
J
H
E
P
0
5
(
2
0
1
4
)
1
3
4

Published for SISSA by Springer

Received: April 1, 2014

Accepted: April 28, 2014

Published: May 28, 2014

Anomaly inflow and thermal equilibrium

Kristan Jensen,a,b R. Loganayagamc and Amos Yaromd

aDepartment of Physics and Astronomy, University of Victoria,

Victoria, BC V8W 3P6, Canada
bC.N. Yang Institute for Theoretical Physics, SUNY,

Stony Brook, NY 11794-3840, U.S.A.
cJunior Fellow, Harvard Society of Fellows, Harvard University,

Cambridge, MA 02138, U.S.A.
dDepartment of Physics, Technion,

Haifa 32000, Israel

E-mail: kristanj@insti.physics.sunysb.edu, nayagam@gmail.com,

ayarom@physics.technion.ac.il

Abstract: Using the anomaly inflow mechanism, we compute the flavor/Lorentz non-

invariant contribution to the partition function in a background with a U(1) isometry.

This contribution is a local functional of the background fields. By identifying the U(1)

isometry with Euclidean time we obtain a contribution of the anomaly to the thermody-

namic partition function from which hydrostatic correlators can be efficiently computed.

Our result is in line with, and an extension of, previous studies on the role of anomalies in

a hydrodynamic setting. Along the way we find simplified expressions for Bardeen-Zumino

polynomials and various transgression formulae.

Keywords: Global Symmetries, Anomalies in Field and String Theories

ArXiv ePrint: 1310.7024

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP05(2014)134

mailto:kristanj@insti.physics.sunysb.edu
mailto:nayagam@gmail.com
mailto:ayarom@physics.technion.ac.il
http://arxiv.org/abs/1310.7024
http://dx.doi.org/10.1007/JHEP05(2014)134


J
H
E
P
0
5
(
2
0
1
4
)
1
3
4

Contents

1 Introduction 2

2 A minimalist’s introduction to hydrostatics 5

3 Partition functions for theories with abelian anomalies 7

4 Abelian anomaly-induced transport 9

5 More on hydrostatics 12

5.1 Generalities 12

5.2 A covariant formulation of hydrostatic equilibrium 14

5.3 The electric-magnetic decomposition 15

5.4 Hatted connections 17

5.5 The Euclidean partition function 19

6 Non-abelian, gravitational and mixed anomalies 21

7 The relation to hydrodynamics 25

A Ward identities in the absence of anomalies 31

B Anomaly inflow 32

C Ward identities in the presence of anomalies 36

D Transgression formulae 39

E Computing the variation of VP and WCS 43

F A consistency check involving the anomalous Ward identities in equilib-

rium 47

G Spin current and torque: Mathisson-Papapetrou-Dixon equations 48

H The relativistic Boltzmann weight 57

I Notation 60

– 1 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
4

1 Introduction

Anomalies are a fascinating and unavoidable feature of quantum field theory. Their pres-

ence has been studied in great detail over the last forty-odd years leading to an improved

understanding of the behavior of quantum field theories in general (via, e.g., the ‘t Hooft

anomaly matching condition, or the Green-Schwarz mechanism) in addition to observable

phenomena as predicted by the standard model (such as the pion decay rate). Quite

surprisingly, little is known about the effect of anomalies in thermodynamic states or in

configurations which are close to thermodynamic equilibrium.

Indeed, the past several years have seen a small revolution in our understanding of

the dynamics induced by anomalies. Much of this success has been in the context of

anomaly-induced response, by which we mean the part of the thermodynamic response

of symmetry currents and energy-momentum that owes its existence to the presence of

anomalies [1–29]. This effect has been studied in diverse arenas, from relativistic hydro-

dynamics to the physics of topologically non-trivial edge states (see, for instance, [30]).

For instance, anomaly-induced transport leads to the manifestation of the chiral magnetic

effect and chiral vortical effect in hydrodynamics [31].

At nonzero temperature, a generic field theory has a finite number of gapless degrees

of freedom which correspond to the relaxation of conserved quantities. Hydrodynamics

is the universal long-wavelength effective theory which describes the evolution of those

gapless modes as well as their response to a (slowly varying) background gauge field and

metric. We may take the fields of hydrodynamics to be the parameters which describe the

equilibrium state: a temperature T , a local rest frame characterized by a timelike vector

uµ satisfying u2 = −1 which we refer to as the velocity field, and if the theory includes a

conserved charge, a local chemical potential µ. These (classical) fields are referred to as

the hydrodynamic variables.

In what follows, we will be interested in a certain subset of solutions to the hydrody-

namic equations of motion (i.e., energy and charge conservation) which we will refer to as

hydrostatic configurations. Roughly speaking, hydrostatic configurations may be thought

of as time-independent solutions to the hydrodynamic equations of motion in the presence

of a slowly varying time independent background gauge field and metric. We refer the

reader to section 2 for a more precise definition of hydrostatic configurations and section 5

for an extensive discussion. The virtue of hydrostatic configurations, in the present con-

text, is that their physical content is captured by a generating functional WQFT which is

local in the background sources [17, 32]. In other words, the entire dependence of the stress

tensor and charge current on the hydrodynamic fields and sources is captured by WQFT.

All of the anomaly-induced response studied in the literature can be characterized by its

effect on correlation functions in a hydrostatic configuration i.e., by its effect on variations

of WQFT with respect to the background gauge field and metric.1 For instance, one can

argue that the zero frequency two point function of the covariant current and stress tensor

of a 3 + 1 dimensional theory with a U(1)3 anomaly characterized by a coefficient c
A
and

1This statement is true with a judicious choice of hydrodynamic frame. There are additional subtleties

associated with the commonly used Landau frame as discussed in [27].
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a mixed gauge-gravitational anomaly characterized by a coefficient cm are given uniquely

by [22, 23, 33]

〈J i
cov(

~k)T 0j
cov(−~k)〉 = i(8π2cmT 2 + 3c

A
µ2)ǫijkkk +O(k2) , (1.1)

in the small momentum limit.2 This statement can be rephrased more elegantly in terms

of the helicity [26]. Given the momentum operator ~P and the angular momentum opera-

tor ~L, the thermal helicity 〈~L · ~P 〉 per unit volume of a 4d quantum field theory is given

by −6T (8π2cmT 2µ + cAµ
3). We emphasize that the relation (1.1) is valid only for nor-

mal fluids. The thermal helicity for fluids which have gapless degrees of freedom beyond

the hydrodynamic modes (such as superfluids or zero-temperature Fermi liquids) takes a

different form [9, 15, 21]. We refer the reader to section 7 and [34] for further discussion.

In the presence of anomalies the variation of WQFT with respect to sources is not gauge

invariant. Therefore, it is useful to decompose WQFT into a gauge-invariant term and a

non-gauge-invariant term which we will refer to as an anomalous term,3

WQFT = Wgauge−invariant +Wanom . (1.2)

Since Wanom is responsible for the non-gauge-invariance of WQFT it depends explicitly

on the anomalies of the theory. Somewhat surprisingly, there are also contributions to

Wgauge−invariant which are uniquely fixed by the anomalies. For instance, in the 3 + 1 di-

mensional example described in equation (1.1) the T 2 term is of the latter type while the

µ2 term is of the former type [23]. To make the distinction between the two types of con-

tributions of anomalies to the generating function more explicit we split Wgauge−invariant

into a contribution which is completely fixed by the anomalous content of the theory

which we refer to as Wtranscendental and a non-anomalous contribution, Wgauge−invariant =

Wtranscendental + Wnon−anomalous. All known contributions of the anomaly to hydrostatic

configurations, to date, are completely determined by Wanom and Wtranscendental. For theo-

ries in 1+ 1 and 3+ 1 dimensions both contributions to the generating function have been

computed [5, 8, 17, 19, 23, 25, 35]. In this work we will obtain an explicit expression for

Wanom in arbitrary dimensions, and formulate it in such a way so that the evaluation of

Wtranscendental can be simplified. We leave a study of Wtranscendental to a future publication.

To be more precise, in this work we will construct Wanom for global anomalies by

which we mean conservation laws which become anomalous only in the presence of external

background fields. Thus, we exclude from our analysis anomalies associated with gauge

symmetries such as the Axial-Vector-Vector anomaly of the standard model. For anomalies

associated with gauge symmetries expressions of the form (1.1) generally receive quantum

corrections [22, 34, 36].

In a general state it is impossible to write down a local Lorentz invariant expression

for the anomalous contribution to the generating function since that would imply that with

2Our conventions are such that for a left Weyl fermion with positive unit charge c
A

= 1/(24π2) and

cm = 1/(192π2).
3Strictly speaking Wanom should be understood as a representative of an equivalence class. Any two

representatives of this equivalence class differ by the addition of a covariant term.
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a judicious choice of counterterms one may get rid of the anomaly altogether. However,

when the background sources have an isometry direction then it is possible to obtain an

explicit local expression for Wanom. In hydrostatic configurations we have such an isometry

direction by definition, namely time. The local expression may be constructed as follows.

Consider the anomaly polynomial P of a 2n-dimensional theory. (We fix our conventions

for P in appendix B, where we also provide a review of the anomaly inflow mechanism.)

This polynomial is a formal 2n + 2 form which is a polynomial in the Riemann tensor

two-form Rµ
ν = 1

2R
µ
νρσdx

ρ ∧ dxσ, where Rµ
νρσ is the Riemann curvature tensor, and

field strength F = 1
2Fµνdx

µ ∧ dxν . Both R
µ
ν and F are constructed from the Christoffel

connection Γµ
ν = Γµ

νρdx
ρ and gauge connection A = Aµdx

µ. We will adopt a notation

where form fields are given by boldface characters. From the anomaly polynomial one

may construct a Chern Simons form ICS via P = dICS. This Chern-Simons form is a

polynomial in the connections and field strengths. From the connections A and Γ we can

construct the hatted connections

Â = A+ µu Γ̂µ
ν = Γµ

ν + (µR)
µ
νu . (1.3)

where we have now defined (µR)
µ
ν = TDν

(

uµ

T

)

and u = uµdx
µ, along with the covariant

derivative Dµ. These hatted connections give rise to hatted field strengths R̂µ
ν and F̂ .

From the hatted connections one can construct a hatted Chern-Simons form ÎCS defined via

ÎCS = ICS(Â, Γ̂, F̂ , R̂). The physical reasoning behind the construction of these hatted

connections which may seem somewhat mysterious at this point will be elaborated on in

section 5.

To construct Wanom, consider the 2n+2 form u∧
(

ICS − ÎCS

)

. As we will argue in the

main text this 2n + 2 form is a polynomial in the vorticity two-form ω = 1
2ωµνdx

µ ∧ dxν

(with ωµν =
PµρPνσ

2 (Dρuσ −Dσuρ) and Pµν = gµν + uµuν a projection matrix) which

vanishes when we set ω = 0. In equations, u ∧
(

ICS − ÎCS

)

=
∑n

k=0 ck ∧ (2ω)k+1, where

ck is a 2(n − k) form. Our claim is that Wanom is given by the integral of the 2n form

−∑n
k=0 ck ∧ (2ω)k. More formally, we write

Wanom = −
∫

u

2ω
∧
(

ICS − ÎCS

)

. (1.4)

With Wanom at hand one may now compute the anomalous contribution to the consis-

tent stress tensor and current

Tµν
anom =

2√−g

δWanom

δgµν
, Jµ

anom =
1√−g

δWanom

δAµ
, (1.5)

or any correlation function thereof. The non-gauge-invariance of Wanom implies that the

anomalous current and stress tensor also fail to be gauge-invariant. As argued by Bardeen

and Zumino [37], one may always construct a covariant stress tensor and current by adding

appropriate compensating currents Tµν
BZ and Jµ

BZ which are polynomials in the connections

and field strengths,

Tµν
P = Tµν

anom + Tµν
BZ Jµ

P = Jµ
anom + Jµ

BZ . (1.6)
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We derive explicit and succinct expressions for the BZ polynomials and anomalous Ward

identities in terms of the Chern-Simons form ICS and anomaly polynomial P in ap-

pendix B and C.

A second construction which we elaborate on in this paper allows us to obtain the

covariant anomaly-induced stress tensor and current, Tµν
P and Jµ

P without carrying out the

explicit variation of Wanom. More explicitly we claim that given an anomaly polynomial

P , one can construct the formal 2n+ 1 form

VP =
u

2ω
∧
(

P − P̂

)

, (1.7)

from which we take derivatives to obtain Tµν
P and Jµ

P as

⋆JP =
∂VP

∂B
, ⋆qP =

∂VP

∂(2ω)
, ⋆(LP)µν =

∂VP

∂(BR)νµ
. (1.8)

In writing (1.8) we have represented the flavor current Jµ
P , heat current qµP , and (LP)

ρµ
ν

in terms of their Hodge duals (we review our conventions for the Hodge star operator in

appendix I), and have defined the magnetic flavor field and magnetic curvatures

Bµν ≡ PµρPνσF
ρσ , (BR)

µ
νρσ ≡ Pρ

αPσ
βRµ

ναβ , (1.9)

where Pµν ≡ gµν + uµuν is the transverse projector to the velocity vector. The anomaly-

induced covariant stress tensor is given by

Tµν
P = uµqνP + uνqµP +Dρ

[

L
µ[νρ]
P + L

ν[µρ]
P − L

ρ(µν)
P

]

, (1.10)

where the curved and straight brackets indicate symmetrization or anti-symmetrization,

A(µν) =
1

2
(Aµν +Aνµ) , A[µν] =

1

2
(Aµν −Aνµ) . (1.11)

For pure U(1) anomalies, it was previously observed in [11] that one can generate the

anomaly-induced currents using a functional VP in exactly the same way as in (1.8).

In order to make our work self-contained, we begin with a sequence of pedagogical sec-

tions (sections 2–4). In section 2 we bring the reader up to speed on hydrostatics. We then

re-derive known results regarding abelian anomalies using a novel framework which we will

later apply to more general anomalies. In section 5 we give a more extensive and modern

discussion of hydrostatics including its covariant formulation and the role of hatted con-

nections. A proof of (1.4) and (1.8) for arbitrary anomalies, including gravitational ones, is

presented in section 6. We conclude by discussing our results as well as prospects for future

work in section 7. Many of the technical details have been relegated to the appendices.

2 A minimalist’s introduction to hydrostatics

Consider the hydrodynamic equations for a fluid placed in a slowly varying time-

independent background. The background consists of a gauge field Aµ and metric gµν
which we refer to as external sources. A hydrostatic configuration is a time-independent

– 5 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
4

solution of these equations which is a local functional of these sources. We take it as a

fundamental postulate that such a configuration exists.

The simplest example of hydrostatic equilibrium is a fluid configuration in flat space

where all hydrodynamical fields are constant, i.e., thermodynamic equilibrium. When

a fluid is placed on a generic time-independent background, we expect it to relax to a

hydrostatic configuration at late times. Note that in a generic background spatial gradients

of the hydrodynamic fields will not vanish. For instance, a hydrostatic configuration in the

presence of a time-independent electric field has charge density gradients.

The energy-momentum and charge distributions in hydrostatics are most efficiently

summarised by a local generating functional WQFT[gµν , Aµ] of the time-independent

sources. This ‘hydrostatic’ generating function is closely related to a Euclidean partition

function WE [17, 32].

Let Kµ be the time-like Killing vector of the time independent background. We will

choose a coordinate system where Kµ∂µ = ∂t (While our current formulation involves

choosing a particular time direction, in section 5 we will consider a covariant formulation

of hydrostatics.) The Killing vectorKµ can be used to define a Euclidean partition function

ZE . This is done by Wick-rotating the time direction, compactifying it with coordinate

periodicity β, and imposing thermal boundary conditions around the resulting thermal

circle. The logarithm of ZE will give us the Euclidean generating functional WE for the

connected correlation functions of the theory,

WE = −i lnZE . (2.1)

For slowly varying backgrounds, we can “un-Wick rotate” WE to get the hydrostatic gen-

erating function WQFT, defined earlier.

The procedure outlined above then fixes the hydrostatic temperature, chemical poten-

tial and velocity profile in terms of the background sources to be

T−1 = β
√−g00 ,

µ

T
= βA0 ,

uµ =
δµ0√−g00

,

(2.2)

up to a change of hydrodynamic frame. All other hydrodynamic quantities are constructed

out of the hydrodynamic variables in (2.2) together with the sources Aµ and gµν . The

expansion, acceleration vector, vorticity tensor, shear tensor, and electric and magnetic

fields are respectively given by

ϑ = ∇µu
µ , aµ = uν∇νuµ ,

ωµν =
PµρPνσ

2
(∇ρuσ −∇σuρ) , σµν =

PµρPνσ

2
(∇ρuσ +∇σuρ)− ϑ

d− 1
Pµν , (2.3)

Eµ = Fµνu
ν , Bµν = PµρPνσF

ρσ ,

– 6 –
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where Pµν = gµν + uµuν and d is the number of space-time dimensions. In form notation

we can write

dA = u ∧E +B

du = −u ∧ a+ 2ω ,
(2.4)

The fact that the system is in equilibrium, i.e., equations (2.2) together with the time-

independence of all fields, imposes various interrelations between the fields which imply

that the field configuration is dissipationless [32]. We have

∇µ

(uν
T

)

+∇ν

(uµ
T

)

= 0 , ∇µT + aµT = 0 , ∇µµ+ aµµ = Eµ . (2.5)

These equations imply that the system is in thermal and chemical equilibrium and, more-

over, that the shear and expansion vanish, σµν = 0 and ϑ = 0.

In this work we will often use hatted connections, e.g., Â = A+µu (see equation (1.3))

and the corresponding electric and magnetic field dÂ = u∧ Ê+ B̂. The virtue of F̂ = dÂ

is that in hydrostatic equilibrium, the field strength F̂ is transverse to the velocity field

F̂ = dÂ = B + 2ωµ+ u ∧ (E − (d+ a)µ) = B + 2ωµ , (2.6)

where we have used (2.5).

We return our attention to the hydrostatic generating functional WQFT. In the absence

of gauge and gravitational anomalies the generating function, WQFT will be constructed

from the most general gauge invariant and coordinate reparametrization-invariant combi-

nation of the fields T , µ and uµ (as given in (2.2)) and the background fields gµν and Aµ.

It is often useful to organize the possible contributions to WQFT in a derivative expansion.

We refer the reader to [17, 23, 32] for further details.

For a theory with anomalies, the Wess-Zumino consistency conditions demands that

WQFT must exhibit a particular anomalous variation under gauge and coordinate transfor-

mations [38]. As a result WQFT takes the form of a gauge and diffeomorphism-invariant

term plus an extra, additive, and local contribution which we denote by Wanom. This ad-

ditive term is not gauge and diffeomorphism-invariant and is constructed in such a way to

correctly reproduce the anomalous variation of WQFT. An explicit construction of Wanom

for arbitrary anomalies in arbitrary dimensions is one of the main results of this paper.

3 Partition functions for theories with abelian anomalies

Consider the hydrostatic generating functional WQFT for a 2n-dimensional theory with

a U(1) anomaly. We may decompose WQFT into a gauge-invariant contribution and an

anomalous contribution,

WQFT = Wanom +Wgauge−invariant . (3.1)

The separation in (3.1) is somewhat arbitrary since there is an equivalence class of ex-

pressions for Wanom under the addition of local gauge-invariant terms. In this work we

advocate for a particular representative for Wanom given in (1.4)

Wanom = −
∫

WCS = −
∫

u

2ω
∧
[

ICS − ÎCS

]

, (3.2)

– 7 –
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where ICS = c
A
A∧F n is the Chern-Simons term associated with the abelian anomaly, and

ÎCS = c
A
Â∧F̂ n is the Chern-Simons form evaluated for the hatted connection Â = A+µu.

The appearance of the hatted connection might seem a bit mysterious at this point. In

section 5 we attempt to elucidate its origin.

As we will now argue Wanom correctly reproduces the anomalous gauge variation

of the hydrostatic theory and therefore also reproduces existing results in the litera-

ture [17, 19, 39]. Consider the anomaly inflow mechanism of Callan and Harvey [40]; we

place our 2n dimensional field theory on the boundary of a 2n+ 1 dimensional space-time

M. We denote the generating functional of the 2n-dimensional theory as WQFT. On M
and its boundary ∂M we can define a covariant generating functional

Wcov[A, g] = WQFT[A, g] +

∫

M

ICS[A] . (3.3)

The generating function Wcov is gauge invariant while the Chern-Simons term ICS is gauge

invariant up to boundary terms. The charge associated with this gauge invariance is

conserved in M but may be deposited on the boundary ∂M rendering WQFT anomalous.

Alternately, the reader familiar with Hall insulators may regard the second term on the

right hand side of (3.3) as the action of a 2n+1-dimensional Hall insulator. In the presence

of background electromagnetic fields, Hall insulators carry edge currents on their boundary.

In this instance the edge current is the (covariant) charge current of the field theory on ∂M.

Under a gauge variation δΛA = dΛ the Chern-Simons form varies as

δΛICS = c
A
δΛA ∧ F n = d [c

A
ΛF n] = d

[

Λ
∂ICS

∂A

]

, (3.4)

where in the last equality we have written the boundary term in a way that will be easier

to generalize to more complicated non-abelian and gravitational anomalies. The gauge-

invariance of Wcov in (3.3) then gives

δΛWQFT = −
∫

Λ
∂ICS

∂A
. (3.5)

Meanwhile, the anomalous variation of WCS gives

δΛWCS = δΛA ∧ ∂WCS

∂A
= dΛ ∧ ∂WCS

∂A
= d

(

Λ
∂WCS

∂A

)

− Λd

(

∂WCS

∂A

)

= d

(

Λ
∂WCS

∂A

)

+ Λd
[ u

2ω

]

∧
(

∂ICS

∂A
− ∂ÎCS

∂Â

)

− Λ
u

2ω
∧ d

(

∂ICS

∂A
− ∂ÎCS

∂Â

)

= d

(

Λ
∂WCS

∂A

)

+ Λ

(

∂ICS

∂A
− ∂ÎCS

∂Â

)

. (3.6)

In going from the second line to the third we have used that

d

(

∂ICS

∂A

)

= c
A
dF n = 0 , (3.7)

– 8 –
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and similarly for the derivative of the hatted Chern-Simons form. We also used the formal

identity

d
[ u

2ω

]

= 1 , (3.8)

valid when acting on a polynomial of at least degree one in ω, which we will now prove.

Consider du = 2ω − u ∧ a where a = aµdx
µ is the acceleration 1-form. Then,

0 = u ∧ d2u = u ∧ d(2ω)− u ∧ a ∧ (2ω) = u ∧ d(2ω) + du ∧ (2ω)− (2ω)2 , (3.9)

so that

d
[ u

2ω

]

=
u ∧ d(2ω) + du ∧ (2ω)

(2ω)2
= 1 . (3.10)

By (1.4), (3.6) becomes

δΛWanom = −
∫

δΛWCS = −
∫

Λ

(

∂ICS

δA
− ∂ÎCS

∂Â

)

. (3.11)

The second term in the integrand is

∂ÎCS

∂Â
= c

A
F̂ n . (3.12)

In hydrostatic equilibrium F̂ = B+2ωµ is a purely spatial form (see (2.6)). It then follows

that the 2n-form F̂ n vanishes in 2n-dimensions since it has no leg along the time direction,

so that the gauge variation of Wanom is given by

δΛWanom = −
∫

Λ
∂ICS

∂A
, (3.13)

which is the desired result (3.5).

We have shown that the expression (1.4) from the Introduction reproduces the correct

anomalous variation of the hydrostatic WQFT for abelian anomalies. The proof that Wanom

reproduces the correct anomalous variation of WQFT can be extended to gravitational and

non-abelian anomalies. In section 5 we introduce, among other things, the non-abelian

and spin chemical potential (µR) which are the non-abelian and gravitational counterparts

of the chemical potential µ used in this section. Using these chemical potentials one can

define corresponding hatted connections, Âµ and Γ̂µ
νρ, which allow us to construct Wanom

for general anomalies.

4 Abelian anomaly-induced transport

We turn our attention from the anomalous gauge variation of WQFT to the study of the

anomaly induced energy-momentum and U(1) flavor currents. The consistent current and

stress tensor can be computed by varying the generating function WQFT,

δWQFT =

∫

d2nx
√−g

[

δAµJ
µ +

1

2
δgµνT

µν

]

. (4.1)

– 9 –
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In the previous section we found an explicit expression for Wanom which reproduces the

anomalous gauge variation of WQFT. We proceed to compute the anomaly-induced charge

current and stress tensor, i.e., the current and stress tensor that follow from varying Wanom,

δWanom =

∫

d2nx
√−g

[

δAµJ
µ
anom +

1

2
δgµνT

µν
anom

]

. (4.2)

It is possible (and not too difficult) to compute the anomalous contribution to the consistent

current and stress tensor, Jµ
anom and Tµν

anom, by explicitly varying WCS. We do this in

appendix E.

By construction, the consistent current Jµ varies under gauge transformations [37].4

However, it is possible to add to the consistent current a polynomial in Aµ and Fµν , the

Bardeen-Zumino (BZ) polynomial Jµ
BZ, such that Jµ

cov = Jµ + Jµ
BZ, the covariant current,

is invariant under gauge transformations. Rather than varying WCS and computing

the Bardeen Zumino currents to obtain the covariant currents we elect to take a more

straightforward approach; the covariant current can be computed by varying Wcov defined

in (3.3) directly,

δWcov =

∫

d2nx
√−g

[

δAµJ
µ
cov +

1

2
δgµνT

µν
cov

]

+ (bulk variation) . (4.3)

In what follows we carry out this variation.

Before varying Wcov, it is useful to decompose the bulk Chern-Simons form ICS in a

specific way. Using d
[

u

2ω

]

= 1, we have

ICS−ÎCS = d
[ u

2ω
∧
(

ICS − ÎCS

)]

+
u

2ω
∧
(

dICS − dÎCS

)

= dWCS+
u

2ω
∧
(

P − P̂

)

, (4.4)

where we have used dICS = P , P(F ) = c
A
F n+1 is the anomaly polynomial, and P̂ =

P(F̂ ). To avoid cluttering (4.4) we have used P and P̂ in place of P(F ) and P(F̂ ). In

the remainder of this section we will continue to use these conventions, i.e., P = P(F )

and P̂ = P(F̂ ). Equation (4.4) can be rewritten in the form

ICS − ÎCS = VP + dWCS , (4.5)

where we have defined

VP =
u

2ω
∧
(

P − P̂

)

. (4.6)

From (4.6), VP is a gauge-invariant 2n + 1-form constructed out of u, ω, F and F̂ . Us-

ing (2.3) we may decompose the field strength F into an electric part and a magnetic part,

F = u ∧E +B , (4.7)

allowing us to write VP in the form

VP =
u

2ω
∧ (P(B)−P(B + 2ωµ)) . (4.8)

4The non gauge invariance of Jµ follows from δΛδWQFT = δδΛWQFT implying that∫
d2nx

√−g δAµδΛJ
µ = −

∫
Λ ∂ICS

∂A
+ (Boundary terms) where we have used (3.5). We refer the reader

to appendix B for a more careful derivation.
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Thus we may regard VP as a functional of u,ω,B, and µ. Both of these representations of

VP , (4.6) and (4.8), will prove useful. In the time-independent gauge which we are working

in, both Â and F̂ are spatial forms. Consequently the 2n + 1-form ÎCS = c
A
Â ∧ F̂ n has

no leg along the time-direction and therefore vanishes in 2n+1 dimensions. Removing ÎCS

from (4.5) and using (3.1) and (3.3) we obtain

Wcov = Wgauge−invariant +

∫

M

VP . (4.9)

The decomposition (4.5) thereby leads to a rewriting of Wcov in terms of manifestly gauge-

invariant objects. Equation (4.9) implies that the covariant current and stress tensor will

get contributions from both Wgauge−invariant and VP .

The variation of VP leads to bulk and boundary currents, viz.,

δ

∫

M

VP =

∫

d2nx
√−g

[

δAµJ
µ
P +

1

2
δgµνT

µν
P

]

+ (bulk currents) , (4.10)

where we have denoted the contribution to the boundary stress tensor and current by Tµν
P

and Jµ
P . Let us regard VP as a functional of u,ω,B, and µ as in (4.8). In varying VP

we need to convert the variations of ω and B to variations of u and A via an integration

by parts,

(dδu) ∧ u = [δ(2ω)− δu ∧ a] ∧ u ,

(dδA) ∧ u = [δB + δu ∧E] ∧ u .
(4.11)

The boundary variation of VP arises entirely from this integration by parts. We find

δVP = d

[

δA ∧
(

∂VP

∂B

)

u,ω,µ

+ δu ∧
(

∂VP

∂(2ω)

)

u,B,µ

]

+ (bulk contributions) . (4.12)

From (4.12) we find the covariant anomaly-induced flavor current and heat current

⋆JP =
∂VP

∂B
, ⋆qP =

∂VP

∂(2ω)
, (4.13)

where ⋆ is the Hodge star operator on the boundary. Our conventions for the Hodge star

operator may be found in appendix I. Converting variations of u to variations of the metric

using (2.2) gives

δuµq
µ =

1

2
δgµν(u

µqν + uνqµ) +
1

2
δgµνu

µuνuρq
ρ , (4.14)

from which we obtain

Tµν
P = uµqνP + uνqµP . (4.15)

Let us see how this machinery works in detail by recomputing the U(1)3 anomaly-

induced transport in four dimensions [5]. For a theory with anomaly polynomialP = c
A
F 3,

we have

VP = c
A

u

2ω
∧
[

B3 − (B + 2ωµ)3
]

= −µc
A
u ∧

[

3B2 + 3µ(2ω)B + µ2(2ω)2
]

, (4.16)
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which leads to the currents

⋆JP =
∂VP

∂B
= −6c

A
µu ∧B − 3c

A
µ2u ∧ (2ω) ,

⋆qP =
∂VP

∂(2ω)
= −3c

A
µ2u ∧B − 2c

A
µ3u ∧ (2ω) .

(4.17)

Hodge dualizing the currents in (4.17) leads to

Jµ
P = −6c

A
µ ǫµνρσuν∂ρAσ − 3c

A
µ2ǫµνρσuν∂ρuσ ,

qµP = −3c
A
µ2ǫµνρσuν∂ρAσ − 2c

A
µ3ǫµνρσuν∂ρuσ .

(4.18)

In (7.6) we have summarized the hydrodynamic constitutive relations to first order in

derivatives. We relate these results to the existing literature in section 7.

Our general result (4.13) and (4.15) is valid for U(1) anomalies in even spacetime

dimensions. It matches the anomaly-induced current and stress tensor computed using

entropy arguments [10, 11] or using the hydrostatic generating functional [39]. Further,

in [11] it was observed that one can generate the anomaly induced currents using a gener-

ating function VP a’ la (4.13). The current section allows one to interpret VP as the bulk

contribution to the covariant generating function.

The main results of this section are equations (4.13) and (4.15), which describe the

anomaly-induced flavor current and stress tensor. In the remainder of this work we will

develop the technical machinery required to generalize (4.13) and (4.15) to non-abelian and

gravitational anomalies. We begin with a somewhat detailed and covariant exposition of

hydrostatics before discussing that generalization.

5 More on hydrostatics

In the hydrodynamic limit, states of the system are characterized by hydrodynamic fields

whose kinematic behavior is determined via energy-momentum conservation and charge

conservation. In what follows we will consider a specialized subset of configurations which

we call hydrostatic configurations that will be defined below.

5.1 Generalities

Consider a field theory with a global symmetry group G and algebra g. Following our

convention earlier in the text, we refer to this symmetry as a “flavor” symmetry and to

the corresponding symmetry current as a “flavor” current. Hydrodynamics can be thought

of as a long wavelength approximation of a state of this theory which is close to thermal

equilibrium. The hydrodynamic variables describing the evolution of the fluid are a velocity

field uµ, a local temperature T , and a local chemical potential µ for the flavor charge. We

place our fluids in a non-trivial but slowly varying background, described by a metric gµν
and an external gauge field Aµ which couples to the flavor current. The chemical potential

µ and external gauge field Aµ may be regarded as matrices in flavor space. We use a ‘·’ to
denote a trace over flavor indices. In what follows we choose an anti-Hermitian basis for

the generators TA of the adjoint representation of g, so that we notate e.g. the g-valued
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chemical potential µ as µ ≡ −iµA(TA).
5 From Aµ we construct the background field

strength

Fµν = ∂µAν +AµAν − (µ ↔ ν) , (5.1)

where matrix multiplication is implicit. Under a gauge transformation parameterized by

Λ, the fields µ, Aµ and Fµν transform according to

δΛµ = [µ,Λ] , δΛAµ = ∂µΛ + [Aµ,Λ] = DµΛ , δΛFµν = [Fµν ,Λ] . (5.2)

In coupling the fluid to the metric, we must also specify the connection. For simplicity

we study fluids coupled to the Christoffel connection

Γλ
µν =

1

2
gλα [∂µgνα + ∂νgµα − ∂αgµν ] . (5.3)

We construct the Riemann curvature from the connection via

Rσ
λµν ≡ ∂µΓ

σ
λν + Γσ

αµΓ
α
λν − (µ ↔ ν) . (5.4)

Using the Christoffel and gauge connections we extend the definition of Dµ so that it

denotes a flavor and spacetime covariant derivative. For instance, consider a tensor V µ
ν

which transforms in the adjoint representation of the flavor symmetry. Then Dµ acts

on V µ
ν as

DµV
ν
ρ = ∂µV

ν
ρ + [Aµ, V

ν
ρ] + Γν

σµV
σ
ρ − Γσ

ρµV
ν
σ , (5.5)

and similarly when the tensor has more indices.

Consider an infinitesimal coordinate transformation ξµ and gauge transformation Λ;

we collectively notate the transformation as χ = {ξµ,Λ} and the variation as δχ. Under

this transformation, a covariant tensor θµν in the adjoint representation of g varies as

δχθ
µ
ν = £ξθ

µ
ν + [θµν ,Λ] . (5.6)

For later use, we find it useful to rewrite (5.6) in terms of arbitrary connections Ãµ, Γ̃
µ
νρ

(not necessarily Aµ or the Christoffel connection) and their associated covariant derivative

D̃µ. After some algebra one finds

δχθ
µ
ν = ξρD̃ρθ

µ
ν + D̃νξ

ρθµρ − D̃ρξ
µθρν + T̃ σ

ρνξ
ρθµσ − T̃µ

ρσξ
ρθσν + [θµν , ξ

ρÃρ + Λ] , (5.7)

where we have defined the torsion T̃µ
νρ = Γ̃µ

ρν − Γ̃µ
νρ. We can use this result to deduce

the transformation properties of ξµ and Λ under a gauge and coordinate transformation

5In a background with nonzero chemical potential, the flavor symmetry is effectively broken to the

subgroup which commutes with µ. As a result the hydrodynamic limit is encoded in the response of the

stress-energy tensor and the symmetry currents of the unbroken subgroup. For a typical chemical potential

the unbroken subgroup is the Cartan subgroup, and so it is common practice to write thermodynamics

with a non-abelian flavor symmetry G in terms of thermodynamics with a number of U(1) symmetries (see

e.g. [8]). However this cannot be consistently done in a hydrostatic or hydrodynamic state. In this work we

will be interested in the full structure of the global symmetry and so we retain the (potentially) non-abelian

nature of the flavor symmetry.
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as follows. We demand that δχ1θ
µ
ν , being a covariant tensor transforming in the adjoint

representation of g, varies under a second transformation χ2 as

δχ2(δχ1θ
µ
ν) = £ξ2

(

δχ1θ
µ
ν

)

+ [δχ1θ
µ
ν ,Λ2] . (5.8)

After some algebra one finds

δχ2ξ
µ
1 = £ξ2ξ

µ
1 = ξν2∂νξ

µ
1 − ξν1∂νξ

µ
2 = −δχ1ξ

µ
2 ,

δχ2Λ1 = £ξ2Λ1 + [Λ1,Λ2]− ξµ1 ∂µΛ2 = ξµ2 ∂µΛ1 − ξµ1 ∂µΛ2 + [Λ1,Λ2] = −δχ1Λ2 .
(5.9)

This motivates the definitions

ξµ[12] ≡ ξν1∂νξ
µ
2 − ξν2∂νξ

µ
1 ,

Λ[12] ≡ ξµ1 ∂µΛ2 − ξµ2 ∂µΛ1 − [Λ1,Λ2] ,
(5.10)

so that we can write the algebra obeyed by coordinate and flavor gauge transformations as

[δχ1 , δχ2 ] = δχ[12]
.

5.2 A covariant formulation of hydrostatic equilibrium

Suppose our field theory is coupled to a background metric gµν and gauge field Aµ, both

of which are invariant under the action of a time-like Killing vector Kµ and gauge trans-

formation ΛK ,

δKgµν = £Kgµν = 0 , δKAµ = £KAµ +DµΛK = 0 . (5.11)

Our main postulate, as phrased in section 2 is that there exists a solution to the conservation

equations of our field theory which respect the symmetry generated by K and is a local

function of the sources. We call such a configuration a hydrostatic state. In section 2 we

introduced hydrostatic equilibria in a particular gauge and coordinate choice where the

background fields were explicitly time-independent (the “transverse gauge”) i.e., Kµ =

(1, 0, . . . , 0). While it is convenient to carry out computations in the transverse gauge, it

is often useful to use a covariant formation of hydrostatics, especially when dealing with

gravitational anomalies.

In analogy with (2.2) we define the temperature, T , velocity field uµ and chemical

potential µ via

T =
1

β
√
−K2

, uµ =
Kµ

√
−K2

, µ =
KµAµ + ΛK√

−K2
≡ βT µ̄ , (5.12)

where β is the parametric length of the time circle. Since T , uµ and µ are constructed

from the background fields and symmetry generators, they are invariant under the action

of the symmetry. In particular, the chemical potential transforms covariantly due to

δχ(K
µAµ + ΛK) = AµδχK

µ +KµδχAµ + δχΛK ,

= Aµ£ξK
µ + (Kµ£ξAµ +KµDµΛ) + (£ξΛK + [ΛK ,Λ]−Kµ∂µΛ) ,

= £ξµ̄+ [µ̄,Λ] , (5.13)
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We also define the matrix-valued spin chemical potential (µR)
µ
ν which in terms of Kµ

becomes

(µR)
µ
ν = TDν

(

uµ

T

)

=
DνK

µ

√
−K2

. (5.14)

The spin chemical potential is the equivalent of the flavor chemical potential when con-

structing gravitational anomalies.6 We elaborate on this point later in this section (for

example see (5.21) and (5.23)) and in appendix G.

A particular realization of the transverse gauge which we have worked with in section 2

can be constructed as follows. Let us take the metric and gauge field to be of the form

g = −e2s(dt+ a)2 + pijdx
idxj ,

A = A0(dt+ a) + Aidx
i ,

(5.15)

where a ≡ aidx
i. All the metric and gauge-field components are functions of xi but are

assumed to be independent of t. It is straightforward to verify that the metric and gauge

field above satisfy the Killing conditions (5.11) withKµ∂µ = ∂t and ΛK = 0. The particular

gauge (5.15) was introduced in [17] and its significance in writing the hydrostatic generating

functional and hydrodynamics was studied in detail there.

Using (5.12) the explicit expressions for the local temperature, fluid velocity, and

chemical potential are

T =
e−s

β
, uµ∂µ = e−s∂t , uµdx

µ = −es(dt+ a) , µ = e−sA0 . (5.16)

We also note in passing that pij is equivalent to the projection matrix Pµν ,

Pµνdx
µdxν = (gµν + uµuν)dx

µdxν = −e2s(dt+ a)2 + pijdx
idxj + e2s(dt+ a)2 = pijdx

idxj ,

The physical interpretation of Ai will be described shortly.

5.3 The electric-magnetic decomposition

Motivated by the results in section 4 we use the local fluid velocity uµ to decompose the

various covariant tensors into “electric” and “magnetic” parts. For instance, we decompose

the background flavor field strength Fµν into an electric flavor field Eµ ≡ Fµνu
ν and a flavor

magnetic field which is transverse to uµ,

Bµν ≡ Fµν − [uµEν − uνEµ] (5.17)

It is easily checked that Bµνu
ν = 0 and hence the magnetic field can be thought of as the

transverse part of the field strength. We refer to this as an “electro-magnetic” decomposi-

tion insofar as Eµ and Bµν describe the electric and magnetic fields in the local fluid rest

6To understand this equivalence, we note that using the Mathisson-Papapetrou-Dixon formulation of

the equations of motion in the presence of point torques the natural thermodynamic conjugate of the spin-

current (which appears later in this section in (5.45)) is the chemical potential µR defined above. See

appendix G for further discussion.

– 15 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
4

frame. We decompose the exterior derivative of the fluid velocity ∂µuν − ∂νuµ in a similar

way: the acceleration aµ and vorticity ωµν are given by

aµ ≡ −uν(∂µuν − ∂νuµ) ,

2ωµν ≡ (∂µuν − ∂νuµ) + [uµaν − uνaµ] .
(5.18)

The definitions (5.18) definitions coincide with the usual ones (2.3) in the absence of torsion.

We see that the acceleration and vorticity are the fluid analogues of a local electric and

magnetic field respectively.

Our next step is to mimic this construction in gravity. As it turns out, it is most

convenient to regard the Riemann tensor as a matrix-valued antisymmetric two-tensor.

That is, we treat the first two indices of the Riemann tensor as matrix indices and the last

two indices as spacetime indices. We then decompose the last two indices into electric and

magnetic parts just as we did for Fµν : the electric and magnetic parts part of the Riemann

tensor are

(ER)
λ
σµ ≡ Rλ

σµνu
ν ,

(BR)
λ
σµν ≡ Rλ

σµν −
[

uµ (ER)
λ
σν − uν (ER)

λ
σµ

]

.
(5.19)

This magnetic Riemann tensor is transverse in its last two indices (BR)
λ
σµνu

ν = 0.7

As we mentioned in section 2, the quantities in (5.12) and (5.14) obey certain dif-

ferential interrelations. These may be obtained from the condition (5.11) that {Kµ,ΛK}
generates a symmetry of the background fields. To see this, write

δKgµν = DµKν +DνKµ

=
2

βT

(

σµν +
Pµν

d− 1
ϑ

)

− 1

βT 2
[uµ (Dν + aν)T + uν (Dµ + aµ)T ] = 0 ,

(5.20a)

together with

δKAµ = Kν∂νAµ + ∂µK
νAν +DµΛK = −FµνK

ν +Dµ(K
νAν + ΛK)

=
1

βT 2
[T (−Eµ + (Dµ + aµ)µ)− µ(Dµ + aµ)T ] ,

(5.20b)

and

δKΓµ
νρ = £KΓµ

νρ + ∂ν∂ρK
µ = −Rµ

νρσK
σ +DρDνK

µ

=
1

βT 2

[

T
(

−(ER)
µ
νρ + (Dρ + aρ)(µR)

µ
ν

)

+ (µR)
µ
ν(Dρ + aρ)T

]

.
(5.21)

7Unfortunately, there are many other notions of electric-magnetic decomposition of gravitational tensors

which are prevalent in this context. The first one, which often goes by the name of ‘gravito-magnetism’

involves a decomposition of the connection Γ while the second one, more familiar in general relativity ,

is the electric-magnetic decomposition of the Weyl tensor (a closely related decomposition is the so called

Bel decomposition of the Riemann tensor). We will be using none of those notions in this paper and the

reader interested in comparisons with other literature is warned to be mindful of these distinctions. As will

become clear later on, the electric-magnetic decomposition we describe in this section is the one relevant to

questions about transport - in particular, this is the most convenient decomposition to study gravitational

anomalies at finite temperature.
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Assuming that K generates a symmetry, we then have

Dµ

(uν
T

)

+Dν

(uµ
T

)

= 0 , (Dµ + aµ)T = 0 , (Dµ + aµ)µ = Eµ , (5.22)

which reproduces the conditions (2.5) described earlier together with

(Dρ + aρ)(µR)
µ
ν = (ER)

µ
νρ , (5.23)

in close analogy with the equation of chemical equilibrium (Dµ+aµ)µ = Eµ. Note that if we

have covariant fields {T, uµ, µ} that satisfy these equations, then we can define symmetry

data {Kµ,ΛK} from them. As a result, solutions to (5.22) are in one-to-one correspondence

with geometries possessing a timelike symmetry.

5.4 Hatted connections

Many of the quantities above can be more easily manipulated when written as differential

forms. We follow the notation of section 2 and notate form fields with a boldface font.

We begin by writing the velocity co-vector as a one-form, u = uµdx
µ. From its exterior

derivative du we obtain the acceleration and vorticity as

a = aµdx
µ = ιudu , 2ω = ωµνdx

µ ∧ dxν = du+ u ∧ a , (5.24)

where in a slight abuse of notation we refer to ιu as the interior product along the vector

uµ∂µ. The background gauge field may be written as a one-form A = Aµdx
µ, from which

the field strength is defined as

F =
1

2
Fµνdx

µ ∧ dxν = dA+A ∧A , (5.25)

where matrix multiplication is implied. The electric and magnetic flavor fields are

E = Eµdx
µ = −ιuF , B =

1

2
Bµνdx

µ ∧ dxν = F − u ∧E . (5.26)

To treat the gravitational quantities efficiently we write the Christoffel connection as

a matrix-valued one-form

Γµ
ν ≡ Γµ

νρdx
ρ , (5.27)

whose non-abelian field strength is the Riemann curvature (regarded as a matrix-valued

two-form)

Rµ
ν =

1

2
Rµ

νρσdx
ρ ∧ dxσ = dΓµ

ν + Γµ
ρ ∧ Γρ

ν . (5.28)

The electric and magnetic curvatures then take the same form as the electric and magnetic

flavor fields,

(ER)
µ
ν = (ER)

µ
νρdx

ρ = −ιuR
µ
ν ,

(BR)
µ
ν =

1

2
(BR)

µ
νρσdx

ρ ∧ dxσ = Rµ
ν − u ∧ (ER)

µ
ν .

(5.29)
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Finally, we can define the exterior covariant derivative D. In this work we require the

action of D on p-forms V which transform in the adjoint representation of g,

DV = dV +A ∧ V − (−1)pV ∧A , (5.30)

as well as on matrix valued p-forms V µ
ν transforming in the adjoint of g,

DV µ
ν = dV µ

ν +A ∧ V µ
ν − (−1)pV µ

ν ∧A+ Γµ
ρ ∧ V ρ

ν − (−1)pV µ
ρ ∧ Γρ

ν . (5.31)

We are now in a position to introduce hatted connections (1.3), which play a critical

role in this work. In terms of forms, the hatted connections are

Â = A+ µu = A+ (KνAν + ΛK)K ,

Γ̂µ
ν = Γµ

ν + (µR)
µ
νu = Γµ

ν + (DνK
µ)K .

(5.32)

The hatted connections, and the quantities constructed from them exhibit a number of

useful properties. Consider the hatted field strengths,

F̂ = dÂ+ Â ∧ Â ,

R̂µ
ν = dΓ̂µ

ν + Γ̂µ
ρ ∧ Γ̂ρ

ν ,
(5.33)

which may be decomposed into electric and magnetic parts. Following the previous sub-

section, we have

F̂ = u ∧ Ê + B̂ ,

R̂µ
ν = u ∧ (ÊR)

µ
ν + (B̂R)

µ
ν

(5.34)

with

Ê = E − (D + a)µ ,

B̂ = B + 2ωµ ,

(ÊR)
µ
ν = (ER)

µ
ν − (D + a)(µR)

µ
ν ,

(B̂R)
µ
ν = (BR)

µ
ν + 2ω(µR)

µ
ν .

(5.35)

However, upon using (5.22) and (5.23) we see that the hatted electric fields vanish,

Ê = 0 , (ÊR)
µ
ν = 0 , (5.36)

so that the hatted field strengths are purely transverse,

F̂ = B̂ = B + 2ωµ , R̂µ
ν = (B̂R)

µ
ν = (BR)

µ
ν + 2ω(µR)

µ
ν . (5.37)

Physically, the hatted electric fields encode the violation of chemical and spin equilibrium.

While the hatted field strengths are transverse to the velocity field the hatted connec-

tions are generally not transverse to the velocity. The transverse parts of Âµ and Γ̂µ
νρ are

given by

ÂµK
µ = ΛK K2 , Γ̂µ

νρK
ρ = ∂νK

µK2 . (5.38)
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Nevertheless, one can always switch to a transverse gauge where the hatted connections

are transverse ({ΛK = 0, ∂νK
µ = 0}).

In the transverse gauge the hatted flavor connection is

Â = A+ µu = A−A0(dt+ a) = Aidx
i , (5.39)

In our covariant analysis we showed that the hatted field strength F̂ is a transverse form.

We can easily recover that result in transverse gauge, since Â is independent of time and

has no leg along the time direction. Consequently, the hatted field strength F̂ also has

no leg along the time direction, which is equivalent to the statement that F̂ is transverse.

Similarly since Γ̂µ
νρ is transverse and independent of time, the hatted curvature R̂

µ
ν is

also transverse.

5.5 The Euclidean partition function

Often, it is useful to Wick rotate a hydrostatic configuration to Euclidean signature. To

this end we define Euclidean time via t = −itE and associate with every function of t a

function of tE such that these two functions are restrictions of a single analytic function in

the lower half of the complex t-plane. This is easily accomplished in the transverse gauge

where all the components of the metric and gauge-fields are t-independent and hence their

analytic continuation is trivial. For instance,

aE ≡ ia , esE ≡ −ies , (A0)E ≡ −iA0 , (5.40)

so that the analytically continued metric and gauge field become

g = −e2sE (dtE + aE)
2 + pijdx

idxj

A = (A0)E(dtE + aE) + Aidx
i .

(5.41)

Similalry, under Wick rotation, the Killing vector becomes Kµ∂µ = i∂tE ; the Killing vector

along the Euclidean time is actually −iKµ in our notation. We have deliberately adopted

a notation where the metric takes the same form before and after Wick rotating. The

advantage of such a notation is that we can continue to use the Lorentzian expressions in

the Euclidean theory except for the fact that the temporal components are taken to be

imaginary.8 In what follows, we will continue to think of the Euclidean theory in such a

Lorentzian notation. almost all the expressions in the previous subsection then carry over

to the corresponding Euclidean expressions.

We now compactly the Euclidean time direction by making the periodic identification

tE ∼ tE + β along the imaginary time. Put differently, we identify two points on the

integral curves of the Killing vector Kµ provided they are separated by affine distance β

—two points along the curves satisfying

dxµE
dλ

= −iKµ

8Note that the Euclidean metric here is not really Riemannian but is actually complex when the metric

is not static (when a 6= 0 ). So, the adjective ‘Euclidean’, though commonly employed, is an abuse of

terminology. We will however, following the common convention, continue to use the adjective ‘Euclidean’

ignoring this fact.
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are identified if they are separated by ∆λ = β. We refer to the integral orbits of the

Killing vector as the thermal circles. It is interesting to note that in our new language,

the geometry of the Euclidean spacetime is that of a fibre bundle, where the fibres are the

thermal circles. The base manifold of the fibre bundle is the transverse space described

by the x-coordinates. As before, we identify the temperature, fluid velocity, and flavor

chemical potential as in (5.12), although in the transverse gauge we have ΛK = 0 and so

the chemical potential becomes

µ =
AµK

µ

√
−K2

= Aµu
µ . (5.42)

Similarly the spin chemical potential in transverse gauge is given by

(µR)
µ
ν =

DνK
µ

√
−K2

=
Γµ

νρKρ

√
−K2

= Γµ
νρu

ρ , (5.43)

where we have used that the Christoffel connection is torsionless, Γµ
νρ = Γµ

ρν and that

∂νK
µ = 0 in transverse gauge. The Euclidean partition function is related to the thermal

partition function via

ZE = tr exp(−βH) , (5.44)

with an appropriate definition of the Hamiltonian. See appendix H for further discussion.

We can now use the Euclidean partition function to compute hydrostatic expectation

values of the stress tensor and current. The consistent flavor current and stress-energy

tensor are defined by variation of the generating functional WQFT = −i lnZE with respect

to the gauge field and metric respectively. For theories with gravitational anomalies, we

find it useful to carry out the variation with respect to the metric in two stages. We first

consider the metric and connection as independent, keeping in mind that this separation

is somewhat artificial. This gives

δWQFT =

∫

d2nx
√−g

[

δAµ · Jµ +
1

2
δgµνt

µν + δΓµ
νρL

ρν
µ

]

+ (boundary terms) , (5.45)

where, as usual, we have notated a trace over flavor indices with a ‘·’. The tensor Lρν
µ is

the “spin current” which we have alluded to earlier. It will frequently be useful to regard

it as a matrix-valued one-form,

Lµ
ν = Lρ

µ
νdx

ρ . (5.46)

The variation of the connection n terms of the variation of the metric is given by

δΓµ
νρ =

1

2

[

Dνδg
µ
ρ +Dρδg

µ
ν −Dµδgνρ

]

, (5.47)

Thus, integrating (5.45) by parts we find

δWQFT =

∫

d2nx
√−g

[

δAµ · Jµ +
1

2
δgµνT

µν

]

+ (boundary terms) , (5.48)

where the stress tensor Tµν is given by

Tµν = tµν +Dρ

[

Lµ[νρ] + Lν[µρ] − Lρ(µν)
]

. (5.49)
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In the last equation the round (square) brackets indicate (anti-)symmetrization

A(µν) =
1

2
(Aµν +Aνµ) , A[µν] =

1

2
(Aµν −Aνµ) . (5.50)

This decomposition of the stress-energy tensor is naturally related to the Mathisson-

Papapetrou-Dixon equations which treat point torques in a gravitational setting [41–43]

which review in appendix G.

When the background fields are slowly varying (over length scales longer than the

static screening length), the equilibrium state is hydrostatic. As discussed in [17, 32], since

the hydrostatic configuration is slowly varying one can argue that all correlation functions

of the theory may be expanded in a power series in derivatives of the sources. Thus, in the

absence of anomalies the generating function for connected correlators of a hydrostatic con-

figuration can be constructed as a local gauge and diffeomorphism invariant functional of

the hydrostatic fields {T, uµ, µ}, the sources gµν and Aµ, and covariant derivatives thereof.

From the point of view of hydrodynamics, the fields {T, uµ, µ} comprise a time-independent

solution of the hydrodynamic equations of motion in a particular choice of hydrodynamic

frame, known as the thermodynamic frame [32]. In the presence of anomalies this generat-

ing functional needs to be appropriately modified. This is the content of the next section.

6 Non-abelian, gravitational and mixed anomalies

In the previous section we have developed some technology which will allow us to put

gravitational anomalies on a similar footing as U(1) anomalies in our analysis of sections 3

and 4. We now go on to consider anomalies of all stripes. Our goal in this section is to

obtain a simple expression for the generating functional of equilibrium covariant currents

Wcov, which we then vary to obtain the anomaly-induced response. Some of the formal

manipulations that will be carried out in this section can be understood from the anomaly

inflow mechanism and do not depend on the existence of a time-independent equilibrium.

In order to avoid confusion we will often emphasize those equalities which are valid only

in equilibrium.

Let WQFT be the generating functional of our quantum field theory. According to the

anomaly inflow mechanism [40], the non gauge and reparametrization invariance of WQFT

can be captured by thinking of the manifold on which our 2n dimensional quantum theory

lives on as a boundary of a higher, 2n + 1, dimensional manifold M. The anomalies of

the field theory are encoded in a Chern-Simons form ICS[A,Γ] which is the generating

functional on M. Using ICS, we define the generating functional of the 2n+1-dimensional

theory to be (3.3),

Wcov[A, g] = WQFT[A, g] +

∫

M

ICS[A,Γ] , (6.1)

The generating functional Wcov is gauge and diffeomorphism-invariant. As a result the

total flavor charge and energy-momentum currents are conserved, but they may flow from

the bulk into the boundary ∂M, which from the perspective of WQFT leads to an anomaly.
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Mimicking the construction in sections 3 and 4, we use the hatted connections (5.32)

to write

ICS − ÎCS = d
[ u

2ω
∧
(

ICS − ÎCS

)]

+
u

2ω
∧ d
(

ICS − ÎCS

)

= dWCS + VP ,
(6.2)

with

WCS =
u

2ω
∧
(

ICS − ÎCS

)

, VP =
u

2ω
∧
(

P − P̂

)

, (6.3)

where we have used d
[

u

2ω

]

= 1 (see (3.10)) along with dICS = P and dÎCS = P̂ (for

P = P [F ,R] the anomaly polynomial of the theory). We remind the reader that ÎCS and P̂

are the Chern-Simons form and anomaly polynomial evaluated for the hatted connections.

Using (6.2) the covariant generating functional is then given by

Wcov[A, g] = WQFT[A, g] +

∫

∂M

WCS +

∫

M

(

VP + ÎCS

)

. (6.4)

We now exploit the fact that, in hydrostatic equilibrium and in a transverse gauge,

all of the hatted connections and curvatures are transverse to u. As a result, the 2n + 1-

dimensional form ÎCS does not have a leg along the time direction and so its integral over

the 2n+ 1-dimensional manifold M vanishes. Thus, in equilibrium,

Wcov[A, g] = WQFT[A, g] +

∫

∂M

WCS +

∫

M

VP . (6.5)

In contrast to the 2n+ 1-form VP , WCS explicitly depends on the connections A and Γ
µ
ν

and is neither gauge-invariant nor diffeomorphism-covariant. Separating WQFT into an

anomalous and gauge invariant contribution WQFT = Wgauge−invariant +Wanom, the gauge

invariance of Wcov implies that

Wanom = −
∫

WCS. (6.6)

Equation (6.6) proves the claim made in the Introduction regarding the existence and form

of a local expression for Wanom. With this choice of representative

Wcov[A, g] = Wgauge−invariant[A, g] +

∫

M

VP . (6.7)

We have obtained (6.7) in the transverse gauge. However, since Wcov is gauge and diffeo-

morphism invariant and since both terms on the right hand side of (6.7) are also gauge and

diffeomorphism invariant, then the expression (6.7) is valid in any gauge and coordinate

choice (provided the system is in equilibrium).

In the rest of this section we will vary Wcov to obtain the equilibrium anomaly-induced

transport. When the equilibrium state is hydrostatic, this response is the part of the hy-

drodynamic constitutive relations due to the anomalies. The reader interested in obtaining

the consistent currents generated by varying Wanom is referred to appendix E. According

to (6.7), the covariant anomaly-induced currents follow from the variation of
∫

VP

δ

∫

M

VP =

∫

d2nx
√−g

[

δAµ · Jµ
P +

1

2
δgµνt

µν
P + δΓµ

νρ(LP)
ρν

µ

]

+ (bulk terms) , (6.8)

– 22 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
4

such that

Tµν
P = uµqνP + uνqµP +Dρ

(

L
µ[νρ]
P + L

ν[µρ]
P − L

ρ(µν)
P

)

. (6.9)

To obtain explicit expressions for Jµ
P , t

µν
P , and Lµνρ

P , it is helpful to rewrite VP in

the form

VP =
u

2ω
∧
(

P − P̂

)

=
u

2ω
∧ (P [B,BR]−P [B + 2ωµ,BR + 2ωµR]) . (6.10)

The second equality follows by arguing that only the transverse parts ofP and P̂ contribute

to VP , and that the hatted curvatures are given by (5.37) to be the transverse forms

B̂ = B + 2ωµ and B̂R = BR + 2ωµR. In rewriting VP in the form (6.10) it becomes

transparent that VP may be considered as a function of B, µ,BR, µR,u, and ω (moreover,

it should also be clear that the expression inside the brackets vanishes at zero vorticity, so

that we may consistently act on it with the operator u/(2ω).) Therefore, under a general

variation, VP varies via the chain rule as

δVP = δB ∧ ·∂VP

∂B
+ δµ · ∂VP

∂µ
+ δ(BR)

µ
ν ∧

∂VP

δ(BR)νµ
+ δ(µR)

µ
ν

∂VP

∂(µR)νµ

+ δ(2ω) ∧ ∂VP

∂(2ω)
+ δu ∧ ∂VP

∂u
.

(6.11)

We are interested in the contribution of the variation to boundary terms. To this end let

us write the variations of ω,B, and BR in terms of derivatives of δu, δA, and δΓ,

(dδu) ∧ u = (δ(2ω)− δu ∧ a) ∧ u ,

(DδA) ∧ u = (δB + δu ∧E) ∧ u ,

(DδΓµ
ν) ∧ u = (δ(BR)

µ
ν + δu ∧ (ER)

µ
ν) ∧ u .

(6.12)

Since ∂VP/∂B, ∂VP/∂(2ω), and ∂VP/∂(BR)
ν
µ each have a leg along u, we find

δVP = d

[

δA ∧ ·∂VP

∂B
+ δu ∧ ∂VP

∂(2ω)
+ ∂Γµ

ν ∧
∂VP

∂(BR)νµ

]

+ (bulk terms) . (6.13)

Comparing (6.13) with (E.13), we find

⋆JP =
∂VP

∂B
, ⋆qP =

∂VP

∂(2ω)
, ⋆(LP)µν =

∂VP

∂(BR)νµ
. (6.14)

In appendix E we show explicitly that the bulk terms correctly reproduce the bulk flavor

and spin currents that correspond to the Chern-Simons form ICS.

Up to this point, we have presented a functional form for Wanom and have shown that

it correctly reproduces the anomalous variation of WQFT. However, the curious reader may

be somewhat puzzled as to the why a local Wanom should exist and to the origin of the

hatted connections that were so crucial in Wanom’s construction. In the remainder of this

section we will discuss the physical origin of Wanom and the hatted connections as well as

the relation between our construction and transgression formulae.
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On general grounds one does not expect to be able to capture the anomaly by a local

term in the generating function. The key ingredient which allows for such a term in our

setup is that in the transverse gauge, the generating functional for a hydrostatic state is

a local functional on the 2n − 1-dimensional spatial slice [17, 32]. This essentially follows

from analytically continuing to the Euclidean theory and dimensionally reducing on the

thermal circle. For a theory with a finite static screening length, such a dimensional re-

duction generates an effective 2n − 1-dimensional theory with a mass gap. Hydrostatic

response may then be described by a local generating function on the spatial slice. When

the 2n-dimensional theory has anomalies, the theory on the spatial slice will necessarily

be anomalous under gauge and/or coordinate transformations. However, in odd dimen-

sions any local gauge or coordinate variation of WQFT may be removed by the addition

of a suitable local counterterm. Thus we are guaranteed that a local Wanom exists in

hydrostatic equilibrium.

We now turn to the relation between Wanom, the hatted connections and transgression

formulae. To understand this relation it is useful to back up a step and consider a general

(non-equlibrated) configuration of background fields. That is, we no longer demand that the

background fields are invariant under the action of a timelike symmetry K. Consider two

sets of background fields {A1, g1} and {A2, g2}, from which we construct the corresponding

field strengths {F1,R1} and {F2,R2} and so the anomaly polynomials and Chern-Simons

forms evaluated on the “1” or “2” connections. To save space, we notate these as

P i ≡ P [Fi,Ri] , Ii ≡ ICS[Ai,Fi;Γi,Ri] . (6.15)

It is a classic result that one may construct a gauge and coordinate-invariant functional

V12 ≡ V12[Fi,Ri] such that

P1 −P2 = dV12 , (6.16)

where V12 may be given an integral expression in terms of a flow in the space of connections

from {A2,Γ2} to {A1,Γ1}. Similarly, the difference of Chern-Simons forms is given by

I1 − I2 = V12 + dW12 , (6.17)

where W12 explicitly depends on both sets of connections and may be expressed in terms

of a double integral in the space of connections. We reproduce the construction of V12 and

W12 in appendix D. These results are collectively known as “transgression formulae” of

the first and second kind respectively and are useful when studying the relation between

anomalies and algebraic topology. For instance, when the “1” and “2” connections differ

by a gauge transformation, the integral of V12 calculates the phase picked up by Wcov,

which must be 2πi times an integer so that the theory is invariant. In such an instance

V12 computes a topological invariant of the bundle in which the connections live.

By (6.17), the difference of Chern-Simons terms I1 − I2 varies under a gauge or coor-

dinate transformation by a boundary term given by the variation of W12. As a result, the

integral of W12 almost gives a 2n-dimensional functional which reproduces the anomalies

of WQFT. Indeed, if we denote the variation of WQFT under a gauge/coordinate transfor-
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mation δλ as

δλWQFT[A, g] =

∫

Gλ[A,Γ] , (6.18)

then we have

δλ

∫

W12 = −
∫

(Gλ[A1,Γ]−Gλ[A2,Γ2]) . (6.19)

That is, the anomalous variation of −
∫

W12 reproduces the variation of WQFT were it

coupled to the “1” background, minus the variation it would exhibit if it were coupled to

the “2” background.

Let us return to hydrostatic equilibrium. In our construction, we also introduced two

sets of connections: the physical ones {A,Γµ
ν} which we coupled to our field theory, and

the hatted connections. We relate our hatted and unhatted connections to transgression

upon the identification

A1 = A , A2 = Â (6.20)

and similarly for the gravitational connection. Crucially, in the transverse gauge the hatted

connections are transverse Âµu
µ = 0 and Γ̂µ

νρuρ. Additionally, Gλ is a 2n-form given by

a sum of wedge products of the connections with themselves and the field strengths. As a

result Ĝλ = Gλ[Â, Γ̂] vanishes in transverse gauge, in which case the anomalous variation

of WQFT when coupled to the background {A,Γ} is reproduced by the local functional

−
∫

W12, just like −
∫

WCS. Indeed, one can show that WCS is precisely W12 under the

identification (6.20). Similarly, we have VP = V12.

In summary, the mechanism behind our construction of Wanom and VP is the trans-

gression machinery of e.g. [44–46], applied to the physical connections {A,Γ} to which we

coupled our field theory and the hatted connections (5.32) built from them. The hatted

connections are special because, in hydrostatic equilibrium, one can go to a gauge where

they are completely transverse. In that case the boundary term W12 in the decomposi-

tion (6.17) provides a representative for Wanom, which is, of course, the one given in (1.4).

7 The relation to hydrodynamics

Our results (6.6) and (6.14) describe anomaly-induced response in equilibrium. In this

section we make contact with recent developments in fluid mechanics and the macroscopic

manifestation of anomalies in hydrodynamics. Among other things, the following section

provides an example where the computational simplicity of the formalism established in

this paper is made clear. It also sets the stage for a companion paper [47] which will

summarize a much more subtle form of anomaly-induced response.

In section 1 we briefly summarized hydrodynamic theory. When studying a many body

system at distances which are much larger than the typical mean free path, the effective

degrees of freedom are a local temperature T , a local rest frame characterized by the

timelike vector uµ satisfying u2 = −1, and a local chemical potential µ. Taking these fields

as well as the background metric gµν and gauge field Aµ to be slowly varying, one expands

the energy-momentum tensor Tµν
cov and current Jµ

cov in a gradients of the hydrodynamic and
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background fields. The relation between the hydrodynamic fields and background sources

and the conserved currents are called the constitutive relations.

The hydrodynamic variables are then determined by treating the Ward identities for

Tµν
cov and Jµ

cov as equations of motion. To construct the Ward identities we must identify the

anomalies of the theory. In four dimensions there are two types of anomalies, pure flavor

anomalies, and mixed flavor-gravitational anomalies. For simplicity, consider a theory with

a single U(1) flavor symmetry which has both types of anomalies. These are encoded in

the anomaly polynomial

P = c
A
F ∧ F ∧ F + cmF ∧Rµ

ν ∧Rν
µ , (7.1)

where the coefficients c
A
and cm describe the strength of the flavor and mixed anomalies

respectively. In a theory with a functional integral description with chiral fermions they

are given by

c
A
= − 1

3!(2π)2

∑

species

χiq
3
i , cm = − 1

4!(8π)2

∑

species

χiqi , (7.2)

where χi = ±1 indicates the fermion chirality (in our conventions right-handed fermions

have χi = 1) and qi denotes the fermion U(1) charge. In a four-dimensional theory with

the anomaly polynomial (7.1), the anomalous Ward identities are

DµJ
µ
cov =

1

4
ǫµνρσ

[

3c
A
FµνFρσ + cmRα

βµνR
β
αρσ

]

,

DνT
µν
cov = Fµ

νJ
ν
cov +

cm
2
Dν

[

ǫρσαβFρσR
µν

αβ

]

.
(7.3)

The constitutive relations for the current and stress tensor have been worked out

in detail (see e.g [23]). Let us decompose them into irreducible representations of the

rotational invariance which fixes uµ,

Jµ
cov = Nuµ + νµ , Tµν

cov = Euµuν + PPµν + uµqν + uνqµ + τµν , (7.4)

where

Pµν = gµν + uµuν , νµu
µ = qµu

µ = τµνu
ν = τµνg

µν = 0 . (7.5)

To first order in derivatives, the constitutive relations are parameterized by

P = P − ζDµu
µ , E = −P + T

∂P

∂T
+ µ

∂P

∂µ
, N =

∂P

∂µ
, (7.6a)

and

νµ = σ
(

Eµ − TPµνDν

(µ

T

))

+ χEE
µ + χTP

µνDνT + ξ1B
µ + ξ2ω

µ ,

qµ = ξ2B
µ + ξ3ω

µ ,

τµν = −ησµν ,

(7.6b)
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where we have defined

Bµ =
1

2
ǫµνρσuνFρσ , ωµ = ǫµνρσuν∂ρuσ , (7.6c)

Eµ = Fµνu
ν , σµν = PµρP νσ(Dρuσ +Dσuρ)−

2

3
PµνDρu

ρ . (7.6d)

The quantity P is the pressure, η the shear viscosity, σ the conductivity, and ζ the bulk

viscosity.

Equation (7.6) is the most general one compatible with the symmetries of the system

as well with the equations of motion of ideal hydrodynamics. However, further constraints

arise when we demand the existence of an entropy current [9, 48]. That is, we demand

the existence of a current whose divergence is positive for fluid flows which solve the Ward

identities (7.3) (and in a thermodynamic equilibrium in the absence of external sources it

reduces to the entropy density times the velocity field). Solving this constraint leads to a

set of relations between the parameters appearing in (7.6).9 The equality type relations

are given by

χE = χT = 0 ,

ξ1 = −6c
A
µ ,

ξ2 = −3c
A
µ2 + c̃T 2 ,

ξ3 = −2c
A
µ3 + 2c̃µT 2 ,

(7.7)

where c̃ is a constant and we have dropped CPT-violating terms [8, 17, 18]. The inequality-

type constraints on the remaining parameters are

η ≥ 0 , σ ≥ 0 , ζ ≥ 0 . (7.8)

Before proceeding, we note that the equality-type constraints for {ξ1, ξ2, ξ3} in (7.7)

are unusual from the point of view of the entropy current. They are in stark contrast with

equality-type relations as they usually appear in hydrodynamics, which allow for hydro-

static response parameterized by unspecified functions of state. As an example, consider

(2+1)-dimensional parity-violating fluids at first order in derivatives [49]. Six new response

coefficients are allowed in such a system, four of which may be measured in equilibrium (in

the notation of [49] they are {χ̃E , χ̃T , χ̃B, χ̃Ω}); those four response coefficients obey two

equality-type relations, whose solution is given by two arbitrary functions of state. In this

sense, the equality-type constraints for {ξ1, ξ2, ξ3} are qualitatively different from standard

equality-type constraints as they ordinarily appear in hydrodynamics. Correspondingly,

the constants c
A

and c̃ appear in the hydrostatic generating functional in a unique way

relative to other response coefficients. The special role played by c
A
shouldn’t be a sur-

prise: c
A
is an anomaly coefficient and so occupies a special role in both the conservation

equations of hydrodynamics and in Wanom. The role of c̃ is also special, as we now discuss.

The equality constraints (7.7) may also be determined by the properties of hydrostatic

states. In hydrostatic equilibrium, the expansion and shear tensors vanish, Dµu
µ = 0 and

9In presenting the solution (7.7), we are writing the constitutive relations in a particular hydrodynamic

frame (see [11, 18]) in which we readily make contact with hydrostatic equilibrium.
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σµν = 0 as does the Einstein term Eµ − TPµνDν

(

µ
T

)

= 0. As a result the remaining

terms in (7.6) are allowed in equilibrium, and so the corresponding response parameters

χE , χT , ξ1, ξ2, and ξ3 are computed by the hydrostatic generating functionalWQFT. Writing

down the most general CPT-preserving WQFT to one-derivative order, one finds [23]

WQFT =

∫

d4x
√−g

[

P (T, µ) + c̃AµT
2ωµ

]

+Wanom +O(∂2) . (7.9)

The current T 2ωµ is conserved in equilibrium, and as a result the term proportional to c̃ is

gauge-invariant provided that c̃ is constant. In fact, in transverse gauge this term becomes

a Chern-Simons term on the spatial slice (see [23] for details). In this way, the somewhat

unusual presence of the constant c̃ in the response (7.7) may be understood naturally from

the point of view of WQFT: c̃ is just a Chern-Simons coefficient on the spatial slice.

To obtain Wanom we follow the prescription of section 6. We first identify the Chern-

Simons term associated with the anomaly polynomial (7.1). This can be done via trans-

gression formula as described in appendix D; as it turns out, there are various equivalent

Chern-Simons forms that one may use to describe the U(1)3 and mixed anomalies. One

can choose the Chern-Simons form in such a way that WCS is diffeomorphism-invariant

but not gauge-invariant, giving

ICS = c
A
A ∧ F ∧ F + cmA ∧Rµ

ν ∧Rν
µ . (7.10)

Defining a trace over matrix-valued forms to be

tr(A1 . . . Am) = (A1)
µ1

µ2
(A2)

µ2
µ3

. . . (Am)µm
µ1

(7.11)

we see that the corresponding forms VP and WCS are given by

VP =
u

2ω
∧ (P [B,BR]−P [B + 2ωµ,BR + 2ωµR])

= −u ∧
[

c
A
(3µB ∧B + 6µ2B ∧ ω + 4µ3ω ∧ ω)

+cm
(

2(B + 2ωµ) ∧ tr(µRBR + µ2
Rω) + µ tr(BR ∧BR)

)]

,

(7.12)

and

WCS =
u

2ω
∧
(

ICS − ÎCS

)

= −2u ∧A ∧
[

c
A
µ(B + µω) + cmtr(µRBR + µ2

Rω)
]

.
(7.13)

Note the similarity between the flavor and mixed anomaly terms in WCS. From WCS we

construct the anomalous contribution to the generating functional, Wanom

Wanom = −
∫

WCS =

∫

d4x
√−gAµ(cAj

µ
A
+ cmjµm) , (7.14a)

where

jµ
A
= −2ǫµνρσµuν

(

∂ρAσ +
µ

2
∂ρuσ

)

, (7.14b)

jµm = −ǫµνρσuν

(

(µR)
α
βR

β
αρσ + (µR)

α
β(µR)

β
α∂ρuσ

)

. (7.14c)
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Our representatives for the anomalous contribution to the generating function specified by

equations (7.14) agrees with results obtained previously in the literature. The contribution

from the U(1)3 anomaly is identical to the one found in [17, 23] while the contribution of

the mixed anomaly agrees with that found in [23] up to a gauge and coordinate-invariant

expression. Denoting the representative for the anomalous part of WQFT in [23] as WA,

we find

Wanom −WA = 4cm

∫

d4x
√−g ωµνa

µBν + (boundary terms) . (7.15)

Varying the generating functional (7.9) and adding appropriate Bardeen-Zumino terms,

one obtains Tµν
cov and Jµ

cov in terms of P , T , µ, c̃4d, and c
A
. As described in the text, a

simpler way of obtaining the covariant currents is to vary VP as in (6.14), which leads

directly to

⋆JP =
∂VP

∂B
= −u ∧

[

c
A
(6µB + 3µ2(2ω)) + cm tr(2µRBR + µ2

R(2ω))
]

,

⋆qP =
∂VP

∂(2ω)
=−u∧

[

c
A
(3µ2B+2µ3(2ω))+cm

(

2µ tr(µRBR+µ2
R(2ω))+tr(µR)

2B
)]

,

⋆(LP)µν =
∂VP

∂(BR)νµ
= −2cmu ∧

[

(µR)
µ
ν(B + µ(2ω)) + µ(BR)

µ
ν

]

. (7.16)

Dualizing the three-forms u ∧B,u ∧ (BR)
µ
ν , and u ∧ (2ω) to the pseudovectors

bµ ≡ 1

2
ǫµνρσuνFρσ , (bR)

µα
β ≡ 1

2
ǫµνρσuνR

α
βρσ , wµ ≡ ǫµνρσuν∂ρuσ , (7.17)

the covariant currents are given by the expressions

Jµ
P = −6c

A
µ bµ − 2cm(µR)

α
β(bR)

µβ
α −

(

3c
A
µ2 + cm tr(µ2

R)
)

wµ ,

qµP = −
(

3c
A
µ2 + cmtr(µ2

R)
)

bµ − 2cmµ(µR)
α
β(bR)

µβ
α − 2

(

cAµ
3 + cmµ tr(µ2

R)
)

wµ ,

(LP)
µα

β = −2cm

(

(µR)
α
βb

µ + µ(bR)
µα

β + µ(µR)
α
βw

µ
)

. (7.18)

The contribution of the U(1)3 anomaly to the stress tensor and currents agree with those

in the literature [5] while the mixed anomaly-induced currents differ from those computed

in appendix B of [23] by the variations of the right hand side of (7.15).

Upon matching (7.18) to the hydrodynamic constitutive relations (7.6) , one finds

precisely the equality-type conditions (7.7). In particular, the terms proportional to the

U(1)3 anomaly coefficient c
A

are computed by the corresponding terms in the anomaly-

induced currents in (7.18). If we were to extend this analysis to include terms in WQFT

with up to three derivatives, we would find a plethora of higher derivative contributions

to Tµν
cov and Jµ

cov. These would include the mixed anomaly-induced currents proportional

to cm in (7.18), which give rise to three-derivative terms in the covariant current and

stress tensor.

Note that by construction c̃ is not encoded in our choice of representative for Wanom

or VP . In that sense it is not obviously related to the anomalies of the underlying theory.

However, arguments that go beyond hydrodynamics [22, 23] have verified a conjecture
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based on calculations at weak [35] and strong coupling [50] that c̃ is related to the mixed

anomaly coefficient as

c̃ = −8π2cm . (7.19)

We see that anomalies appear in WQFT in two very different ways: (i.) through our repre-

sentative Wanom encoding the anomalous variation of WQFT, and (ii.) through the Chern-

Simons-like term in WQFT (7.9) proportional to c̃ (and its analogues in other dimensions).

We elaborate on the case of four-dimensional theories because it serves as a template

for the story in general dimension. Motivated by the four-dimensional results, we are led

to decompose WQFT into three parts as

WQFT = Wgauge−invariant +Wtrans +Wanom , (7.20)

where Wtrans is defined to be the sum of the Chern-Simons-like terms in WQFT. In four

dimensions this is just the term proportional to c̃ in (7.9). This uniquely specifies Wtrans

up to boundary terms. In general, we also choose the representative Wanom so that it

and Wgauge−invariant have vanishing Chern-Simons-like coefficients; one can check that our

represenative (1.4) for Wanom does just this.

Upon variation of Wanom and Wtrans, we obtain the anomaly-induced transport: the

terms in the current and stress tensor which are fixed by anomalies. We further distinguish

the response due to Wanom and Wtrans by terming the former rational anomaly-induced

transport, and the latter transcendental anomaly-induced transport. We call the latter

trascendental due to the relative factor of π2 between c̃ and cm. One might worry that

such a division is contrived, but from (7.7) we see that it is physically well-motivated:

the rational anomaly-induced transport (proportional to c
A
) is temperature-independent,

while and the transcendental response (proportional to c̃) is proportional to powers

of the temperature.

To summarize, the methods of this paper may be used to easily compute the anomalous

part Wanom of the hydrostatic generating functional WQFT. Varying Wanom leads to the

rational anomaly-induced transport. Transport associated with rational terms may also

be determined by demanding the existence of an entropy current with positive divergence

and extracting the terms in the consequent constitutive relations which are explicitly pro-

portional to anomaly coefficients.10 However, Wtrans and so the transcendental anomaly-

induced transport is presently uncomputed. We calculate it in an upcoming paper [47] by

suitably generalizing the methods of [23].
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A Ward identities in the absence of anomalies

In this appendix, we will state some of the basic results regarding various currents and their

associated conservation equations as derived from a generating functional. The results are

standard and the reader is encouraged to skim through this subsection paying special

attention to how we define spin currents, as it will be useful later.

Let eiWQFT[g,A] denote the partition function of a quantum field theory living in d

spacetime dimensions coupled to a background metric gµν . We will take the metric to

be in Lorentzian signature, though later on, we will Wick-rotate this metric in order to

get the thermal partition function. In addition, we will assume that the background has

profiles for various non-abelian flavor gauge fields (i.e., sources for flavor currents) jointly

denoted by Aµ.

The diffeomorphism and flavor gauge invariance of this generating functional leads to

conservation equations for the stress tensor and the flavor current. Let us outline how this

relation works in a non-anomalous theory and we will then carefully adopt it to anomalous

theories in appendix C.

By varying the connected generating function WQFT[g,A] with respect to the flavor

gauge field and metric we obtain the current and stress tensor,

δWQFT ≡
∫

ddx
√−g

{

δAµ · Jµ +
1

2
δgµνT

µν

}

+ (boundary terms) . (A.1)

Throughout the appendices and in the main text we find it useful to carry out the variation

of the metric in a two stage process. We first treat the connection and metric as separate

entities, under which the generating functional varies as

δWQFT =

∫

ddx
√−g

[

δAµ · Jµ +
1

2
δgµνt

µν + δΓµ
νρL

ρν
µ

]

+ (boundary terms) . (A.2)

Then, to get Tµν we rewrite δΓµ
νρ in terms of δgµν and integrate by parts,

Tµν = tµν +Dρ

(

Lµ[νρ] + Lν[µρ] − Lρ(µν)
)

. (A.3)

Here circular (square) brackets indicate (anti-)symmetrization,

A(µν) =
1

2
(Aµν +Aνµ) , A[µν] =

1

2
(Aµν −Aνµ) . (A.4)
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The conservation of the stress tensor and current follow from the diffeomorphism and

gauge invariance of WQFT. Indeed, let us denote the variation under an infinitesimal gauge

transformation Λ and coordinate transformation ξµ by δχ, i.e.,

δχAµ = £ξAµ +DµΛ = ∂µ (Λ + ξσAσ) + [Aµ, Λ + ξσAσ] + ξσFσµ

δχgµν = £ξgµν = Dµξν +Dνξµ .
(A.5)

Then, using (A.5) and integrating by parts, we find that

Jµ · δχAµ +
1

2
Tµνδχgµν = DµN

µ
χ − (Λ + ξνAν) ·DµJ

µ − ξµ

{

DνT
µν − Fµ

ν · Jν
}

(A.6)

with

Nµ
χ ≡ (Λ + ξαAα) · Jµ + ξαT

αµ . (A.7)

Thus,

δχW =−
∫

ddx
√−g ((Λ + ξαAα) ·DµJ

µ + ξµ (DνT
µν − Fµ

ν · Jν)) +
(

boundary
terms

)

. (A.8)

The diffeomorphism/flavor gauge invariance of W , δχW = 0, directly implies the conser-

vation equations for the flavor current Jµ and stress tensor Tµν ,

DµJ
µ = 0 , DνT

µν − Fµ
ν · Jν = 0 , −Tµν + T νµ = 0 , (A.9)

where in the last line we have added in the statement that Tµν is symmetric (which is

equivalent to the conservation of angular momentum). Thus, we conclude that the flavor

currents and angular momentum are covariantly conserved and the energy-momentum is

covariantly conserved except for the energy-momentum injected via Lorentz force.

Further, substituting (A.9) into (A.6), we get the Noether identity

DµN
µ
χ = Jµ · δχAµ +

1

2
Tµνδχgµν (A.10)

This implies that whenever we place the quantum field theory on a symmetric back-

ground with δχAµ = 0 and δχgµν = 0, there is a Noether current Nµ
χ which is conserved.

Note that the Ward identities in (A.9) are related to, but conceptually distinct from the

Noether conservation law (A.10) that arises when the background sources are invariant

under diffeomorphism/flavor transformations, i.e., when there exists a {ξµ,Λ} such that

{δχAµ = 0, δχgµν = 0}. As we will discuss later, this Noether conservation can hold

sometimes even when the conservation laws above get modified by anomalies.

B Anomaly inflow

The anomaly inflow mechanism of Callan and Harvey [40] plays a pivotal role in our

construction of functions WCS and VP described in detail in section 6. In this appendix,

after reviewing the anomaly inflow mechanism we obtain various compact expressions for

– 32 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
4

Hall and Bardeen-Zumino currents associated with anomalies. (For a nice discussion of

anomaly inflow in the context of condensed matter physics, see e.g. [51].)

As discussed in section 6, the non gauge and reparametrization-invariance of the gen-

erating functional WQFT in 2n dimensions can be encoded in a 2n+ 1 dimensional Chern-

Simons form. Indeed, if we think of the 2n dimensional manifold on which the anomalous

quantum field theory lives as the boundary of a 2n+ 1 dimensional manifold M, then the

non gauge- and (or) diffeomorphism-invariance of WQFT amounts to the statement that

the covariant generating functional Wcov defined via (3.3),

Wcov = WQFT +WHall , (B.1)

with

WHall =

∫

M

ICS[A,Γ] (B.2)

is gauge and (or) diffeomorphism invariant. Thus,

δχWQFT = −δχWHall . (B.3)

We remind the reader that bold-face characters label p-forms and refer her/him to section 5

for the definitions of the connection one-forms A and Γ. In labeling the Chern-Simons

action with a “Hall” subscript, we indicate that this bulk action is reminiscent of the

action of a Hall insulator. The reader who is unfamiliar with Hall systems may safely

ignore this association.

The currents Jµ and Tµν obtained by varying WQFT would have been conserved if

it were not for the non-gauge and (or) diffeomorphism invariance of WQFT. Following

the literature, we refer to these currents as consistent currents since WQFT satisfies the

Wess-Zumino consistency condition [38].

We refer to the currents on M which are obtained by varying WHall as Hall currents

and denote them by Tµν
H and Jµ

H . Since WHall is gauge invariant up to boundary terms the

Hall currents are conserved. However, the currents obtained from the boundary variation

of WHall are neither conserved nor are they covariant. We will refer to these currents as

Bardeen-Zumino currents (which we will also refer to as Bardeen-Zumino polynomials),

Tµν
BZ and Jµ

BZ. More formally, we write the variation of WHall as

δWHall =

∫

d2n+1x
√
−G

[

δAM · JM
H + δΓM

NP (LH)PN
M

]

+

∫

d2nx
√−g

[

δAµ · Jµ
BZ + δΓµ

νρ(LBZ)
ρν

µ

]

,

(B.4)

where we have extended the boundary metric g on ∂M to a metric G on M. Note that

since WHall only depends on the metric G through the connection Γ, there is only a flavor

current JH and a spin current LH . In terms of forms we can rewrite the variation of

WHall as

δWHall =

∫

M

[

δA ∧ ·⋆JH + δΓb
a ∧ ⋆(LH)ab

]

+

∫

∂M

[

δA ∧ ·⋆JBZ + δΓν
µ ∧ ⋆(LBZ)

µ
ν

]

.
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Figure 1. Schematic diagram of the inflow mechanism where the manifold M is depicted as a

semi-infinite cylinder and ∂M as its boundary. The current JM
Hall

defined on the manifold M
is conserved but transfers charge to the boundary theory on ∂M rendering it anomalous. The

anomalous boundary current gets a contribution from the Bardeen-Zumino term Jµ
BZ

associated

with the flow of bulk charge and a consistent current associated with the theory defined on ∂M.

We also define covariant currents as boundary variations of Wcov, J
µ
cov and Tµν

cov,

δWcov =

∫

d2nx
√−g

[

δAµ · (Jµ + Jµ
BZ) +

1

2
δgµν(T

µν + Tµν
BZ)

]

(B.5)

+

∫

d2n+1x
√
−G

[

δAM · JM
H +

1

2
δGMNTMN

H

]

+ (boundary terms on ∂M) .

From (3.3) we find that the covariant currents are the sum of the consistent currents and

Bardeen Zumino currents,

Jµ
cov = Jµ + Jµ

BZ , Tµν
cov = Tµν + Tµν

BZ . (B.6)

Because Wcov is both gauge and diffeomorphism-invariant, Jµ
cov and Tµν

cov are indeed gauge

and diffeomorphism-covariant as their name advertises. However, they are not conserved.

See figure 1.

It is possible to obtain explicit expressions for the Hall and Bardeen-Zumino currents.

Consider the Chern-Simons form ICS which depends on the connections A and Γ and on

the field strengths F and R. Under a variation of the connections {A,Γa
b} it varies as

δICS = δA · ∂ICS

∂A
+ δF · ∂ICS

∂F
+ δΓa

b
∂ICS

∂Γa
b
+ δRa

b
∂ICS

∂Ra
b
, (B.7)

where we have suppressed wedge products for brevity. Under a general variation of the

connections δA and δΓa
b, the curvatures vary as

δF = DδA, δRa
b = DΓa

b, (B.8)
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from which we obtain

δICS = δA ·
(

∂ICS

∂A
+D

(

∂ICS

∂F

))

+ δΓa
b

(

∂ICS

∂Γa
b
+D

(

∂ICS

∂Ra
b

))

+ d

(

δA · ∂ICS

∂F
+ δΓµ

ν
∂ICS

∂Rµ
ν

)

.

(B.9)

In (B.9) we have defined the action of D on the non-covariant quantities ∂ICS/∂F and

∂ICS/∂R
a
b as if they were covariant forms, namely

D

(

∂ICS

∂F

)

= d

(

∂ICS

∂F

)

+A
∂ICS

∂F
+

∂ICS

∂F
A ,

D

(

∂ICS

∂Ra
b

)

= d

(

∂ICS

∂Ra
b

)

+ Γb
c

∂ICS

∂Ra
c

+
∂ICS

∂Rc
b

Γc
a .

(B.10)

Taking an exterior derivative of both sides and using dδICS = δP we find that

δP = δF ·
(

∂ICS

∂A
+D

(

∂ICS

∂F

))

+ δRa
b

(

∂ICS

∂Γa
b
+D

(

∂ICS

∂Ra
b

))

(B.11)

− δA ·D
(

∂ICS

∂A
+D

(

∂ICS

∂F

))

− δΓa
bD

(

∂ICS

∂Γa
b
+D

(

∂ICS

∂Ra
b

))

. (B.12)

Since P does not depend explicitly on A or Γ we conclude that

D

(

∂ICS

∂A
+D

(

∂ICS

∂F

))

= 0 , D

(

∂ICS

∂Γa
b
+D

(

∂ICS

∂Ra
b

))

= 0 , (B.13)

and
∂P

∂F
=

∂ICS

∂A
+D

(

∂ICS

∂F

)

,
∂P

∂Ra
b
=

∂ICS

∂Γa
b
+D

(

∂ICS

∂Ra
b

)

. (B.14)

Combining these results leads to the useful identities

D

(

∂P

∂F

)

= 0 , D

(

∂P

∂Ra
b

)

= 0 . (B.15)

Thus,

δICS = δA · ∂P
∂F

+ δΓa
b
∂P

∂Ra
b
+ d

(

δA · ∂ICS

∂F
+ δΓµ

ν
∂ICS

∂Rµ
ν

)

(B.16)

from which

⋆JH =

(

∂P

∂F

)

R

, (⋆LH)ba =

(

∂P

∂Ra
b

)

F

,

⋆JBZ =

(

∂ICS

∂F

)

A,Γ,R

, (⋆LBZ)
ν
µ =

(

∂ICS

∂Rµ
ν

)

Γ,A,F

(B.17)

follows. In (B.17) we have kep the variables which are kept fixed in the subscript for

completeness. The identities (B.15) then amount to the fact that the Hall flavor and spin

currents are covariantly conserved,

DaJ
a
H = 0 , DcL

cab
H = 0 , Lcab

H = −Lcba
H , (LH)aac = 0 , (B.18)

where the last property follows from applying the first Bianchi identity.
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In order to go from the spin currents to the Hall and Bardeen-Zumino stress-energy

tensors, we convert the variation of the Levi-Civita connections δΓb
a and δΓν

µ to variations

of the metric. This leads to a Hall stress tensor

TMN
H = DP

(

L
M [NP ]
H + L

N [MP ]
H − L

P (MN)
H

)

. (B.19)

Going back to the variation of WHall and integrating the variations of Γ by parts, we

can write

δWHall =

∫

d2n+1x
√
−G

[

δAM · JM
H +

1

2
δGMNTMN

H

]

+

∫

d2nx
√−g

[

δAµ · Jµ
BZ+

1

2
δgµνT

µν
BZ

]

.

(B.20)

which defines the Bardeen-Zumino (BZ) polynomials Jµ
BZ and Tµν

BZ. The BZ polynomial for

the stress tensor is related to the LBZ and the Hall spin current as

Tµν
BZ = tµνBZ +Dρ

(

L
µ[νρ]
BZ + L

ν[µρ]
BZ − L

ρ(µν)
BZ

)

,

tµνBZ = −
(

L
µ[ν⊥]
H + L

ν[µ⊥]
H − L

⊥(µν)
H

)

,
(B.21)

where the ⊥ direction is perpendicular to the boundary ∂M. The tµνBZ contribution to the

Bardeen-Zumino stress tensor arises from integrating parts in the bulk. It is a covariant,

purely extrinsic contribution, in the sense that it involves the curvature formsRa
⊥ andR⊥

a

on the hypersurface ∂M where our theory lives. Put differently, it provides information

on how ∂M is embedded into M. In what follows we consistently set these extrinsic terms

to zero. In field theory terms, the anomalies of our theory only depend on the intrinsic

2n-dimensional sources which we couple to the theory.11 As a result, the BZ polynomial for

the stress tensor may be understood as coming from a BZ polynomial for the spin current.

C Ward identities in the presence of anomalies

In this appendix we will obtain the anomalous Ward identities for a general theory with

anomaly polynomial P . We will obtain the Ward identities obeyed by the consistent

currents as well as by the covariant currents.

We begin with the most general variation of the generating functional WQFT for our

theory given by equation (A.1) which we reproduce here for convenience.

δWQFT =

∫

d2nx
√−g

[

δAµ · Jµ +
1

2
δgµνT

µν

]

. (C.1)

To obtain the Ward identities, we perform an infinitesimal gauge transformation Λ and

coordinate variation xµ → xµ + ξµ, which we collectively notate as δχ (see (A.5)) and

we obtain

δχWQFT = −
∫

d2nx
√−g

[

Λ ·DµJ
µ + ξµ

(

DνT
µν − Fµ

ν · Jν +Aµ ·DνJ
ν
)]

(C.2)

11We point out that in topologically non-trivial phases with anomalous edge states, there may be anoma-

lies associated with the extrinsic data of the edge state.
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as in (A.8). For non-anomalous theories we have δχWQFT = 0 and so (C.2) leads to the

standard Ward identities for the current and stress tensor as in (A.9). When our theory

has anomalies the nonzero variation of WQFT is related to the nonzero variation of the

Chern-Simons form in one higher dimension via

δχWQFT = −δχWHall , (C.3)

where WHall =
∫

M
ICS was studied in appendix B.

To continue we must determine the explicit gauge and diffeomorphism variation of the

Chern-Simons form. Since the Chern-Simons form is defined in one higher dimension we

must extend the gauge and coordinate variations on the boundary to variations in the bulk.

The gauge and coordinate variations of the connections and curvatures may be efficiently

written in terms of forms as

δχA = dΛ + [A,Λ] +£ξA , δχF = [F ,Λ] +£ξF ,

δχΓ
a
b = dvab +£ξΓ

a
b , δχR

a
b = £ξR

a
b ,

(C.4)

where £ξ is a Lie derivative along ξ, Λ is the gauge transformation parameter and vab is

defined as the 0-form

vab = ∂bξ
a . (C.5)

The operators £ξ, and [·,Λ] (meaning the adjoint action of Λ on a tensor in some repre-

sentation of the flavor symmetry group) all satisfy linearity and the Leibniz rule and so act

like derivatives on objects constructed out of differential forms. As a result we have

£ξICS = £ξA · ∂ICS

∂A
+£ξΓ

a
b

∂ICS

∂Γa
b

+£ξF · ∂ICS

∂F
+£ξR

a
b

∂ICS

∂Ra
b

,

[ICS,Λ] = [A,Λ] · ∂ICS

∂A
+ [Γa

b,Λ]
∂ICS

∂Γa
b

+ [F ,Λ] · ∂ICS

∂F
+ [Ra

b,Λ]
∂ICS

∂Ra
b

,

(C.6)

Since ICS is a flavor singlet it must satisfy [ICS,Λ] = 0. The Lie derivative £ξICS is a

total derivative since ICS is a top form, and so only contributes a boundary term which

in fact vanishes. Putting together (B.7) (for a gauge and diffeomorphism variation), (C.4)

and (C.6) we find

δχICS = dΛ · ∂ICS

∂A
+ dvab

∂ICS

∂Γa
b

+£ξICS + [ICS,Λ]

= −Λ · d
(

∂ICS

∂A

)

− vabd

(

∂ICS

∂Γa
b

)

+ d

[

Λ · ∂ICS

∂A
+ vµν

∂ICS

∂Γµ
ν

]

+£ξICS .

(C.7)

The Chern-Simons form is gauge and coordinate invariant up to a boundary term. It then

follows that the bulk variations in the second line of (C.7) must vanish,

d

(

∂ICS

∂A

)

= 0 , d

(

∂ICS

∂Γa
b

)

= 0 . (C.8)

We are now in a position to derive the Ward identities for the consistent currents.

Using (C.7), and (C.3) the gauge and coordinate variation of WQFT is given by

δχWQFT = −
∫

d2nx
√−g

[

Λ · J + ∂νξ
µT ν

µ

]

. (C.9)
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where we have defined
⋆J =

∂ICS

∂A
, ⋆T µ

ν =
∂ICS

∂Γν
µ

. (C.10)

Equation (C.8) implies that the 2n forms ⋆J and ⋆T µ
ν are closed. Comparing (C.9)

with (C.2) leads to the consistent Ward identities

DµJ
µ = J ,

DνT
µν = Fµ

ν · Jν −Aµ · J − 1√−g
gµν∂ρ

[√−gT ρ
ν

]

.
(C.11)

where J and T ρ
ν are given by (C.10).

To compute the Ward identities obeyed by the covariant currents it is useful to first

identify the Hall currents in (B.20) and then carry out the variation (C.4). obtaining

δλWHall = −
∫

d2nx
√−g

[

ξµ(DνT
µν
BZ − Fµ

ν · Jν
BZ +Aµ · (DνJ

ν
BZ − J⊥

H)− T⊥µ
H )

+Λ · (DµJ
µ
BZ − J⊥

H)
]

,

(C.12)

where T⊥µ
H is a component of the Hall stress tensor

T⊥µ
H = Dν(L

⊥[µν]
H + L

µ[⊥ν]
H − L

ν(⊥µ)
H ) = DνL

⊥[µν]
H , (C.13)

and we have dropped extrinsic terms in the final expression. Equating (C.9) and (C.12)

leads to the Bardeen-Zumino anomaly equations

DµJ
µ
BZ = J⊥

H − J ,

DνT
µν
BZ = Fµ

ν · Jν
BZ −Aµ · J +

1√−g
gµν∂ρ

[√−gT ρ
ν

]

+DνL
⊥[µν]
H ,

(C.14)

where Jµ
BZ, J

⊥
H , Tµν

BZ and L
⊥[µν]
H are given by (B.17) and (B.21). Further, J and T ρ

ν are

given by (C.10). It then follows that the covariant current and stress tensor obey the

covariant Ward identities

DµJ
µ
cov = J⊥

H ,

DνT
µν
cov = Fµ

ν · Jν
cov +DνL

⊥[µν]
H ,

(C.15)

where J⊥
H and L

⊥[µν]
H are given by (B.17). Note that the covariant anomalies are given by

transverse components of the Hall current and stress-energy tensor — this is essentially a

consequence of the anomaly inflow mechanism, wherein the total current and stress-energy

is conserved, but may flow from the bulk to the boundary.

Before closing this discussion, we point out that one may define a conserved covariant

stress tensor

Tµν
conserved = Tµν

cov − L
⊥[µν]
H , (C.16)

which is conserved by virtue of the Ward identity (C.15). However this stress tensor is

clearly non-symmetric. This result corresponds to the fact that a diffeomorphism anomaly,

which is manifested in the non-conservation of stress-energy, may be exchanged for a

Lorentz anomaly, whereby the stress tensor has an antisymmetric part in the presence

of background fields.
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D Transgression formulae

At the end of section 6 we briefly mentioned the transgression technique and its relation

to the anomaly polynomial and the Chern-Simons form. Historically, transgression was

useful in completing the classification of anomalies in general dimension as well as for

understanding their connection to topological invariants (see e.g. [44–46]). In this appendix

we will rederive the transgression formulae of the first and second kind as well as relate

them to the functionals VP and WCS studied in this work.

We begin by consider a flow of connections {A(τ),Γ(τ)} which vary with a real flow

parameter τ . The associated field strengths

F (τ) = dA(τ) +A(τ) ∧A(τ) , Rµ
ν(τ) = dΓµ

ν(τ) + Γµ
ρ(τ) ∧ Γρ

ν(τ) , (D.1)

are closed under the covariant derivative D(τ) constructed from these connections,

D(τ)F (τ) = 0 , D(τ)Rµ
ν(τ) = 0 . (D.2)

The anomaly polynomial P(τ) = P(F (τ),R(τ)) evaluated for these connections then

satisfies

D(τ)

(

∂P(τ)

∂F (τ)

)

= 0 , D(τ)

(

∂P(τ)

∂Rµ
ν(τ)

)

= 0 , (D.3)

on account of the fact that P(τ) is a polynomial of the field strengths F (τ) and R
µ
ν(τ).

We also have

∂τF (τ) = d∂τA(τ) +A(τ) ∧ ∂τA(τ) + ∂τA(τ) ∧A(τ) = D(τ)∂τA(τ) , (D.4)

∂τR
µ
ν(τ) = d∂τΓ

µ
ν(τ) + Γµ

ρ(τ) ∧ ∂τΓ
ρ
ν(τ) + ∂τΓ

µ
ρ(τ) ∧ Γρ

ν(τ) = D(τ)∂τΓ
µ
ν(τ) .

Note that ∂τA(τ) and ∂τΓ
µ
ν(τ) are given by differences of connections. As a result these

derivatives are gauge and diffeomorphism-covariant and so it makes sense to define the

action of D(τ) on them. Collecting these results, by the chain rule, τ -derivatives of the

anomaly polynomial P(τ) are given by

∂τP(τ) = D(τ)∂τA ∧ ·∂P(τ)

∂F (τ)
+D(τ)∂τΓ

µ
ν(τ) ∧

∂P(τ)

∂Rµ
ν(τ)

= d

[

∂τA(τ) ∧ ·∂P(τ)

∂F
+ ∂τΓ

µ
ν(τ) ∧

∂P(τ)

∂Rµ
ν(τ)

]

,

(D.5)

where in going from the first line to the second we have used (D.3). This immediately gives

P(τ1)−P(τ2) = d

[
∫ τ1

τ2

dτ

(

∂τA(τ) ∧ ·∂P(τ)

∂F (τ)
+ ∂τΓ

µ
ν(τ) ∧

∂P(τ)

∂Rµ
ν(τ)

)]

. (D.6)

This provides an integral expression for the difference of the anomaly polynomial evaluated

for the connections at the endpoints of integration τ2 and τ1. Without loss of generality, we

may consider a flow along the interval τ ∈ [0, 1] which interpolates between the connections

{A2,Γ2} and {A1,Γ1} as

A(τ) = A2+ τ(A1−A2) = A2+ τ∆A , Γ(τ) = Γ2+ τ(Γ1−Γ2) = Γ2+ τ∆Γ . (D.7)
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Defining the shorthand expressions

PF [f ] ≡ f ∧ ·∂P(τ)

∂F (τ)
,

PR[g] ≡ gµ
ν ∧

∂P(τ)

∂Rµ
ν(τ)

,

(D.8)

Eq. (D.6) becomes

P1 −P2 = d

[
∫ 1

0
dτ (PF [∆A] +PR[∆Γ])

]

≡ dV12 ,

(D.9)

where we have defined P i to be the anomaly polynomial evaluated on the “i” connections.

Equation (D.9) is the transgression formula of the first kind, giving the difference of P i’s

in terms of an integral V12 as we claimed in our discussion at the end of section 6 near

equation (6.16).

We can use this technology to construct a transgression formula for the Chern-Simons

form P = dICS. We simply take the “1” connections to be the ones of interest, A1 =

A,Γ1 = Γ, and take the “2” connections to vanish. Then (D.9) gives

P = d

[
∫ 1

0
dτ (PF [A] +PR[Γ])

]

≡ dICS , (D.10)

which defines a “canonical” Chern-Simons form. However, unlike the anomaly polynomial,

the Chern-Simons form ICS is better understood as a representative of an equivalence class

in which we identify ICS ∼ ICS + dH. These total derivatives are sometimes important.

For instance, when an anomaly is mixed between a gauge symmetry and a global symmetry

as in the AV V anomalies of the Standard Model, just such a term dH may be used to

define the Chern-Simons form (and so WQFT) in a way that is invariant under the gauge

symmetry, but anomalous under the global symmetry. In that context H is known as

a Bardeen counterterm [37]. The net result is that while (D.10) provides a canonical

expression for ICS, we find it to be more useful to consider more general Chern-Simons

forms ICS.

Having dispensed with these comments about ICS, we proceed to derive the transgres-

sion formula of the second kind. As above, consider a flow of connections {A(τ),Γ(τ)} as

a function of a real flow parameter τ . Denoting the Chern-Simons form evaluated for these

connections as I(τ) = ICS(A(τ),Γ(τ)), we have by the chain rule and (D.4)

∂τI(τ) = ∂τA(τ) ∧ · ∂I(τ)
∂A(τ)

+D(τ)∂τA(τ) ∧ · ∂I(τ)
∂F (τ)

+ ∂τΓ
µ
ν(τ) ∧

∂I(τ)

∂Γµ
ν(τ)

+D(τ)∂τΓ
µ
ν(τ) ∧

∂I(τ)

∂Rµ
ν(τ)

.

(D.11)
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To simplify these expressions we exploit the identities (B.14), which in the present con-

text are

∂I(τ)

∂A(τ)
+D(τ)

(

∂I(τ)

∂F (τ)

)

=
∂P(τ)

∂F (τ)
,

∂I(τ)

∂Γµ
ν(τ)

+D(τ)

(

∂I(τ)

∂Rµ
ν(τ)

)

=
∂P(τ)

∂Rµ
ν(τ)

.

(D.12)

Then (D.11) becomes

∂τI(τ)=PF [∂τA(τ)]+PR[∂τΓ(τ)]+d

[

∂τA(τ) ∧ · ∂I(τ)
∂F (τ)

+ ∂τΓ
µ
ν(τ) ∧

∂I(τ)

∂Rµ
ν(τ)

]

. (D.13)

Inspired by (D.8) we define

IF [f ] ≡ f ∧ · ∂I(τ)
∂F (τ)

,

IR[g] ≡ gµ
ν ∧

∂I(τ)

∂Rµ
ν(τ)

.

(D.14)

We then integrate (D.11) with respect to τ to give

I(τ1)− I(τ2) =

∫ τ1

τ2

dτ (PF [∂τA(τ)] +PR[∂τΓ(τ)])+ d

[
∫ τ1

τ2

dτ (IF [∂τA(τ)] + IR[∂τΓ(τ)])

]

(D.15)

Specializing to the flow (D.7) along τ ∈ [0, 1] between the “2” and “1” connections, the

above difference of Chern-Simons forms becomes

I1 − I2 =

∫ 1

0
dτ (PF [∆A] +PR[∆Γ]) + d

[
∫ 1

0
dτ (IF [∆A] + IR[∆Γ])

]

≡ V12 + dW12 ,

(D.16)

where we recognize the bulk term to be V12 as earlier, and we defineW12 in the obvious way.

This is the transgression formula of the second kind. In writing (D.16), we have explicitly

demonstrated our claim at the end of section 6 that the difference of Chern-Simons forms

I1 − I2 may be decomposed as in (6.17). Incidentally, if we used the canonical Chern-

Simons form (D.10), then the integral for W12 may be represented as a double integral

over flows of connections.

We conclude this appendix by relating the transgression formulae above to our VP and

WCS. To do so we relate our hatted and unhatted connections to those above by assigning

{A1,Γ1} = {A,Γ} , {A2,Γ2} = {Â, Γ̂} , (D.17a)

so that the connections along the flow are given by (D.7) to be

A(τ) = A+ (1− τ)µu , Γµ
ν(τ) = Γµ

ν + (1− τ)(µR)
µ
νu , (D.17b)

and

∆A = −µu , ∆Γµ
ν = −(µR)

µ
νu . (D.17c)
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The corresponding field strengths may be decomposed into electric and magnetic parts as

in subsection 5.3 to give

F (τ) = u ∧E(τ) +B(τ)

= u ∧ (E + (τ − 1)(D + a)µ) + (B + (1− τ)2ωµ) , (D.18)

Rµ
ν(τ) = u ∧ (ER)

µ
ν(τ) + (BR)

µ
ν(τ)

= u ∧
(

(ER)
µ
ν + (τ − 1)(D + a)(µR)

µ
ν

)

+
(

(BR)
µ
ν + (1− τ)2ω(µR)

µ
ν

)

,

where D is the usual covariant derivative defined using the connections {A,Γ}. Since both
∆A and ∆Γ are longitudinal, the integral for V12 in (D.9) becomes

V12 =− u ∧
∫ 1

0
dτ

[

µ · ∂P
∂F

∣

∣

∣

∣

F=B(τ),R=BR(τ)

+ (µR)
µ
ν

∂P

∂Rµ
ν

∣

∣

∣

∣

F=B(τ),R=BR(τ)

]

. (D.19)

This expression may be simplified even further by viewing P(τ) as a functional of B(τ)

and BR(τ) alone, i.e. P(τ) = P(F = B(τ),R = BR(τ)). With this identification, (D.19)

then becomes

V12 = −u ∧
∫ 1

0
dτ

[

µ · ∂

∂B(τ)
+ (µR)

µ
ν

∂

∂(BR)
µ
ν(τ)

]

P(B(τ),BR(τ)) . (D.20)

Now note that, when acting on functionals of B(τ) and BR(τ), the chain rule gives us

∂

∂τ
= −(2ω) ∧

(

µ · ∂

∂B(τ)
+ (µR)

µ
ν

∂

∂(BR)
µ
ν(τ)

)

. (D.21)

This allows us to simplify (D.19) enormously to become

V12 =
u

2ω
∧
∫ 1

0
dτ

∂P(τ)

∂τ
=

u

2ω
∧
(

P − P̂

)

= VP , (D.22)

where we have used that u ∧ P(B,BR) = u ∧ P(F ,R) and similarly for the hatted

connections. Of course this is the expression for VP we quoted in the Introduction in (1.7).

We may simplify W12 similarly. Under the identification (D.17), the integral for it

in (D.16) becomes

W12 =− u ∧
∫ 1

0
dτ

[

µ · ∂I

∂F

∣

∣

∣

∣

A=A(τ),F=B(τ),Γ=Γ(τ),R=BR(τ)

+(µR)
µ
ν

∂I

∂Rµ
ν

∣

∣

∣

∣

A=A(τ),F=B(τ),Γ=Γ(τ),R=BR(τ)

]

,

(D.23)

which may be simplified by viewing I(τ) as a functional of the connections {A(τ),Γ(τ)}
as well as B(τ) and BR(τ), i.e. I(τ) = I(A = A(τ),F = B(τ),Γ = Γ(τ),R = BR(τ)).

With this identitifation (D.23) becomes

W12 = −u ∧
∫ 1

0
dτ

[

µ · ∂

∂B(τ)
+ (µR)

µ
ν

∂

∂(BR)
µ
ν(τ)

]

I(τ) . (D.24)
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Now, when acting on functionals of the connections {A(τ),Γ(τ)} and the magnetic field

strengths B(τ) and BR(τ), the chain rule and (D.17) gives

∂

∂τ
=− (2ω) ∧

(

µ · ∂

∂B(τ)
+ (µR)

µ
ν

∂

∂(BR)
µ
ν(τ)

)

− u ∧
(

µ · ∂

∂A(τ)
+ (µR)

µ
ν

∂

∂Γµ
ν(τ)

)

.

(D.25)

This allows us to enormously simplify the expression (D.23) for W12 as

W12 =
u

2ω
∧
∫ 1

0
dτ

∂I(τ)

∂τ
=

u

2ω
∧
(

ICS − ÎCS

)

, (D.26)

where we have used that the terms involving derivatives with respect to A(τ) and Γ(τ) are

proportional to u ∧ u = 0 and that u ∧ I(τ1) = u ∧ ICS, u ∧ I(τ2) = u ∧ ÎCS. This final

expression is the one we quoted in section 6 for WCS in (6.2).

E Computing the variation of VP and WCS

In the main text we have argued that the covariant currents may be obtained by varying

the 2n+ 1-form VP and the consistent currents by varying the 2n-form WCS,

VP =
u

2ω
∧
(

P − P̂

)

, WCS =
u

2ω
∧
(

ICS − ÎCS

)

. (E.1)

In this appendix we give a detailed account of the variational procedure preserving many

details which have been omitted from the main text. While straightforward, the computa-

tion is somewhat tedious. To assist the reader we begin by stating our final result upfront:

we will show that under a general variation δ, the variations of VP and WCS are given by

δVP = d
[

δu ∧ ⋆qP + δA ∧ ·⋆JP + δΓα
β ∧ (⋆LP)βα

]

+ δA ∧ ·⋆JH − δÂ ∧ ·⋆ĴH + δΓα
β ∧ (⋆L̂H)βα − δΓ̂α

β ∧ (⋆L̂H)βα ,

−δWCS = −d

[

δu ∧ ∂WCS

∂(2ω)
+ δA ∧ ·∂WCS

∂B
+ δΓα

β ∧ ∂WCS

∂(BR)αβ

]

+ δu ∧ ⋆qP + δA ∧ · [⋆JP − ⋆JBZ] + δÂ ∧ ·⋆ĴBZ

+ δΓα
β ∧

[

(⋆LP)βα − (⋆LBZ)
β
α

]

+ δΓ̂α
β ∧ (⋆L̂BZ)

β
α .

(E.2)

In writing (E.2) we have defined the 2n− 1-forms as in (1.8)

⋆JP ≡ ∂VP

∂B
, ⋆qP ≡ ∂VP

∂(2ω)
, ⋆LP ≡ ∂VP

∂BR
, (E.3)

which give the covariant anomaly-induced flavor, heat, and spin currents respectively. The

currents with ‘H’ and ‘BZ’ subscripts denote the Hall and Bardeen-Zumino currents re-

spectively, which we derived in (B.17). The Hall currents live in the 2n + 1-dimensional

bulk M, hence their bulk Hodge-duals are 2n-forms; the boundary Bardeen-Zumino cur-

rents are valued on the boundary ∂M and so their boundary Hodge-duals are 2n−1-forms.

The hat denotes that the object is evaluated for the hatted connections (1.3).
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To start, consider the variation of a general p-form W which has a leg along the

velocity field u. If it may be written as W = u ∧ Σ(2ω;µ,A,B;µR,Γ,BR) (and not in

terms of say the derivatives of those variables), then by the chain rule its variation is

δW = δu ∧ ∂W

∂u
+ δ(2ω) ∧ ∂W

∂(2ω)
+ δµ ∧ ·∂W

∂µ
+ δA ∧ ·∂W

∂A
+ δB ∧ ·∂W

∂B
,

+ (δµR)
α
β ∧ ∂W

∂µR
α
β
+ δΓα

β ∧ ∂W

∂Γα
β
+ (δBR)

α
β ∧ ∂W

∂(BR)αβ
.

(E.4a)

Using (6.12) we exchange variations of {ω,B,BR} for variations of {u,A,Γ;a,E,ER}
giving

δW = d

[

δu ∧ ∂W

∂(2ω)
+ δA ∧ ·∂W

∂B
+ δΓα

β ∧ ∂W

∂(BR)αβ

]

(E.4b)

+ δu ∧
[

∂W

∂u
+D

(

∂W

∂(2ω)

)

+ a ∧ ∂W

∂(2ω)
−E ∧ ·∂W

∂B
− (ER)

α
β ∧ ∂W

∂(BR)αβ

]

+ δµ ∧ ·∂W
∂µ

+ δA ∧ ·
[

∂W

∂A
+D

(

∂W

∂B

)]

+ δµR
α
β ∧ ∂W

∂µR
α
β
+ δΓα

β ∧
[

∂W

∂Γα
β
+D

(

∂W

∂(BR)αβ

)]

.

We can now use (E.4) to obtain an explicit expression for the variations of WCS and VP

in terms of derivatives thereof. Before doing so, it is useful to note the identities:

∂VP

∂µ
= −u ∧ ⋆ĴH ,

∂VP

∂(µR)
α
β
= −u ∧ (⋆L̂H)βα , (E.5)

∂WCS

∂µ
= −u ∧ ⋆ĴBZ ,

∂WCS

∂(µR)
α
β
= −u ∧ (⋆L̂BZ)

β
α ,

which can be easily proven using the definition of VP and WCS in (E.1), along with the

expressions (B.17) for the Hall and BZ currents. For instance, the first identity follows from

∂VP

∂µ
= − u

2ω
∧ ∂P̂

∂µ
= − u

2ω
∧ ∂P̂

∂F̂
∧ (2ω) = −u ∧ ∂P̂

∂F̂
= −u ∧ ⋆ĴH , (E.6)

where in the last equality we have used (B.17). We also require the identities

∂WCS

∂A
+D

(

∂WCS

∂B

)

= ⋆JBZ − ⋆ĴBZ − ⋆JP , (E.7a)

∂WCS

∂Γα
β

+D

(

∂WCS

∂(BR)αβ

)

= (⋆LBZ)
β
α − (⋆L̂BZ)

β
α − (⋆LP)βα , (E.7b)

D

(

∂VP

∂B

)

= D⋆JP = ⋆JH − ⋆ĴH , (E.7c)

D

(

∂VP

∂(BR)αβ

)

= D(⋆LP)βα = (⋆LH)βα − (⋆L̂H)βα , (E.7d)

which we now turn to prove.
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We begin with the first identity of (E.7). Using (B.17), the difference between the

hatted and unhatted BZ currents is given by

⋆JBZ − ⋆ĴBZ =
∂ICS

∂F
− ∂ÎCS

∂F̂
= d

[ u

2ω

]

∧
(

∂ICS

∂F
− ∂ÎCS

∂F̂

)

= D

[

u

2ω
∧
(

∂ICS

∂F
− ∂ÎCS

∂F̂

)]

+
u

2ω
∧
[

D

(

∂ICS

∂F

)

−D

(

∂ÎCS

∂F̂

)]

.

(E.8)

The first term in the second line of (E.8) is just D(∂WCS/∂B), and using (E.1), (B.14)

together with u ∧D(. . .) = u ∧ D̂(. . .) we may rewrite the rest to give

⋆JBZ − ⋆ĴBZ = D

(

∂WCS

∂B

)

+
∂WCS

∂A
+

∂VP

∂B
, (E.9)

which upon using ⋆JP = ∂VP/∂B proves the first equality of (E.7) as desired. A similar

manipulation with Christoffel connection gives the second identity via

(⋆LBZ)
β
α − (⋆L̂BZ)

β
α = D

(

∂WCS

∂(BR)αβ

)

+
∂WCS

∂Γα
β

+
∂VP

∂(BR)αβ
. (E.10)

The difference between Hall currents in the third identity can also be tied to partial deriva-

tives of WCS and VP ,

⋆JH − ⋆ĴH =
∂P

∂F
− ∂P̂

∂F̂
= d

[ u

2ω

]

∧
(

∂P

∂F
− ∂P̂

∂F̂

)

= D

[

u

2ω
∧
(

∂P

∂F
− ∂P̂

∂F̂

)]

+
u

2ω
∧
[

D

(

∂P

∂F

)

−D

(

∂P̂

∂F̂

)]

= D

(

∂VP

∂B

)

,

(E.11)

where in going from the second line to the third we have used (E.1), (B.15), as well as

u ∧D(. . .) = u ∧ D̂(. . .). In a similar manner, we compute the last identity of (E.7)

(⋆LH)βα − (⋆L̂H)βα = D

(

∂VP

∂(BR)αβ

)

. (E.12)

Note that all these partial derivatives treat {u, 2ω, µ,A,B,µR,Γ,BR} as independent

variables.

Using (E.4), (E.5), and (E.7), along with

δÂ = δA+ δuµ+ δµu , δΓ̂α
β = δΓα

β + δu(µR)
α
β + δ(µR)

α
βu ,

we can write the variation of VP as

δVP = d
[

δu ∧ ⋆qP + δA ∧ ·⋆JP + δΓα
β ∧ (⋆LP)βα

]

+ δu ∧
[

∂VP

∂u
+ (D + a)⋆qP −E ∧ ·⋆JP − (ER)

α
β ∧ (⋆LP)βα

]

+ δu ∧
[

µ · ⋆ĴH + (µR)
α
β(

⋆L̂H)βα

]

+ δA ∧ ·⋆JH − δÂ ∧ ·ĴH + δΓα
β ∧ (⋆LH)βα − δΓ̂α

β ∧ (⋆L̂H)βα . (E.13)
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Similarly, the variation of WCS takes the form

δWCS = d

[

δu ∧ ∂WCS

∂(2ω)
+ δA ∧ ·∂WCS

∂B
+ δΓα

β ∧ ∂WCS

∂(BR)αβ

]

(E.14)

+ δu ∧
[

∂WCS

∂u
+ (D + a)

∂WCS

∂(2ω)
−E ∧ ·∂WCS

∂B
− (ER)

α
β ∧ ∂WCS

∂(BR)αβ

]

+ δu ∧
[

µ · ⋆ĴBZ + (µR)
α
β(

⋆L̂BZ)
β
α

]

+ δA ∧ · [⋆JBZ − ⋆J
P
]− δÂ ∧ ·⋆ĴBZ

+ δΓα
β ∧

[

(⋆LBZ)
β
α − (⋆L

P
)βα

]

− δΓ̂α
β ∧ (⋆L̂BZ)

β
α .

The expressions (E.13) and (E.14) match (E.2) except for the terms proportional to

δu. These terms may be shown to vanish in the following way. Consider the variation of

VP + dWCS = ICS − ÎCS, which using (B.9) and (B.17) is given by

δICS − δÎCS = d
[

δA ∧ ·⋆JBZ − δÂ ∧ ·ĴBZ + δΓα
β ∧ (⋆LBZ)

β
α − δΓ̂α

β ∧ (⋆L̂BZ)
β
α

]

+ δA ∧ ·⋆JH − δÂ ∧ ·⋆ĴH + δΓα
β ∧ (⋆LH)βα − δΓ̂α

β ∧ (⋆L̂H)βα . (E.15)

However, this variation is also computed by (E.13) and (E.14) to be

δVP + dδWCS = d
[

δA ∧ ·⋆JBZ − δÂ ∧ ·ĴBZ + δΓα
β ∧ (⋆LBZ)

β
α − δΓ̂α

β ∧ (⋆L̂BZ)
β
α

]

+ δA ∧ ·⋆JH − δÂ ∧ ·⋆ĴH + δΓα
β ∧ (⋆LH)βα − δΓ̂α

β ∧ (⋆L̂H)βα

+ δu ∧
[

∂VP

∂u
+ (D + a)⋆qP −E ∧ ·⋆JP − (ER)

α
β ∧ (⋆LP)βα

+ µ · ⋆ĴH + (µR)
α
β(

⋆L̂H)βα

]

(E.16)

+ d

{

δu ∧
[

∂WCS

∂u
+ (D + a)

∂WCS

∂(2ω)
−E ∧ ·∂WCS

∂B
− (ER)

α
β ∧ ∂WCS

∂(BR)αβ

+ µ · ⋆ĴBZ + (µR)
α
β(

⋆L̂BZ)
β
α + ⋆qP

]}

.

Comparing (E.15) against (E.16) we conclude that the coefficients of δu and dδu vanish,

giving

⋆qP +
∂WCS

∂u
+ (D + a)

∂WCS

∂(2ω)
+ µ · ⋆ĴBZ + (µR)

α
β(

⋆L̂BZ)
β
α

= E · ∂WCS

∂B
+ (ER)

α
β

∂WCS

∂(BR)αβ
,

(E.17)

and

∂VP

∂u
+(D+a)⋆qP +µ · ⋆ĴH +(µR)

α
β(

⋆L̂H)βα−E · ⋆JP − (ER)
α
β (⋆LP)βα = 0 . (E.18)

Using (E.17) and (E.18) we can eliminate the terms proportional to δu in (E.13) and (E.14).

This gives (E.2) which is the main result of this section.
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F A consistency check involving the anomalous Ward identities in equi-

librium

The main goal of this paper was to obtain a representative for the anomalous contribu-

tion to the covariant current and stress tensor, Jµ
P and Tµν

P which takes the form given

by (1.7), (1.8) and (1.10). The anomaly-induced part of the hydrostatic currents which we

have computed in this paper must satisfy the covariant anomalous Ward identities derived

in appendix C,

DµJ
µ
P = J⊥

H , (F.1a)

DνT
µν
P = Fµ

ν · Jν
P +DνL

⊥µν
H , (F.1b)

where we emphasize that the equalities hold in equilibrium. In this section we will show

explicitly that this is indeed the case serving as a consistency check of our computations.

We begin with the covariant current, (F.1a). Using (E.7) we can write the divergence

of the anomalous contribution to the covariant current as

DµJ
µ
P = J⊥

H − Ĵ⊥
H . (F.2)

In equilibrium, the hatted Hall flavor current ⋆ĴH = ∂P̂/∂F̂ is completely transverse to u

which implies Ĵ⊥
H = 0. The divergence (F.2) then reduces to (F.1a).

To show that the stress tensor satisfies (F.1b) requires some more work. We separate

Tµν
P into heat and spin current parts as

Tµν
P = Tµν

P,q + Tµν
P,L , (F.3)

with

Tµν
P,q = uµqνP + uνqµP , Tµν

P,L = Dρ

(

L
µ[νρ]
P + L

ν[µρ]
P − L

ρ(µν)
P

)

. (F.4)

The divergence of Tµν
P,q is rather unilluminating when out of equilibrium, but in equilibrium

it takes the simple form

DνT
µν
P,q = uµ(Dν + aν)q

ν
P − 2ωµ

νq
ν
P . (F.5)

The divergence of the spin part of the stress tensor can be written in the form

DνT
µν
P,L = −DρDνL

νρµ
P −Rµ

νρσL
νσρ
P . (F.6)

Using (E.7) once again we rewrite the divergence of the spin current as

DνL
νρµ
P = L⊥ρµ

H − L̂⊥ρµ
H . (F.7)

In equilibrium the hatted Hall spin current ⋆L̂H = ∂P̂/∂R̂ is completely transverse to u so

that L̂⊥ρµ
H = 0. Combining (F.5), (F.6), and (F.7), we then have the equilibrium relation

DνT
µν
P = uµ

[

(Dν + aν)q
ν
P − (ER)ρσνL

νσρ
P

]

− 2ωµ
νq

ν
P − (BR)

µ
ρσ νL

νσρ
P +DνL

⊥µν
H , (F.8)
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where we have decomposed the Riemann curvature into electric and magnetic parts

Rµ
νρσ = uρ(ER)

µ
νσ − uσ(ER)

µ
νρ + (BR)

µ
νρσ , (F.9)

as described in section 5. If we decompose the the field strength in a similar manner, we

find that in equilibrium

DνT
µν
P − Fµ

ν · Jν
P −DνL

⊥µν
H =uµ [(Dν + aν)q

ν
P − Eν · Jν

P − (ER)ρσνL
νσσ
P ]

− 2ωµ
νq

ν
P −Bµ

ν · Jν
P − (BR)

µ
ρσ νL

νσρ
P .

(F.10)

To prove (F.1b) it remains to show that the longitudinal and transverse expressions

on the right hand side of (F.10) vanish. Using (E.18) we find that

(Dµ + aµ)q
µ
P = Eµ · Jµ

P + (ER)ρσµL
µσρ
P , (F.11)

where we have used that there are transverse volume forms in 2n dimensions. Thus, the

longitudinal part on the left hand side of (F.10) indeed vanishes.

We proceed to study the transverse contribution to the right hand side of (F.10).

Consider the interior product of VP with an arbitrary vector field ξm transverse to um
which satisfies the property that ξm is tangent to the boundary ∂M. Since the interior

product is a derivation we have

ιξVP = ιξ(2ω)
∂VP

∂(2ω)
+ ιξB · ∂VP

∂B
+ ιξ(BR)

a
b

∂VP

∂(BR)ab
,

= ιξ(2ω)⋆qP + ιξB · ⋆JP + ιξ(BR)
a
b
⋆Lb

a .

(F.12)

We now recall that VP is a top-form in 2n+ 1 dimensions and so it has a leg along the ⊥
direction. Since ξ⊥ vanishes on the boundary ∂M, the pullback of ιξVP to ∂M vanishes,

P[ιξVP ] = 0 . (F.13)

In coordinates this means that

ξµ
(

2ωµ
νq

ν
P +Bµ

ν · Jν
P + (BR)

µ
ρσ νL

νσρ
P

)

= 0 . (F.14)

The bracketed expression is precisely the transverse part of (F.10). Now since the bracketed

expression in (F.14) is transverse, we find that the bracketed expression and therefore the

transverse part of (F.10) vanishes as claimed.

G Spin current and torque: Mathisson-Papapetrou-Dixon equations

As we have seen, the conservation equations for flavor, energy-momentum and angular

momentum get modified in a specific way for anomalous field theories. For example, a useful

way of thinking about gravitational anomalies is to think of them as Lorentz anomalies

leading to a non-conservation of angular momentum via anomalous torques.

In order to see how this works in practice, it is useful to first understand the dynamics

of angular momentum when the anomalies are absent. We will consider the case where the
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system is coupled to an external medium which applies an external torque on the QFT

so that we can understand how torque appears in the conservation laws. Thus in this

appendix, we will remark on some basic results regarding the dynamics of spin and torque

that will clarify the physical content of various equations that appear in the paper.

Given a system with a conserved angular momentum, the split of that angular mo-

mentum into an orbital and a spin part is somewhat arbitrary. This is exactly analogous

to the statement in electrodynamics of media that the division of a charge current into a

‘free’ charge current and a magnetization-induced ‘bound’ charge current is arbitrary per

se. In both these cases, however, a particular split might be more natural and convenient

in a given physical situation. Our aim in the rest of the appendix is to describe how such

splits in angular momentum can be achieved and how one handles the ambiguity inherent

to such a split.

The discussion in the rest of this appendix is straightforward if somewhat long. So, for

the convenience of the reader, we will summarize the main conclusions: first of all, we will

show that different definitions of spin dynamics prevalent in literature can be reconciled

into a single set of conservation equations that can directly be derived from the generating

functional. We refer to these equations as Mathisson-Papapetrou-Dixon equations. They

naturally incorporate the ambiguity mentioned above. We will also show that Lµ[νλ] should

be interpreted as half the spin current - a corollary that follows is that L
⊥[µν]
H is half the

spin Hall current that flows into the boundary. Via anomaly inflow of angular momentum,

L
⊥[µν]
H thus gives the half -torque due to the covariant gravitational anomaly.

To prove these statements, we begin by slightly modifying the procedure in the ap-

pendix C. There, we studied the variation of the path-integral with respect to sources

{Aµ, gµν}. Instead, it is often convenient to treat {Aµ, gµν ,Γ
µ
νλ} as independent sources

and write (A.1) in the form

δW ≡
∫

ddx
√−g

{

δAµ · Jµ +
1

2
δgµνt

µν + δΓµ
νλL

λν
µ

}

+ (boundary terms) . (G.1)

with tµν = tνµ. We will impose no further symmetry conditions on the other tensors. We

will call Lλµν the canonical spin current or just spin current in short. More precisely, it

is half of what is usually termed the spin current — where the additional factor of half is

included for convenience. The reason for this terminology will become clear as we proceed.

While the division above is somewhat arbitrary, one can treat this as the penultimate

step in computing δW , prior to the last integration by parts which brings δW to the form

in (A.1). The energy-momentum tensor, obtained after integration by parts, can be written

in the form

Tµν = tµν −DλL
λνµ +Dλ

(

Lµ[νλ] + Lν[µλ] + Lλ[νµ]
)

. (G.2)

We will call the contribution in brackets the spin energy momentum tensor

Tµν
spin ≡ Dλ

(

Lµ[νλ] + Lν[µλ] + Lλ[νµ]
)

. (G.3)

Let us place our quantum field theory in an external medium which can apply an

external force or torque. A convenient example is an ‘flavor’ electromagnetic medium with
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a magnetization-dielectric polarization tensor Mµν . In practice, this means there exists an

external sector of the quantum field theory such that

δWext =

∫

ddx
√−g

{

1

2
Mµν · δFµν

}

+ (boundary terms) , (G.4)

with Mµν = −Mνµ. We will call Mµν the magnetization tensor of the medium. This

implies that under an infinitesimal gauge and coordinate transformation χ = {ξµ,Λ}, Wext

varies as

δχWext =

∫

ddx
√−g

{

1

2
Mµν · δχFµν

}

+ (boundary terms)

=

∫

ddx
√−g

{

ξα
1

2
Mµν ·DαFµν +

1

2
Dαξ

β (Mαν · Fβν +Mµα · Fµβ)

+ (Λ + ξαAα) ·
1

2
[Mµν , Fµν ]

}

+ (boundary terms) (G.5)

≡
∫

ddx
√−g

{

ξαf
α
ext +

1

2
(Dαξβ)τ

αβ
ext + (Λ + ξαAα) ·Qext

}

+ (boundary terms) ,

where we have parametrized the contributions from the medium by an external force fα
ext,

an external point torque ταβext and an external charge injection rate Qext. The reason for

these names would become clear shortly, once we derive the conservation equations. For a

magnetized medium, we have

fα
ext =

1

2
Mµν ·DαFµν , ταβext = 2Mασ · F β

σ , Qext =
1

2
[Mµν , Fµν ] , (G.6)

where we recognize the Stern-Gerlach force (∇B) ·M and the familiar M×B point torque

in the antisymmetric part of ταβext:

τ
[αβ]
ext = Mασ · F β

σ −Mβσ · Fα
σ . (G.7)

For non-abelian flavor symmetries the magnestization injects flavor charge into the system

at the rate given by 1
2 [Mµν , Fµν ].

We want to now rederive the conservation laws by demanding that the joint system

W + Wext be diffeomorphism and flavor invariant. In what follows we will not specify a

particular form for Wext, but instead parameterize it through external forces, torques, and

charge injection rates as in (G.5). The conservation laws and Noether theorem for the field

theory are derived as in appendix A via an integration by parts. In what follows we split

the energy-momentum tensor into tµν and the spin current Lµνρ as in (5.45). Using the

transformation of the sources under diffeomorphism and flavor transformations, we get

δχAµ · Jµ +
1

2
δχgµνt

µν + δχΓ
µ
νλL

λν
µ + ξαf

α
ext +

1

2
(Dαξβ)τ

αβ
ext + (Λ + ξαAα) ·Qext

= DµN
µ
χ,Canonical − (Λ + ξαAα) · (DµJ

µ −Qext)

− ξµ

{

DνT
µν
orbital −Rµ

νβαL
ναβ − Fµ

ν · Jν − fµ
ext

}

,

(G.8)

– 50 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
4

where we have defined

Nµ
χ,Canonical ≡ (Λ + ξαAα) · Jµ + ξαT

αµ
orbital + (Dαξβ)L

µαβ ,

Tµν
orbital ≡ tµν −

(

DλL
λνµ − 1

2
τνµext

)

,
(G.9)

Here, Nµ
χ,Canonical is the canonical Noether current and Tµν

orbital is the orbital energy-

momentum tensor which enters into this Noether current. These differ from the Noether

current and the energy momentum tensors we defined previously in (A.7) and through the

variation of WQFT with respect to the metric. Thus, δχ(W +Wext) evaluates to

δχ(W +Wext) =

∫

ddx
√−g

{

δχAµ · Jµ +
1

2
δχgµνt

µν + δχΓ
µ
νλL

λν
µ

}

+

∫

ddx
√−g

{

ξαf
α
ext +

1

2
(Dαξβ)τ

αβ
ext + (Λ + ξαAα) ·Qext

}

+ (boundary terms)

= −
∫

ddx
√−g (Λ + ξαAα) ·

{

DµJ
µ −Qext

}

−
∫

ddx
√−g ξµ

{

DνT
µν
orbital −Rµ

νβαL
ναβ − Fµ

ν · Jν − fµ
ext

}

+ (boundary terms) ,

(G.10)

which gives upon demanding δχ(W +Wext) = 0

DµJ
µ = Qext ,

DνT
µν
orbital = Rµ

νβαL
ναβ + Fµ

ν · Jν + fµ
ext ,

DλL
λ[µν] = T

[µν]
orbital +

1

2
τ
[µν]
ext ,

(G.11)

where the third relation follows from t[µν] = 0. The divergence of the canonical Noether

current is

DµN
µ
χ,Canonical = δχAµ · Jµ +

1

2
δχgµνt

µν + δχΓ
µ
νλL

λν
µ

+ ξαf
α
ext +

1

2
(Dαξβ)τ

αβ
ext + (Λ + ξαAα) ·Qext .

(G.12)

The equations (G.11) are the basic equations that we will need to describe the dynamics

of spin currents. Henceforth, we will refer to the conservation equations in (G.11) as

Mathisson-Papapetrou-Dixon equations.12 We can show that the Mathisson-Papapetrou-

Dixon equations are equivalent to the usual conservation equations for the standard energy-

momentum tensor Tµν in (5.49). A direct integration by parts gives

δW ≡
∫

ddx
√−g

{

δAµ · Jµ +
1

2
δgµνT

µν
}

+ (boundary terms) , (G.13)

δχWext ≡
∫

ddx
√−g

{

ξα

[

fα
ext −

1

2
Dβτ

βα
ext

]

+ (Λ + ξαAα) ·Qext

}

+ (boundary terms) ,

12Mathisson [41], Papapetrou [42] and Dixon [43] arrived at the particle analogue of these equations while

studying the motion of spinning particles in curved spacetime. The Mathisson-Papapetrou-Dixon equations

with {fµ
ext, τ

[µν]
ext } as given in (G.6) and (G.7) are sometimes also called Dixon-Soriau equations.
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where Tµν is as in (5.49). Using (A.5) and integrating the variations in δχW by parts, this

in turn implies that Jµ and Tµν satisfy the Ward identities

DµJ
µ = Qext , DνT

µν = Fµ
ν · Jν + fµ

ext −
1

2
Dντ

νµ
ext , Tµν − T νµ = 0 . (G.14)

Note that in this way of describing the dynamics, the point torques just appear as a part

of external forces acting on the system.

An alternate way to derive the Mathisson-Papapetrou-Dixon equations is to think of

the metric gµν and the connection Γµ
νλ as derived from frame fields and spin connection

{Eā
µ, Γ̊

ā
b̄µ} (in what follows barred English indices are tangent space indices, which are

raised and lowered with the Minkowski metric ηāb̄ and its inverse ηāb̄). The metric is

determined in terms of the frame fields

gµν = ηāb̄E
ā
µE

b̄
ν
, (G.15)

and the coframe fields eµā are defined such that

Eā
µe

µ

b̄
= δā

b̄
, eµāE

ā
ν = δµν . (G.16)

Since we couple our field theory to the Christoffel connection, the spin connection Γ̊ā
b̄µ

is

determined in terms of the metric through the frame fields, but here as before we find it

useful to treat {Eā
µ, Γ̊

ā
b̄µ} as independent sources.13 At the end of the day, we convert

variations of the spin connection into variations of the frame fields.

One may verify that the holonomic (coordinate frame) connection Γµ
νρ is determined

in terms of the spin connection as

Γµ
νρ = eµāΓ̊

ā
b̄ρ
E b̄

ν
+ eµā∂ρE

ā
ν . (G.17)

This is equivalent to the condition that the frame fields are covariantly constant under the

spin covariant derivative D̊ = D + Γ̊,

D̊µE
ā
ν = ∂µE

ā
ν − Γρ

νµE
ā
ρ + Γ̊ā

b̄µ
E b̄

ν
= 0 .

Solving (G.17) for Γ̊ā
b̄µ

and using that Γµ
νρ is the Christoffel connection and so is deter-

mined in terms of the metric (5.3), the spin connection is given by

Γ̊ā
b̄µ

= Eā
αg

αλeν
b̄
eσc̄

(

gσµ∂[νE
c̄
λ] + gσν∂[µE

c̄
λ] + gσλ∂[νE

c̄
µ]

)

. (G.18)

Treating the variations of the frame fields and spin connection as independent for now,

W varies as

δW ≡
∫

ddx
√−g

(

δAµ · Jµ + δEā
νE

b̄
µηāb̄T

µν
orbital + δΓ̊ā

b̄λE
b̄
µE

c̄
νηāc̄L

λ[µν]
)

+ (boundary terms) ,

(G.19)

13To be precise, we take Γ̊ā
b̄µ to be arbitrary so as it satisfies metric compatibility Dµgνρ = 0. In terms

of the frame fields and spin connection, this just means that we impose antisymmetry of Γ̊ā
b̄µ in its frame

indices.
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which can be taken as an alternate way to define the tensors {Tµν
orbital, L

λ[µν]}. Note that the
antisymmetry of Γ̊ā

b̄µ means that the variation of W with respect to Γ̊ā
b̄µ yields Lλ[µν]: an

antisymmetric tensor in its last two indices. Of course, the variation of the spin connection

is given by derivatives of the frame fields as in (G.18), and so its variation is given by

δΓ̊ā
b̄µ = Eā

αg
αλeν b̄e

σ
c̄

(

gσµD̊[νδE
c̄
λ] + gσνD̊[µδE

c̄
λ] + gσλD̊[νδE

c̄
µ]

)

. (G.20)

This, after an integration of parts, gives

δW =

∫

ddx
√−g

(

δAµ · Jµ + δEā
νE

b̄
µηāb̄T

µν
Non−Sym

)

+ (boundary terms) , (G.21)

with Tµν
Non−Sym given by

Tµν
Non−Sym ≡ Tµν

orbital +Dλ

(

Lµ[νλ] + Lν[µλ] + Lλ[νµ]
)

. (G.22)

This is the equivalent of (5.49) when we work with the frame fields and spin connection.

We now wish to compute the conservation equations and Ward identities in this con-

text. To do so we follow the same algorithm as above. We parameterize the variation of

the external medium under a gauge and coordinate transformation as

δχWext ≡
∫

ddx
√−g

(

ξαf
α
ext +

1

2
Eā

µηb̄c̄E
c̄
ν

(

θb̄ā + ξαΓ̊b̄
āα

)

τ
[µν]
ext + (Λ + ξαAα) ·Qext

)

+ (boundary terms) . (G.23)

The derivation of conservation equations then proceeds as before. We have

δχAµ · Jµ + δχE
ā
νE

b̄
µηāb̄T

µν
orbital + δχΓ̊

b̄
āλE

ā
µηb̄c̄E

c̄
νL

λ[µν]

+ ξαf
α
ext +

1

2
Eā

µηb̄c̄E
c̄
ν

(

θb̄ā + ξαΓ̊b̄
āα

)

τ
[µν]
ext + (Λ + ξαAα) ·Qext

= DµÑ
µ
χ,Canonical − (Λ + ξαAα) · (DµJ

µ −Qext) (G.24)

− ξµ

{

DνT
µν
orbital −Rµ

νβαL
ναβ − Fµ

ν · Jν − fµ
ext

}

− 1

2
Eā

µηb̄c̄E
c̄
ν

(

θb̄ā + ξαΓ̊b̄
āα

)(

2DλL
λ[µν] −

(

Tµν
orbital − T νµ

orbital

)

− τ
[µν]
ext

)

,

where the new Canonical Noether current is defined by

Ñµ
χ,Canonical ≡ (Λ + ξαAα) · Jµ + ξαT

αµ
orbital + Eā

αηb̄c̄E
c̄
β

(

θb̄ā + ξλΓ̊b̄
āλ

)

Lµ[αβ] . (G.25)

It follows that the Mathisson-Papapetrou-Dixon equations in (G.11) are reproduced by

demanding that bulk terms in δχ(W +Wext) vanish. The corresponding Noether identity is

DµÑ
µ
χ,Canonical = δχAµ · Jµ + δχE

ā
νE

b̄
µηāb̄T

µν
orbital + δχΓ̊

b̄
āλE

ā
µηb̄c̄E

c̄
νL

λ[µν] (G.26)

+ ξαf
α
ext +

1

2
Eā

µηb̄c̄E
c̄
ν

(

θb̄ā + ξαΓ̊b̄
āα

)

τ
[µν]
ext + (Λ + ξαAα) ·Qext .

As is characteristic of the formalism in terms of frame-fields and spin connection, Lorentz

transformations are treated almost in par with the flavor transformations: Lλ[µν] plays the
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role of the current associated with Lorentz symmetry and τ
[µν]
ext is the external injection rate

of the ‘Lorentz charge’. If we had started from (G.21), then the corresponding conservation

laws would have been

DµJ
µ = Qext , DνT

µν
Non−Sym = Fµ

ν ·Jν+fµ
ext , −Tµν

Non−Sym+T νµ
Non−Sym = τ

[µν]
ext . (G.27)

To summarize, we have four different descriptions, depending on our choice of sources.

1. With {Aµ, gµν ,Γ
µ
νλ} as independent sources, we have a description in terms of the

currents {Jµ, tµν , Lλµν}. With {Aµ, E
ā
µ,Γ

ā
b̄λ} as independent sources, we have a

description in terms of the currents {Jµ, Tµν
orbital, L

λ[µν]} where

Tµν
orbital = tµν −

(

DλL
λνµ − 1

2
τνµext

)

. (G.28)

In both these cases, the conservation equations are the Mathisson-Papapetrou-Dixon

equations

DµJ
µ = Qext ,

DνT
µν
orbital = Rµ

νβαL
ναβ + Fµ

ν · Jν + fµ
ext ,

DλL
λ[µν] = T

[µν]
orbital +

1

2
τ
[µν]
ext .

(G.29)

2. With {Aµ, E
ā
µ} as independent sources, we have a description in terms of the currents

{Jµ, Tµν
Non−Sym} where

Tµν
Non−Sym ≡ Tµν

orbital +Dλ

(

Lµ[νλ] + Lν[µλ] + Lλ[νµ]
)

= tµν −
(

DλL
λνµ − 1

2
τνµext

)

+Dλ

(

Lµ[νλ] + Lν[µλ] + Lλ[νµ]
)

= Tµν +
1

2
τνµext .

(G.30)

The conservation equations are

DµJ
µ = Qext ,

DνT
µν
Non−Sym = Fµ

ν · Jν + fµ
ext ,

0 =
(

Tµν
Non−Sym − T νµ

Non−Sym

)

+ τ
[µν]
ext ,

(G.31)

which are the Mathisson-Papapetrou-Dixon equations with zero spin currents.

3. With {Aµ, gµν} as independent sources, we have a description in terms of the currents

{Jµ, Tµν} where

Tµν = tµν −DλL
λνµ +Dλ

(

Lµ[νλ] + Lν[µλ] + Lλ[νµ]
)

= Tµν
orbital +

[

Dλ

(

Lµ[νλ] + Lν[µλ] + Lλ[νµ]
)

− 1

2
τνµext

]

.
(G.32)

– 54 –



J
H
E
P
0
5
(
2
0
1
4
)
1
3
4

The conservation equations are

DµJ
µ = Qext , DνT

µν = Fµ
ν · Jν + fµ

ext −
1

2
Dντ

νµ
ext , Tµν − T νµ = 0 , (G.33)

which are the Mathisson-Papapetrou-Dixon equations with zero spin currents and

zero point torque.

Note that all these different descriptions — be it in terms of {Tµν
orbital, L

σµν} obey-

ing (G.11), or in terms of Tµν
Non−Sym obeying (G.27), or in terms of the symmetric energy

momentum tensor Tµν — all of them are equivalent descriptions of the same system related

by various redefinitions. In fact, the Mathisson-Papapetrou-Dixon equations are invariant

under a broader set of Belinfante-Rosenfeld transformations which shift the spin current

Lσµν and torques τµνext. These transformations may be regarded as an ambiguity involved

in the definition of angular momentum and point torques, and under them we have

τµνext 7→ τµνext − 2Aµν , fµ
ext 7→ fµ

ext −DνAνµ , Lσµν 7→ Lσµν − Bσµν ,

Tµν
orbital 7→ Tµν

orbital +
[

Dλ

(

Bµνλ + Bνµλ + Bλνµ
)

−Aνµ
]

,
(G.34)

where Bλµν must satisfy Bλµν = −Bλνµ. This result follows by using the identity

DνDλ

(

Bµνλ + Bνµλ + Bλνµ
)

+Rµ
νβαBναβ

= [Dν , Dλ]Bµνλ +Rµ
νβαBναβ − 1

2
[Dν , Dλ]

(

Bµνλ + Bλµν + Bνλµ
)

=
1

2
(Rµ

νβα +Rµ
βαν +Rµ

ανβ)Bναβ

= 0 ,

(G.35)

which holds for any tensor Bλµν provided Bλµν = −Bλνµ. This shows that the Mathisson-

Papapetrou-Dixon equations automatically incorporate the ambiguity involved in the def-

inition of spin angular momentum and point torques. Further, it is easily checked that all

the cases considered above are related to each other via a Belinfante-Rosenfeld shift. We

will use these descriptions interchangeably in the rest of this article.

In the rest of this appendix, we will remark on some important features of the

Mathisson-Papapetrou-Dixon equations. As mentioned before, the external forces and

torques {fµ
ext, τ

µν
ext} appearing in (G.11) denote the external forces and torques per unit

volume acting on the system, injecting canonical energy-momentum and spin into the sys-

tem. Note that τ
[µν]
ext includes only the point torques (or the ‘spin’ part of torques) and

excludes ‘orbital’ r×f torques that arise from fµ
ext itself. For example, in an electrodynamic

medium with magnetization-polarization tensor Mµν and a background field strength Fαβ ,

our derivation gives (G.6).

Further, we note that the force corresponding to the canonical energy momentum

tensor includes, in addition to fµ
ext and the Lorentz force on the flavor current Jν , an

additional term Rµ
νβαL

ναβ which is sometimes called the Mathisson force. Mathisson force

is crucial, for example, in explaining why free spinning particles do not follow geodesics in
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a curved spacetime (or more colloquially, why free fall of gyroscopes are affected by how

fast they are spinning). In the solid state context, where disclinations in the solid can be

modeled as a background curvature, Mathisson force is the force on a spin as it crosses a

disclination.

The Mathisson-Papapetrou-Dixon equations exhibit various other properties which

make them an appropriate description of spin dynamics.

• They reduce to the correct equations for describing spinning particles moving in

curved spacetimes. If Q,Pµ and Sµν denote the flavor charge, canonical momentum

and the spin of a particle, then the Mathisson-Papapetrou-Dixon equations become

DQ

Dτ
= (charge injection rate) ,

DPµ

Dτ
= Q · Fµ

ν
dxν

dτ
+Rµ

νβα
dxν

dτ
Sαβ + (force)µext ,

DS[µν]

Dτ
= Pµ dx

ν

dτ
− P ν dx

µ

dτ
+ (torque)

[µν]
ext ,

(G.36)

where xµ is the position of the particle, τ denotes its proper time and D
Dτ

denotes the

covariant derivative take along the worldline. We have used {(force)µext, (torque)µνext}
respectively to denote the external forces and point torques acting on the particle

and we have used the fact that Lµνλ denotes half of the spin current. In the absence

of flavor charges, we obtain the original form in which these equations were derived

by Mathisson, Papapetrou and Dixon.

• In flat spacetime and in cartesian co-ordinates, they give rise to familiar energy-

momentum and angular momentum conservation equations

∂µJ
µ = Qext ,

∂νT
µν
orbital = Fµ

ν · Jν + fµ
ext ,

∂σ

[

xµT νσ
orbital − xνTµσ

orbital + 2Lσ[µν]
]

= xµ (F ν
α · Jα + fν

ext)− xν (Fµ
α · Jα + fµ

ext) + τ
[µν]
ext ,

(G.37)

where we note that 2Lσ[µν] appears as the ‘spin’ part of angular momentum current as

expected whereas the ‘orbital’ part of the angular momentum current is constructed

from the ‘orbital’ part of the energy-momentum Tµν
orbital.

• In QFTs without spin-orbit interaction, the conservation of the total angular mo-

mentum breaks up into separate conservation equations for orbital and spin angular

momentum, i.e., DλL
λ[µν] = T

[µν]
orbital +

1
2τ

[µν]
ext breaks up into DλL

λ[µν] ≈ 1
2τ

[µν]
ext and

T
[µν]
orbital ≈ 0. In other words, T

[µν]
orbital appearing in the third Mathisson-Papapetrou-

Dixon equation is half the ‘spin-orbit torque’ arising because of orbital angular mo-

mentum seeping into spin angular momentum..

Thus, we have concluded that irrespective of the starting point the conservation laws for

angular momentum always take the Mathisson-Papapetrou-Dixon form (G.11) as claimed.
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This discussion of a non-anomalous QFT in contact with a medium which injects charge

and angular momentum has many similarities with an anomalous QFT where charge or

angular momentum is injected by the anomaly instead. These similarities are especially

clear in the anomaly inflow picture where charge or angular momentum can be thought of

as injected from a system with one dimension higher. To conclude this appendix, we note

that both the consistent (C.11) and covariant Ward identities (C.15) take the Mathisson-

Papapetrou-Dixon form

DµJ
µ = Qext ,

DνT
µν
orbital = Rµ

νβαL
ναβ + Fµ

ν · Jν + fµ
ext ,

DλL
λ[µν] = T

[µν]
orbital +

1

2
τ
[µν]
ext .

(G.38)

Written this way, the effects of the anomaly on the consistent Ward identities (C.11) can

be accounted for by an external force, external torque, and charge injection rate

fα
ext = −Aα · J − gαβΓµ

βνT ν
µ , ταβext = 2T αβ , Qext = J , (G.39)

where J and T µ
ν were defined in (C.10). Similarly, the effects of the anomalies in the

covariant Ward identities (C.15) can be accounted for by

fα
ext = 0 , ταβext = 2L⊥αβ

H , Qext = J⊥
H , (G.40)

where the Hall current JM
H and spin current LMNP

H were defined in (B.17).

H The relativistic Boltzmann weight

The description of equilibrium physics in the transverse gauge is intimately related to the

traditional presentation of Euclidean thermal field theory. However there are a couple of

subtle differences which we elicit in this appendix. The essential observable in thermal field

theory, in the absence of anomalies, is the thermal partition function

ZE = tr exp(−βH) , (H.1)

where β is the parametric length of the thermal circle and H is the generator of time trans-

lations in the background (5.15).14 As a result ZE is a functional of the background metric

and gauge field. For theories with a functional integral description, this partition function

is equal to the functional integral of the Euclidean weight exp(−SE) on the Euclidean

background (5.41) with appropriate boundary conditions around the thermal circle. The

temperature and flavor chemical potential are usually defined through observables which

is local in the spatial x-directions, but non-local in Euclidean time. The temperature is

the inverse length of the thermal circle, as a function of space, and the flavor chemical

14In writing ZE as in (H.1), it is clear that the usual presentation of thermal field theory is non-covariant.

We have separated time and space from the outset, in exactly the same way as in the transverse gauge.
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potential is defined through the Wilson line of the gauge field around the thermal circle.

The inverse length is

L−1 =

(
∫ β

0
dλ
√

−K2(λ)

)−1

=
1

β
√
−K2

, (H.2)

which agrees with the local temperature defined in the covariant context in (5.12). In

the same way, we could define the spin chemical potential through the Wilson line of the

Christoffel connection. Denoting the thermal circle at a position x on the spatial slice as

Cx, the Wilson lines around Cx in the transverse gauge are15

P exp

(

−
∫

Cx

A

)

= exp(−β(A0)E) = exp(iβA0) = exp
(

i
µ

T

)

,

P exp

(

−
∫

Cx

Γ

)µ

ν

= exp (−β(Γ0)E)
µ
ν = exp (iβΓ0)

µ
ν = exp

(

i
µR

T

)µ

ν
,

(H.3)

so that the logarithms of the Wilson lines are iµ/T and i(µR)
µ
ν/T respectively. As an

aside, we note that the Wilson lines of the hatted connections are trivial in transverse

gauge are given by

P exp

(

−
∫

Cx

Â

)

= 1 , P exp

(

−
∫

Cx

Γ̂

)µ

ν

= δµν .

Actually, we should be careful. In writing down the Wilson lines above in the way

they usually appear in certain textbook discussions of field theory, we have written down

unphysical objects. The proper observables are the holonomies perceived by G and matrix-

valued tensors when parallel transported around the thermal circle. That is, the physical

quantities are the phases perceived by charged states when they go around the circle.

These phases receive two contributions, one from the integrals above (H.3) and another

from twisted boundary conditions that may be imposed around the circle. The latter are

implemented by ΛK and ∂νK
µ. Only the combination is physical, which at this stage

should be unsurprising to the reader: in the main text, we defined the flavor and spin

chemical potentials to be the covariant objects (KαAα+ΛK)/
√
−K2 and DνK

µ/
√
−K2 =

(KαΓµ
να+∂νK

µ)/
√
−K2 respectively. The terms involving the connection essentially give

the integrals (H.3) of A and Γ
µ
ν around the thermal circle, while the terms {ΛK , ∂νK

µ}
provide the twisted boundary conditions.

It is tempting to think of the quantities {T, µ, (µR)
µ
ν} more generally in terms of

these non-local quantities around the thermal circle. In fact, just this identification was

made for T and µ in [32]. However this is a little misleading. We stress that the quantities

{T, µ, (µR)
µ
ν} defined in our covariant analysis are local on spacetime, whereas the integrals

around the thermal circle are only valued on the spatial slice. However, in a transverse

gauge, all fields and background fields are independent of time, and so may be regarded as

local fields on the spatial slice. This is why the traditional thermal field theory presentation

is related to the transverse gauge.

15We remind the reader that, in anti-hermitian flavor basis, the usual Wilson lines are defined without

an i in the exponential.
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For a non-anomalous theory, the thermal partition function ZE should be gauge and

coordinate-reparametrization invariant. In order for this to be true, we must be a little

careful by what we mean by the Hamiltonian H. There are several Noether-like currents

that we may define and so several potential Hamiltonians. In the rest of this appendix

we revisit the canonical Noether current defined in (G.9) and its relation to ZE , relying

heavily on results derived in the previous appendix. In that context, we were interested

in the Ward identities and Noether currents when coupling a field theory to a general

external sector which dumped energy-momentum, angular momentum, and charge into

the field theory. We related that formalism to anomalous field theories at the end of that

appendix, in particular showing that it describes the dynamics of the consistent currents

obeying the Ward identities (C.11). The corresponding external force, torque, and charge

injection rate were given in (G.39) to be

fα
ext = −Aα · J − gαβΓµ

βνT ν
µ , ταβext = 2T αβ , Qext = J ,

where J and T µ
ν were defined in (C.10). Here and in what follows, we build Noether

currents out of the consistent currents and specialize to the symmetry transformation

{Kµ,ΛK}. Redefining the Noether current in (G.9) by a minus sign (in which case, for

the energy-momentum tensor and flavor current of ideal hydrodynamics, it becomes the

energy current), we define

Jµ
K,canonical ≡ −KνT

νµ
orbital − (KαAα + Λ) · Jµ −DβK

αLµβ
α

= −KνT
νµ
orbital −

√

−K2
(

µ · Jµ + (µR)
α
βL

µβ
α

)

,
(H.4)

where Tµν
orbital was also defined in (G.9). Its divergence when δK generates a symmetry is

given by (G.12) to be

DµJ
µ
K,canonical = −Kµf

µ
ext −

1

2
(DαKβ)τ

αβ
ext − (KαAα + ΛK) ·Qext . (H.5)

Substituting the external force, torque, and charge injection rates (G.39) relevant for de-

scribing the consistent anomaly, we find

DµJ
µ
K,canonical = −ΛK · J − ∂νK

µT ν
µ , (H.6)

We see that in the absence of anomalies, Jµ
K,canonical is always conserved. Further, it remains

conserved even in the presence of anomalies, provided that we are in transverse gauge.

As an aside, consider the related current

J̃µ
K ≡ −KνT

νµ
orbital − (KαAα · Jµ +DβK

αLµβ
α) = Jµ

K,canonical + ΛK · Jµ . (H.7)

From (H.6), we see that its divergence is

DµJ̃
µ
K = DµΛK · Jµ − ∂νK

µT ν
µ , (H.8)

which vanishes when ΛK is covariantly constant and ∂ρK
ν vanishes. In the absence of

anomalies, the common convention seems to be to choose the generator H appearing in the
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thermal partition function (H.1) to be conjugate to the current J̃µ
K defined in (H.7). How-

ever, J̃µ
K is not generally conserved; for a non-anomalous theory, its divergence (H.8) only

vanishes when ΛK is covariantly constant. In that instance, one can go to a gauge and co-

ordinate choice where ΛK is independent of time and space, in which case we may relabel it

as the position-independent constant ΛK ≡ µ0. One can then define the Boltzmann weight

exp
[

−β
(

H̃K − µ0 · Q
)]

, (H.9)

where H̃K is the operator conjugate to the current J̃µ
K , andQ is the flavor charge opera-

tor conjugate to the flavor current. Let us call the corresponding partition function Z̃E .

From Z̃E one can define thermodynamic energy, and flavor charge through derivatives with

respect to β and µ0. The Boltzmann weight (H.9) is reminiscent of textbook statistical

mechanics. It is also written in a way to remind us what the chemical potentials do: they

twist the weighting of charged states in the sum over states. We note that one can go

through a similar transformation of the Noether current involving the spin chemical poten-

tial and spin current. To do so, it is most convenient to work with the frame fields and spin

connection, and reformulate the gravitational anomalies in terms of Lorentz anomalies. We

do not do so here in a momentary attempt at brevity.

The Boltzmann weight (H.9) is written in an extremely non-covariant way. In order to

write ZE in a manifestly gauge and coordinate-invariant way, we can choose the Boltzmann

weight to instead be

exp (−βHK) , (H.10)

where HK is the operator conjugate to the current Jµ
K,canonical defined in (H.4). When ΛK

is constant, this weight is equal to that defined before in (H.9). However, unlike Z̃E , the

partition function ZE = tr exp (−βHK) is gauge-invariant as it ought to be.

So far we have discussed the Boltzmann weight for non-anomalous theories. Almost

all of that discussion carries over when the underlying theory is anomalous. The only

real change comes with the Boltzmann weights and the thermal partition function, which

is no longer invariant under gauge and coordinate transformations. However, by (H.6),

the current Jµ
K remains conserved even when there are anomalies provided that we are

in transverse gauge. As a result the thermal partition function may still be understood

as a sum over states with Boltzmann weight exp(−βHK) as before, but HK is akin to a

Hamiltonian (in the sense that it generates a symmetry) only in transverse gauge.

I Notation

It is often useful to shift to the language of differential forms (which we will denote by bold

letters ) which is a more efficient way of dealing with fully antisymmetric tensors. In this

appendix, we will summarize our conventions for differential forms.

• We begin with our convention for the wedge product which is fixed by demanding

that

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp ≡ p! dx[µ1 ⊗ dxµ2 ⊗ . . .⊗ dxµp] , (I.1)
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where {dxµ} are the basis 1-forms associate with co-ordinates xµ. Further, [µ1 . . . µp]

indicates a projection to the antisymmetric part and ⊗ is the ordinary tensor product.

For example,

dxµ ∧ dxν ≡ 2! dx[µ ⊗ dxν] = dxµ ⊗ dxν − dxν ⊗ dxµ . (I.2)

Since we know how the wedge product acts on basis forms, we can linearly extend

the definition to arbitrary forms.

• A p-form V is a fully antisymmetric p-tensor whose components are given by Vµ1...µp .

As a tensor it is

V ≡ Vµ1...µp dxµ1 ⊗ . . .⊗ dxµp = Vµ1...µp dx[µ1 ⊗ . . .⊗ dxµp]

=
1

p!
Vµ1...µp dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp .

(I.3)

We will also encounter tensors with a number of fully antisymmetric covariant indices.

These may be regarded as just another tensor, or as tensor-valued p-forms like V α
β . In

components, these has p fully antisymmetric covariant indices along with additional

‘free’ tensor indices (for V α
β these would be α and β). For example,

V α
β ≡ 1

p!
V α

βµ1...µpdx
µ1 ∧ dxµ2 ∧ . . . ∧ dxµp . (I.4)

• Given a 1-form A and a p-form V , their wedge product is then defined by the wedge

product of the basis 1-forms (I.1) and linearity, which gives

A ∧ V ≡ 1

p!
AλVµ1...µp dxλ ∧ dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp

=
1

(p+ 1)!

{

Aµ1Vµ2...µp+1 + (−1)pAµ2Vµ3...µp+1µ1

+(−1)2pAµ3Vµ4...µp+1µ1µ2 + . . .+ (−1)p
2
Aµp+1Vµ1...µp

}

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp ∧ dxµp+1 .

(I.5)

Hence the components of the (p+ 1)-form A ∧ V are given by

(A ∧ V )µ1µ2...µp+1 ≡ Aµ1Vµ2...µp+1 + (−1)pAµ2Vµ3...µp+1µ1

+(−1)2pAµ3Vµ4...µp+1µ1µ2 + . . .+ (−1)p
2
Aµp+1Vµ1...µp

=

p+1
∑

k=1

(−1)p(k−1)Aµk
Vµk+1µk+2...µp+1µ1µ2...µk−1

.

(I.6)
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• The exterior derivative d is a derivation that maps p-forms to p + 1-forms. Our

convention for d in components are given by

dV ≡ 1

p!
∂λVµ1...µp dxλ ∧ dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp

=
1

(p+ 1)!

{

∂µ1Vµ2...µp+1 + (−1)p∂µ2Vµ3...µp+1µ1

+(−1)2p∂µ3Vµ4...µp+1µ1µ2 + . . .+ (−1)p
2
∂µp+1Vµ1...µp

}

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp ∧ dxµp+1 .

(I.7)

Hence the components of the (p+ 1)-form dV are given by

(dV )µ1µ2...µp+1 ≡ ∂µ1Vµ2...µp+1 + (−1)p∂µ2Vµ3...µp+1µ1

+ (−1)2p∂µ3Vµ4...µp+1µ1µ2 + . . .+ (−1)p
2
∂µp+1Vµ1...µp

=

p+1
∑

k=1

(−1)p(k−1)∂µk
Vµk+1µk+2...µp+1µ1µ2...µk−1

.

(I.8)

The covariant exterior derivative D is defined similarly using the covariant derivative

Dλ instead of the ordinary partial derivative ∂λ, giving for instance

(DV )µ1µ2...µp+1 ≡ Dµ1Vµ2...µp+1 + (−1)pDµ2Vµ3...µp+1µ1

+ (−1)2pDµ3Vµ4...µp+1µ1µ2 + . . .+ (−1)p
2
Dµp+1Vµ1...µp

=

p+1
∑

k=1

(−1)p(k−1)Dµk
Vµk+1µk+2...µp+1µ1µ2...µk−1

.

(I.9)

When V is a flavor singlet p-form, we have dV = DV by the torsionlessness of the

Christoffel connection.

• The interior product ιξ is a derivation that takes p-forms to p−1 forms given a vector

ξ ≡ ξµ∂µ. In components it acts via

(ιξV )µ1...µp−1 ≡ ξλVλµ1...µp−1 , (I.10)

so that

ιξV ≡ 1

(p− 1)!
ξλVλµ1...µp−1 dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp−1 . (I.11)

• The Lie derivative of a p-form V along a vector ξ = ξµ∂µ in components is given by

(£ξV )µ1...µp ≡ ξλ∂λVµ1µ2...µp +

p
∑

k=1

(∂µk
ξλ)Vµ1...µk−1λµk+1...µp . (I.12)

We can rewrite this using

(∂µk
ξλ)Vµ1...µk−1λµk+1...µp = (−1)pkξλ∂µk

Vµk+1...µpλµ1...µk−1

+ (−1)(p−1)(k−1)∂µk

[

ξλVλµk+1...µpµ1...µk−1

]

,
(I.13)
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so that

(£ξV )µ1...µp = ξλ∂λVµ1µ2...µp +

p
∑

k=1

(−1)pkξλ∂µk
Vµk+1...µpλµ1...µk−1

+

p
∑

k=1

(−1)(p−1)(k−1)∂µk

[

ξλVλµk+1...µpµ1...µk−1

]

= (ιξdV + dιξV )µ1...µp

(I.14)

where the final expression is Cartan’s identity. The Lie derivative is important when

computing the variation of tensors under infinitesimal coordinate and gauge transfor-

mations {ξµ,Λ}. For example, the variation of a tensor-valued form Θα
β is given by

δχΘ
α
β = £ξΘ

α
β + [Θα

β ,Λ]

= (dιξ + ιξd)Θ
α
β − (∂σξ

α)Θσ
β +Θα

σ∂βξ
σ + [Θα

β,Λ]

=
(

D̃ιξ + ιξD̃
)

Θα
β −

(

∇̃σξ
α − T̃α

σνξ
ν
)

Θσ
β

+Θα
σ

(

D̃βξ
σ − T̃σ

βνξ
ν
)

+ [Θα
β,Λ + ξσAσ] ,

(I.15)

where in going from the second line to the third we have exchanged ordinary partial

derivatives for covariant ones D̃µ in terms of arbitrary connections {Ã, Γ̃α
β}. We

have also defined the torsion T̃µ
νρ ≡ −Γ̃µ

νρ + Γ̃µ
ρν .

• Given a metric g we may define a volume form on spacetime, whose explicit expression

is given by

ddx
√

g Sign[g] =
Sign[g]

d!
εµ1µ2...µd

dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp (I.16)

where g denotes the determinant of the metric and Sign[g] is its signature. Thus, the

components of the volume form are given by εµ1µ2...µd
= ±

√

g Sign[g].

For pseudo-Riemannian metrics describing spacetime, we have Sign[g] = −1. We

think of all other metrics as being obtained from such a pseudo-Riemannian metric

via analytic continuation a la Wick rotation. Unfortunately, the standard signature

function Sign[g] is not analytic. We will fix this by taking Sign[g] = −1 even for

complex metrics obtained by Wick rotation. Note that this means, for example, that

when g is real and positive (as in the case of static Euclidean metrics), εµ1µ2...µd
is

purely imaginary. The square root for complex Euclidean metrics is determined via

analytic continuation under Wick rotation which fixes
√−g = −i

√
g. In particular,

in Lorentzian signature we take ε012...(d−1) ≡ −√−g and in the Euclidean signature,

we take
(

ε012...(d−1)

)

E
≡ i

√
g.

• We can use these components to write down a formula for the projector which projects

covariant p-tensors to p-forms. In components it is

δ
[µ1

[ν1
δµ2
ν2

. . . δ
µp]
νp]

=
Sign[g]

p!(d− p)!
εµ1µ2...µp

α1...αd−p
εν1µ2...νp

α1...αd−p

=
Sign[g](−1)p(d−p)

p!(d− p)!
εµ1µ2...µp

α1...αd−p
εα1...αd−p

ν1µ2...νp .

(I.17)
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• Given a metric g on a d-dimensional manifold, we may define the Hodge star, which

is a linear map that takes p-forms to d− p-forms. We define the action of the Hodge

star on a p-form V in components via

(⋆V )µ1µ2...µd−p
≡ Sign[g]

p!
Vν1ν2...νpε

ν1ν2...νp
µ1µ2...µd−p

, (I.18)

or

⋆V ≡ Sign[g]

p!(d− p)!
Vν1ν2...νp εν1ν2...νpµ1µ2...µd−p

dxµ1 ∧ dxµ2 . . . ∧ dxµd−p . (I.19)

Note that acting on a p-form

⋆2 = Sign[g](−1)p(d−p) ,

or alternately
⋆−1 = Sign[g](−1)p(d−p) ⋆ .

• The definition above is equivalent to

⋆
(

dxν1 ∧ dxν2 . . . dxνp
)

≡ Sign[g]

(d− p)!
εν1ν2...νpµ1µ2...µd−p

dxµ1 ∧dxµ2 . . .∧dxµd−p , (I.20)

or

dxν1 ∧ dxν2 . . . dxνp ≡ 1

(d− p)!
εµ1µ2...µd−pν1ν2...νp ⋆

(

dxµ1 ∧ dxµ2 . . . ∧ dxµd−p

)

(I.21)

≡ (−1)p(d−p)

(d− p)!
εν1ν2...νpµ1µ2...µd−p ⋆

(

dxµ1 ∧ dxµ2 . . . ∧ dxµd−p

)

.

• One of the main uses of the last formula is in translating expressions of the following

form into components
⋆V = A1 ∧A2 ∧ . . . ∧Ak . (I.22)

Here V is a d−p-form, A1 is a q1-form, A2 is a q2-form etc. such that q1+q2+. . .+qk =

p. We have

⋆V = A1 ∧A2 ∧ . . . ∧Ak

=
1

q1!q2! . . . qk!
(A1)α1...αq1

(A2)β1...βq2
. . . (Ak)λ1...λqk

dxα1 ∧ . . . dxαq1 ∧ dxβ1 . . . dxβq2 ∧ . . . dxλ1 ∧ . . . dxλqk

=
1

q1!q2! . . . qk!(d− p)!
εµ1µ2...µd−pα1...αq1β1...βq2 ...λ1...λqk

(A1)α1...αq1
(A2)β1...βq2

. . . (Ak)λ1...λqk

⋆
(

dxµ1 ∧ dxµ2 . . . ∧ dxµd−p

)

,

(I.23)

so that

Vµ1µ2...µd−p
=

1

q1!q2! . . . qk!
εµ1µ2...µd−p

α1...αq1β1...βq2 ...λ1...λqk

(A1)α1...αq1
(A2)β1...βq2

. . . (Ak)λ1...λqk
.

(I.24)
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• Given two p-forms V1 and V2, V1 ∧ ⋆V2 is a top form given by

V1 ∧ ⋆V2 = ddx
√−g

1

p!
(V1)µ1µ2...µp(V2)

µ1µ2...µp . (I.25)

We may then regard
∫

V1 ∧ ⋆V2 as an inner product on the space of p-forms.

Given a p-form V1 and a q-form V2 with q ≥ p, we have

V1 ∧ ⋆V2 =
1

q!(q − p)!
(V1)ν1ν2...νp (V2)

µ1µ2...µq−pν1ν2...νp ⋆
(

dxµ1 ∧ dxµ2 . . . dxµq−p

)

.

(I.26)

• Under this inner product, we can define the co-exterior derivative, which takes flavor

singlet p-forms to singlet p− 1-forms. In components it acts as

(d†V )µ1...µp−1 ≡ DλVµ1...µp−1λ =
1√−g

∂σ

[√−g gλσVµ1...µp−1λ

]

, (I.27)

so that

d†V ≡ 1

(p− 1)!
DλVµ1...µp−1λ dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµp−1 . (I.28)

Note that the co-exterior derivative obeys ⋆d† = d⋆. This, in particular means that

for a p-form V we have

1

(p− 1)!
DµpV

µ1µ2...µp−1µp ⋆
(

dxµ1dxµ2 . . . dxµp−1

)

= ⋆d†V = d⋆V

= d

[

1

p!
V µ1µ2...µp−1µp ⋆

(

dxµ1dxµ2 . . . dxµp

)

]

.

(I.29)

• It is useful to write various currents in terms of forms using the Hodge star. To do

it, let us begun by defining the hypersurface volume forms dd−1Sµ: the d−1 forms in

d dimensional spacetime which when pulled back and integrated over a hypersurface

give the volume of that hypersurface. More precisely they are the Hodge-duals of the

basis 1-forms dxµ. If gµν represents the metric on spacetime, we can define dd−1Sµ
via the relations

dd−1Sν ≡ ⋆dxν , (I.30)

or

dxµ ∧ dd−1Sν = δµν ddx
√−g . (I.31)

Using these forms, we can define the Hodge-duals of the currents which are tensor

valued (d − 1)-forms and the Hodge-dual of energy-momentum tensor which is a

tensor valued d-form. We have
⋆J ≡ (dd−1Sλ) J

λ , ⋆Lµ
ν ≡ (dd−1Sλ) L

λµ
ν ,

⋆T µν ≡ (ddx
√−g) Tµν , ⋆tµν ≡ (ddx

√−g) tµν ,
(I.32)

so that we can write

δW ≡
∫
{

δA · ⋆J +
1

2
δΓµ

ν
⋆Lν

µ +
1

2
δgµν

⋆tµν
}

+ (boundary terms)

=

∫
{

δA · ⋆J +
1

2
δgµν

⋆T µν

}

+ (boundary terms) .

(I.33)
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