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1 Introduction

The Jackiw-Teitelboim (JT) model [1, 2] of 2D gravity — see, for example, [3–5] for some

early important work on the model — has attracted wide attention lately [6–54]. This

model captures the behaviour of a class of statistical mechanics models called the SYK

models [55–124] which have similarities with the behaviour of near-extremal black holes.

In fact, it has been shown that the low-temperature and low-frequency behaviour of a wide

class of near-extremal black holes, including rotating ones, is well approximated in a precise

way by the JT model [9, 18, 30, 39, 48].

In this paper we consider the behaviour of 2D theories obtained by coupling the JT

model to N extra massless scalar fields, ψi, i = 1, · · ·N . We work in the semi-classical limit

obtained by taking N →∞ and the 2D Newton’s constant G→ 0, keeping NG fixed. The

quantum effects of matter are included in this approximation, while the gravity-dilaton

sector behaves classically.

We examine two models here.

In the first model the effect of the N scalars is replaced by one scalar called χ below,

which is non-minimally coupled, with an action

Iχ = − N

24π

∫ √
−g d2x

[
(∂χ)2 +Rχ

]
, (1.1)

(and an appropriate boundary term, see eq. (3.3)). Due to the non-minimal coupling

this single field reproduces the conformal anomaly of the ψi fields originally present. The

prefactor in eq. (1.1) scaling like N also means that the field χ is classical in the large

N limit. The dynamics of the full system is then obtained by coupling this classical field

to the classical gravity-dilaton system. The spacetime we consider has a boundary where

the dilaton takes a fixed value; we also impose vanishing boundary conditions on χ at

this boundary.

In the second model we work directly with the N scalar fields ψi, i = 1, · · ·N which

are minimally coupled with an action

Iψ =
1

2

∫ √
−g d2x

N∑
i=1

(∂ψi)
2, (1.2)

and impose Dirichlet boundary conditions on these scalars.

We find that the two models have interesting differences. In the first model we impose

Dirichlet boundary conditions on the χ field and in the second model Dirichlet boundary

conditions on the ψi fields; these are inequivalent.1

In both cases, infalling matter results in the formation of a black hole which evaporates

and eventually settles down to thermal equilibrium. In this equilibrium state, matter is

radiated by the black hole, bounces off the boundary and eventually falls back into the

black hole, with the rate of Hawking evaporation equalling that of the infalling matter

energy-momentum.

1It is not clear to us in fact if any allowed general boundary conditions imposed on the ψi fields can lead

to the same dynamics as that obtained by imposing Dirichlet boundary condition on the χ field.
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Quantum corrections result in corrections to the free energy and mass of the black

hole as a function of temperature; these are different for the two systems. The first law of

thermodynamics is obeyed in the presence of these corrections once the entropy is replaced

by the generalised entropy which also includes a contribution coming from entanglement

across the horizon.

For time-dependent situations, we find that once the external sources are turned off,

the system relaxes to thermal equilibrium. In the χ system this relaxation is due to a

quasi-normal mode which decays exponentially with an exponent which depends on the

temperature T and GN . In the ψ system the system relaxes instantaneously.

Finally, we find that in both cases the Second Law of Thermodynamics is obeyed for

the generalised entropy in the presence of additional classical matter which satisfies the

null energy condition. We also analyse the behaviour of future Q-screens, which are an

analogue of the locus swept out by the apparent horizon and find that the generalised

entropy increases along the future Q-screen in both models. See, for instance, [125–137],

and the references therein for some of the relevant literature.

This paper is structured as follows. In section 2 we review the classical behaviour

of the JT model, including the black hole solution and the response to general infalling

matter. The behaviour of the χ and ψ systems is considered in section 3 and 4 respectively.

The results of entropy monotonicity along Q-screen are discussed in section 5. Finally we

end with conclusions in section 6. Appendices A–D contain important additional details.

2 Basic setup

The Jackiw-Teitelboim (JT) model consists of 2D gravity coupled to a scalar, φ, called the

dilaton, with an action,

IJT =
1

16πG

(∫
d2x
√
−g φ(R− Λ2) + 2

∫
bdy

√
−γφK − 2

L2

∫
bdy

√
−γφ

)
. (2.1)

Here Λ2 is the 2D cosmological constant given by Λ2 = − 2
L2
2
. The last term in the eq. (2.1) is

a counter-term which is required to remove divergences that arise while computing the on-

shell action and related quantities. We shall set the AdS2 length L2 = 1 in the calculations

to follow. Let us work in the conformal gauge in which the metric takes the form,

ds2 = −e2ω(x+,x−) dx+dx−. (2.2)

The equation of motion by varying the dilaton in the above action is

4∂+∂−ω + e2ω = 0. (2.3)

It is easy to see that the equation above has a solution in which the spacetime is AdS2,

with the metric in Poincaré coordinates (t, z) (related to the x± coordinates as x± = t± z)

given by

ds2 =
1

z2
(−dt2 + dz2) = − 4

(x+ − x−)2
dx+dx−. (2.4)
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Varying the metric we obtain,

1

8πG
(∇µ∇νφ− gµν∇2φ+ gµνφ) = 0. (2.5)

This admits, as one of the solutions, a linearly varying dilaton

φ =
1

2J z
, (2.6)

where J is an energy scale. The linear variation of the dilaton breaks the SL(2, R) isome-

tries of AdS2 to U(1) [9] and J characterises the scale of this breaking.

The spacetime has a boundary where the dilaton takes a fixed value

φ = φB. (2.7)

2.1 Vacuum solutions

The general solution for the dilaton satisfying eq. (2.5) is

φ =
a+ b(x+ + x−) + cx+x−

J (x+ − x−)
, (2.8)

where a, b, c are arbitrary constants. It is easy to show that when the parameters, a, b, c

meet the following two conditions,

µ ≡ b2 − ac > 0, (2.9)

φB >

√
µ

J
, (2.10)

the solution describes a black hole. The steps detailing the calculation of mass are shown

in appendix B.2 with the mass given by

M =
µ

16πGJ
, (2.11)

Doing an appropriate SL(2, R) transformation brings eq. (2.8) to the form eq. (A.2). Fur-

ther coordinate transformations shown in appendix A can be done to bring the metric and

the dilaton to the form eq. (A.7) and eq. (A.8) respectively. It then follows immediately

that the temperature of the black hole is given by

T =

√
µ

2π
. (2.12)

As discussed in [8, 9] the mass can be expressed in terms of the Schwarzian action. Let the

proper time along the boundary be2 t̂, the boundary can be described by the function t(t̂)

and the mass is given by,

M = − 1

8πGJ
Sch(t, t̂), (2.13)

2More correctly, in Fefferman-Graham coordinates the metric near the boundary takes the form, ds2 =

−( 1+O(ẑ)2

ẑ2
)dt̂2 + dẑ2

ẑ2
, and φ = 1

J ẑ .
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where

Sch(t, t̂) ≡ t′′′(t̂)

t′(t̂)
− 3

2

(
t′′(t̂)

t′(t̂)

)2

. (2.14)

When the JT model arises from higher dimensional theories, φ is related to the area of the

transverse sphere along the additional dimensions and its value at the horizon is propor-

tional to the increase in area when the black hole is made non-extremal. This motivates

the definition of the black hole entropy in the JT model to be

SBH =
φ

4G

∣∣∣∣
h

. (2.15)

The horizons lies along the loci where (∇φ)2 = 0. From eq. (2.8) it is easy to see that the

future and past event horizons which correspond to the conditions ∂−φ = 0 and ∂+φ = 0

respectively lie at

x+h =
−b−√µ

c
, (2.16)

and

x−h =
−b+

√
µ

c
. (2.17)

This leads to entropy, eq. (2.15),

SBH =

√
µ

4GJ
. (2.18)

From eq. (2.11) , eq. (2.12) and eq. (2.18) it is easy to see that the first law of thermody-

namics

TdSBH = dM, (2.19)

is obeyed by these black holes.

It is worth noting that our calculation for the mass leading to eq. (2.11) is carried out

using the holographic renormalisation method and as explained in appendix B it is valid

only for small temperatures,
T

J
� φB. (2.20)

In this limit we are dealing with “small” black holes whose horizon radius is deep inside

the boundary and the value of the dilaton at the event horizon φh meets the condition,

φh � φB. (2.21)

However the agreement with the first law shows that the above expression for the mass

eq. (2.11) should be valid for bigger black holes, at higher temperatures, as well.

2.2 Infalling matter

Let us next couple the JT model to classical matter. In the presence of matter the metric

equations of motion become,

− 1

8πG
(∇µ∇νφ− gµν∇2φ+ gµνφ) = Tmµν , (2.22)

with Tmµν being the matter stress tensor.
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In the conformal gauge, (2.2), the components of eq. (2.22) become

−e2ω∂±
(
e−2ω∂±φ

)
= 8πGTm±±, (2.23)

2∂+∂−φ+ e2ω φ = 16πGTm+−. (2.24)

We consider the special case of conformally invariant matter, with Tm+− = 0, which does

not couple to the dilaton but only to the metric. Varying the dilaton in eq. (2.1), we get

once again, eq. (2.3), which leads to the spacetime being AdS2 as before. Let us also take

the matter stress tensor to be purely infalling, i.e., Tm++ = 0. In summary,

Tm+− = 0 = Tm++. (2.25)

Also we take the Tm−− component to satisfy

Tm−− > 0. (2.26)

This is true if the matter satisfies the null energy condition (NEC)

Tmabk
akb > 0, (2.27)

with ka being the future-directed tangent vector for any null geodesic,

ka =
dxa

dλ
, (2.28)

where λ is an affine parameter along the geodesic. The ‘++’ equation of (2.23) leads to,

φ = d(x−) +
h(x−)

x+ − x−
. (2.29)

Then eq. (2.24) allows d(x−) to be determined in terms of h(x−) leading to

φ =
1

2
∂−h(x−) +

h(x−)

x+ − x−
. (2.30)

The remaining ‘−−’ component of (2.23) then gives,

− 1

2
h′′′ = 8πGTm−−. (2.31)

Let us note that eq. (2.31) follows from the boundary action

I = − 1

8πGJ

∫
dt̂ Sch(t, t̂) + Im, (2.32)

where t̂ is the boundary time and the boundary stress tensor Tm
t̂t̂

is obtained from the

matter action Im, when expressed as a functional of t(t̂) on the boundary, as

Tm
t̂t̂

= t′
δIm

δt(t̂)
. (2.33)

This follows from eq. (B.23) as is discussed further in appendix B.2.
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Note that for Tm−− = 0, eq. (2.31) has a general solution

h0 =
1

J
(a+ 2bx− + c(x−)2), (2.34)

for some constants a, b, c. It is easy to see that this, in conjunction with eq. (2.30), agrees

with eq. (2.8) above.

Consider a situation where we start for x− < 0 with a solution of the form eq. (2.34)

corresponding to a black hole and then allow matter to fall in. It follows from eq. (2.31)

that the resulting solution is given by

h = h0 − 16πG

∫
x−=0

∫
x−=0

∫
x−=0

Tm−−. (2.35)

The initial black hole mass is given in eq. (2.11). The additional matter leads to a

further increase in mass given by3

∆M =
J
2

∫
dx−hTm−−. (2.37)

The total mass is given in terms of h (see appendix B.2) by

M =
J

64πG

(
h′2 − 2hh′′

)
. (2.38)

In the above expression, h is evaluated at z → 0 and prime indicates a derivative with

respect to the Poincaré time t, see appendix B for more details. The calculation in ap-

pendix B is justified for black holes which are small, i.e. for which the value of the dilaton

at the horizon meets the condition, eq. (2.21).

As is discussed in appendix B.2 in the more general time dependent case also, M can

be expressed in terms of the Schwarzian derivative as given in eq. (B.24). This is to be

expected, since the Schwarzian term is the simplest one consistent with SL(2, R) symmetry.

From eq. (2.7) and eq. (2.30) we see that the boundary of spacetime can be expressed

as a function of x−,

x+ = x− +
2h(x−)

2φB − h′(x−)
. (2.39)

We see from eq. (2.35) and eq. (2.26) that h becomes smaller as x− increases. Generi-

cally h cannot go to zero in finite proper time as measured on the boundary. This follows

from the fact that boundary proper time goes as t̂ ∼
∫

dx−

h , and so near a first order zero,

x0, of h,

t̂ ∼ − ln
(
x0 − x−

)
. (2.40)

It is therefore enough to only consider the evolution till h hits a zero, since matter cannot

fall in thereafter from the boundary.

3Noting that x± = t± z and using eq. (2.25), (B.23), we see that

∆M =
J
2

∫
dx−hTm−− =

J
2

∫
dt h(t)Tmtt =

∫
dt̂ Tmt̂t̂ . (2.36)

– 6 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
9

2.3 Second law

Here we verify that for infalling matter of the type considered in the previous subsection, the

second law is valid as long as the energy condition eq. (2.26) is satisfied. More specifically,

we show below that the value of the dilaton increases monotonically along the event horizon.

We had mentioned above that the horizon value of the dilaton plays the role of the horizon

area and its monotonic increase is therefore the analogue of the area increase theorem in

this system.

For simplicity we consider situations where the matter falls in for some duration (i.e.

some interval in x−) and then stops. The solution after the matter stops falling is then of

the form, eq. (2.8), eq. (2.34), and has an event horizon (eh) located at eq. (2.16). We can

choose an affine parameter λ along the event horizon which meets the condition

dx−

dλ
= (x+h − x

−)2. (2.41)

It then follows that the first derivative,

dφ

dλ
= (x+h − x

−)2
dφ

dx−

∣∣∣∣
eh

. (2.42)

It is then easy to see that the second derivative satisfies the condition

d2φ

dλ2
= (x+h − x

−)4∇−∇−φ
∣∣
eh

= −8πG(x+h − x
−)4Tm−− < 0, (2.43)

where the second equality is due to the ‘−−’ equation of motion (2.23) and the last in-

equality follows from eq. (2.26).

Once the matter stops falling in, at late times,

dφ

dx−

∣∣∣∣
eh

= 0, (2.44)

since the event horizon is at x+ = x+h and the value of the dilaton at the event horizon is

independent of x−. From the inequality, eq. (2.43), it then follows that dφ
dλ > 0 along the

event horizon, and thus φ monotonically increases.

2.3.1 The apparent horizon

It is interesting to note that in the classical system being analysed in this section the value

of the dilaton at the apparent horizon (ah) also increases monotonically. This will however

turn out not to be necessarily true once we include the quantum effects of matter. At the

apparent horizon,

∂−φ|ah = 0. (2.45)

From eq. (2.30), this leads to the condition

x+|ah = x− − h′ ±
√
h′2 − 2hh′′

h′′
. (2.46)

– 7 –
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Requiring the value of the dilaton at the apparent horizon to be non-negative selects the

upper sign for the discriminant, resulting in

x+ |ah = x− − h′ +
√
h′2 − 2hh′′

h′′
, (2.47)

φ |ah =
1

2

√
h′2 − 2hh′′. (2.48)

We can parametrise the trajectory of the apparent horizon by the coordinate x− itself.

We have,
dφ

dx−

∣∣∣∣
ah

=

(
∂φ

∂x−
+

∂φ

∂x+
∂x+

∂x−

)∣∣∣∣
ah

=

(
−h

(x+ − x−)2

)
∂x+

∂x−

∣∣∣∣
ah

, (2.49)

where we used eq. (2.45) and eq. (2.30). But we also have d(∂−φ)
dx− = 0 along the apparent

horizon. This gives

∂−x
+|ah = −

∂2−φ

∂+∂−φ

∣∣∣∣
ah

= −
16πGTm−−
e2ωφ

∣∣∣∣
ah

, (2.50)

where we used the equations of motion eqs. (2.23), (2.24), along with eq. (2.25) and

eq. (2.45). Therefore using eq. (2.50) and the Poincaré metric eq. (2.4), eq. (2.49) becomes

dφ

dx−

∣∣∣∣
ah

= 4πG
hTm−−
φ

∣∣∣∣
ah

. (2.51)

Now we note that the r.h.s. in this equation is positive, since the energy condition, eq. (2.26)

is met and φ and h are positive. It therefore follows that the dilaton increases with

increasing x−, which is along the direction of increasing time. We also mention that while

h decreases with increasing x−, eq. (2.35), it cannot turn negative in a finite duration of

boundary time, see comments above after eq. (2.39). Finally, we also note from eq. (2.50)

that in the presence of infalling matter the apparent horizon is space-like.

3 Semi-classical analysis: the χ system

We now turn to studying the effects of the quantum backreaction due to the matter fields.

We will consider a simple system consisting of N massless scalar fields which are minimally

coupled with an the action (1.2). As was discussed in the introduction, we will work in the

semiclassical limit obtained by taking G→ 0 and N →∞, keeping their product GN fixed.

In this limit, quantum effects of the matter fields need to be included while those of the

gravity-dilaton fields can be neglected, since they are suppressed by G and not enhanced

by a factor of N . For later convenience, we find it useful to define the parameter

ζ =
4GN

3
. (3.1)

Once quantum effects are included it is well known that the free scalar theory has a

conformal anomaly. As a result, for the matter system above we get

Tµµ =
N

24π
R, (3.2)

where R is the Ricci scalar.

– 8 –
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The same value for Tµµ can be obtained in a classical theory of a single scalar χ which

is non-minimally coupled with an action:

Iχ = − N

24π

(∫
d2x
√
−g(∂µχ∂

µχ+ χR) + 2

∫
bdy

√
−γχK

)
. (3.3)

Note that the action has a prefactor which goes like N . It is easy to see that the resulting

stress energy tensor gives Tµµ in agreement with eq. (3.2).

One way to include the quantum effects of the ψi fields is therefore to work with the

classical χ theory, eq. (3.3), and couple it to the JT model. This system was analysed in [6]

and we will study it first in this section. Following this in the next section, we will return

to studying the system of the ψi fields directly.

To completely specify the dynamics of this system we also need to specify the boundary

condition satisfied by χ. We will take χ to satisfy Dirichlet boundary conditions (specifi-

cally, χB = 0) at the boundary of spacetime where φ = φB.

3.1 Thermodynamics

To begin, we briefly review the thermodynamics of the JT model coupled to the matter

theory with action eq. (3.3). This was analysed in detail in [6].

Since the χ field does not couple to the dilaton, varying the dilaton again gives eq. (2.3)

and so the geometry still remains AdS2. The black hole solution is conveniently described

by writing the AdS2 metric in Schwarzschild coordinates:

ds2 = −(r2 − µ) dt2s +
dr2

(r2 − µ)
. (3.4)

The parameter µ determines the mass etc. of the black hole. The temperature is given by

the expression (2.12) The metric eq. (3.4) is independent of ts and therefore a shift of the

ts coordinate is manifestly a symmetry.

To proceed it is convenient to go to conformal coordinates,

x±s ≡ ts ± r∗, (3.5)

where

r∗ = −
∫

dr

r2 − µ
= − 1

2
√
µ

ln

(
r −√µ
r +
√
µ

)
. (3.6)

In these coordinates the conformal factor, ω, which appears in the metric eq. (2.2) is

given by

ω =
1

2
ln
(
r2 − µ

)
. (3.7)

The equation of motion for χ, from the action eq. (3.3) is,

∂+∂−(χ+ ω) = 0, (3.8)

which gives,

χ = −ω + f+(x+s ) + f−(x−s ) + c0, (3.9)

– 9 –
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for some arbitrary functions f+ and f−. Here c0 is a constant. Requiring χ to be indepen-

dent of ts fixes

f+(x+s ) = p x+s , (3.10)

f−(x−s ) = −p x−s , (3.11)

for some constant p. The components of the stress tensor for the χ field are,

Tχ+− =
N

12π
∂+∂−χ, (3.12)

Tχ±± =
N

12π

(
−∂2±χ+ ∂±χ∂±χ+ 2∂±χ∂±ω

)
. (3.13)

Using the solution eq. (3.9), eq. (3.10) and eq. (3.11), the stress tensor components become

Tχ+− = − N

12π
∂+∂−ω, (3.14)

Tχ±± =
N

12π

(
∂2±ω − ∂±ω∂±ω

)
+

N

12π
p2. (3.15)

From the equations of motion for the ‘+−’ component of the metric, eq. (2.24) with

Tm+− replaced by eq. (3.14), we learn that

φ =
r

J
+
ζ

4
, (3.16)

where we have used the definition (3.1). Here we have imposed that φ is independent of ts
and regular at the horizon,4 which is given by

r =
√
µ. (3.17)

J is the energy scale which breaks the scaling symmetry and is same as that appears in

eq. (2.6). The ‘++’ and ‘−−’ components of the equations of motion (2.23) with Tm±±
replaced by Tχ±±, eq. (3.15), then determines

p = −
√
µ

2
. (3.18)

Note that with this value of p, the field χ is given by

χ = − ln(r +
√
µ) + c0, (3.19)

and is non-singular at the horizon (3.17). Finally demanding that χ vanish at the boundary

φ = φB gives,

c0 = ln
(
φ̃BJ +

√
µ
)
. (3.20)

Here φ̃B is given by

φ̃B = φB −
ζ

4
. (3.21)

4For φ which is independent of ts eq. (2.24) reduces to an ordinary second order equation in r which has

only one solution regular at the horizon.
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We will be working in the limit where eq. (2.20) is met. In this limit

c0 ' ln
(
φ̃BJ

)
, (3.22)

so that

χ = − ln(r +
√
µ) + ln

(
φ̃BJ

)
. (3.23)

The ADM mass corresponding to the solution can be calculated as discussed in ap-

pendix B and is given by

M =
µ

16πGJ
+
N
√
µ

12π
. (3.24)

The computation of the ADM mass shows that a counter-term is required to be added to

the action eq. (3.3) to cancel divergences,

Iχct = − N

24π

∫
∂

√
−γ. (3.25)

We saw in the discussion of the previous section that the value of the dilaton at the

horizon is analogous to the horizon area of higher dimensional gravity systems. Here we

note that the φ and χ fields both couple to the curvature R in the action, eq. (2.1) and (3.3).

This motivated a definition of the generalized entropy [6]

Sχgen =
1

4G
φ|h −

N

6
χ|h, (3.26)

where φ|h and χ|h refer to the horizon values of the two fields.

Using eq. (3.16) and eq. (3.23), and noting that event horizon is given by eq. (3.17),

we see that for the black hole solution under consideration,

Sχgen =
1

4G

(√
µ

J
+
ζ

2

(
ln
√
µ+

1

2
− ln

(
φ̃BJ

2

)))
. (3.27)

It is easy to see from eq. (3.27), (3.24) and (2.12) that the system satisfies the first law

of thermodynamics, TdSχgen = dM . Moreover, using eq. (3.24), eq. (3.27) and eq. (2.12),

we see that the temperature dependent part of the quantity βF , where F = M − TSχgen is

the free energy and β = 1/T , is given by

βF = βM − S = −
√
µ

8GJ
− ζ

8G
ln
√
µ. (3.28)

Comparing this with the result obtained for the genus zero partition function obtained

in [41], we find that the value of βF in eq. (122) in [41] corresponds to N = 9 in eq. (3.28),

noting eq. (3.1).

Let us end with one comment. As mentioned in section 2.1, φ can be thought of as

being analogous to the area of the horizon in this model. The extra contribution due to

the χ field in Sχgen, eq. (3.26), can be thought of as arising due to the entanglement of the

ψi matter fields across the horizon. The quantum effects of these fields have been replaced

by the classical χ field here and their entanglement is replaced by the value of χ at the

horizon. It is also worth noting that both (∇φ)2 and (∇( φ
4G −

Nχ
6 ))2 vanish at the horizon.
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3.2 Infalling matter

Next we consider adding additional matter of the type considered in section 2.2. The

matter is conformal and taken to be classical. We analyse how the behaviour of the system

changes due to the additional effects of the χ field.

The matter does not couple to the dilaton and its stress tensor Tmµν satisfies the con-

ditions, eq. (2.25) with Tm−− being the only non-zero component.

The dilaton equation of motion shows that the metric continues to be AdS2. The stress

tensor for the χ field in the conformal gauge eq. (2.2) is given in eq. (3.12), (3.13). The

equation of motion by varying χ is given in eq. (3.8) with the solution

χ = −ω + f+(x+) + f−(x−) + ln
(

2J φ̃B
)
, (3.29)

where φ̃B is defined in eq. (3.21), and the last term on r.h.s. is added to simplify the

following discussion. Using eq. (3.29) in eqs. (3.12), (3.13) we get

Tχ+− = − N

12π
∂+∂−ω, (3.30)

Tχ±± =
N

12π

(
∂2±ω − ∂±ω∂±ω

)
+

N

12π

(
−∂2±f± + (∂±f±)2

)
. (3.31)

Here after, in this section, we work in Poincaré coordinates, eq. (2.4). In this case, ∂2±ω −
(∂±ω)2 = 0, leading to

Tχ±± =
N

12π

(
−∂2±f± + (∂±f±)2

)
. (3.32)

For simplicity we consider situations where we start with empty AdS2 into which the

additional matter begins to fall at x− = 0. Before that, for x− < 0, the χ field is given by

χ = −ω + ln
(

2J φ̃B
)
, (3.33)

with f+(x+) = f−(x−) = 0 and satisfies the Dirichlet boundary condition. Also, the dilaton

is given by,

φ =
1

2J z
+
ζ

4
. (3.34)

It is easy to see that these solve the equations of motion. The term ‘Poincaré vacuum’

will be used to refer to the initial configuration eq. (3.33) and eq. (3.34) in the discussion

related to χ system in the rest of the paper.

Once the additional matter begins to fall in, Tm−− no longer vanishes. However since

f+(x+) vanishes, Tχ++ = 0 and we learn from eq. (2.25) that

T++ = Tm++ + Tχ++ = 0. (3.35)

From the equations of motion for the ‘+−’ (2.24), ‘++’ eq. (2.23) components of the metric

with Tmµν replaced by Tχµν + Tmµν and using eq. (3.30), eq. (3.35), we learn that the dilaton

is determined in terms of one function of x− coordinate, h(x−) by,

φ =
h′(x−)

2
+

h(x−)

x+ − x−
+
ζ

4
. (3.36)
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The value for φ given by eq. (3.34) corresponds to

h =
1

J
. (3.37)

The remaining equation involving T−− determines h as

h′′′ = −16πGTχ−− − 16πGTm−−. (3.38)

As was discussed above, we impose Dirichlet boundary condition for the field χ at the

boundary φ = φB. From eq. (3.36), it follows that the boundary trajectory is given by

zB(x−) =
h

2φ̃B − h′
, (3.39)

where φ̃B is given in eq. (3.21). As matter falls in, the form of χ is given by eq. (3.29) with

f+ = 0. By requiring that χ vanish at the boundary, we get

f− = − ln

(
h

2φ̃B − h′

)
− ln

(
2φ̃BJ

)
, (3.40)

leading to

χ = ln z − ln

(
h

2φ̃B − h′

)
, (3.41)

where we used ω = − ln z for the Poincaré metric, eq. (2.4). Therefore, from eq. (3.32),

the Tχ−− component of the stress tensor becomes

Tχ−− =
N

12π

(
hh′′′

(
2φ̃B − h′

)
+ h′′

(
2hh′′ − h′2 + 4φ̃2B

))
h
(
h′ − 2φ̃B

)2 . (3.42)

It is easy to see that eq. (3.38) now becomes a third order non-linear equation for h in

the presence of the source Tm−− which is difficult to solve. To proceed we consider only

situations where the infalling matter is varying slowly with x−. More precisely, we take

the frequency associated with this variation ω, to satisfy the condition

ω

J
� φ̃B. (3.43)

The reader will note that this is analogous to the condition imposed on the temperature T

in the previous section, eq. (2.20). For the kind of situations we consider, in this approx-

imation, only the terms involving the minimum number of derivatives will survive; in the

numerator of eq. (3.42) the surviving term goes like 4φ̃2Bh
′′, while in the denominator it

goes like 4φ̃2Bh. Retaining these and neglecting the others gives,

Tχ−− =
N

12π

h′′

h
, (3.44)

leading to

h′′′ = −ζ h
′′

h
− 16πGTm−−, (3.45)

where ζ is defined in eq. (3.1). This is a much simpler equation to solve.
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In the terms involving additional derivatives in eq. (3.42), each derivative is accompa-

nied by an additional factor of h; we will self-consistently argue in appendix C that the

condition eq. (3.43) is sufficient to suppress them.

We also note that when eq. (3.43) is met,

χ = ln z − ln

(
h

2φ̃B

)
. (3.46)

The formula for the ADM mass, derived in B.3, is given by

M =
J

64πG
(h′2 − 2hh′′ − 2ζh′). (3.47)

From eq. (2.36) one finds that

∂t̂M = Tm
t̂t̂
. (3.48)

In the absence of infalling matter we see that M is constant. Also for Tm
t̂t̂
> 0, M increases.

3.2.1 Some additional comments

A few comments are in order here.

First, the reader might worry that the value of χ we start with at x− < 0, before

matter begins to fall in, eq. (3.33), is in fact singular at the past Poincaré horizon. This

follows from noting that

χ = −ω = ln z + ln (2φ̃BJ ), (3.49)

and z →∞ at the horizon. It is best to regard this case as the limit of the finite temperature

situation. For the the eternal black hole, in suitable Poincaré coordinates where φ is

given by

φ =
1− µx+x−

J (x+ − x−)
, (3.50)

χ, eq. (3.19), takes the form

χ = ln

(
x+ − x−

2

)
− ln

(
1 +
√
µx+

)
− ln

(
1−√µx−

)
+ ln

(
2(φ̃BJ +

√
µ)
)
. (3.51)

This gives a finite value for χ at the horizon. In the limit µ→ 0 we then get the value for

χ in eq. (3.49).

Second, we can, in fact, start with a black hole of non-zero mass and redo the analysis

of subsection 3.2 above. In this case, for x− < 0, χ and φ are given by eq. (3.51), eq. (3.50)

respectively. In the subsequent evolution

χ = ln z − ln
(
1 +
√
µx+

)
+ f−(x−), (3.52)

and φ is given by eq. (3.36) since eq. (3.35), (2.25) and eq. (3.30) continue to hold. It also

follows from the Dirichlet boundary condition χ satisfies at the boundary that f(x−) is

f−(x−) = − ln zB(x−) + ln
(
1 +
√
µ(x− + 2zB(x−))

)
, (3.53)
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and therefore

χ = ln z − ln
(
1 +
√
µx+

)
− ln zB(x−) + ln

(
1 +
√
µ(x− + 2zB(x−))

)
. (3.54)

where zB(x−) is given by eq. (3.39). Then the ‘−−’ component of Einstein’s equation,

which determines h by eq. (3.38), using eq. (3.53) and eq. (3.32), becomes

h′′′ = − ζ

(
(4φ̃2B − h′2 + 2hh′′)(2µh+ (1 +

√
µx−)((1 +

√
µx−)h′′ − 2

√
µh′))

h(2
√
µh+ (1 +

√
µx−)(2φ̃B − h′))2

)

− ζ

(
hh′′′(1 +

√
µx−)(2

√
µh+ (1 +

√
µx−)(2φ̃B − h′))

h(2
√
µh+ (1 +

√
µx−)(2φ̃B − h′))2

)
− 16πGTm−−. (3.55)

We can simplify the above equation by using the approximation eq. (3.43) and also taking

√
µh

φB
� 1, (3.56)

which follows from eq. (2.20) if the initial temperature of the black hole we start with is

small and h ≤ 1
J during the subsequent evolution. This gives, from eq. (3.55),

h′′′ = −ζ
(
h′′

h
−

2
√
µ

1 +
√
µx−

h′

h
+

2µ

(1 +
√
µx−)2

)
− 16πGTm−−. (3.57)

It is straightforward to verify that

h(x−) = a1(1 +
√
µx−) + a2(1 +

√
µx−)2, (3.58)

is a solution to eq. (3.57), for arbitrary constants a1 and a2. We will show self-consistently

in appendix C, that starting with a black hole which meets the condition, eq. (2.20) and

with slowly infalling matter, which meets eq. (3.43), eq. (3.56) is also valid and neglecting

the additional terms in eq. (3.55) leading to eq. (3.57) can be justified.

Finally, the mass formula, eq. (3.47) obtained above differs from the classical case,

eq. (2.38). It was mentioned after eq. (2.38) that the expression in the classical system

can be written in terms of the Schwarzian derivative and therefore preserves SL(2, R)

invariance. It seems somewhat surprising at first therefore that an additional term is present

in eq. (3.47), proportional to ζh′. In fact this term is not proportional to the Schwarzian

derivative and one might wonder how its presence is consistent with SL(2, R) invariance.

To understand this better we note that the starting forms for φ and χ, eq. (3.50) and

eq. (3.51) are not invariant under a general SL(2, R) transformation,

x± → px± + q

rx± + s
. (3.59)

Under such a transformation, while φ continues to be given by the same form as eq. (3.36)

with h transforming as

h(x−)→ h(x−)

(rx− + s)2
, (3.60)
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χ assumes the form,

χ = ln z − ln
(
1 + ax+

)
+ f−(x−), (3.61)

with

a =

√
µs− r

p− q√µ
. (3.62)

More generally starting from χ as given in eq. (3.61), we would get χ of the same form with

a→ as− r
p− qa

. (3.63)

One can then derive an expression for the mass by repeating the analysis above in the

more general Poincaré coordinates obtained after doing such an SL(2, R) transformation,

the details of which are shown in appendix B.3, to get

M =
J

64πG

(
h′2 − 2hh′′ − 2ζ

(
h′ − 2 a h

a t+ 1

))
. (3.64)

We see that there are two additional terms now compared to the classical expression. Using

eq. (B.23) we can rewrite this expression in terms of the Poincaré time t as, eq. (B.37)

Mχ = − 1

8πGJ
Sch(t, t̂)− N

12π

(
t′′

t′
− 2a t′

a t+ 1

)
, (3.65)

where t̂ is the FG time coordinate and primes denote derivatives with respect to t̂.

Under an SL(2, R) transformation it turns out that the two additional terms above

are together also invariant, as discussed in appendix B.3. To summarise some of these

comments, an additional parameter, a, enters in determining the mass for the χ system. It

specifies the initial conditions for the χ field and enters in the second term on the r.h.s. in

eq. (3.61), ln(1 + a x+). The presence of this additional parameter allows additional terms

to arise in the mass formula, consistent with SL(2, R) invariance.

We had mentioned above that the equation of motion in the classical case arises

from the Schwarzian action on the boundary coupled to the infalling matter stress ten-

sor, eq. (2.32). We see from eq. (3.57) that due to the effects of the χ field there should be

extra terms in the action; these also cannot arise from the Schwarzian derivative term, as

in the case of the mass. We have not fully explored this issue but expect that due to the

dependence on the extra parameter a the resulting action giving rise to eq. (3.57) will also

be SL(2, R) invariant.

3.3 Detailed analysis: quasi normal mode

Let us now return to the case considered in subsection 3.2 where we start with the Poincaré

vacuum and χ is given in eq. (3.46) leading to the equation of motion, eq. (3.45). While this

is a simpler equation to solve than the general case, since we have made the approximation,

eq. (3.43), it is still quite non-trivial in the presence of general infalling matter.

Consider a situation where matter falls in for some time and then stops. One would

expect that eventually the time dependence dies down and the system settles to a black

hole state. This approach to equilibrium is determined by the quasi-normal modes of the
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system which characterise the final black hole and is independent of the details of the initial

infalling matter. The quasi-normal modes describe the “ring down” of the black hole when

subjected to external perturbations.

It turns out that in this system there is only one quasi-normal mode. Let us start

with a black hole solution given by eq. (3.4), eq. (3.16), eq. (3.23) with mass M given in

eq. (3.24). A coordinate transformation eq. (C.25) now brings the metric in eq. (3.4) to

the Poincaré form, with the dilaton taking the form eq. (3.36) with h(x−) given by

h = h0 =
c1
J

(x0 − x−), (3.66)

where

c1 = 2
√
µ, (3.67)

and

x0 =
1
√
µ
. (3.68)

This coordinate transformation is being chosen with an eye to the discussion which follows.

We note that in these x+, x− coordinates the future and past horizons, H±, lie at x+ = x0
and x− = −∞ respectively.

Let us denote the dilaton and χ perturbations in the quasi-normal mode as δφ, δχ

respectively. The quasi-normal mode should be regular at the future horizon, x+ = x0.

In the Poincaré coordinates, the χ equation of motion leads to

δχ = δf+(x+) + δf−(x−). (3.69)

Requiring that we start with the black hole solution and study its ring down leads to the

condition that at H−, δχ vanish, leading to δf+ = 0.

The ‘++’ and ‘+-’ components of the metric equations then lead to the dilaton being

of the form, eq. (3.36), with h satisfying the source free equation,(Tm−− = 0) eq. (3.45),

h′′′ = −ζ h
′′

h
. (3.70)

Expanding

h = h0 + δh, (3.71)

we then get that the perturbation δh satisfies the equation

δh′′′ = −ζ δh
′′

h0
. (3.72)

It is easy to see that the solution to this equation for a black hole of mass M eq. (3.24) we

started with is

δh = − c2
J (α+ 2)

(x0 − x−)α+2, (3.73)

where

α =
ζJ
c1
. (3.74)
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and c2 is an arbitrary constant. From eq. (3.36),(3.46) by considering sufficiently late times

i.e., x− close to x0, and using the transformation to Schwarzschild coordinates, eq. (C.25)

it then follows that

δφ ∼ c2
2J

e−(
ζJ
2

+2πT )(ts−r∗), (3.75)

δχ ∼ c2
ζJ + 8πT

e−(
ζJ
2

+2πT )(ts−r∗). (3.76)

The universal exponent ( ζJ2 + 2πT ) then characterizes the approach to the black hole

solution. The quasi-normal mode is given by eq. (3.75) and eq. (3.76).

When ζ → 0 it is easy to see from eq. (3.73) that the solution for δh corresponds to

a black hole solution and therefore no quasi-normal mode exists. The mass corresponding

to the perturbation eq. (3.73) can be computed by the linearized form of eq. (3.47) around

eq. (3.66) and vanishes as expected.

Let us now consider a situation where starting with the Poincaré vacuum matter begins

to fall in at x− = 0 and stops after some time. We take Tm−− > 0 during the infall. At

x− = 0, h′ = h′′ = 0, since for x− < 0, h is given by eq. (3.37) It follows from eq. (3.45)

then that h′′ must be negative for x− > 0, even after the matter stops falling in, and

thus h′ must also be negative for x− > 0 as discussed in appendix C. As a result h will

monotonically decrease and eventually vanish, say at x− = x0 . Let us consider a case

where h > 0 when the matter stops falling in. In the subsequent evolution the mass is

conserved and h satisfies the source free equation, eq. (3.45), with Tm−− = 0. Thus from

eq. (3.66) and (3.73) we know that in the vicinity of x0

h =
c1
J

(x0 − x−)− c2
J (α+ 2)

(x0 − x−)α+2. (3.77)

and the system will “ring down” to the black hole corresponding to the final mass which

determines c1 in terms of mass M by eq. (3.67), eq. (3.24).

More details illustrating this behaviour are given in appendix C.

We also note, as was discussed before in section 2.2, that where h → 0 in a generic

way with a first order zero, boundary time t̂ → ∞. Situations where this happens while

matter is falling in, are less universal and need to be analysed on a case-to-case basis.

Let us end this subsection with some final comments. In the analysis above we took

χ to be of the form, eq. (3.41) which is appropriate if we are starting with the Poincaré

vacuum. Instead, if we started with a black hole of non-zero mass, the form χ takes is

eq. (3.52). One can then repeat the quasi-normal mode analysis. In this case h satisfies

eq. (3.57), with the solution,

h =
1

J
(
1− µ(x−)2

)
. (3.78)

which is obtained for the choice a1 = 2 and a2 = −1 in eq. (3.58). Denoting this solution

as h0 and considering a small fluctuation about it δh, eq. (3.71), we get that δh satisfies

the equation

δh′′′ = −ζ
(

2µ

(1 +
√
µx−)2

δh

h0
−

2
√
µ

1 +
√
µx−

δh′

h0
+
δh′′

h0

)
. (3.79)
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General solution of the above equation for δh can be written as a sum of three independent

solutions as:

δh = k1δh1 + k2δh2 + k3δh3, (3.80)

where

δh1 = 1 +
√
µx−, (3.81)

δh2 = (1 +
√
µx−)2, (3.82)

δh3 =
(
1−√µx−

) ζJ
2
√
µ
+2 (

1 +
√
µx−

)− ζJ
2
√
µ , (3.83)

and k1, k2, k3 are arbitrary constants. Of these the first term can be shown to change the

black hole mass, see eq. (3.58) and therefore cannot arise at late times. The second term,

although does not alter the mass, can be set to zero by an SL(2, R) transformation. This

leaves only the third solution eq. (3.83) which at late times, x− → 1√
µ , becomes

δh3 ∼ (1−√µx−)
2+ ζJ

2
√
µ . (3.84)

This is the quasi-normal mode with an exponent which agrees with what was obtained

earlier, eq. (3.73), (3.74). In fact it is easy to see that for this solution, at late time,

only the last term on the r.h.s. of eq. (3.79) contributes so that the perturbation satisfies

eq. (3.72) obtained earlier.

This shows that the exponent ( ζJ2 + 2πT ) which characterises the quasi-normal mode

appears quite universally, regardless of the initial conditions for χ, as would be expected

on physical grounds.

3.4 Second law

In this subsection we show that the entropy Sχgen monotonically increases along the event

horizon. The entropy is defined at the event horizon in eq. (3.26), and includes a contri-

bution due to the χ field. We saw in section 3.1 that with this definition the First law

is satisfied. Here we consider non-equilibrium situations with infalling matter of the kind

that was considered in section 2.2. We will find that the second law is true as long as the

energy condition, eq. (2.26) is satisfied.

We will restrict ourselves to situations where the matter stops falling in after some time.

We saw that the solution is determined by the function h which at late times x− → x0,

takes the form, eq. (3.77). The event horizon, where (∇φ)2 = 0, at late times, is given by

x+ = x0. (3.85)

From eq. (3.36) and using the form for χ eq. (3.41) we see that the entropy is,

Sχgen =

(
φ

4G
− Nχ

6

)∣∣∣
eh

=
1

4G

(
h

x0 − x−
+
h′

2
+
ζ

4
− ζ

2

(
ln z − ln

(
h

2φ̃B − h′

)))∣∣∣
eh
. (3.86)
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Note we have not assumed that the infalling matter is slowly varying with eq. (3.43) being

met and our analysis below will apply to the general case.

To examine the second law, we proceed similar to the classical case discussed in sec-

tion 2.3. The affine parameter along the event horizon is given by a relation analogous to

eq. (2.41) given by
dx−

dλ
= (x0 − x−)2 = 4 e−2ω

∣∣∣
eh
. (3.87)

From eq. (3.86), we get

dSχgen
dλ

= (x0 − x−)2∇−Sχgen

=
(x0 − x−)2

4G

(
h

(x0 − x−)2
+

h′

x0 − x−
+
h′′

2
+
ζ

2

(
1

x0 − x−
+
h′

h
+

h′′

2φ̃B − h′

))
.

(3.88)

At late time, x− → x0, h is given by eq. (3.66) and we see that

dSχgen
dλ

→ 0. (3.89)

Let us pause to make one comment here. We took χ as given in eq. (3.41) in obtaining

eq. (3.86). More generally, starting with a black hole, instead of the Poincaré vacuum, χ

is given by eq. (3.52), with f−(x−) in turn being expressed in terms of h by eq. (3.53). In

this case one can show that at late time x− → x0, h is given by a quadratic function,

h = k̃1(1 +
√
µx−)(x0 − x−), (3.90)

for some constant k̃1. Repeating the analysis above then shows that eq. (3.89) is valid in

this more general situation as well.

Next we compute the second derivative of the entropy,

d2Sχgen
dλ2

= 16 e−2ω∂−(e−2ω∂−S
χ
gen)

∣∣∣∣
eh

. (3.91)

From the ‘−−’ component of the Einstein equation, eq. (2.22) and noting that when the

χ field is present, the stress tensor component T−−, including Tχ−− eq. (3.13), is given by,

T−− =
N

12π

(
−∂2±χ+ ∂±χ∂±χ+ 2∂±χ∂±ω

)
+ Tm−−, (3.92)

we get

e2ω∂−

(
e−2ω∂−(φ− ζ

2
χ)

)
= −ζ

2
(∂−χ)2 − 8πGTm−−. (3.93)

Using eq. (3.93) in eq. (3.91) we see that

d2Sχgen
dλ2

=
4 e−4ω

G

(
−ζ

2
(∂−χ)2 − 8πGTm−−

)∣∣∣∣
eh

< 0, (3.94)
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where we have used the energy condition eq. (2.26). Since eq. (3.89) is met as x− → x0,

we conclude that
dSχgen

dλ
> 0, (3.95)

showing that the generalised entropy monotonically increases along the future event

horizon.

Let us note here that x− → x0 corresponds to the “far future” since boundary proper

time t̂→∞ in this limit, eq. (2.40).

Before concluding this section let us note that unlike the classical case considered

in section 2.3.1, in general the analogous statement for the apparent horizon, defined by

eq. (2.45), is not valid here, i.e. Sχgen now evaluated at the apparent horizon need not

increase. We show this by considering an explicit example in appendix D. In contrast,

when we consider the future Q-screen, which we will discuss in section 5, the generalised

entropy does increase.

4 Dynamical system with ψ fields

Having analysed the χ system in the previous section we now go back to the starting

Lagrangian, eq. (1.2), and consider the system of N scalars directly in the semi-classical

limit, N → ∞, G → 0, keeping GN fixed. We take the ψi fields to satisfy Dirichtlet

boundary condition

ψi|B = 0, (4.1)

at the boundary, eq. (2.7), as was mentioned above. Let us consider a boundary described

in conformal coordinates by the trajectory,

x+B = x+(x−). (4.2)

And consider the x+ modes to be in the vacuum with respect to a coordinate x+v . Then

expanding the ψi fields as

ψ =

∫ ∞
0

dω

[
a+(ω)√

2ω
e−iωx

+
v + f(ω, x−) + c.c.

]
, (4.3)

and imposing boundary conditions, eq. (4.1) gives

f(ω, x−) = −a+(ω)√
2ω

e−iωx
+
v (x

+
B). (4.4)

This shows that the x− modes of ψi fields will be in the vacuum with respect to a coordinate

x−v = x+v (x+B). (4.5)

We also note that the conformal anomaly is given by

T+− = − N

12π
∂+∂−ω. (4.6)

Substituting in the ‘+−’ component of the metric equation of motion, eq. (2.24) we get that

2∂+∂−φ̃+ e2ωφ̃ = 0, (4.7)

where

φ̃ = φ− GN

3
. (4.8)
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C

S

Q

(x+Q, x
−
Q)

x+Q

RP

(x+P , x
−
P )

x+P

x+B(x−P )

(x+B(x−P ), x−P )

x+ x−

Figure 1. Entanglement of matter fields across the horizon.

4.1 Entanglement entropy

The entanglement entropy due to the scalar fields ψi can be obtained using the results

in [138, 139]. Consider a single minimally coupled scalar ψ and a space-like slice denoted

as S in figure 1 which intersects the boundary at the point Q. We are interested in the

entanglement entropy of the region extending from a point P to Q along S. We will denote

this region as R below. The entanglement entropy depends on the state of ψi. In the

presence of the boundary the state of the left-moving modes (x− dependent) is determined

by the state of the right-moving modes (x+ dependent) and the location of the boundary,

see eq. (4.5). Therefore it is enough to specify the state of the right-moving modes. We

take this state to be in the vacuum with respect to the x+v coordinate. We will denote

the coordinate of P,Q as x±P , x±Q below. Now consider an initial null slice C, the state of

the left-movers can be specified on it. The right-moving modes present in region R of S
correspond to right-movers on C that lie in the interval [x+P , x

+
Q] . The left-movers in R

correspond to right-movers that lie in the interval [x+Q, x
+
B(x−P )] which after reflecting off

the boundary have turned into left-movers. The entropy in R is therefore the entanglement

in the right-moving modes lying in the region [x+P , x
+
Q] ∪ [x+Q, x

+
B(x−P )] on C.

It follows then from [138] that this entanglement entropy is given by

SEE =
1

12

[
ln

(∆x+v )2

δ2
+ 2ρP

]
. (4.9)

Let us explain the different terms on the r.h.s. above. ∆x+v is the length of the interval

[x+P , x
+
Q] ∪ [x+Q, x

+
B(x−P )] on C measured in the vacuum coordinate x+v . That is,

∆x+v = x+v (x+P )− x+v (x+B(x−P )). (4.10)
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δ2 in eq. (4.9)) is an invariant cut-off which needs to be introduced to obtain a finite result.

Finally, the metric in the coordinates x±v is given by

ds2 = −e2ρdx+v dx−v , (4.11)

and ρP is the conformal factor at the point P in the x±v coordinates

The result eq. (4.9) does not depend on the choice of the initial surface C. Also, the

vacuum state of the system is only specified up to an SL(2, R) transformation, since the

notion of positive frequency modes does not change under such a transformation. It is easy

to check that under such a transformation

x+v →
ax+v + b

cx+v + d
, (4.12)

with ad − bc = 1, x−v given by eq. (4.5) also transforms under the same SL(2, R)

transformation

x−v →
ax−v + b

cx−v + d
, (4.13)

and the entanglement entropy eq. (4.9) is invariant.

We will use eq. (4.9) in the discussion below often with the point P lying on the

horizon of black hole. Also, we will take all N scalar fields to be in the same state. The

full entanglement entropy will then be multiplied by a factor of N and is given by

SEE =
N

12

[
ln

(∆x+v )2

δ2
+ 2ρh

]
, (4.14)

where ρh denotes the conformal factor at the horizon.

4.2 Thermodynamics

We are now ready to study black holes in this system, our analysis parallels that of sec-

tion 3.1 in the χ case. The black hole solution is given by the metric in eq. (3.4) and the

dilaton given in eq. (3.16). We will show that this solution continues to solve the equations

of motion in the ψ system as well, for a suitable choice of vacuum for the matter fields.

We will use both the conformal coordinates, x±s given in eq. (3.5) and Kruskal coordinates,

X±K given in eq. (A.10) in the discussion below. We will also sometimes refer to the x+, x−

directions as “right-moving and left-moving “ coordinates respectively

We take the ψi fields to be in the vacuum with respect to X±K coordinates. It then

follows that the ‘++’ and ‘−−’ components of the stress tensor in the x±s coordinates are

given by (see appendix A),

Tψ++ = − N

24π
Sch(X+

K , x
+
s ), (4.15)

Tψ−− = − N

24π
Sch(X−K , x

−
s ), (4.16)

and agree with the values they take in the χ system, eq. (3.15). This shows that the

solution eq. (3.4) and eq. (3.16) satisfies the equations of motion.
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The temperature for the solution eq. (3.4) is given by eq. (2.12). The mass for the

black hole in the ψ system can be calculated as discussed in appendix B.4. In the limit

eq. (2.20) the mass is given by

M =
1

16πGJ

(
1− ζ

2φ̃B

)
µ. (4.17)

Henceforth, we will work in the region of parameter space where

1− ζ

2φ̃B
> 0. (4.18)

We see from eq. (2.11), eq. (2.13) and (4.17) that the effect of the scalar fields can be

incorporated by changing the coefficient of the Schwarzian action. One way to do this is

to take

G→ G

1− ζ

2φ̃B

, (4.19)

in eq. (2.11). In contrast in the χ system, the quantum effects result in a contribution

to M which goes like
√
µ, eq. (3.24), and thus here the effects cannot be absorbed into a

renormalisation of the coefficient of the Schwarzian action. Also, comparing the expressions

for the mass in both the systems, eq. (4.17) and eq. (3.24), we see that the shift from the

equilibrium mass is opposite in sign.5 It is unclear to us if a more general allowed boundary

condition on the ψi fields can reproduce the value for the mass as that obtained in the

χ system.

Let us now calculate the generalised entropy at the horizon. This is given by

Sψgen = SBH + SEE, (4.20)

where SBH, defined in eq. (2.15), is the classical contribution and SEE is the entanglement

in the matter fields outside the horizon.

From eq. (3.16) and noting that the location of the horizon is given by eq. (3.17), we

see that

φh =

√
µ

J
+
ζ

4
, (4.21)

so that

SBH =
1

4G

(√
µ

J
+
ζ

4

)
. (4.22)

In evaluating the entanglement entropy we need to take into account a subtlety. We

took both the left-moving and right-moving modes to be in the Kruskal vacuum above. Let

us, to begin, take the right-moving modes to be in the Kruskal vacuum, then since dilaton

eq. (3.16) results in the boundary φ = φB satisfying the equation,

X+
k X

−
k = −D, (4.23)

5We acknowledge the referee for highlighting this.
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where

D =

(
φ̃BJ −

√
µ

φ̃B J +
√
µ

)
, (4.24)

it follows from eq. (4.5) and eq. (4.23) that the left-moving modes would be in the vacuum

with respect to the coordinate

X−v = − D

X−k
. (4.25)

This is of course related to X−K by an SL(2, R) transformation and therefore Tψ−− will agree

with eq. (4.16) above. However in computing the entanglement entropy one needs the value

of the conformal factor ρh, eq. (4.14) in the coordinate system in which the matter fields

are in the vacuum . For the choice we are making here ρh must therefore be computed in

the (X+
K , X

−
v ) coordinate system and not in the (X+

K , X
−
K) coordinate system which would

give a wrong result.

Once we keep this subtlety in mind the rest of the calculation is straightforward. It

is convenient to calculate the entropy at the future (or past) horizon rather than at the

bifurcate horizon. At the future horizon X+
K = 0, (see eq. (A.10)), one gets that ρh,

eq. (4.11), using eq. (A.11) and noting eq. (4.25), is given by

ρh =

(
− ln

(1 +X+
KX

−
K)

2
− 1

2
ln

D

(X−K)2

)∣∣∣∣
h

= −1

2
ln

D

4(X−K)2
. (4.26)

From figure 1 we see that the interval ∆x+v , eq. (4.10), is given by

∆x+v = (X+
K −X

−
v )|h =

D

X−K
. (4.27)

Thus the entanglement entropy for the N fields, using eq. (4.14), becomes

SEE =
N

12
ln

(
4(φ̃B J −

√
µ)

φ̃B J +
√
µ

)
− N

6π
ln(δ). (4.28)

The second term on the r.h.s. above is a constant independent of the temperature,6 it can

be absorbed into a redefinition of the dilaton in SBH, when we evaluate the total entropy

given in eq. (4.20). This is an example of the more general observation that UV divergences

in the entanglement entropy can be absorbed in the renormalisation of GN [140–142], since

the dilaton which is the coefficient of the Ricci scalar term in the action, eq. (2.1), plays

the role of Newton’s constant in this model.

In the approximation, eq. (2.20), the temperature dependent part of eq. (4.28) becomes,

SEE ≈ −
N

6

√
µ

φ̃B J
. (4.29)

As a result, from (4.20),eq. (4.22) and eq. (4.29) the generalised entropy is given by

Sψgen =
1

4GJ

(
1− ζ

2φ̃B

)
√
µ. (4.30)

6Reinstating AdS2 length L2, the δ-dependent logarithmic term becomes ln
(
δ
L2

)
.
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where we have dropped the terms that are independent of temperature. It is easy to see

from eq. (4.30), (4.17) and eq. (2.12) that the first law of thermodynamics is met by the

generalised entropy at the event horizon, i.e.,

TdSψgen = dM. (4.31)

Let us end this discussion of the thermodynamics with some comments. First we see

that in the ψ system Sψgen is always positive,

Sψgen > 0. (4.32)

In contrast for the χ system it follows from eq. (3.27) and eq. (2.12) that the temperature

dependent terms in the entropy are

Sχgen =
π T

2GJ
+
N

6
ln

(
T

J φ̃B

)
, (4.33)

and therefore at a sufficiently low T , Sχgen becomes negative probably indicating that the

system no longer behaves in a sensible manner.

Second, in the discussion above in the ψ system we started with the right-movers being

in the Kruskal vacuum; instead if we had taken them to be in an SL(2, R) transformed vac-

uum and changed the left-movers’ ground state also consistently under the same SL(2, R)

transformation from the vacuum state we started with above, eq. (4.25), then the entan-

glement and hence generalised entropy would have remained unchanged from our result

above, eq. (4.29). This follows from the comments towards the end of section 4.1. Finally,

one can show that the metric eq. (3.4) and dilaton eq. (3.16) satisfy the equations of motion

even when the approximation eq. (3.43) is not true, as long as the left and right-movers are

in the Kruskal vacuum (or vacua related to them by an SL(2, R) transformation).7 This

means that in general Sψgen is given by eq. (4.28). If we now assume the first law, we can

calculate the mass of the system in this more general situation to be

M =
µ

16πGJ
+
Nφ̃B J

24π2
ln
(
φ̃2B J 2 − µ

)
. (4.34)

4.3 Infalling matter

We now couple the system to an additional classical massless field and consider a situation

where this massless field is purely infalling (left-moving) so that its stress tensor, which

we denote as Tmµν , has only one non-zero component, Tm−−. Instead of adding this extra

field we could have considered a situation where there was an infalling coherent state made

up of the ψi matter fields themselves. This situation can also be analysed along the lines

below, but has some additional complications which we would rather avoid here.

7This follows from the fact that eq. (3.16) can be written in the form eq. (3.36) in Poincaré coordinates,

with h = 1
J (1 − µ(x−)2), so that h′′′ = 0; it then follows from eq. (4.37) that in Poincaré coordinates

Tψ−− = 0.
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We choose the initial state for the ψi fields to be the vacuum in the Poincaré x+

coordinate for the right-moving modes. The state for the left-moving modes is then given

by eq. (4.5) to be the vacuum with respect to the coordinate

x−v = x− +
2h

2φ̃B − h′
. (4.35)

Noting that in the Poincaré vacuum, 〈x|T−−|x〉, which is the first term on the r.h.s. of

eq. (A.20), vanishes, we see that the stress tensor component Tψ−− in the vacuum state

eq. (4.35) is given by

Tψ−− = − N

24π
Sch(x−v , x

−). (4.36)

Using eq. (4.35) we get

Tψ−− = − N

24π

−6h2h′′′2 + 2hh′′′′
(

2hh′′ − h′2 + 4φ̃2B

)
+ 4h′′′

(
h′ + φ̃B

)(
2hh′′ − h′2 + 4φ̃2B

)
(
−2hh′′ + h′2 − 4φ̃2B

)2
.

(4.37)

Again, we consider the slowly varying limit eq. (3.43). It this limit we get

Tψ−− = − N

24π

h′′′

φ̃B
. (4.38)

It then follows that the equation for h which is

h′′′ = −16πGTψ−− − 16πGTm−−, (4.39)

becomes (
1− ζ

2φ̃B

)
h′′′ = −16πGTm−−, (4.40)

where ζ is given by eq. (3.1).

We see in comparison with the classical case, eq. (2.31), that as in the discussion of the

mass in eq. (4.17) above, the quantum effects of matter can be incorporated by changing

the coefficient of the Schwarzian action, or equivalently by rescaling G as given in eq. (4.19).

It then follows that h is given in terms of Tm−− by eq. (2.35) and the mass by eq. (2.38)

after rescaling G in subsection 2.2 by eq. (4.19). Starting with the Poincaré vacuum,

consider the situation where matter starts falling in at x− = 0 and stops at x− = xf .

Denoting

µ =
8πGJ(
1− ζ

2φ̃B

) ∫ xf

0
Tm−−(x−) dx−, (4.41)

we find that h, for x− > xf , is given by

h(x−) =
1

J
− 2

J

∫ x−

0

(∫ x−

0
µ dx−

)
dx− =

1

J
(
1− µ(x−)2

)
(4.42)
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The expression for the dilaton with this h(x−) is given by eq. (A.2). The mass can then

be calculated using eq. (B.46) and is given by eq. (B.45).

Using the coordinate transformations mentioned in appendix A, we find that the met-

ric, eq. (A.1) and the dilaton, eq. (A.2), transform to the form given by eq. (A.7) and

eq. (A.8) respectively. It then follows that the temperature of the black hole corresponding

to eq. (4.42) is given by the expression eq. (2.12), where µ is given by eq. (4.41). Also, the

entropy will be given by the eq. (4.30). It then follows immediately that the system obeys

the first law of thermodynamics, TdSψgen = dM , which shows that the system equilibriates

instantly after the matter ceases to fall in. It is easy to see from eq. (4.42), that h vanishes

at late times, x− → 1√
µ , as a linear zero, i.e.,

h(x−) ∼ 2

J
(1−√µx−). (4.43)

Let us end this subsection with some comments. In the χ system we found a quasi-

normal mode by studying small fluctuations around the black hole background. Here

interestingly, it is easy to see from eq. (4.40) that once the matter stops falling in, the

system instantaneously equilibriates to a black hole of the final mass. Thus, there is no

non-trivial ringing down and therefore no quasi-normal mode is present.

If we had started with a black hole one would expect the x+ modes to be in the Kruskal

vacuum instead of the Poincaré vacuum, which we considered as the initial state above.

However, it is a curious fact that the Kruskal and Poincaré coordinates are related by an

SL(2, R) transformation in this system, and therefore the two vacua are the same.

Finally, we had mentioned in the introduction that the differences in the χ and ψ

systems arise due to different boundary conditions. The T+− component of the stress

tensor agree in the two cases by construction. We also see from eq. (3.31), and eq. (3.61)

that for the χ system, T++ vanishes, which is also true for the ψ system if we start with

the Poincaré or Kruskal vacua. Thus the differences in the two cases arise due to difference

in T−− which in turn differs due to the different boundary conditions.

4.4 Second law

In this subsection we examine the second law for this system. To examine the second law,

we proceed in a manner similar to section 3.4 and consider the first and second derivatives

of the generalised entropy, Sψgen, with respect to the affine parameter λ, eq. (2.41), along the

event horizon. We again take the initial state for the ψi fields to be in the vacuum in the

Poincaré x+ coordinate for the right-moving modes. The vacuum for the left-moving modes

is given by eq. (4.35). With this choice of vacuum state, and labelling the intersection point

of the horizon and the spatial slice S as (x0, x
−), we find that ρh in eq. (4.14) becomes

ρh =

(
ω − 1

2
lnx−v

′
)∣∣∣∣

h

, (4.44)

where prime denotes a derivative with x− and the horizon is located at x+ = x0. Also,

from fig 1, the interval (4.10) is given by

∆x+v = x0 − x−v (x−). (4.45)

– 28 –



J
H
E
P
0
4
(
2
0
2
0
)
1
9
9

Therefore, the entanglement entropy, (4.14), becomes

SEE =
N

6

(
− ln

(
x+ − x−

2

)
− 1

2
lnx−v

′ + ln
(
x+ − x−v

))∣∣∣∣
h

. (4.46)

Consider the first derivative of Sψgen along the event horizon, x+ = x0, given by

dSψgen
dλ

= (x0 − x−)2
∂Sψgen
∂x−

= (x0 − x−)2
(
∂SBH

∂x−
+
∂SEE
∂x−

)
. (4.47)

Using the forms of SBH, eq. (2.15), (3.36), and SEE, eq. (4.46), we get

dSψgen
dλ

=
(x0 − x−)2

4G

(
h

(x0 − x−)2
+

h′

x0 − x−
+
h′′

2
+
ζ

2

(
− x

−
v
′′

2x−v ′
− x−v

′

x0 − x−v
+

1

x0 − x−

))
.

(4.48)

Using x−v given in eq. (4.35) and the late time form of h, eq. (4.43), we see that at late times,

dSψgen
dλ

→ 0. (4.49)

Consider the second derivative of the entropy along the horizon given by

d2Sψgen
dλ2

= (x0 − x−)2∂−

(
(x0 − x−)2∂−S

ψ
gen

)
. (4.50)

Using eqs. (3.36) and (4.46), we get

d2Sψgen
dλ2

=
(x0 − x−)4

8G

(
h′′′ +

2ζ

x0 − x−

(
x−v
′′

2x−v ′
+

x−v
′

x0 − x−v

))
+

(x0 − x−)4

8G
ζ

(
1

2

(
x−v
′′

x−v ′

)2

− x−v
′′′

2x−v ′
− (x−v

′)2(
x0 − x−v

)
2
− x−v

′′

x0 − x−v
− 1

(x0 − x−)2

)
.

(4.51)

We can simplify the above expression by using the equation of motion for h, eq. (4.39),

which using Tψ−− in the form eq. (4.36), can be written as

h′′′ =
ζ

2

(
x−v
′′′

x−
′

v

− 3

2

(
x−v
′′

x−v ′

)2
)
− 16πGTm−−. (4.52)

Therefore, using eq. (4.52), the expression eq. (4.51) simplifies to

d2Sψgen
dλ2

= −(x0 − x−)4

8G

(
64G2

ζ
(∂−SEE)2 + 16πGTm−−

)
, (4.53)

which is manifestly negative if the energy condition eq. (2.26) is satisfied. From eq. (4.49)

it then follows that Sψgen satisfies the condition

dSψgen
dλ

> 0, (4.54)

along the event horizon and asymptotically vanishes as λ → ∞. This shows that the

generalised entropy satisfies the second law along the future event horizon of the black hole.
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5 Generalised entropy and Q-screens

We saw in subsection 2.3.1 that in the classical theory the area of the apparent horizon

also increases monotonically. More precisely, consider the co-dimension one surface which

is foliated by marginally trapped surfaces (called the future Holographic screen in [131]).

Then it was shown in subsection 2.3.1 that this surface is space-like and the area of the

marginally trapped surface (i.e. the apparent horizon) increases monotonically as one goes

outward, towards the boundary, along it.8 We also commented towards the end of sub-

section 3.4 that the area of the apparent horizon in the χ system did not grow in such a

monotonic manner.

Here we consider the behaviour of the generalised entropy, instead of the area of the

apparent horizon. A “ future Q-screen” can be defined which is the analogue of the future

holographic screen with the generalised entropy playing the role of the classical area. The

idea is as follows, [132]. In the 2D spacetime we are considering here, we first define the

quantum expansion to be the rate of change of the generalised entropy along a null ray.

The marginally quantum trapped surface is then defined as a point on a Cauchy surface at

which, a) the quantum expansion along the outward directed future null ray vanishes, and

b) the quantum expansion along the inward directed future null ray is negative.9 With our

choice of coordinates, this means

∂−Sgen = 0, (5.1)

∂+Sgen < 0. (5.2)

Finally, the future Q-screen is defined as a surface foliated by marginally quantum

trapped surfaces.

We show below that the generalised entropy is a monotonic function along a future Q

screen. This result follows in a very straightforward manner in 2D from another relation,

called the Quantum Focussing Condition (QFC) which has also been discussed in the

literature, [132].

In 2D the QFC takes the form,

d2Sgen
dλ2

< 0, (5.3)

where λ is an affine parameter along a null geodesic. A related condition is called the

Quantum Null Energy Condition (QNEC) which is given by

~
2π

d2SEE
dλ2

≤ 〈Tab〉kakb, (5.4)

with 〈Tab〉 being the stress tensor which appears on the r.h.s. of Einstein’s equations, and

ka is the tangent vector along a null geodesic, eq. (2.28).

8As mentioned in subsection 2.1 the horizon value of the dilaton plays the role of the area in the JT

model.
9In the 2D case being considered here the marginally quantum trapped surface is a point in spacetime.
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We will show below that eq. (5.3) is true in both the χ and ψ systems, when the

additional classical matter we add satisfies the NEC eq. (2.27).

We also show that the QNEC eq. (5.4) holds in both systems when the classical matter

satisfies this condition. This will also allow us to establish that the generalised entropy is

monotonic along a future Q-screen in both systems.

5.1 The χ system

We start with the χ system and first show that QFC is true. We take the definition of the

generalised entropy in this case to be eq. (3.26)

Next, we take an outward directed null geodesic along increasing values of x−. It then

follows from eq. (3.26), and the discussion in subsection 3.4, see eq. (3.93) and eq. (3.94),

that the QFC eq. (5.3) follows for matter satisfying the NEC, eq. (2.27). The analysis for a

null geodesic along the x+ direction is entirely analogous, as long as the condition Tm++ ≥ 0

is also met.

The role of the entanglement entropy in the χ system is played by

SEE → −
N

6
χ. (5.5)

Therefore QNEC eq. (5.4) takes the form (with ~ set equal to 1):

−N
12π

d2χ

dλ2
≤ Tabkakb. (5.6)

From eq. (3.26) it follows that QFC eq. (5.3) implies

N

12π

d2χ

dλ2
≥ 1

8πG

d2φ

dλ2
. (5.7)

From the equations of motion for φ it also follows that

d2φ

dλ2
= −8πGTabk

akb. (5.8)

Note here Tab is the full stress tensor including the contribution from the χ field. Combining

eq. (5.7) and eq. (5.8) gives the QNEC condition eq. (5.6). We have set ~ = 1 above, but

it is easily restored as follows. The prefactor N in the χ action, eq. (3.3) arises from the

conformal anomaly for the matter fields and should therefore actually be N~, this gives

exact agreement with the QNEC.10

We now turn to showing that Sχgen increases monotonically along a future Q-screen.

From the QFC it follows that ∇−∇−Sχgen ≤ 0. Using eq. (3.94) and equation of motion in

the form eq. (3.93), it can be seen that along a future Q-screen, where eq. (5.1) is met,

∂2−S
χ
gen = − 1

4G

(
ζ

2
(∂−χ)2 + 8πGTm−−

)
< 0. (5.9)

10We also note that our normalisation for the stress tensor is correct; as a check this is the normalisation

which arises after dimensional reduction from 4 dimensions.
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It then follows that no two points on a future Q-screen can have the same value of x+.

For if they did, the two points could be connected by a null ray along the x− direction,

and since eq. (5.9) is true, ∂−S
χ
gen could not vanish at both points. We can therefore use

the coordinate x+ to parametrise points on the future Q-screen. The monotonicity of Sχgen
along the Q-screen then follows simply by noting that eq. (5.2) is satisfied on it.

In fact we can say more about future Q-screens in the χ system.

For the system in initial Poincaré vacuum state and infalling null matter of the kind

considered in subsection 3.2 the general solution is given in eq. (3.36), eq. (3.46). It then

follows that

∂+S
χ
gen = − 1

4G

(
h

(x+ − x−)2
+

ζ

2(x+ − x−)

)
< 0, (5.10)

(since h > 0, as discussed in appendix C ).

This shows that Sχgen increases monotonically as one goes along the Q-screen towards

the boundary.

In fact it can be easily seen that the future Q-screen in this case is a space-like surface.

This follows by noting that the ‘+-’ equation of motion eq. (2.24), where Tm+− is replaced

by eq. (3.12), imply that

∂+∂−S
χ
gen = − 1

8G
e2ωφ < 0. (5.11)

Since eq. (5.9) is also true it then follows from eq. (5.1) that, along the Q-screen,

dx−

dx+
= −∂+∂−S

χ
gen

∂2−S
χ
gen

< 0, (5.12)

thereby showing that the future Q-screen is space-like.

5.2 The ψ system

The generalised entropy which we denote by Sψgen in this case is defined in eq. (4.20). It

follows from discussion in subsection 4.4, see eq. (4.53), that this generalised entropy also

satisfies the condition
d2Sψgen

dλ2
< 0, (5.13)

for null geodesics along the x− direction and classical matter satisfying the energy condition

eq. (2.26). Similarly for null geodesics along the x+ direction, one can also show that

eq. (5.13) is true as long as the condition Tm++ ≥ 0 is met.

It also follows in a straightforward way from eq. (5.13) and the equations of motion

for the dilaton that the QNEC is valid in this case. The reasoning is entirely analogous to

steps eq. (5.6), (5.7), (5.8) in the χ system above.

We now turn to the behaviour of generalized entropy along a future Q-screen in this

system. Since eq. (5.1) is met on a future Q-screen, it follows from eq. (5.13) that ∂2−S
ψ
gen <

0. It then follows, in a manner analogous to the discussion in the χ system that the Q-

screen can be parametrised by the x+ coordinate and that Sψgen is monotonically varying

along the Q-screen.

It is worth mentioning that, in contrast with the χ system, the condition ∂+S
ψ
gen < 0

is not obviously met along a quantum marginal surface where ∂−S
ψ
gen = 0.
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We end with one final comment. One can also examine the existence of quantum

extremal surfaces [143], where both conditions,

∂−Sgen = ∂+Sgen = 0, (5.14)

are met. In the Kruskal extension of the Schwarzschild geometry (with two boundaries)

one finds that there are additional spacetime points where eq. (5.14) is satisfied. However

the value of Sgen at these points is bigger than that at the bifurcate horizon. Thus the

minimum value for Sgen is obtained at the bifurcate horizon and equals the generalised

entropy for the black hole, eq. (3.27), eq. (4.30), as one would expect on physical grounds.

6 Conclusions

In this paper we have considered the JT model coupled to matter in the semiclassical

approximation. Two different models were analysed, in one case involving a matter field,

χ, with a non-minimal coupling, and in the other case N scalar fields, ψi, i = 1, · · ·N ,

which are massless and minimally coupled. While in both cases the matter has the same

conformal anomaly, the boundary conditions which are imposed result in differences in

the full matter stress tensor and the resulting behaviour of the two systems is also then

different, see end of subsection 4.3.

In the ψ case the effects of matter, in the semiclassical limit, is to renormalise the

coefficient of the Schwarzian action as discussed in section 4.11 As a result the thermo-

dynamics and response to additional infalling matter qualitatively stay the same as in the

classical case. In contrast, for the χ system, analysed originally in [6], the effect of matter

cannot be understood in this simple manner, and the thermodynamics and also dynamics

change more appreciably.

Starting with the initial state, which corresponds to the Poincaré vacuum, when addi-

tional matter is thrown in, we find that in both cases a black hole forms, and the system

thermalises. In the χ case, a quasi-normal mode characterises the ring-down to the fi-

nal black hole geometry, once the matter stops falling in, while in the ψ case the system

instantly thermalises.

An interesting feature is that in both cases the second law of thermodynamics is obeyed

in the following non-trivial way. One can define a generalised entropy which includes the

area of the horizon, given in the JT theory by the horizon value of the dilaton, and a

contribution due to the entanglement of matter. In the χ system this latter term is given

by the horizon value of the χ field, while in the ψ system it is the entanglement due to the N

free scalars across the black hole horizon. We show that this generalised entropy increases

monotonically along the future event horizon of the black hole, if the extra infalling matter

meets the null energy condition.

In earlier work, [134], a future Q-screen was defined which is the analogue of the locus

of an apparent horizon with the generalised entropy now playing the role of the horizon

11More correctly this was shown to be true at small temperature T
J � φB , and small frequency, ω

J � φB
in section 4.
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area. Interestingly, we find that in both systems the Quantum Focussing Condition is

satisfied, and as a result the generalised entropy also increases along a future Q-screen.

We have not been able to analyse general time dependent situation here and have

restricted ourselves to cases where eq. (3.43) is met i.e., the additional matter falls in

slowly. It would be interesting to study more general situations as well.

We have worked here in the semi-classical limit where the 2D Newton constant, G→ 0,

and N →∞, keeping GN fixed. Going forward it would be interesting to also incorporate

the quantum effects of the gravity-dilaton sector systematically, order by order in G, and

to compare the results with those obtained in [41, 80].

In this context it is worth keeping the following observations in mind. The JT model

can be obtained by dimensional reduction from higher dimensions, as discussed in [18,

30, 48]. The near horizon AdS2 geometry obtained in this way is then glued in to the

higher dimensional asymptotically flat or AdS space. It would be worth investigating how

this gluing of the geometry to the higher dimensional asymptotic spacetime affects the

results for the higher loop corrections to the partition function etc. Also, on carrying out

a dimensional reduction extra terms arise in the action; in particular a term quadratic in

the dilaton of the form, [18],

∆S = C1

∫
d2x
√
−g φ2. (6.1)

Due to these extra terms, the geometry in the near-horizon region is no longer AdS2 and

departs from it, at the same order as φ, in the parameter 1/J , eq. (2.6). It was already

noted in earlier work that these departures can have significant effects in the semi-classical

limit discussed here [144]. Incorporating them while studying the loop corrections in G

could also be important.

It is worth digressing briefly to remind the reader why the corrections to the action

which arise can lead to significant effects in the semi-classical limit. In general the 2D

metric for a static black hole can be written as

ds2 = f(r)(−dt2s + dr2∗), (6.2)

where

r∗ = −
∫

dr

f(r)
. (6.3)

At extremality, f(r) has a second order zero at the horizon r = rh. If one calculates the

quantum back reaction due to a massless scalar field which is in the vacuum with respect

to x±s = ts ± r∗ one finds that, at the future event horizon, this is given by

TµνU
µUν ∼ f ′′′

f ′
, (6.4)

where Uµ is the 4-velocity of a freely infalling observer. In the JT model where the geometry

is exactly AdS2, f(r) = ( r−rhrh
)2 and thus f ′′′ vanishes, so that the r.h.s. vanishes. However,

more generally once, say, the effects of the φ2 term are incorporated, the metric will not

be AdS2 and in general f ′′′ will not vanish as one approaches the horizon. For example for

the 4D extremal RN case we have

f(r) =
(r − rh)2

r2
, (6.5)
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and f ′′′(rh) does not vanish. It then follows from eq. (6.4) that since f ′ will continue to

vanish at the horizon, due to the second order zero at extremality, the r.h.s. of eq. (6.4) will

diverge. This means a freely infalling observer will see a diverging energy density at the

future horizon. This signals the possibility that the back reaction due to quantum effects

will not be small. In fact it was shown in [144] that the quantum effects do significantly

change the behaviour of the geometry near the horizon in the case of the 2D system obtained

after dimensionally reducing the RN black hole from 4D.

Returning to the main thread of our discussion it would clearly then be worth going

beyond the semiclassical limit studied here and incorporating the quantum corrections

order by order in G, keeping some of the observations above also in mind.

In conclusion, it is remarkable that the JT model, which is a simple model of gravity,

is proving to be such a rich laboratory for studying various aspects of quantum gravity.

Recent developments [41, 50, 145–147], suggest that it can provide interesting insights

both to the information puzzle and towards understanding the Euclidean path integral of

quantum gravity. In addition, it could be an important laboratory for understanding the

different types of bulk entropy associated with different types of horizons and surfaces. We

look forward to these developments with considerable anticipation.
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A Coordinate transformations

In this appendix, for completeness, we give details of the transformations between the

Poincaré, Schwarzschild and Kruskal coordinate systems and also discuss the transforma-

tion properties of the matter stress tensor.
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The Poincaré metric in light cone coordinates is given by (2.4),

ds2 = − 4 dx+dx−

(x+ − x−)2
. (A.1)

Consider the vacuum dilaton solution given in eq. (2.8), with the condition eq. (2.9) being

met. We can do an appropriate SL(2, R) transformation to get the dilaton solution eq. (2.8)

to the form

φ =
1

J

(
1− µx−x+

x+ − x−

)
, (A.2)

The relation between these Poincaré coordinates and Schwarzschild coordinates is given by,

x± =
1
√
µ

tanh

(√
µx±s
2

)
, (A.3)

under which the Poincaré metric eq. (A.1) becomes

ds2 = − µ dx+s dx−s

sinh2
(√

µ
2 (x+s − x−s )

) , (A.4)

and the dilaton, eq. (A.2), transforms to

φ =

√
µ

J
coth

(√
µ

2
(x+s − x−s )

)
. (A.5)

We can convert the metric eq. (A.4) into static coordinates by writing it in terms of the

coordinates ts and r∗, where x±s = ts ± r∗. Doing so gives

ds2 =
µ

sinh2√µr∗

(
−dt2s + dr2∗

)
, (A.6)

Using the relation eq. (3.6) between r and r∗, the metric and the dilaton expressed in the

coordinates ts, r become

ds2 = −(r2 − µ) dt2s +
dr2

r2 − µ
, (A.7)

φ =
r

J
. (A.8)

We define the Kruskal coordinates X+
K , X

−
K to be

X−K = e
√
µx−s , X+

K = −e−
√
µx+s . (A.9)

The Poincaré coordinates x± and the Kruskal coordinates X±K are related as

X+
K =

(√
µx+ − 1
√
µx+ + 1

)
,

X−K =

(
1 +
√
µx−

1−√µx−

)
. (A.10)
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Using the transformation eq. (A.10), the Poincaré metric eq. (A.1) becomes

ds2 = −
4 dX+

KdX−K
(1 +X+

KX
−
K)2

. (A.11)

Next let us discuss how the stress tensor of a massless free scalar field transforms under a

simultaneous change of coordinates and the vacuum. We consider two coordinate systems

denoted by (X+, X−) and (x+, x−) with metric,

ds2 = −F (X+, X−)dX+dX−, (A.12)

ds2 = −f(x+, x−)dx+dx−. (A.13)

The stress tensor in the X± coordinates when the system is in the X± vacuum, i.e. anni-

hilated by positive frequency modes of X±, is given by [148–150]

〈X|Tµν |X〉 = Θµν +
1

48π
R gµν , (A.14)

Θ±± = − 1

12π
F

1
2 ∂2X±F

− 1
2 , Θ+− = 0. (A.15)

Using eq. (A.15), let us compute the value of the stress tensor in the coordinates x±.

Comparing eq. (A.12) and eq. (A.13), we see that

f = F
dX+

dx+
dX−

dx−
. (A.16)

The stress tensor transforms as a rank 2 tensor and so we have

〈X|Tx+x+ |X〉 = − 1

12π

(
dX+

dx+

)2

F
1
2 ∂2X±F

− 1
2

= − 1

12π

(
dX+

dx+

)2
(

f
dX+

dx+
dX−

dx−

) 1
2 dx+

dX+

∂

∂x+

 dx+

dX+

∂

∂x+

(
f

dX+

dx+
dX−

dx−

)− 1
2

.
(A.17)

Simplifying, we get

〈X|Tx+x+ |X〉 = − 1

12π
f

1
2 ∂2x+f

− 1
2 − 1

24π

(
(X+)′′′

(X+)′
− 3

2

(
(X+)′′

(X+)′

)2
)

= − 1

12π
f

1
2 ∂2x+f

− 1
2 − 1

24π
Sch(X+, x+), (A.18)

where (X+)′ = dX+

dx+
. An analogous relation exists for ‘−−’ components by replacing all ‘+’

indices with ‘−’ indices. The first term in the final expression, using eq. (A.14),eq. (A.15),

can be interpreted as value of the stress tensor in the coordinates x± with the system also

being in the vacuum with respect to the x± coordinates, that is

〈x|Tx+x+ |x〉 = − 1

12π
f

1
2∂2x+f

− 1
2 . (A.19)

Combining eq. (A.18) and eq. (A.19), we get

〈X|Tx+x+ |X〉 = 〈x|Tx+x+ |x〉 −
1

24π
Sch(X+, x+). (A.20)

There is an analogous formula with (X+, x+) being replaced by (X−, x−).
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B ADM mass

In this appendix, we give the details of the computation of the ADM mass. Following

the the standard holographic renormalisation methods (see, for instance, [151–159]), the

ADM mass can be computed from the boundary stress tensor obtained by varying the

action with respect to the boundary metric. The boundary is specified by a fixed value of

dilaton, eq. (2.7). In Poincaré coordinates eq. (2.4), this in general will correspond to some

trajectory (t, z(t)).

To compute the ADM mass, it is convenient to work in the Fefferman-Graham (FG)

coordinates which we denote by (t̂, ẑ). The metric in these coordinates takes the form

ds2 = gt̂t̂ dt̂2 +
dẑ2

ẑ2
, (B.1)

Asymptotically, as ẑ → 0, the metric and dilation satisfy the conditions,

gt̂t̂ =
1

ẑ2
(1 +O(ẑ2)). (B.2)

φ =
1

J ẑ
+O(ẑ0). (B.3)

B.1 Fefferman-Graham coordinate transformation

Let the coordinate transformation from the Poincaré coordinates to the FG coordinates be

denoted by,

t = H(t̂) + ẑ2G(t̂) + · · · ,

z = ẑK(t̂)(1 + ẑ2J(t̂) + · · · ), (B.4)

where H,G, J,K are functions which will be determined by imposing FG gauge and also

by requiring that the boundary, to leading order, corresponds to constant ẑ. For ease of

notation, the arguments of the functions G,H, J,K will not be written explicitly in the

rest of the discussion and it is understood that they are only functions of the time t̂. In

this appendix the derivatives with respect to t will be denoted by primes and derivatives

with respect to t̂ will be denoted by dots. Also, we set L2 = 1.

For the kind of situations we consider, it follows from the equations of motion that the

general form of φ near the boundary in Poincaré coordinates is given by

φ =
ζ

4
+
f0(t)

z
+ f2(t)z +O(z2). (B.5)

(In the classical case discussed in section 2, the first term on the r.h.s. is absent).

Expanding in FG coordinates, we get

φ =
ζ

4
+
f0(t)

Kẑ

∣∣∣
t=H

+ ẑ

(
Gf ′0(t)− Jf0(t)

K
+Kf2(t)

) ∣∣∣
t=H

+O(ẑ2). (B.6)

Requiring that the dilaton goes like 1
J ẑ to leading order fixes K to be

K = J f0(t). (B.7)
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Note that in eqs. (B.6) and (B.7), the coordinate t in f0(t), f2(t) has to be treated as a

function of t̂, i.e., t = H(t̂). The metric under the transformation eq. (B.4) becomes,

ds2 =

(
− Ḣ2

ẑ2K2
+

2JḢ2 + K̇2 − 2ĠḢ

K2

)
dt̂2

+

(
1

ẑ2
+ 4J − 4G2

K2

)
dẑ2 +

(
−4GḢ + 2KK̇

ẑK2

)
dt̂ dẑ. (B.8)

Imposing the FG gauge, eqs. (B.1), (B.2), we obtain

Ḣ = K = J f0(t), (B.9)

G =
KK̇

2Ḣ
=
KK ′

2
= J 2 f0f

′
0

2
, (B.10)

J =
G2

K2
= J 2 f

′
0
2

4
. (B.11)

Using eqs. (B.7), (B.9)–(B.11), the dilaton (B.6) and the metric (B.8) become

φ =
ζ

4
+

1

J ẑ
+ J ẑ

(
f ′0

2

4
+ f0f2

)
+O(ẑ2), (B.12)

ds2 = −
(

1

ẑ2
− J 2

(
f ′0

2

2
− f0 f ′′0

)
+O(ẑ2)

)
dt̂2 +

(
1

ẑ2
+O(ẑ2)

)
dẑ2 +O(ẑ)dẑ dt̂.

(B.13)

It is to be noted that t = H(t̂) in eq. (B.9)-eq. (B.13). We also note that the coordinate t̂

is obtained from t as follows. Using eq. (B.9) we can obtain t̂ in terms of H by solving the

equation
1

J

∫
dH

f0(H)
= t̂. (B.14)

From eq. (B.9) we see that this gives t̂ in terms of t.

B.2 Classical mass

The ADM mass is defined as,

M = lim
ẑ→ẑB

−2ẑ√
−γ

(
δI

δγ t̂t̂

)
, (B.15)

where ẑB is the boundary value of ẑ eq. (2.7), i.e., φB = 1
J ẑB + O(ẑ0B), and γµν refers to

the boundary metric. For the classical case, I is the JT action given in eq. (2.1). After

some calculations, this gives

MJT =
−1

8πG
lim
ẑ→ẑB

ẑγt̂t̂ (ẑ∂ẑφ+ φ) . (B.16)

Using the form of the dilaton, eq. (B.12), and the metric eq. (B.13), the mass eq. (B.16)

becomes

MJT =
J

4πG

(
f ′0

2

4
+ f0f2

)
+O(ẑB). (B.17)
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Comparing the general vacuum solution for the dilaton, eq. (2.8), with the form eq. (B.5)

(without the term ζ
4 ), we get

f0 =
1

J

(
a

2
+ b t+

ct2

2

)
, f2 = − c

2J
. (B.18)

Therefore using eq. (B.17) and eq. (B.18), we get mass for the vacuum solution to be

eq. (2.11).

For a general solution for the dilaton given in eq. (2.30), one can derive an expression

for the ADM mass in terms of the value of h at the boundary. We expand h(x−) in a

Taylor series in z near the boundary to obtain,

φ =
h(t)

2z
− h′′(t)

4
z +O(z2). (B.19)

By comparing eq. (B.5) and (B.19), we note that

f0 =
h(t)

2
, f2 = −h

′′(t)

4
. (B.20)

Expressed in terms of FG coordinates, the dilaton near the boundary takes the form (B.12)

(without the term ζ
4),

φ =
1

J ẑ
+

1

16

(
h′2 − 2hh′′

)
J ẑ + · · · . (B.21)

From eq. (B.17) and eq. (B.20), we obtain the classical mass in terms of h as

M =
J

64πG

(
h′2 − 2hh′′

)
. (B.22)

From the discussion in section B.1, we have seen that asymptotically t = H(t̂) and

therefore from eq. (B.9) and eq. (B.4),

dt

dt̂
=
J h(t)

2
. (B.23)

These observations allow the mass to be expressed as

M = − 1

8πGJ
Sch(t, t̂), (B.24)

where the Schwarzian derivative on the r.h.s. is given by eq. (2.14). We also note that t̂

can be taken to be the proper time along the boundary (after suitably rescaling by zB),

therefore the Schwarzian derivative is with respect to the proper time on the boundary.

It follows from eq. (B.15) that the mass formula derived above has corrections which

are of fractional order ẑBT where T ∼ √µ is the temperature. These are small when

ẑBT � 1. Using eq. (B.3) this condition can be expressed as eq. (2.20). Similarly the mass

for the χ and ψ systems will also be calculated below in the limit eq. (2.20).
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B.3 Mass for the χ system

With the general form of the dilaton given in eq. (B.5) and the form of the solution for

χ, eq. (3.29), it is straightforward to see that general form of the dilaton and χ near the

boundary in FG coordinates is given by,

φ =
α−1(t̂)

ẑ
+
ζ

4
+ α1(t̂)ẑ + α2(t̂)ẑ

2 + · · · , (B.25)

χ = ln ẑ + σ0(t̂) + σ1(t̂)ẑ + σ2(t̂)ẑ
2 + · · · , (B.26)

for some functions αi(t̂) and σi(t̂). For the system with χ field, the action I in eq. (B.15)

is given by

I = IJT + Iχ + Ict. (B.27)

Here IJT is the JT action given in eq. (2.1), and Iχ is the action for the χ field defined

in eq. (3.3). Ict is a counterterm which has to be added to cancel the divergences and is

given by

Ict = − N

24π

∫
bdy

√
−γ. (B.28)

The mass becomes

M = − lim
ẑ→ẑB

ẑγt̂t̂

(
1

8πG
(ẑ∂ẑφ+ φ)− N

12π

(
ẑ∂ẑχ−

1

2

))
=

(
α1(t̂)

4πG
− Nσ1(t̂)

12π

)
+O(ẑB). (B.29)

Using this we will now derive the formulae for the mass in the cases of eternal black hole

and infalling matter. For an eternal black hole, the metric in Schwarzschild coordinates is

given by eq. (3.4) and the dilaton is given in eq. (3.16). In Poincaré coordinates, the dilaton

becomes eq. (A.2). Also, the value of χ for an eternal black hole is given by eq. (3.51).

Converting the dilaton and χ to FG coordinates and Taylor expanding in powers of ẑ near

the boundary gives

φ =
1

J ẑ
+
ζ

4
+

µ

4J
ẑ + · · · , (B.30)

χ = ln ẑ + ln
(
φ̃BJ

)
−√µẑ + · · · . (B.31)

Therefore, from eqs. (B.30), (B.31), (B.29), we get the mass of the eternal black hole to be

eq. (3.24).

For the case of an infalling matter pulse in this system , the classical mass eq. (2.38)

gets a correction due to the contribution from the χ field. We expand the solution eq. (3.41)

near the boundary in ẑ coordinate,

χ = ln

(
ẑ J h

2

)
+ ln

(
2φ̃B − h′

h

)
+

(
hh′′

2(2φ̃B − h′)
+
h′

2

)
J ẑ +O(ẑ2). (B.32)
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Using eq. (B.29) and eq. (B.32), and taking the limit eq. (3.43), we obtain the mass to be

Mχ =
J

64πG

(
h′2 − 2hh′′

)
− N J h′

24π
. (B.33)

We can extend the above calculation to the general case where χ field is given by eq. (3.61).

The function f−(x−) in eq. (3.61) is determined by imposing Dirichlet boundary condition

on χ at the boundary. Doing so gives χ as

χ = ln

(
x+ − x−

2

)
− ln

(
1 + ax+

)
− ln

(
h(x−)

2

φ̃B − h′(x−)
2

)
+ ln

(
1 + ax− +

a h(x−)

φ̃B − h′(x−)
2

)
.

(B.34)

Expanding the above solution for χ in FG ẑ coordinates near the boundary we get

χ = ln
ẑJ h

2
+ g0(t̂)

+

h′
2
− a h

2(1 + a t)
+

(1 + at)hh′′ − 2ah(φB − h′

2 )− 2ahh′

4
(
ah+ (1 + at)

(
φ̃B − h′

2

))
J ẑ +O(ẑ2), (B.35)

where g0(t̂) is a function which is unimportant for the calculation of mass. Using eq. (B.21)

(with the additional quantum term, ζ
4 as in (B.5)), eq. (B.35), the expression for the

mass (B.29) in the limit eq. (3.43) becomes

Mχ =
J

64πG

(
h′2 − 2hh′′

)
− N J

12π

(
h′

2
− a h

a t+ 1

)
. (B.36)

Writing the above expression for the mass in terms of the t(t̂) using eq. (B.23), we get

Mχ = − 1

8πGJ
Sch(t, t̂)− N

12π

(
t′′

t′
− 2a t′

a t+ 1

)
. (B.37)

The above formula for mass is an SL(2, R) invariant quantity. This can be understood

as follows. Under an SL(2, R) transformation, eq. (3.59) it follows from eq. (B.23) and

eq. (3.60) (along with the fact that t̂ does not transform under SL(2, R) ) that

t(t̂)→ p t(t̂) + q

r t(t̂) + s
. (B.38)

It is then straightforward to verify that the expression for mass eq. (B.37) is invariant when

t(t̂) and a also transform as given in eq. (B.38) and eq. (3.63) respectively.

B.4 Mass for ψ system

To compute the ADM mass for the ψ system, we once again use the definition eq. (B.15)

with I given by

I = IJT + Iψ + Ict, (B.39)
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where IJT is the JT action, eq. (2.1), Iψ is the action for the matter fields ψi, eq. (1.2), and

Ict is the counter term action, which is the same in the χ system, eq. (B.28). To obtain

the quantum correction from Iψ, we can examine the conformal anomaly, eq. (4.6), for the

N scalar fields ψi but now including the boundary contribution. It is given by [160, 161]

Tµµ =
N

24π
(R+ 2K δ(x⊥)), (B.40)

where K is the extrinsic trace of the boundary. Therefore from the definition of the

stress tensor,

Tψµν = − 2√
−g

δIψ
δgµν

, (B.41)

we can obtain the contribution to the mass from Iψ as follows,

lim
ẑ→ẑB

−2ẑ√
−γ

(
δIψ

δγ t̂t̂

)
= lim

ẑ→ẑB
ẑ Tt̂t̂

∣∣
bdy

=
N

12π
lim
ẑ→ẑB

ẑγt̂t̂K. (B.42)

Therefore using eq. (B.15), (B.39), (B.16), (B.12) (B.42) and eq. (B.28), the expression

for the mass for the ψ system becomes

Mψ = − lim
ẑ→ẑB

ẑγt̂t̂

(
1

8πG
(ẑ∂ẑφ+ φ)− N

12π

(
K − 1

2

))
=

1

4πG

(
f0f2 +

f ′0
2

4

)
− N

12π
lim
ẑ→ẑB

1

ẑ
(K − 1). (B.43)

From eq. (B.13) it can be easily shown that the second term on the r.h.s. above is

given by

lim
ẑ→ẑB

1

ẑ
(K − 1) = J 2 ẑB

(
f ′0

2

2
− f0 f ′′0

)
, (B.44)

which involves the same function as appears in the first term in eq. (B.43), when expressed

in terms of h using eq. (B.20). Thus we see that the quantum effects simply serve to change

the coefficient in front of the mass compared to the classical case; this can be incorporated

by rescaling G, eq. (4.19).

It follows then from eq. (B.43) that the mass of an eternal black holes is given by

Mψ =
1

16πGJ

(
1− ζ

2φ̃B

)
µ, (B.45)

and the mass in the presence of infalling matter is given by

Mψ =
J

64πG

(
1− ζ

2φ̃B

)(
h′2 − 2hh′′

)
. (B.46)

From B.2 we see that the mass can be expressed in terms of the Schwarzian, eq. (B.24)

with G rescaled as given in (4.19).
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C Late time behaviour of h

In this appendix, we consider the χ system with infalling matter satisfying the condi-

tion (2.26) and show that the late time behaviour, after matter has stopped falling in, is

given by eq. (3.77). We also show by an explicit coordinate transformation that the late

time behaviour eq. (3.66) corresponds to a black hole of the correct mass.

We first present the arguments for the case of system initially being in the Poincaré

vacuum. We start at x− = 0 with φ given by eq. (3.34) which corresponds to eq. (3.37) in

eq. (3.36), i.e.,

h(0) =
1

J
, h′(0) = 0, h′′(0) = 0, (C.1)

and χ is given by eq. (3.49) We consider situations where the matter starts falling in at

x− = 0, and stops falling in at say x− = x−f . We will argue below that while the matter

is falling in h decreases monotonically and consider situations where h continues to be

positive until the instant x−f . We then argue that for x− > x−f , h continues to decrease and

eventually hits a first order zero at say x0, in whose vicinity it takes the form, eq. (3.77).

To show that while the matter is falling in h decreases monotonically we note the

following. At x− = 0, h′′′ < 0, while h′ = h′′ = 0 from eq. (C.1). This means initially,

near x− = 0, h′ < 0 and h′′ < 0. Next it can be argued that the function h′ cannot have

a minimum. We have noted that initially h′′ < 0, for it to change sign it would have to go

through zero. However we see from eq. (3.45) that when h′′ = 0, h′′′ < 0, thus even if h′′

were to hit zero, it would subsequently only decrease and therefore stay negative. Since

h′′ < 0 it follows that h′ stays negative starting from its initially negative value.

Next we will analyse the subsequent behaviour after the matter stops falling in at x−f .

Before proceeding however, let us make the following observation. If the infalling matter

falls in over a time scale τ then since |h| ≤ 1
J the condition eq. (3.43) is met if

1

τJ φB
� 1. (C.2)

We are taking the infalling matter to obey this condition so that eq. (3.43) is valid.

Once matter stops falling in h satisfies,

h′2 − 2hh′′ − 2ζh′ =
64πGM

J
, (C.3)

for a constant value of the mass M > 0, see eq. (3.47).

To simplify eq. (C.3) we introduce the variables τ and y defined by

d

dτ
= h

d

dx−
, y =

d

dτ
lnh =

dh

dx−
. (C.4)

It can be shown that τ is proportional to the proper time at the boundary, see appendix B.

Rewriting eq. (C.3) in terms of y and τ using eq. (C.4), we get

dy

dτ
− y2

2
+ ζ y = −M̃, (C.5)
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where we have defined

M̃ = 32πG
M

J
. (C.6)

The two roots of the equation

y2 − 2ζy − 2M̃ = 0, (C.7)

are

y1 = ζ −
√
ζ2 + 2M̃, (C.8)

y2 = ζ +

√
ζ2 + 2M̃, (C.9)

we see that y1 < 0 and y2 > 0. Initially, since we have argued above that h′′ < 0, it follows

from eq. (C.4) that right after the matter stops falling in, at x− = x−f , dy
dτ < 0. Thus the

value y takes at this time which we denote by yf satisfies the condition y1 < yf < y2. It

then follows from eq. (C.5) that subsequently y decreases and ultimately reaches y1 with

the proper time elapsed being proportional to,

∆τ(y) = −
∫ yf

y

2

y2 − 2ζy − 2M̃
dy. (C.10)

From eqs. (C.4) and (C.10), we can obtain h and x− in terms of y as

h = h0 e
U where U =

∫
2y

y2 − 2ηy − 2M̃
dy, (C.11)

x− = xc +

∫
2h0 e

U

y2 − 2ζy − 2M̃
dy, (C.12)

where h0 and xc are integration constants which depend on the values of h, h′ and h′′

at x−f .

In the vicinity of y = y1 we get from eq. (C.11) that

U = β0 + β1 ln(y − y1) + β2(y − y1) + · · · , (C.13)

where β0, β1 and β2 are constants independent of y,

β0 = − 2y2
y1 − y2

ln (y2 − y1), β1 =
2y1

y1 − y2
, β2 = − 2y2

(y1 − y2)2
. (C.14)

Using eq. (C.13) in eq. (C.11), eq. (C.12), we get

(x0 − x−) =
2h0 e

β0

β1(y2 − y1)
(y − y1)β1

(
1 +

β1
β1 + 1

(
β2 −

1

y1 − y2

)
(y − y1)

)
, (C.15)

h =h0 e
β0 (y − y1)β1

(
1 + β2(y − y1) +O((y − y1)2)

)
, (C.16)

where x− → x0 when y → y1. Eq. (C.15) and (C.16) give

h = c̃1(x0 − x−) + c̃2(x0 − x−)2+α, (C.17)
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where

c̃1 = −y1, (C.18)

and

α = − ζ

y1
=

ζ

c̃1
. (C.19)

The form of h in terms of x−,eq. (C.17) and the value of the exponent α in eq. (C.19)

agrees with eq. (3.77) and eq. (3.74) respectively, when c̃1 is identified with c1
J in eq. (3.77).

The value of c̃2 in eq. (C.17) depends on h0 and is unimportant for our discussion.

Let us end this discussion with some comments regarding the case where the system

starts from a black hole configuration which corresponds to taking χ as eq. (3.51) and φ

as in eq. (3.50). The arguments following eq. (C.1) showing the monotonic decrease of h

as matter falls, can be extended to this case in a straightforward manner.

As matter falls in, h satisfies the equation eq. (3.57), with the initial conditions

h(0) =
1

J
, h′(0) = 0, h′′(0) = −2µ

J
. (C.20)

From eq. (3.57) and eq. (C.20) it can be seen that h′′′ < 0 at x− = 0. Therfore h′′ continues

to decrease starting from the initial value in eq. (C.20). It is straightforward to see from

eq. (3.57) that when h′′ = 0, h′′′ < 0 and therefore h′′ would subsequently decrease as in

the case of Poincaré vacuum initial condition. Thus h′ is always negative and therefore h

decreases monotonically.

In the discussion above we have seen that h monotonically decreases. This self con-

sistently justifies neglecting the terms with additional time derivatives in eq. (3.42). Each

term with an extra derivative in eq. (3.42) is also accompanied with an extra power of h

on dimensional grounds. Since h = 1
J at x− = 0, when the matter starts falling in, and de-

creases subsequently, the condition, eq. (3.43) suppresses any term with an extra derivative.

Similarly, we see that given eq. (2.20) the monotonic decrease of h also leads to eq. (3.56)

being valid, and along with eq. (3.43) then leads to eq. (3.55) being well-approximated by

eq. (3.57).

C.1 Late time black hole coordinates

Here, we show that the late time form of h given in eq. (3.66) corresponds to a black hole

with mass M , eq. (3.24) with µ =
c21
4 .

From eq. (3.66) and using eq. (3.36), the dilaton at late times is given by

φ =
1

J

(
c1(x0 − x−)

x+ − x−
− 1

2
c1

)
+
ζ

4
. (C.21)

By taking

c1 → 2
√
µ, x0 →

1
√
µ
, x± → 2x±

√
µx± + 1

, (C.22)

the solution eq. (C.21) can be converted to the standard form for the black hole solution

φ =
1

J

(
1− µx+x−

x+ − x−

)
+
ζ

4
, (C.23)
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which is obtained by taking

h =
1

J
(1− µ(x−)2), (C.24)

in eq. (3.36).

The coordinate transformation relating Schwarzschild coordinates ts, r with x± in

eq. (C.21) is

r =
c1(x0 − x−)

x+ − x−
− 1

2
c1,

ts = − 1

c1
ln
(
(x0 − x−)(x0 − x+)

)
. (C.25)

This gives for the metric,

ds2 = − 4

(x+ − x−)2
dx+dx− = −

(
r2 − c21

4

)
dt2s +

dr2(
r2 − c21

4

) . (C.26)

Comparing with eq. (3.4) we see that this is a black hole of mass M , eq. (3.24) with

the identification eq. (3.67). The temperature of the black hole eq. (C.26) is also easily

seen to be

T =
c1
4π
. (C.27)

D Second law violation for apparent horizon

In this appendix, we consider the χ system and show by taking an explicit example for Tm−−
corresponding to a delta-function pulse that the generalized second law is violated when

the generalized entropy is computed along the classical apparent horizon, eq. (2.45).

We take the matter stress tensor corresponding to infalling matter to be

Tm−− = µ̃δ(x−) for µ̃ > 0. (D.1)

Before the pulse went in, the geometry is pure AdS2, eq. (2.4), and we take the dilaton

to be specified by eq. (3.34), which corresponds to h = 1
J . Although the equation for h,

eq. (3.45), can be solved exactly for the matter stress tensor, eq. (D.1), as we saw above in

appendix C, we resort to a perturbative expansion in ζ for simplicity. The total solution

for h can be written as

h = h(0) + ζh(1) +O(ζ2). (D.2)

The zeroth order solution h(0) is obtained by integrating (3.45) with the stress tensor

eq. (D.1) and setting ζ = 0 which gives

h(0) =
1

J
(1− µ(x−)2), (D.3)

where

µ = 8πGµ̃J . (D.4)
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Expanding eq. (3.45) to O(ζ), we get the equation for h(1) as

h(1)′′′ = −h
(0)′′

h(0)
. (D.5)

Using the solution eq. (D.3), we can solve for h(1) to get

h(1) = − 1

2
√
µ

(
2
√
µx− + (1−√µx−)2 ln (1−√µx−)− (1 +

√
µx−)2 ln (1 +

√
µx−)

)
,

(D.6)

The perturbative solution is a good approximation everywhere except at late times

near x− = 1√
µ where h(0) goes to zero. The trajectory of the apparent horizon gets

corrected due to the correction in h. From the general form of the trajectory of the

apparent horizon,eq. (2.46), and using eq. (D.3), eq. (D.6), we get the apparent horizon

trajectory to O(ζ) to be

x+|ah =
1
√
µ
− J ζ

2µ

(√
µx− − 2 ln

(
1 +
√
µx−

))
. (D.7)

The dilaton, (3.36), and χ, eq. (3.41) at the apparent horizon to O(ζ), using the

solutions eq. (D.3), eq. (D.6), become

φ
∣∣
ah

=

√
µ

J
+
ζ

4

(
1− 2

√
µx−

)
, (D.8)

χ
∣∣
ah

= − ln

(√
µ

J
(1 +

√
µx−)

)
+O(ζ). (D.9)

Using eq. (D.8) and eq. (D.9), the entropy at the apparent horizon is given by

Sχgen =

(
φ

4G
− Nχ

6

)∣∣∣∣
ah

=
1

4G

(√
µ

J
+
ζ

2

(
1

2
−√µx− + ln

(√
µ

J
(1 +

√
µx−)

))
+O(ζ2)

)
. (D.10)

Ignoring the O(ζ2) correction, it is clear from the above expression that entropy is in

fact a monotonically decreasing function of x− and therefore the generalized second law is

violated at the apparent horizon.

The same conclusion can be reached, without taking recourse to perturbation theory

in ζ, by solving eq. (3.45) numerically for the case of a delta function matter pulse with

initial conditions as given in eq. (C.1).
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