+1
i<j (xi − xj)∏N+1
i=1 xi+1

i

, (3.3)

and we recognize the numerator as the Vandermonde determinant ∆(xi). We can further

simplify the final result by anti-symmetrizing the denominator, which we can do because

everything else in the integrand is anti-symmetric and the integration measure is symmetric

w.r.t. xi. Thus by utilizing the identity

∑
σ

(−1)|σ|
N+1∏
i=1

x−i−1
σi =

∆(xi)

(N + 1)!

N+1∏
i=1

x−N−2
i , (3.4)

we can replace detX in the integrand by

detX ′ =
∆2(xi)

(N + 1)!

N+1∏
i=1

1

xN+2
i

. (3.5)

Thus finally we get the following expression

detMN =
1

(2πi)N+1

∮ N+1∏
i=1

dxi

xN+2
i

∆2(xi)

(N + 1)!
sinh(2πg (xi + 1/xi)) e

2gθ(xi−1/xi), (3.6)

which indeed has the structure of a partition function of some matrix model.1 It now

becomes a matter of simple algebra to convince oneself that the cusp anomalous dimen-

1Namely, it is equal to the partition function of a two-matrix model. We thank I.Kostov for discussions

related to this question.
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sion (2.3) can be written in terms of expectation values in this matrix model, namely

ΓL(g) = g
φ− θ

2

 〈2L+1∑
i=1

(
xi −

1

xi

)〉
2L+1

−

〈
2L−1∑
i=1

(
xi −

1

xi

)〉
2L−1

 , (3.7)

where 〈. . . 〉N denotes the normalized expectation value in the matrix model of size N with

the partition function defined in (3.6). Note that this formula is exact and we have not yet

taken any limits.

3.1 Saddle point equations

In this section we will explore the classical L ∼
√
λ→∞ limit of the matrix model (3.6).

As usual in matrix models, when the size of matrices becomes large, the partition function

is dominated by the solution of the saddle point equations. In the leading order it is just

equal to the value of the integrand at the saddle point. Here we work in this approximation,

leaving the corrections (beyond the first one calculated in section 5.2) for future work.

The partition function (3.6) can be recast in the form2

detM2L =
1

(2πi)2L+1

1

(2L+ 1)!

∮ 2L+1∏
i=1

dxi e
−S(x1,x2,...,x2L+1), (3.8)

where the action is given by

S =

2L+1∑
i=1

[
2gθ

(
xi −

1

xi

)
− (2L+ 2) log xi

]
+ 2

2L+1∑
i<j

log(xi − xj) + (3.9)

+
2L+1∑
i=1

log sinh

(
2πg

(
xi +

1

xi

))
.

The saddle point equations ∂S/∂xj = 0 now read3

gθ

(
1 +

1

x2
j

)
− L

xj
+

2L+1∑
i 6=j

1

xj − xi
+ πg

(
1− 1

x2
j

)
coth

(
2πg

(
xj +

1

xj

))
= 0. (3.10)

We can further simplify them by noting that a large coupling constant g appears inside the

cotangent and since the roots xi are expected to be of order 1, with exponential precision

it is possible to replace

coth

(
2πg

(
xj +

1

xj

))
≈ sgn(Re(xj)). (3.11)

Finally we bring the equations to a more canonical and convenient form and get the fol-

lowing result,

− θ
x2
j + 1

x2
j − 1

+
L

g

xj
x2
j − 1

− 1

g

x2
j

x2
j − 1

2L+1∑
i 6=j

1

xj − xi
= π sgn(Re(xj)). (3.12)

2We take N = 2L.
3Technically the x−1

j term has a coefficient of L+ 1, but since we are taking L→∞ we chose to neglect

it for simplicity.
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y

r

1

r

Figure 2. Distribution of roots on the complex plane for θ = 0 (gray) and θ = 1 (black) on the

left and the condensation of the roots to corresponding smooth cuts on the right with the algebraic

curve parameters r and ψ identified. The dashed circle is the unit circle.

An alternative way of finding these values xi is to consider the following quantity PL(x),

which played an important role in [9],

PL(x) =
1

detM2L

∣∣∣∣∣∣∣∣∣∣∣∣

Iθ1 Iθ0 · · · Iθ2−2L I
θ
1−2L

Iθ2 Iθ1 · · · Iθ3−2L I
θ
2−2L

...
...

. . .
...

...

Iθ2L Iθ2L−1 · · · Iθ1 Iθ0
x−L x1−L · · · xL−1 xL

∣∣∣∣∣∣∣∣∣∣∣∣
. (3.13)

The numerator is the same as detM2L except in the last line x2L+1 is replaced by x which

is not integrated over. In the classical limit all integrals are saturated by their saddle point

values, i.e. one can remove the integrals by simply replacing xi → xcli . If we replace x

with any saddle point value xcli the determinant will contain two identical rows and will

automatically become zero, thus the zeros of PL(x) are the saddle point values. On the

complex plane they are distributed on two arcs as shown in figure 2. As expected, for the

case θ = 0 we recover two symmetric arcs on the unit circle [9].

Now, following [9, 11, 12], we introduce the quasimomentum p(x) as

p(x) = −θ x
2 + 1

x2 − 1
+
L

g

x

x2 − 1
− 2L

g

x2

x2 − 1
GL(x), (3.14)

where the resolvent GL(x) is

GL(x) =
1

2L

2L+1∑
k=1

1

x− xk
. (3.15)

The motivation for introducing p(x) is that the saddle point equations (3.12) expressed

through p(x) take a very simple form

1

2
(p(xi + iε) + p(xi − iε)) = π sgn(Re(xi)). (3.16)

– 6 –
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In the classical limit the poles of the quasimomentum condense and form two cuts. In

anticipation of this fact we introduce the shifts ±iε in the equation above, which in the

classical limit will refer to taking the argument of the quasimomentum to one or the other

side of the cut.

3.2 Closed form expression for the quasimomentum

The quasimomentum (3.14) introduced in the previous section is a convenient object to

consider when taking the classical limit L ∼
√
λ→∞, because in this limit it is related to

the algebraic curve of the corresponding classical solution. In this section we will construct

this curve explicitly.

In the classical limit the poles of p(x), which we denote as xi, are governed by the

saddle-point equation and condense on two cuts in the complex plane, as shown in figure 2.

The saddle-point equation (3.12) has a symmetry x → −1/x, so does the set of poles xi.

For the quasimomentum (3.14) this symmetry manifests as the identity p(x) = −p(−1/x).

Thus we conclude that the two cuts are related by an x → −1/x transformation. This

and the invariance of the saddle-point equation under complex conjugation implies that

the four branch points can be parameterized as {r eiψ, r e−iψ,−1/r eiψ,−1/r e−iψ}. Note

that in the case θ = 0 the symmetry is enhanced to p(x) = −p(−x) and p(1/x) = p(x),

which is not true for arbitrary θ.

The crucial point to notice is that while p(x) satisfies the equation (3.16) which has

different constants on the right hand side for the two different cuts, the corresponding

equation for p′(x) has a zero on the right hand side for both cuts,4 thus we expect p′(x) to

have a simpler form than p(x). Our strategy is to write down an ansatz for the derivative

p′(x) using the symmetries and analytical properties of p(x) and then integrate it. The

form of the expression we get is analogous to the curve constructed in [13], which also helps

us to construct the ansatz.

First, p(x) has four branch points and according to (3.16) its derivative changes sign on

each cut, hence all the cuts are of square-root type. One can write p′(x) ∝ 1/y(x), where

y(x) =
√
x− reiψ

√
x− re−iψ

√
x+

1

r
eiψ

√
x+

1

r
e−iψ. (3.17)

Second, since the algebraic curve is obtained from (3.14) in the classical limit, p(x) should

have simple poles at x = ±1. Finally, from (3.14) we can get the behaviour at infinity:

p′(x) ≈ L

g

1

x2
+O

(
1

x3

)
. (3.18)

By using the knowledge about these singularities and asymptotics we can fix p(x) com-

pletely. Based on what we know up to now we write down our ansatz for the derivative

p′(x) =
A1x

4 +A2x
3 +A3x

2 +A4x+A5

(x2 − 1)2
√
x− reiψ

√
x− re−iψ

√
x+ 1

re
iψ
√
x+ 1

re
−iψ

. (3.19)

4The sign function in the right hand side of (3.16) has a non-zero derivative only on the imaginary axis,

i.e. away from the cuts.
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The polynomial in the numerator is of order four in order to maintain the correct asymp-

totics, and below we fix its coefficients using the properties of the quasimomentum.5

The x → −1/x symmetry for the derivative implies that A1 = A5 and A2 = −A4.

Next, the condition that p(x) has only simple poles at x = ±1 requires the residues of the

order-one poles of p′(x) to vanish, which fixes A2 to be

A2 = −(2A1 +A3) r (r2 − 1) cosψ

r4 − 2 r2 cos 2ψ + 1
. (3.20)

We fix the two remaining unknowns A1 and A3 after integrating the p′(x). We don’t write

the intermediate results of the integration as the expressions are enormous without any

apparent structure. Looking back at (3.16) we see that at the branchpoints

p(xbp) = ±π. (3.21)

We use this condition to fix A1 and we get

A1 =
A3

2

K1 − E1

E1 +K1 − 2 a2
rK1 cos2(ψ)

, (3.22)

where

E1 = E
(
a2
r sin2(ψ)

)
, K1 = K

(
a2
r sin2(ψ)

)
, ar =

2r

r2 + 1
. (3.23)

Finally we can use the x → −1/x symmetry on the quasimomentum itself, as before we

only used it on the derivative. Imposing the symmetry yields

A3 =
8

ar

(
E1 +K1 − 2 a2

r cos2(ψ)K1

)
. (3.24)

As expected, after plugging these coefficients into p(x) (and using the identities from the

appendix A) the whole expression simplifies enormously and we are left with our main result

p(x) = π − 4 i E1 F1(x) + 4 iK1 F2(x)− ar

(
x+ re−iψ

x+ 1
re
iψ

)(
2/r eiψ

x2 − 1

)
y(x)K1, (3.25)

where

F1(x) = F

sin−1

√√√√(x− re−iψ
x+ 1

re
iψ

)(
eiψ

iar r sinψ

) ∣∣∣∣∣∣ a2
r sin2(ψ)

 , (3.26)

F2(x) = E

sin−1

√√√√(x− re−iψ
x+ 1

re
iψ

)(
eiψ

iar r sinψ

) ∣∣∣∣∣∣ a2
r sin2(ψ)

 . (3.27)

We verified this result numerically by comparing it to the extrapolation of the discrete

quasimomentum (3.14) at large L and got an agreement up to thirty digits. We also com-

pared this expression at θ = 0 with the quasimomentum obtained in [9] and the expressions

agree perfectly.

5Comparing with the asymptotic one can immediately see that A1 = L/g, however our objective is to

express p(x) solely in terms of r and ψ, which parameterize the algebraic curve.
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The resulting quasimomentum is parameterized in terms of the branchpoints, i.e. the

parameters are the radius r and angle ψ. They are determined in terms of L/g and θ,

which are parameters of the matrix model. We already mentioned that L/g is simply the

constant A1, which we found to be

L

g
= 4

K1 − E1

ar
, (3.28)

and looking back at (3.14) we see that θ = p(0) = −p(∞), hence

θ = −π +
2ar
r
eiψK1

− 4 iK1 E

sin−1

√
eiψ

iar r sinψ

∣∣∣∣∣∣ a2
r sin2(ψ)


+ 4 i E1 F

sin−1

√
eiψ

iar r sinψ

∣∣∣∣∣∣ a2
r sin2(ψ)

 . (3.29)

In the next section the two equations above will be matched with two analogous equa-

tions following from the classical string equations of motion.

4 Classical string solution

As we have mentioned before, in the classical L ∼
√
λ → ∞ limit ΓL(λ) can be matched

with the energy of an open string. In this section we will describe the corresponding string

solution and find the classical energy.

The class of string solutions we are interested in was introduced in [8] and generalized

in [9]. It is a string in AdS3 × S3 governed by the parameters θ, φ, AdS3 charge E and

S3 charge L; the four parameters are restricted by the Virasoro constraint. The ansatz for

the embedding coordinates of AdS3 and S3 is

y1 + iy2 = eiκτ
√

1 + r2(σ), y3 + iy4 = r(σ)eiφ(σ), (4.1)

x1 + ix2 = eiγτ
√

1 + ρ2(σ), x3 + ix4 = r(σ)eif(σ). (4.2)

The range of the worldsheet coordinate is −s/2 < σ < s/2, where s is to be found dy-

namically. The angles θ and φ parameterizing the cusp enter the string solution through

the boundary conditions φ(±s/2) = ±(π − φ)/2 and f(±s/2) = ±θ/2. The equations of

motion and Virasoro constraints lead to the following system of equations (see appendix E

of [9] for more details, also [24]):

h1(γ, lθ) = h1(κ, lφ), (4.3)

h2(γ, lθ) = θ, h2(κ, lφ) = φ, (4.4)

h3(γ, lθ) = L/g, h3(κ, lφ) = E/g, (4.5)

where

h1(γ, l) =
2
√

2√
γ2 + k2 + 1

K
(
−k2 + γ2 + 1

k2 + γ2 + 1

)
, (4.6)

– 9 –
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h2(γ, l) =
2l

k(1 + k2 − γ2)

[
(1 + γ2 + k2) Π

(
k2 − 2l2 − γ2 + 1

2k2

k2 − γ2 − 1

2k2

)
−

−2γ2 K
(
k2 − γ2 − 1

2k2

)]
, (4.7)

h3(γ, l) = −2
√

2

√
γ2 + k2 + 1

γ

[
E
(
−k2 + γ2 + 1

k2 + γ2 + 1

)
−K

(
−k2 + γ2 + 1

k2 + γ2 + 1

)]
, (4.8)

k4 = γ4 − 2γ2 + 4 γ2l2 + 1.

One can see that the variables θ, lθ, γ and L are responsible for the S3 part of the

solution, while φ, lφ, κ and E are their analogues for AdS3. The two parts of the solution

are connected only by the Virasoro condition which leads to (4.3). We are interested in

the limit when θ ≈ φ. In this limit the two groups of variables responsible for S3 and

AdS3 parts of the solution become close to each other, namely lθ ≈ lφ and E ≈ L. The

cusp anomalous dimension should be compared with the difference E − L, because L is

the classical part of the dimension of the observable WL. To find E − L we linearize the

system (4.6), (4.7), (4.8) around φ ≈ θ, which yields

E − L = (φ− θ)
∣∣∣∣∂(h3, h1)

∂(l, κ)

∣∣∣∣ / ∣∣∣∣∂(h2, h1)

∂(l, κ)

∣∣∣∣ . (4.9)

Plugging in here the explicit form of h1, h2 and h3 one gets as a result an extremely compli-

cated expression with a lot of elliptic functions. However, there exists a parametrization in

which the result looks surprisingly simple: this parametrization comes from comparison of

the string conserved charges with the corresponding quantities of the algebraic curve. One

can notice that the equations for θ and L/g in the end of the last section have the same

structure as the equations (4.4) and (4.5). Indeed, it is possible to match them precisely

if one chooses the correct identification of parameters of the string solution lθ, γ with the

parameters of the algebraic curve r, ψ. We used the elliptic identities presented in the

appendix A to bring the equations to identical form after the following identifications

γ =
2r√

r4 − 2r2 cos 2ψ + 1
, lθ =

(r2 − 1) cosψ√
r4 − 2r2 cos 2ψ + 1

. (4.10)

As another confirmation of correctness of this identification, after plugging it into (4.9) the

complicated expression reduces to the following simple formula for the classical energy

E − L = g(φ− θ)(r − 1/r) cosψ. (4.11)

Notice that this can be rewritten as a sum over the branch points of the algebraic curve

E − L =
g

2
(φ− θ)

∑
i

bi, (4.12)

where bi = {r eiψ, r e−iψ,−1/r eiψ,−1/r e−iψ}.

– 10 –
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5 The energy from the quasimomentum

In this section we will find the classical limit of the cusp anomalous dimension from the

algebraic curve. At large L the formula (2.3) can be rewritten as

ΓL(g) =
φ− θ

4
∂θ∂L detM2L. (5.1)

Use the integral representation (3.6) for detML we can notice that

∂θ log detML =

〈
2g

2L∑
i=1

(xi − 1/xi)

〉
, (5.2)

where by the angular brackets we denoted an expectation value in the matrix model with

the partition function (3.6). In the quasiclassical approximation the expectation value is

determined by the saddle-point, i.e. the previous expression is equal to 2g
2L∑
i=1

(xi − 1/xi),

where the roots xi are the solutions of the saddle-point equation (3.12). Since the set of

the roots has a x→ −1/x symmetry, the two terms in the sum give the same contribution.

Thus

∂θ log detML = −4g
2L∑
i=1

1

xi
= 8 g LG(0), (5.3)

where we used the resolvent (3.15).

Using the relation (3.14) between the resolvent and the quasimomentum we findG(0) =
g
L (p′′(0)/4− θ), so the final expression for the cusp anomalous dimension in terms of the

quasimomentum is

ΓL(g) = −g
2

2
∂Lp

′′
L(0). (5.4)

The formula for p(x) presented in the previous section is given in terms of the parameters

of the branch points r and ψ. They are implicitly defined through L/g and θ by the

equations (3.28) and (3.29). In order to get ΓL we express ∂L though ∂r and ∂ψ and then

apply (5.4) to (3.25). Finally we obtain a very simple result in terms of r and ψ

ΓL(g) = g(φ− θ) (r − 1/r) cosψ, (5.5)

which exactly coincides with the calculation from the string solution!

5.1 Comparison with the small angle limit

Here we will check our formula (5.5) in the limit φ = 0 and θ → 0 considered in section E.2

of [9]. As the angles go to zero, the branch points approach the unit circle: r → 1, thus

the formula (5.5) gives

ΓL(g) = 2 g (θ − φ)(r − 1) cosψ. (5.6)

In this limit r − 1 ∝ θ, and the coefficient of proportionality can be found by expanding

the equation (3.29) for θ around r = 1:

2(1− r)
E
(
sin2 ψ

)
cosψ

= θ. (5.7)

– 11 –
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and using this formula to express r − 1 in (5.6) we get

ΓL(g) = g (θ − φ)θ
cos2 ψ

2E
(
sin2 ψ

) . (5.8)

Now we are almost ready to compare with the result of [9] except for one detail: since

our result is written in the leading order in θ − φ, the terms of order O(θ2) might be lost,

whereas the result of [9] is of order O(θ2) itself. To make the comparison possible, let us

rewrite the last formula keeping track of all the infinitesimally small quantities

ΓL(g) = g (θ − φ)(θ +O(θ2))
cos2 ψ

2E
(
sin2 ψ

) +O((θ − φ)2). (5.9)

On the other hand, we know [8] that at θ ≈ φ the energy behaves as

ΓL(g) = (θ2 − φ2)A(φ) +O((θ2 − φ2)2). (5.10)

From comparing the last two expressions, one can conclude that

ΓL(g) = g (θ − φ)(θ + φ)
cos2 ψ

2E
(
sin2 ψ

) +O((θ − φ)2). (5.11)

In this expression we can take the limit φ = 0, θ → 0 and get the result

ΓL(g) = g θ2 cos2 ψ

2E
(
sin2 ψ

) , (5.12)

which perfectly agrees with (190) of [9].

5.2 The 1-loop correction to the classical energy

Now that the classical limit of the cusp anomalous dimension is calculated, we can consider

corrections to it. In the limit L ∼
√
λ → ∞ which we are studying here the perturbative

expansion around the classical value can be written as

ΓL(g) =

∞∑
n=0

g1−nbn(L/g) + non-perturbative terms. (5.13)

The classical energy is g b0(L/g) and other corrections are suppressed by powers of g. A

symmetry of the formula for ΓL(g) found in [25] allows one to express the even terms in

the expansion (5.13) through the odd ones and the other way round. In particular, b1 can

be obtained from b0 by differentiating with respect to L/g. Since the classical energy is

ΓclL(g) = g (φ− θ) (r − 1/r) cosψ (5.14)

by differentiating it with respect to L/g we find that the perturbative part of energy in the

first two orders in the classical expansion is

ΓL(g) = g (φ− θ) (r − 1/r) cosψ

(
1 +

1

g
f(r, ψ)

)
, (5.15)
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where

f(r, ψ) =
r + 1/r

4

∣∣r2e2iψ + 1
∣∣2K1 − r2

∣∣r + 1
r + eiψ − e−iψ

∣∣2E1∣∣(r + 1
r

)
(r2e2iψ − 1)E1 −

(
r − 1

r

)
(r2e2iψ + 1)K1

∣∣2 , (5.16)

and E1,K1 are defined in (3.23). We have checked this formula and the classical en-

ergy (4.11) against a numerical extrapolation of the exact expression (2.3) and found an

agreement up to more than thirty digits.

6 Conclusions

In this note we considered the cusped Wilson line operator studied in [10]. We presented

a matrix model formulation of the result obtained in [10] for the anomalous dimension

of the Wilson line, which is convenient when exploring the classical limit L ∼
√
λ → ∞.

We found the corresponding classical algebraic curve (3.25) and derived a simple formula

for the energy of the dual classical string solution (4.11). We also calculated the classical

energy from the algebraic curve and verified numerically that those two expressions match

with ΓL given by (2.3) in the classical limit. In [25] an important observation about the

expansion of ΓL around the classical solution was made, which is that the expansion is

fully determined by half of the coefficients, i.e. the odd coefficients can be calculated from

the even ones and the other way round. Based on this and our knowledge of the classical

energy we calculated here the 1-loop correction to the classical energy (5.15).

The natural way to proceed exploring the properties of the cusp anomalous dimension

at strong coupling is by studying the algebraic curve. The algebraic curve was found here by

taking the classical limit of the quantized expression (3.14), but the properties of the result

are identical to those of the finite-gap solutions [11]. This is quite surprising, because here

we are dealing with open strings, for which the finite-gap procedure is not yet developed

and a priori one could expect new features of the curve, for example, contributions from the

boundary. It would be interesting to generalize the finite-gap method to the open string

case and obtain the quasimomentum (3.25) directly from the classical solution.

Based on the algebraic curve derived in this paper, it would be interesting to generalize

the construction to the case of arbitrary θ and φ. One of the possible ways to do it is to

consider a curve made of two copies of the curve presented here, representing AdS5 and

S5 parts of the solution and governed by parameters φ,E and θ, L respectively. Such gen-

eralization may give a possibility to find the expansion of ΓL around the classical solution

away from the near-BPS limit.
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A Elliptic identities

This appendix contains the identities involving elliptic functions which we used to simplify

expressions throughout the paper. For a real z

E(z)√
1− z

=

iE
(

z
z−1

)
, z < 1,

E
(

z
z−1

)
+ 2i

[
K
(

1
1−z

)
− E

(
1

1−z

)]
, z > 1.

(A.1)

√
1− zK(z) =

K
(

z
z−1

)
, z < 1,

K
(

z
z−1

)
+ 2iK

(
1

1−z

)
, z > 1.

(A.2)

The following two-parametric identity holds for r > 0, 0 < ψ < π/2:

π =
4r2

r2 + 1
eiψ K(sin2(q)) (A.3)

+
4r

r2 − 1
tan q cosψ

[
K
(
− tan2(q)

)
− r2 + 1

4r2
Π

(
(r2 − 1)2

4r2
tan2(q) − tan2(q)

)]
+ 4i

[
E
(
sin2(q)

)
F

(
sin−1

(√
r2 + 1

2

√
1− i cotψ

)
sin2(q)

)

−K
(
sin2(q)

)
E

(
sin−1

(√
r2 + 1

2

√
1− i cotψ

)
sin2(q)

)]
,

where sin2(q) = 4r2 sin2 ψ
(r2+1)2

.
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