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1 Introduction

The existence of glueballs is a distinctive property of quantized non-Abelian gauge theo-

ries [1–3]. Since the first Monte Carlo simulations of lattice field theories, glueballs have

been the focus of many studies (see ref. [4] and reference therein). The main difficulty for

isolating their contribution in correlation functions, and thus computing their masses and

matrix elements, was identified almost immediately: the signal-to-noise ratio of suitable

two-point correlation functions [5] decreases exponentially with the time separation of the

sources, and in practice it is very difficult to find a window where statistical and systematic

errors are both under control [6, 7]. A widely used strategy to mitigate this problem is to
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reduce the contamination from excited states in the correlators by constructing interpolat-

ing fields with a small overlap over them [8, 9]. The lowest energy is then extracted at short

time-distances by assuming a negligible contribution from excited states, sometimes also

with the help of anisotropic lattices [10, 11]. The most comprehensive studies of glueball

masses and matrix elements performed with these techniques can be found in refs. [8, 12–

16]. This approach is not entirely satisfactory from a conceptual and a practical point

of view. The problem of the exponential degradation of the signal-to-noise ratio remains

unsolved, and a solid evidence that a single state dominates, i.e. a long exponential decay

over many orders of magnitude, is thus missing. In most of the cases the computation of

more involved correlation functions remains inaccessible.

Recently we proposed a new approach to solve the problem [17, 18]. By using the trans-

fer matrix formalism, it is possible to introduce in the partition function projectors which

select the contributions from states with a given set of quantum numbers only. The compo-

sition rules of the corresponding transfer matrix elements can then be exploited to imple-

ment a hierarchical multi-level integration procedure. By iterating over several levels, the

numerical cost for computing ratios of partition functions or correlation functions grows, at

asymptotically large times, with a power of the time extent of the lattice rather than expo-

nentially. The strategy was tested in ref. [18] by evaluating the relative contribution to the

partition function of the parity-odd states (see also refs. [19, 20] for the most recent results).

The aim of this paper is to design a new strategy for computing the lightest glueball

masses, multiplicities and their matrix elements in each super-selection sector of the Hilbert

space of the Yang-Mills theory. This is achieved by generalizing the analysis in ref. [17] to

all discrete symmetries of the lattice theory in finite volume: parity, charge conjugation,

rotations, translations and central conjugations Z3
N . We assume some familiarity with

ref. [17], especially in section 6, where the numerical algorithm is described. Being based

on the transfer matrix formalism, the approach is rather general and can be applied to a

wide class of bosonic theories.

We implement the strategy in the SU(3) Yang-Mills theory on lattices with a spacing

of roughly 0.17 fm, spatial volumes up to 5 fm3, and time extent up to 2 fm. A full-fledged

computation of the mass and multiplicity of the lightest glueball with vacuum quantum

numbers is then carried out. The algorithm behaves as expected, and the multi-level

integration scheme achieves an exponential enhancement of the signal-to-noise ratio for the

quantities considered. As a result we can extract with confidence the contribution from the

lightest glueball and, from a lattice with a time extent of 2 fm, determine its mass with a

precision of few percent. Its multiplicity turns out to be one within statistical errors, and the

latter are small enough to exclude all other values allowed by the underlying group theory.

2 Preliminaries and basic notation

For definiteness we focus on the SU(3) Yang-Mills theory discretized by the standard pla-

quette Wilson action. The theoretical discussion, however, can be applied to other bosonic

field theories, and it is mostly independent on the discretization details. The theory is set

up on a finite four-dimensional lattice of volume V = T ×L3 with a spacing a and periodic
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boundary conditions.1 The gauge-invariant action is defined as (all unexplained notation

can be found in ref. [17])

S[U ] =
β

2

∑

x

∑

µ,ν

[

1 −
1

3
ReTr

{

Uµν(x)
}

]

, (2.1)

where the trace is over the color index, and β = 6/g2
0 with g0 being the bare coupling

constant. The plaquette is defined as a function of the gauge links Uµ(x) as

Uµν(x) = Uµ(x)Uν(x + µ̂)U †
µ(x + ν̂)U †

ν (x) , (2.2)

with µ, ν = 0, . . . , 3, µ̂ is the unit vector along the direction µ, and x is the space-time

coordinate. The path integral is defined as usual

Z =

∫

D4[U ] e−S[U ] , D4[U ] =
∏

x

3
∏

µ=0

DUµ(x) , (2.3)

where DU is the invariant Haar measure on the SU(3) group, which throughout the paper

will be always normalized so that
∫

DU = 1. The “coordinate” basis in the Hilbert space

of the theory is the set of vectors which diagonalize the field operators at all spatial points,

so that on a given time-slice of the lattice

Ûk(x)|Ux0〉 = Uk(x0,x)|Ux0〉 . (2.4)

As the notation suggests, the operator eigenvalues Uk(x0,x) are identified with the spatial

links on the time-slice x0 at the spatial coordinate x. The matrix elements of the transfer

operator T̂ are

T
[

Ux0+1, Ux0

]

=
〈

Ux0+1|T̂P̂G|Ux0

〉

, (2.5)

where P̂G is the projector onto the gauge invariant states. In the following, for notational

simplicity, this projector is always included in the definition of T̂. For the Wilson action

the transfer matrix elements are [21–24]

T
[

Ux0+1, Ux0

]

=

∫

D[Ω] e−L[UΩ
x0+1,Ux0 ] , D[Ω] =

∏

x

DΩ(x) , (2.6)

where the explicit form of the Lagrangian L can be found in appendix A. From this formula

one can define the transfer matrix elements associated to a given thick time-slice, i.e. the

ensemble of points in the sub-lattice with time coordinates in a given interval [x0, y0] and

bounded by the equal-time hyper-planes at times x0 and y0, as

T
[

Uy0 , Ux0

]

=

∫ y0−1
∏

w0=x0+1

D3[Uw0]

y0−1
∏

z0=x0

T
[

Uz0+1, Uz0

]

, D3[V ] =
∏

x

3
∏

k=1

DUk(x) .

(2.7)

1Throughout the paper dimensionful quantities are always expressed in units of a unless explicitly

specified.
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By identifying the gauge transformations Ω in eq. (2.6) with the links in the temporal

direction, the path integral can thus be written as

Z =

∫ T−1
∏

x0=0

D3[Ux0 ] T
[

Ux0+1, Ux0

]

, (2.8)

which corresponds to

Z = Tr
{

T̂T
}

(2.9)

with the trace being over all gauge invariant states.

3 Decomposition of path integrals

The partition function Z can be decomposed into a sum of path integrals each giving the

contribution from multiplets of states which transform as an irreducible representation of

a symmetry group of the theory. The phase space of the theory can indeed be divided into

regular representations of the group, which in turn can be decomposed into irreducible

ones by applying the standard group-theory machinery [25, 26]. The invariance of the

transfer operator T̂ under the group transformations then guarantees the decomposition of

the partition function. An analogous decomposition applies to the correlation functions of

the theory.

To carry out this program in detail, let us assume that the theory is invariant under

the transformations of a generic discrete2 symmetry group G of order g. Its elements Ri,

with i = 1, . . . , g, act on a generic vector |U〉 of the coordinate basis of the Hilbert space

as

Γ̂(Ri)|U〉 = |URi〉 , (3.1)

where URi is the gauge field obtained by applying the group transformation Ri to the

original one (see next section). The vectors |URi〉 form a regular representation, i.e.

Γ̂(Ri)|U
Rj 〉 =

g
∑

l=1

Γreg
lj (Ri)|U

Rl〉 , (3.2)

where

Γreg
lj (Ri) =











1 if Rl = RiRj

0 if Rl 6= RiRj

. (3.3)

The non-equivalent irreducible representations Γ(µ)(Ri) are labeled by µ = 1, . . . , Nr, where

Nr is the number of classes in which the group can be divided, their dimensions nµ satisfy

Nr
∑

µ=1

n2
µ = g , (3.4)

2The generalization to Lie groups is straightforward.
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and their characters are given by

χ(µ)(Ri) =

nµ
∑

j=1

Γ
(µ)
jj (Ri) . (3.5)

For a given realization of an irreducible representation µ, the “projector” operators are

defined as usual by

P̂
(µ)
jl =

nµ

g

g
∑

i=1

Γ
(µ) ∗
jl (Ri) Γ̂(Ri) , (3.6)

and they satisfy

P̂
(µ) †
jl = P̂

(µ)
lj , P̂

(µ)
jl P̂(ν)

mn = δµν δlm P̂
(µ)
jn ,

Nr
∑

µ=1

nµ
∑

j=1

P̂
(µ)
jj = 1̂1 . (3.7)

In particular P̂
(µ)
jj is the projector onto states of the Hilbert space that transform as the

component j of an irreducible representation µ. The path integral can then be decomposed

as

Z =
Nr
∑

µ=1

Z(µ) , Z(µ) =

nµ
∑

j=1

Tr
{

T̂T P̂
(µ)
jj

}

. (3.8)

By inserting a complete set of eigenstates of the Hamiltonian we can also write

Z(1) = e−E0 T

[

1 +
∑

m

w(1)
m e−E

(1)
m T

]

, Z(µ) = e−E0 T
∑

m

w(µ)
m e−E

(µ)
m T , (3.9)

where µ = 1 corresponds to the invariant singlet representation. In these expressions E0 is

the vacuum energy, E
(µ)
m are the energies (with respect to the vacuum one) of eigenstates

in the sector µ, and w
(µ)
m are the corresponding multiplicities. The latter are integers and

positive since for the Wilson action the transfer operator T̂ is self-adjoint and strictly

positive [22].

3.1 Partition function

The transfer matrix elements among states belonging to irreducible representations can be

written as

T
(µ)
jj

[

Ux0+1, Ux0

]

=
nµ

g

g
∑

i=1

Γ
(µ)
jj (Ri)

〈

URi

x0+1| T̂ |Ux0

〉

. (3.10)

For a thick time-slice the analogous ones are defined by exploiting the orthogonality of the

projectors

δµν δjl T
(µ)
jj

[

Uy0 , Ux0

]

=

∫

D3[Uz0 ] T
(µ)
jj

[

Uy0 , Uz0

]

T
(ν)
ll

[

Uz0, Ux0

]

, (3.11)

which also implies

T
(µ)
jj [Uy0 , Ux0 ]

T [Uy0 , Ux0 ]
=

1

T [Uy0 , Ux0 ]

∫

D4[U ] e−S[U ]
T

(µ)
jj [Uy0 , Uy0−1]

T [Uy0, Uy0−1]
, (3.12)

– 5 –



J
H
E
P
0
5
(
2
0
1
1
)
0
5
6

where the integration is restricted to the active links of the thick time-slice. The rela-

tions (3.11) and (3.12) are the basic building blocks for the practical implementation of

the multi-level integration algorithm described in section 6. Finally, by repeatedly using

eq. (3.11), it is possible to rewrite the path integral for a given representation as

Z(µ) =

nµ
∑

j=1

∫ T−1
∏

x0=0

D3[Ux0 ] T
(µ)
jj

[

Ux0+1, Ux0

]

. (3.13)

It is interesting to notice that even though the transfer matrix formalism inspired the

construction, the above considerations hold independently of the existence of a positive

self-adjoint transfer operator. The insertion of T
(µ)
jj

[

Ux0+1, Ux0

]

in the path integral plays

the same rôle as P̂
(µ)
jj in eq. (3.8), i.e. it allows the propagation in the time direction of

states belonging to irreducible representations µ only (component j).

3.2 Correlators of composite operators

We are interested in irreducible tensor operators, which under the group transform as

Γ̂(Ri) Ô
(µ)
j Γ̂†(Ri) =

nµ
∑

l=1

Γ
(µ)
lj (Ri) Ô

(µ)
l , (3.14)

that are diagonal in coordinate space, i.e.

Ô
(µ)
j |U〉 = O

(µ)
j (U) |U〉 (3.15)

where O
(µ)
j (U) is a functional of the links. The transformation rule (3.14) implies that

O
(µ)
j (URi) =

nµ
∑

l=1

Γ
(µ) ∗
jl (Ri)O

(µ)
l (U) . (3.16)

By using the Wigner-Eckart theorem, we can define the reduced matrix elements corre-

sponding to an operator insertion on the time-slice x0 inside a thick time-slice of size d

as

[

O
(µ)
k (x0)

](µ1)(µ2)

j1 j2

[

Uz0+d, Uz0

]

=
1

nµ1

nµ
∑

l=1

nµ1
∑

l1=1

nµ2
∑

l2=1

(

µ2

l2

µ
l

∣

∣

∣

µ1

l1
k
)

× (3.17)

〈Uz0+d| P̂
(µ1)
j1l1

T̂(z0+d−x0)Ô
(µ)
l T̂(x0−z0)P̂

(µ2)
l2j2

|Uz0〉 ,

where z0 ≤ x0 ≤ z0 + d,
(

µ2

l2

µ
l

∣

∣

∣

µ1

l1
k
)

are the Clebsch-Gordan coefficients, k = 1, . . . , nµµ2
µ1

and nµµ2
µ1 is the number of times that the irreducible representation µ1 appears in the direct

product representation Γ(µ)⊗Γ(µ2). Thanks to the orthogonality properties of the Clebsch-
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Gordan coefficients, a two-point correlation function can be written as (w0 ≤ y0 ≤ w0 + d)

nµ
∑

j=1

〈

O
(µ)
j (y0)O

(µ)∗
j (x0)

〉

=
1

Z

∫

D3[Uw0+d]D3[Uw0 ]D3[Uz0+d]D3[Uz0 ]D3[U0]×

×
∑

µ1,µ2

∑

j1,j2

1

nµ2

n
µµ2
µ1
∑

k=1

T
(µ1)
j1j1

[

U0, Uw0+d

][

O
(µ)
k (y0)

](µ1)(µ2)

j1j2

[

Uw0+d, Uw0

]

×

× T
(µ2)
j2j2

[

Uw0 , Uz0+d

][

O
(µ)
k (x0)

](µ1)(µ2) ∗

j1j2

[

Uz0 , Uz0+d

]

T
(µ1)
j1j1

[

Uz0, U0

]

, (3.18)

where z0 + d < w0. The generalization to n-point correlation functions is straightforward.

4 Discrete symmetries of the Yang-Mills theory

The SU(3) Yang-Mills theory on a lattice of finite volume with periodic boundary con-

ditions is invariant under parity, charge conjugation, translations, rotations and central

conjugations Z3
3 . In this section we set the notation for these groups, and we briefly review

the properties which are relevant for the paper.

4.1 Parity

The group is of order 2. A regular representation is two-dimensional, and it is spanned by

the vectors

|UR1〉 = |U〉 , |UR2〉 = |U℘〉 , (4.1)

where on a generic time-slice x0

U℘
k (x0,x) = U †

k(x0,−x− k̂) . (4.2)

The two irreducible representations of dimension one are Γ(±)(R1) = ±Γ(±)(R2) = 1,

where the phase convention is the same as in ref. [17].

4.2 Charge conjugation

The group is of order 2. A regular representation is two-dimensional and it is spanned by

|UR1〉 = |U〉 , |UR2〉 = |UC〉 , (4.3)

where

UC
k (x0,x) = U∗

k (x0,x) . (4.4)

The two irreducible representations of dimension one are Γ(±)(R1) = ±Γ(±)(R2) = 1.

– 7 –
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4.3 Translations

The group of translations is a direct product of three Abelian groups, one for each

space direction. Its elements are labeled by a three dimensional vector of integers

m = (m1,m2,m3), with mi = 0, . . . , L−1, where each component labels the elements of the

Abelian group in the corresponding direction. A regular representation is L3-dimensional

and is spanned by

|URm〉 = |Um〉 (4.5)

where

Um
k (x0,x) = Uk(x0,x− m) . (4.6)

Since the group is Abelian, each element forms its own class and there are L3 inequivalent

irreducible representations of dimension 1

Γ(p)(Rm) = eip·m (4.7)

which are labeled by momentum vectors p =
2π

L
[n1, n2, n3], with ni = 0, . . . , L − 1.

4.4 Rotations

The octahedral group is of order 24. Its elements are listed in appendix B. They form 5

equivalence classes. A regular representation is 24-dimensional and is spanned by

|URi〉 = |URi〉 , i = 1, . . . , 24 (4.8)

where

URi

h (x0,x) =











Uk(x0,R
−1
i x) (Ri)hk > 0

U †
k(x0,R

−1
i x − k̂) (Ri)hk < 0

. (4.9)

The inequivalent irreducible representations are two singlets A1 and A2, one doublet E and

two triplets T1 and T2. Their expressions and their characters are given in appendix B

while the Clebsch-Gordan coefficients can be found in ref. [25, 26].

4.5 Central conjugations Z
3
3

The presence of this symmetry, first described by ’t Hooft in ref. [27] (see also ref. [28]

for a review), is due to the choice of periodic boundary conditions and it disappears in

the infinite volume limit. The group is a direct product of three Z3, one for each spatial

direction. It is of order 27, and its elements are labeled by a three dimensional vector of

integers ν = (ν1, ν2, ν3), with νi = 0, 1, 2, where each component labels the elements of the

Abelian group in the corresponding direction. A regular representation is 27-dimensional

and is spanned by

|URν 〉 = |Uν〉 (4.10)

with

Uν

k (x0,x) = Λν(x)Uk(x0,x)Λ†
ν
(x + k̂) , (4.11)

– 8 –
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and

Λν(x) = e i 2π
3L

(ν·x) W , Λν(x + L k̂) = ei 2π
3

νkΛν(x) (4.12)

where W is a 3 × 3 diagonal matrix with elements Wαα = (1 − 3 δα3). Since the group is

Abelian, each element forms its own class, and there are 27 non-equivalent irreducible ones

of dimension 1

Γ(e)(Rν) = ei e·ν (4.13)

which are labeled by the electric flux vectors e =
2π

3
[e1, e2, e3], with ei = 0, 1, 2.

5 Glueball masses, multiplicities and matrix elements

Dynamical properties of glueballs can be extracted from ratios of partition functions and

correlators, which in turn can be computed efficiently by judiciously putting together the

tools developed in the previous sections. As usual, the various super-selection sectors of

the Hilbert space are identified by the quantum numbers associated to a complete set of

operators which commute among themselves and with the transfer operator. In the zero-

momentum sector (p = 0), glueball states are classified by their transformation properties

under rotations (µ, j), parity (P) and charge conjugation (C). Moreover in finite volume a

null electric flux vector (e = 0) identifies the “physical sector” of the theory, i.e. the one

which survives in the infinite volume limit. The corresponding projectors are given by

P̂
(µ,P,C)
jj = P̂

(µ)
jj P̂(P)P̂(C)P̂(p=0)P̂(e=0) , (5.1)

and the partition functions read

Z(µ,P,C) =

nµ
∑

j=1

Tr
{

T̂T P̂
(µ,P,C)
jj

}

. (5.2)

The transfer matrix elements associated to a given thick-time slice are defined as

T
(µ,P,C)
jj

[

Uy0 , Ux0

]

=
L−3

2592

∑

Ri,p,c,m,ν

χ
(µ,P,C)
j;Ri,p,c T

[

URi,p,c,m,ν
y0

, Ux0

]

, (5.3)

where

χ
(µ,P,C)
j;Ri,p,c = nµ P

p+1 Cc+1 Γ
(µ)
jj (Ri) (5.4)

and for each group the sum is on all its elements. The corresponding path integrals are

finally given by

Z(µ,P,C) =

nµ
∑

j=1

∫ T−1
∏

x0=0

D3[Ux0 ] T
(µ,P,C)
jj

[

Ux0+1, Ux0

]

. (5.5)

In each sector, thanks to eqs. (3.9) and with the exception of the vacuum one (see below),

the contribution of the lightest glueball is the leading exponential in T . Its mass and

multiplicity can thus be extracted from the ratio Z(µ,P,C)/Z(A1,+,+) computed at large

enough values of T , where the contamination from heavier states can be neglected.

– 9 –
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The sector (µ,P, C) = (A1,+,+) is special because the vacuum contribution dominates

the partition function at large T . In this case the mass and the multiplicity of the lightest

glueball can be determined by a two step procedure.3 First, one defines the projector onto

physical states with non-zero momenta and positive charge conjugation

P̂(p,+) = P̂(C=+)P̂(p)P̂(e=0) , (5.6)

where, for instance, p = [2π/L, 0, 0]. The vacuum does not contribute to the corresponding

partition function Z(p,+) which, at large T , is dominated by the lightest glueball state even

under charge conjugation. Its energy and multiplicity can be extracted from the large T

behaviour of Z(p,+)/Z(0,+). The mass can then be determined, up to O(a2) effects, by

using the continuum dispersion relation. In the second step one defines the projector

P̂
(A1,+,+)
⊥ = P̂(p=0)P̂(e=0)

{

11 − P̂(A1,+,+)
}

, (5.7)

computes Z
(A1,+,+)
⊥ defined analogously as in eq. (5.5), and extract the mass and the mul-

tiplicity of the lightest state. If, in the continuum limit, the mass turns out to be heavier

than the one computed in the first step, the latter is the mass of the lightest glueball with

vacuum quantum numbers, and it is also the mass gap of the theory.

By generalizing eq. (3.18) to the case of multiple quantum numbers, correlation func-

tions of composite operators can be calculated analogously to ratios of partition functions

discussed above. It is interesting to notice that the approach described here allows to de-

termine efficiently also the mass and the multiplicity of states in the “unphysical” sectors

(e 6= 0) [29].

6 Numerical algorithm

The formulæ in eqs. (5.3) and (5.5) require some manipulation before they can be imple-

mented in a numerical simulation.

6.1 Thick-time slice with fixed quantum numbers

In the computation of the transfer matrix elements (normalized to the standard one) given

in eq. (5.3), the basic building blocks are the ratios

T
[

URi,p,c,m,ν
y0 , Ux0

]

T
[

Uy0, Ux0

] . (6.1)

Once written as in eq. (3.12), they are computed numerically through the telescopic al-

gorithm described in section 4.1 of ref. [17], the latter being generalized to all possible

combinations of group transformations. Their calculation is the most expensive part of the

multi-level procedure. It is therefore worthwhile to optimize on the number of them and/or

3This is the simplest example of how the procedure described in this paper can be generalized to the

computation of excited states in each symmetry sector.
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on their numerical precision. To this aim it is relevant to notice that a weighted average

appears in eq. (5.3), with the weights given by the appropriate products of characters. The

larger is the number of significant terms averaged over, the lower is the statistical precision

required on each term so to achieve a given accuracy on the sum. In the case of the singlet

under all symmetry groups, for instance, the precision on each thick-time slice ratio can be

reduced proportionally to the square root of the number of addenda. A large number of

terms therefore does not automatically implies a more expensive numerical computation.

The statistical error on each ratio (6.1), however, cannot be arbitrarily large for these argu-

ments to apply. Therefore it also pays off to reduce the number of ratios to be determined.

This can be achieved by promoting each group index to a stochastic variable with integer

values. To each of the index combinations is thus associated a probability distribution

ΠRi,p,c,m,ν so that

ΠRi,p,c,m,ν ≥ 0 ,
∑

Ri,p,c,m,ν

ΠRi,p,c,m,ν = 1 . (6.2)

Moreover if we sum over a subset of indices, for instance Ri, then

Πp,c,m,ν =
∑

Ri

ΠRi,p,c,m,ν (6.3)

is still a probability distribution in the remaining variables. If, for instance, we choose

ΠRi,p,c,m,ν = const, then the thick-time slice with fixed quantum numbers can be written

as

T
(µ,P,C)
jj

[

Uy0 , Ux0

]

T
[

Uy0, Ux0

] =
∑

Ri,p,c,m,ν

ΠRi,p,c,m,ν χ
(µ,P,C)
j;Ri,p,c

T
[

URi,p,c,m,ν
y0 , Ux0

]

T
[

Uy0, Ux0

] . (6.4)

The sum on the r.h.s can be computed stochastically by extracting, for each thick-time slice,

a series of “configurations” for the set of indices (Ri, p, c,m,ν) and averaging over them.

There is clearly a great freedom in choosing the best sampling procedure. An efficient one

is to project exactly on the quantum numbers which eliminate the contributions from states

lighter than the one of interest, while treating stochastically the indices which project out

heavier states. One can also extract the indices with a distribution different from a constant

one, or implement a more involved sampling procedure. Once the estimate of the l.h.s. of

eq. (6.4) is inserted in the multi-level algorithm (see below), the final result is independent

from the particular procedure implemented and from the statistical accuracy on the thick

time-slice matrix elements. The algorithm is design to be always exact, but the variance

and therefore its efficiency depends on details of the implementation.

6.2 Multi-level integration scheme

The ratio of partition functions Z(µ,P,C)/Z can then be calculated by implementing the

hierarchical two-level integration formula (see figure 1)

Z(µ,P,C)

Z
=

nµ
∑

j=1

1

Z

∫

D4[U ] e−S[U ] P
(µ,P,C)
j;m,d

[

T, 0
]

, (6.5)
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0

jjP P,C)(µ, 
jjP P,C)(µ, 

jjP P,C)(µ, 
jjP P,C)(µ, 

jjP P,C)(µ, 

X

Figure 1. Schematic description of the partitioning of the lattice in the multi-level integration

algorithm.

where

P
(µ,P,C)
j;m,d

[

y0, x0

]

=

m−1
∏

i=0

T
(µ,P,C)
jj [Ux0+(i+1)·d, Ux0+i·d]

T[Ux0+(i+1)·d, Ux0+i·d]
(6.6)

with m ≥ 1, y0 = (x0 + m · d). In each ratio on the r.h.s of eq. (6.6) the stochastic indices

are generated, independently on each thick-time slice, with chosen distribution ΠRi,p,c,m,ν.

The procedure can be generalized easily. For a three-level scheme, for instance, each ratio

can be computed with a two-level scheme by exploiting the composition rule in eq. (3.11).

While the result does not depend on the particular integration scheme implemented, its

statistical error does. The algorithm therefore requires an optimization which allows one

to exploit the expected spectral properties of the theory. For instance if d is chosen large

enough, i.e. larger than 1/Tc with Tc being the critical temperature, only a few of the

physical states give a sizeable contribution to each ratio T
(µ,P,C)
jj [Ux0+d, Ux0 ]/T[Ux0+d, Ux0 ].

The latter is therefore expected to be of order e−E
(µ,P,C)
1 d, the magnitude of the product is

of the order of e−E
(µ,P,C)
1 T for each configuration of the boundary fields, and the statistical

fluctuations are reduced to this level [17, 18].

6.3 Correlators of composite operators

The formula in eq. (3.18) and its generalization to the case of multiple quantum numbers

can be implemented by inserting the sources in a thick time-slice and then following the

same steps that lead to eq. (6.5). It is important to stress, however, that once all the

thick time-slice ratios T
(µ,P,C))
jj [Ux0+d, Ux0 ]/T[Ux0+d, Ux0 ] have been computed, only the

first integral of the telescopic expansion in eq. (4.2) of ref. [17] needs to be re-done for

the thick time-slices where a source is inserted. The extra numerical burden is therefore

negligible. As in the previous subsection, the statistical error associated to the estimate of

the correlation function is comparable to the signal if the algorithm is properly optimized.
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Lattice L T Nconf Nlev d

A1 8 4 50 2 4

A2 5 50 2 5

A3 6 100 2 3

A4 8 100 2 4

A5 12 50 3 {3, 6}

B3 10 6 50 2 3

Table 1. Simulation parameters: Nconf is the number of configurations of the uppermost level,

Nlev is the number of levels and d is the thickness of the thick time-slice used for the various levels.

7 Numerical results

To demonstrate the practical feasibility of the strategy proposed in this paper, we have

carried out a full-fledged computation of the mass and multiplicity of the lightest glueball

with vacuum quantum numbers. We have simulated the SU(3) gauge theory at β = 6/g2
0 =

5.7, which corresponds to a spacing of 0.17 fm if the reference scale r0 = 0.5 fm is used to

calibrate the lattice [30]. The spatial lengths of the lattices are 1.4 and 1.7 fm, while

their time dimension extends up to 2 fm. A list of the runs, the number of configurations

generated and some details of the multi-level algorithm implemented is reported in table 1.

The primary quantity that we have calculated numerically is the ratio of partition

functions Z(p,+)/Z defined in section 5, with p2,3 = 0, p1 = (2π/L)n1 and n1 = 1, 2. The

thick time-slice transfer matrix elements associated to the projector in eq. (5.6) have been

computed as described in section 6: the sum on the group indices of charge conjugation

and translations along direction 1 has been done exactly, while the one over the remaining

indices (p2, p3,ν) has been carried out stochastically by extracting between 9 and 64 random

“configurations” of indices with a flat probability. The results are collected in table 2, and

those of the A lattices are plotted in figure 2 as a function of T (left panel). The data show

a clear exponential decay of the ratio Z(p,+)/Z(0,+) over more than 6 orders of magnitude.

We fit the results of the A series to a single exponential, i.e.

ln

[

Z(p,+)

Z(0,+)

]

= A − B T , (7.1)

where A = ln ω+, with ω+ being the multiplicity of the state, and B = E
(p,+)

eff
. This

function fits well the last four points, and the best fit gives4 A = −0.6(4) and B = 1.15(6)

(χ2/dof = 1.5). Group theory predicts the multiplicity to be an integer between 0 and

3. The null value is excluded by the data, the multiplicity 1 is within 1.5σ of the central

value given by the fit, while 2 and 3 are 3.2σ and 4.2σ away. As a further check we also

fix the multiplicity to one of the possible integers, and we obtain χ2/dof = 1.7, 4.4 and

6.8 for ω+ = 1, 2 and 3 respectively. We therefore conclude that the data strongly prefer

4The small value observed at T = 6 is compatible with a 2σ statistical fluctuation, and it is responsible

for the value of χ2/dof a bit larger than expected.
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Lattice Z(0,+)/Z n1 Z(p,+)/Z Z(p,+)/Z(0,+) E
(p,+)
eff

A1 0.158(14) 1 1.6(3) · 10−3 1.04(21) · 10−2 1.14(5)

A2 0.871(5) 1 1.8(4) · 10−3 2.0(5) · 10−3 1.24(5)

A3 0.96(4) 1 4.5(7) · 10−4 4.7(7) · 10−4 1.277(25)

A4 0.999(9) 1 6.6(12) · 10−5 6.6(12) · 10−5 1.203(22)

A5 0.963(13) 1 4.1(16) · 10−7 4.3(17) · 10−7 1.22(3)

B3 1.03(4) 1 1.0(3) · 10−3 1.0(3) · 10−3 1.15(5)

2 0.94(25) · 10−4 0.92(25) · 10−4 1.55(5)

Table 2. Results for ratios of partition functions with momenta p = [2πn1/L, 0, 0]. The effective

energy E
(p,+)
eff is defined as in eq. (7.2).

0 2 4 6 8 10 12 14 16
T
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0.1
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(p
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)
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1.8

2

E
ef

f(p
,+

)

Figure 2. Left panel: ratio of partition functions Z(p,+)/Z(0,+) with momenta p = [2π/L, 0, 0] for

the A lattices. Right panel: the corresponding effective energy as defined in eq. (7.2). The band is

our best estimate, i.e. the one extracted from the lattice with the longest time-extension.

multiplicity 1, the value expected for a singlet under the octahedral group. We stress once

again that the computation of the multiplicity is new because this quantity is not accessible

to the standard technique.

By imposing the multiplicity to be 1, the energy of the state can be determined at

each T as

E
(p,+)
eff = −

1

T
ln

[

Z(p,+)

Z(0,+)

]

, (7.2)
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Figure 3. The effective energy squared from the A5 (red square) and the B3 (black circles) lattices.

The line is a linear interpolation of the black points (circles).

which yields the results given in table 2 and shown in the right panel of figure 2. It is

interesting to notice that a precision of a few percent is reached with only 50-100 configu-

rations of the uppermost algorithmic level. To be on the conservative side, we take as our

best estimate for the energy the value at T = 12 reported in table 2. The result of the fit

to a constant of the last four data points gives 1.233(14), a value compatible with our best

one but with half the statistical error.

Finite volume effects in the energy values are expected to be exponentially suppressed

at asymptotically large values of L. Lattice B3 serves the purpose of assessing their magni-

tude. It has the same lattice spacing of the A series but a linear extension of L = 10. The

results for n1 = 1, 2 are reported in table 2, and are plotted as a function of the momen-

tum squared in figure 3. The dashed line is a linear interpolation of the two black points

(circles) of the lattice B3, while the red point (square) is our best result for the A series. It

is rather clear that, within our statistical precision, finite volume effects are not visible in

our data. It is also interesting to notice that, even if the values of the momenta are rather

large, the continuum dispersion relation is well reproduced within our statistical errors.

The glueball mass can finally be extracted, up to O(a2) discretization errors, by using

the continuum dispersion relation

M+ =

√

(E
(p,+)
eff )2 − p2 , (7.3)

which, in units of the lattice spacing, yields to

M+ = 0.935 ± 0.042 . (7.4)

This is one of the main numerical results of this paper. When converted in physical units

by using r0, it gives M+ = 1.08(5) GeV. We remark that the value in eq. (7.4) is fully
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compatible with 0.955(15), the mass computed with the standard method by using the

same action at the same lattice spacing [13] (see also [31]). On the other hand its value in

physical units is quite smaller than the continuum extrapolated one estimated, for instance,

in ref. [15]. This can be easily explained by discretization effects which still contribute to

the value in eq. (7.4) [13]. Removing them goes beyond the scope of this paper.

To identify the state of mass M+ with the 0++ glueball we still need to verify that the

lightest state in the sector orthogonal to the vacuum, i.e. the one selected by the projector

in eq. (5.7), is heavier. Since the multiplicity turns out to be one, we can further restrict the

orthogonal sector by projecting onto the singlet representations of the octahedral group A1

and A2. The ratio of such a partition function over the standard one has been computed in a

dedicated run at T = 6 and L = 8, and our best estimate turns out to be 2.6(26)·10−4 . This

result, even if compatible with zero, puts an upper bound on this quantity much smaller

than the one expected if a state lighter than M+ were present. This suggests to identify

M+ with the mass of the A++
1 glueball. More simulations are needed to corroborate this

result, and to have a solid numerical evidence of the existence of a mass gap in the theory.

8 Conclusions

The relative contributions to the partition function, due to states carrying a given set of

quantum numbers associated with the exact symmetries of a field theory, can be expressed

by ratios of path integrals with different boundary conditions in the time direction. From

a theoretical point of view these are very clean quantities, which have a finite and universal

continuum limit once the bare parameters in the action have been renormalized. From an

algorithmic point of view, the composition properties of the projectors can be exploited to

implement a hierarchical multi-level integration procedure which solves the problem of the

exponential (in time) degradation of the signal-to-noise ratio.

The numerical study presented in this paper demonstrates that glueball masses can

be extracted from these observables (for the SU(3) Yang-Mills theory) with the present

generation of computers. We have been able to follow the exponential decay of a ratio of

partition functions dominated by the lightest glueball with vacuum quantum numbers for

more than 6 orders of magnitude. A fit to a single exponential in the time range 0.85 –

2 fm has allowed us to determine the multiplicity of the lightest state for the first time

unambiguously. The mass has then been extracted with a precision of few percent at a

time distance of 2 fm, where the contamination from excited states is negligible.

The ideas presented here can also lead to a solid quantitative evidence of the existence

of a mass gap in the theory. To this aim a continuum limit extrapolation of the numerical

results is mandatory. At present, however, the scaling of the algorithm with the square of

the number of spatial points, together with the limited numerical resources at our disposal,

prevents us to simulate the theory at small enough lattice spacings for such a limit to be

reliably taken. These are also the main limiting factors for attacking harder problems such

as, for instance, the computation of glueball masses at large N or in QCD.

Another intriguing application is the computation of the thermodynamic potentials at

non-zero temperature as suggested in ref. [32]. No vacuum subtraction or renormalization
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constant is required, and the method can be applied at arbitrary high and low temperatures.

The ratios introduced here may also turn out to be useful in the study of QCD-like theories,

where isolating the contributions from single states in correlation functions may not be easy.
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A Lagrangian of the Wilson action

The Lagrangian L which enters the definition of the transfer matrix elements in eq. (2.6)

is given by

L
[

Ux0+1, Ux0

]

= K
[

Ux0+1, Ux0

]

+
1

2
W

[

Ux0+1

]

+
1

2
W

[

Ux0

]

, (A.1)

where the kinetic and the potential contributions are defined as

K
[

Ux0+1, Ux0

]

= β
∑

x,k

[

1 −
1

3
Re Tr

{

Uk(x0 + 1,x)U †
k(x0,x)

}

]

(A.2)

and

W
[

Ux0

]

=
β

2

∑

x

∑

k,l

[

1 −
1

3
ReTr

{

Ukl(x0,x)
}

]

(A.3)

respectively.

B Irreducible representations of the octahedral group

In this appendix we report our conventions for the octahedral group and its irreducible

representations. The group has 24 elements Ri, 3 × 3 orthogonal matrices (RT
i Ri = 11),

grouped in five conjugacy classes.

First class (E):

R1 =







1 0 0

0 1 0

0 0 1






. (B.1)
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Second class (C3):

R2 =







0 1 0

0 0 −1

−1 0 0






, R3 =







0 −1 0

0 0 −1

1 0 0






, R4 =







0 −1 0

0 0 1

−1 0 0







R5 =







0 1 0

0 0 1

1 0 0






, R6 =







0 0 −1

1 0 0

0 −1 0






, R7 =







0 0 1

−1 0 0

0 −1 0







R8 =







0 0 −1

−1 0 0

0 1 0






, R9 =







0 0 1

1 0 0

0 1 0






. (B.2)

Third class (C2):

R10 =







1 0 0

0 −1 0

0 0 −1






, R11 =







−1 0 0

0 1 0

0 0 −1






, R12 =







−1 0 0

0 −1 0

0 0 1






. (B.3)

Fourth class (C4):

R13 =







1 0 0

0 0 1

0 −1 0






, R14 =







0 0 −1

0 1 0

1 0 0






, R15 =







0 1 0

−1 0 0

0 0 1






(B.4)

R16 =







1 0 0

0 0 −1

0 1 0






, R17 =







0 0 1

0 1 0

−1 0 0






, R18 =







0 −1 0

1 0 0

0 0 1






.

Fifth class (C ′
2):

R19 =







0 1 0

1 0 0

0 0 −1






, R20 =







0 −1 0

−1 0 0

0 0 −1






, R21 =







0 0 1

0 −1 0

1 0 0






(B.5)

R22 =







0 0 −1

0 −1 0

−1 0 0






, R23 =







−1 0 0

0 0 1

0 1 0






, R24 =







−1 0 0

0 0 −1

0 −1 0






.

The group has 5 inequivalent irreducible representations.

Singlet A1:

Γ(Ri) = 1 i = 1, . . . , 24 . (B.6)

Singlet A2:

Γ(Ri) = 1 i = 1, . . . , 12

Γ(Ri) = −1 i = 13, . . . , 24 . (B.7)
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µ E 8C3 3C2 6C4 6C ′
2

A1 1 1 1 1 1 1

A2 2 1 1 1 -1 -1

E 3 2 -1 2 0 0

T1 4 3 0 -1 1 -1

T2 5 3 0 -1 -1 1

Table 3. Table of characters for the octahedral group.

Doublet E:

Γ(R1) = Γ(R10) = Γ(R11) = Γ(R12) = 11 ,

Γ(R2) = Γ(R3) = Γ(R4) = Γ(R5) = − cos
(π

3

)

11 − i sin
(π

3

)

σ2 ,

Γ(R6) = Γ(R7) = Γ(R8) = Γ(R9) = − cos
(π

3

)

11 + i sin
(π

3

)

σ2 , (B.8)

Γ(R13) = Γ(R16) = Γ(R23) = Γ(R24) = cos
(π

3

)

σ3 − sin
(π

3

)

σ1 ,

Γ(R14) = Γ(R17) = Γ(R21) = Γ(R22) = cos
(π

3

)

σ3 + sin
(π

3

)

σ1 ,

Γ(R15) = Γ(R18) = Γ(R19) = Γ(R20) = −σ3 ,

where 11 is the 2 × 2 identity matrix and σi are the Pauli matrices.

Defining triplet T1:

Γ(Ri) = Ri i = 1, . . . , 24 . (B.9)

Triplet T2:

Γ(Ri) = Ri i = 1, . . . , 12

Γ(Ri) = −Ri i = 13, . . . , 24 . (B.10)

The characters of the various representations are reported in table 3.
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