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1 Introduction

Recently TOTEM [1–3] data have stimulated [4] a vivid discussion whether, in addition

to the C-even Pomeron, also a C-odd Odderon exchange is needed to describe the data.

After the proposal of Lukaszuk and Nicolescu [5] in 1973, it was the ISR data for dσ
dt which

indicated a difference between pp and pp̄ and hence raised the quest for a C-odd exchange

at high energies. A first connection with QCD was made by Donnachie and Landshoff [6]

who introduced a three-gluon exchange as a model for the Odderon.

In the early 80‘s, soon after the discovery of the perturbative QCD Pomeron

(BFKL) [7–10], which describes the composite state of two reggeized gluons it was realized

that this picture can be generalized to composite states of three (and more) reggeized glu-

ons, the so-called BKP states [11, 12]. A first solution of the three gluon problem was found

by Janik and Wosiek [13] (JW) and its intercept was found to be αO = 1 − 0.24717αsNc
π ,

which for a realistic αs = 0.2 yields αO = 0.96. In 1999 another solution was found by

Bartels, Lipatov, and Vacca [14] (BLV) with intercept exactly at one, αO = 1, independent

of the value of αs. A remarkable feature of this solution of the three gluon composite state

equation is that it coincides with the two gluon BFKL solution with conformal spin n = 1.

A discussion of the relevance of the JW and the BLV solutions in phenomenology prior to

LHC data can be found in [15, 16].

These perturbative results cannot directly be applied to soft hadron-hadron scattering.

However, in recent years some progress has been made in analyzing the transition from the

perturbative BFKL Pomeron to the soft Pomeron. Starting from the perturbative region

and replacing the fixed coupling by the running coupling, first an infrared cutoff has to

be introduced. These steps lead to important changes of the energy spectrum: for fixed

coupling the BFKL Pomeron has a fixed (i.e. t-independent) cut in the ω plane (angular
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momentum j = ω+1), starting at ωcut = Ncαs
π 4 ln 2 and extending to −∞. In the presence

of an infrared cutoff and with running αs the piece of the ω-cut between ωcut and zero is

replaced by an infinite sequence of discrete poles, which accumulate at zero. This picture

has been verified in numerical studies, for several different versions of an infrared cutoff:

in [17] an infrared cutoff has been introduced in such a way that the BFKL bootstrap prop-

erty (related to s-channel unitarity) is preserved; in [18–20] boundary values of the BFKL

amplitude are imposed at a fixed momentum scale k2
0; in [21–23] a Higgs mass is introduced

as an IR regulator, and in [24] a more sophisticated regulator is introduced which allows to

embed the BFKL Pomeron into RG flow equations. Details of this discrete spectrum in the

ω-plane of course depend upon the value of the cutoff scale and vary from one scheme to

another, but the qualitative picture is the same in all schemes. Next, for this discrete part

of the spectrum also the eigenfunctions have been studied [24]: most important, it has been

found that only for the leading eigenvalue the wave function is centered in the ‘soft’ region

of small transverse momenta, whereas for the nonleading eigenvalues the wave functions

become ‘hard’, i.e. these Pomeron states are centered in the UV-region of large transverse

momenta. Consequently, their couplings to hadron states are expected to be small. Finally,

the t-slopes [24] of these discrete poles are largest for the leading eigenvalue, and go to zero

for the nonleading poles. These findings suggest that these two steps — introduction of an

infrared cutoff and of the running coupling — bring us substantially closer to the nonper-

turbative region, in particular the existence of a ‘soft’ Pomeron state with intercept above

one. What remains is the ‘unitarization’ of this set of Pomeron states: this requires, in par-

ticular, the introduction of the triple Pomeron vertex. Work along this line is in progress.

Applying these findings to the three gluon problem of the Odderon, which for the BLV

solution again reduces to a two gluon BFKL Pomeron problem with odd conformal spin

(n = 1), it seems plausible to proceed in the same manner: introduce an infrared cutoff

and the running coupling and then study the energy spectrum. As already stated before,

the leading BLV Odderon solution without IR cutoff and with fixed coupling leads to a

fixed (i.e. t-independent) cut in the ω plane, starting at ω = 0 and extending to −∞. In

this paper we will investigate how this picture changes, once we introduce an IR cutoff

and the running coupling. For simplicity we use the Higgs-mass regulator, and we use the

numerical methods outlined in [24]. As the main result, we find that the spectrum remains

unchanged, i.e. we still have a cut starting at ω = 0. The wave functions are ‘hard’, i.e

they have their main support in the region of large transverse momenta, and the t-slopes

are small. An analysis of what happens to the other family of Odderon solutions (JW)

with lower intercept is unfortunately much more involved, and it is extremely difficult to

carry on employing a similar approach.

The paper will be organized as follows. In section 2 we review the BFKL kernel with

Higgs mass regulator for n = 1 in the forward direction, and after introducing for the fixed

coupling case the lattice approximation we present numerical results for the eigenvalue

spectrum and for the eigenfunctions. This part is mainly meant to verify that our lattice

approximation is consistent with our knowledge of the analytic BLV solution. In section 3

we turn to the running coupling case and compute eigenvalues, eigenfunctions and t-slopes.

In a final section we summarize and discuss our results.
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2 The n = 1 BFKL kernel with a Higgs mass regulator

In this section we present the BFKL kernel with an infrared cutoff and specialize to the

case of spin n = 1 which has been associated to a family of leading Odderon states. This

general problem for the Pomeron channel has been addressed before in previous papers [24]

and [21–23], which we partly follow.

In our previous paper [24] we have performed a numerical study of the BFKL kernel

for the Pomeron case with two infrared regulators. In particular in our analysis we have

considered both the Wilsonian optimized IR regulator in the exact functional renormaliza-

tion group approach (this regulator was constructed in such a way that the BFKL Pomeron

Green’s function can be extracted from the flow induced by the exact renormalization group

equation for the effective average action functional in the Multi Regge Kinematics (MRK))

and we have also carried out a numerical study of the BFKL Pomeron with a “gluon mass”

regulator. In both cases we computed the energy eigenvalues (i.e. poles in the angular

momentum plane), in particular intercepts and q2 slopes of the Regge trajectory functions

and eigenfunctions of the BFKL kernel. In our results for the Wilsonian regulator and the

mass regulator, qualitatively, there are no differences and therefore the general behavior is

apparently independent of the regulator.

In the following subsections we shall set up the spectral problem and perform a nu-

merical analysis of the IR modified BFKL kernel for the fixed QCD coupling, introducing

a simple mass regulator, limiting ourselves to the forward direction in order to study the

Odderon eigenvalues (intercept) and eigenstates. In a second step, in the next section, we

shall consider a running gauge coupling and compute also the q2-slope (known as t-slope)

of the BLV Odderon of the trajectory function, which is defined as the first derivative with

respect to q2. In the Pomeron case, we found a set of discrete spectrum so that one can

make a link at large distances with the local Pomeron fields of a Reggeon Field Theory

(RFT). Therefore we shall look for evidence of such a case for the Odderon. We remind

that the properties of both Pomeron and Odderon as a RFT, including their universal

properties, have been recently investigated using functional renormalization group meth-

ods in [25, 26]. The numerical analysis proceeds in two steps. First we shall study the

eigenvalues and eigenfunctions of the BFKL Odderon equation with the mass regulator,

then what is new in our analysis are the q2 slopes of the Odderon states. In a future paper

we shall turn to the Wilsonian IR regulator and, again, compute those relevant properties.

2.1 The n = 1 BFKL equation

We begin with the Higgs mass regulated BFKL kernel with fixed coupling in the general

non forward direction. Since the four momenta of the Green’s function q1,q2,q
′
1,q
′
2 are

not independent and the total transverse momentum q = q1 + q2 = q′1 + q′2 exchanged in

the t-channel is conserved, it is convenient to first introduce two relative momenta k, k′:

q1 =
q

2
+ k, q2 =

q

2
− k, q′1 =

q

2
+ k,′ q′2 =

q

2
− k′ . (2.1)
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The analytic expression of the symmetrized1 BFKL kernels (the real part associated to

gluon emission) has the form

2π

ᾱs
K(q,k,k′) =

√
q2

1 +m2

q2
2 +m2

1

(k− k′)2 +m2

√
q′2

2 +m2

q′1
2 +m2

+

√
q2

2 +m2

q2
1 +m2

1

(k− k′)2 +m2

√
q′1

2 +m2

q′2
2 +m2

−
q2 + N2

c +1
N2

c
m2√

(q2
1 +m2)(q2

2 +m2)(q′1
2 +m2)(q′2

2 +m2)
(2.2)

where ᾱs = Ncαs
π , and the gluon trajectory function (virtual part of the BFKL kernel) has

the form:

ωg(k
2) = − ᾱs

4π

∫
d2k′

k2 +m2

(k′
2

+m2)((k− k′)2 +m2)

= − ᾱs
2π

∫
d2k′

k2 +m2

(k′
2

+m2)(k′
2

+ (k− k′)2 + 2m2)
. (2.3)

The full BFKL kernel is then given by:

K̃(q,k,k′) = K(q,k,k′) + δ(2)(k− k′)
(
ωg(q

2
1) + ωg(q

2
2)
)
. (2.4)

We consider in this section the forward direction q2 = 0 where the kernel simplifies:

2π

ᾱs
K(0)(k,k′) =

2

(k− k′)2 +m2
−

N2
c +1
N2

c
m2

(k2 +m2)(k′
2

+m2)
(2.5)

and

K̃(0)(k,k′) = K(0)(k,k′) + 2δ(2)(k− k′)ωg(k
2) . (2.6)

The eigenvalue equation takes the form:

ωfω(k) =
ᾱs
2π

∫
d2k′K̃(0)(k,k′)fω(k′) . (2.7)

In this paper we are interested in eigenvalues and eigenfunctions with conformal spin 1:

f(k) = eiϕf̃(|k|), (2.8)

where ϕ is the azimutal angle of the vector k.

In order to study the q2 dependence of the eigenvalues ω(q2), we have to leave the

forward direction. As usual we limit ourselves to the linear approximation:2

ω(q2) = ω(0) + α′q2 + · · · , (2.9)

1Symmetrization refers to the gluon propagator to the right and left of the BFKL kernel. After a

similarity transformation one can have a symmetric operator and therefore a symmetric matrix after dis-

cretization. The scattering amplitudes are invariant under such a transformation if the impact factors are

transformed accordingly.
2In a complete non forward analysis the full momentum q dependence would be a much harder problem

to solve. Also the higher order depedence should be studied to infer the region of validity of the linear

approximation.
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where ω(0) denotes the intercept and α′ the slope (also: q2 slope). For our numerical

analysis of the eigenvalue equation (forward direction) it will be convenient to combine

terms which contain the potentially singular denominator 1/(k − k′)2 and to rewrite the

eigenvalue equation in the following form [24]:

ωf(k) =
ᾱs
2π

∫
d2k′

2f(k′)(k′
2

+m2)− 2f(k)(k2 +m2)

(k′
2

+m2)((k− k′)2 +m2)
−

N2
c +1
N2

c
m2

(k2 +m2)(k′
2

+m2)
f(k′)


+
ᾱs
2π

∫
d2k′

2f(k)(k2 +m2)

(k′
2

+m2)(k′
2

+ (k− k′)2 + 2m2)
. (2.10)

This form has an integrand behaving manifestly better at large momenta |k| ∼ |k′| → ∞.

We are interested in eigenfunctions of the form (2.8) and consider the following form of the

eigenvalue equation:

ωf̃(|k|) =
ᾱs
2π

∫
d2k′

[
2f̃(|k′|)ei(ϕ′−ϕ)(k′

2
+m2)− 2f̃(|k|)|(k2 +m2)

(k′
2

+m2)((k− k′)2 +m2)

]

+
ᾱs
2π

∫
d2k′

2f̃(|k|)(k2 +m2)

(k′
2

+m2)(k′
2

+ (k− k′)2 + 2m2)
. (2.11)

Here ϕ and ϕ′ denote the azimutal angles of the vectors k and k′, respectively. We also

introduce their modulus k = |k| and k′ = |k′|. The angular integrations can be done by

using the formulae
1

2π

∫ 2π

0
dϕ

1

a+ b cosϕ
=

1√
a2 − b2

, (2.12)

and

1

2π

∫ 2π

0
dϕ

eiϕ

a+ b cosϕ
=

1

2π

∫ 2π

0
dϕ

cosϕ

a+ b cosϕ
=

−b
a+
√
a2 − b2

1√
a2 − b2

, (2.13)

where

a = k2 + k′
2

+m2, b = −2kk′. (2.14)

Introducing the shorthand notations

D = k2 +m2, D′ = k′
2

+m2 (2.15)

and

S0 =

√
(k2 − k′2)2 + 2m2(k2 + k′2) +m4,

S1 = k2 + k′
2

+m2 + S0

S2 =

√
(k2 − k′2)2 + 2(k′2 + 2m2)(k2 + k′2) + (k′2 + 2m2)2 (2.16)

the eigenvalue equation in the forward direction can be written as:

ωf(k) = ᾱs

∫ ∞
0

dk′
2
[

2kk′

S1

D′

D′S0
f(k′)− D

D′S0
f(k)

]
+ ᾱs

∫ ∞
0

dk′
2 D

D′S2
. (2.17)

In the following we present our numerical results of the Odderon eigenvalues and the

wave functions. The latter will be written as functions of the dimensionless variable k/m

and will be denoted as fn(k/m) with corresponding eigenvalue ωn.
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n

0.02

0.04

0.06

0.08

eigenvalue

Figure 1. The first 30 eigenvalues of the Odderon with fixed coupling.

2.2 Numerical results for eigenvalues and eigenfunctions for fixed coupling

The numerical analysis of the eigenvalue equation (2.17) is done in the same way as de-

scribed in [24]: for the integration over k′2 we introduce a lattice. First we change to

logarithmic variables t′ = ln k′2

m2 with dk′2 = dt′k′2 and then introduce a lattice in the new

variables t′. For fixed coupling and zero infrared mass regulator we know that solutions

have a scale invariant power-like behavior so that it is natural to expect that the best

sampling is linear in the logarithmic variable. Indeed we find that this is a far more effi-

cient method also when scale invariance is slightly broken, after comparing to alternative

numerical methods employing more sophisticated grids. We use for the momenta the unit

m = 0.54 GeV which corresponds to our IR mass regulator. We shall come back to this

at the beginning of section 3. Introducing the limits k2
min/m

2 = 10−40, tmin = ln
k2min
m2 and

k2
max/m

2 = 1080, tmax = ln k2max
m2 and dividing the interval

[
tmin, tmax

]
into Nstep = 600

equal steps, we define the lattice points

ti = tmin + i
tmax − tmin

Nstep
, k2

i = m2eti , i = 0, . . . , Nstep (2.18)

and arrive at the discrete vector fi = f(ki) and the discrete matrix Kij = K̃(0)(ki, kj),

associated to the forward discretized kernel.

For the eigenvalues it is convenient to introduce

En = −ωn . (2.19)

We find discrete positive “energy” eigenvalues En, the smallest one being very close to zero

(for the energy dependence of the scattering amplitude this smallest value is the leading

one). The first three values are:

E1 = 0.000032, E2 = 0.000289, E3 = 0.000802. (2.20)

In figure 1 we present the first 30 eigenvalues of the Odderon with fixed coupling constant.

We interpret these eigenvalues as being the lattice approximation of a cut in the positive

energy plane, starting at zero. Indeed at fixed coupling this is known to be the case for

– 6 –
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k2

m2

-0.06

-0.04

-0.02

0.02

0.04

0.06

fn

Figure 2. The first three wavefunctions for fixed coupling, as a function of ln k2

m2 . States with

n = 1, 2, 3 correspond to color blue, orange and green, respectively.

the analytical solutions existing in the absence of the IR mass regulator and it has been

observed also in another analysis [31]. As to the eigenfunctions, we find that they oscillate:

the leading one has one maximum, the second one has one zero and has two extrema etc.

The oscillations extend over the full lattice, to be more precise the full region k2 > m2,

and for larger values of k2 the role of the mass IR cutoff is being felt less and less. As a

consequnce the scaling behavior of the wavefunction towards the UV is fulfilled better and

better. In figure 2 we show the first three eigenfunctions.

To make the support of the wavefunctions a bit more quantitative, we define the

logarithmic radius

< ln
k2

m2
>=

∫
dk2|fn( km)|2 ln k2

m2∫
dk2|fn( km)|2

, (2.21)

where momenta are measured in units of m = 0.54 GeV chosen as a representative non

perturbative QCD scale. By exponentiating this logarithmic radius we translate these log-

arithmic radii to the linear scale. For the lowest eigenvalues we find for the logarithmic radii

< ln
k2

m2
>1 = 56.75

< ln
k2

m2
>2 = 90.39

< ln
k2

m2
>3 = 93.04 , (2.22)

and for the linear radii

r1 = 1.14× 1012 GeV

r2 = 2.30× 1019 GeV

r3 = 8.62× 1019 GeV. (2.23)

More general, in figure 3 we show, for the first 20 eigenfunctions, the logarithmic and linear

radii.
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linear radius

Figure 3. Logarithmic (left) and linear (right) radii for the first 20 eigenfunctions.

3 The Odderon solutions for the running coupling constant

3.1 Introducing the running coupling and leaving the forward direction

Let us now turn to the case of the running coupling. We follow the discussion of our

previous paper [24]. As a first step we perform an RG improvement and simply replace

the fixed coupling αs by

αs(q
2) =

3.41

β0 ln
q2+R2

0

Λ2
QCD

(3.1)

and define

ᾱs(q
2) = αs(q

2)
Nc

π
(3.2)

with β0 = (11Nc − 2Nf )/12, Nf = 3. Its normalization is chosen to match the measured

value at the Z mass scale. R0 defines the scale below which the running coupling is ‘frozen’.

Both q2 and R2
0 appear in units of Λ2

QCD, and R2
0 has to be well above Λ2

QCD = 0.152 GeV2.

More accurate models allowing for different number of flavors can be easily considered.

In our numerical computations with our mass regulator we actually find it convenient to

follow the conventions used in [21, 23]: we define momenta and R0 in units of the regulator

mass m = 0.54 GeV. This leads to the modification of (3.1):

αs(q
2) =

3.41

β0

[
ln

q2+R2
0

m2 + ln m2

Λ2
QCD

] (3.3)

with R0 = 1.

The inclusion of the QCD running coupling effects in the Regge limit is a delicate issue

when considering a full resummation. Strictly speaking this effect goes beyond the Leading

Log contribution in the region of multiregge kinematics (MRK), where by definition any

real gluon is emitted far in rapidity from all the others, since one has to take into account

emissions of at least two real gluons close in rapidity, which start from the region called

quasi MRK and are suppressed by a log s with respect to the leading ones. It is also well

known that the BFKL Pomeron in NLL accuracy has a spectrum which must be cured in

the collinear region with subleading terms (which do not alter the NLL accuracy in the

Regge limit), and several approaches have been proposed [27, 28]. The same situation can

be observed for the QCD perturbative Odderon, for which the kernel is also known to the

– 8 –
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NLL accuracy [29] and a solution with intercept at one is also expected [30], at least in the

large Nc limit.

There is, however, a consensus that a good understanding of the pure running coupling

effects can be nevertheless obtained by directly improving the picture obtained from the

leading logarithmic approximation, that is by simply replacing the fixed coupling by a

running coupling, even if this approach is not unique.3 We shall take this attitude and

consider in our calculationthe following prescription [24]:

(i) in the trajectory function ωg(q
2
i ) we simply make the replacement

αs → αs(q
2
i ) . (3.4)

(ii) in the real kernel KBFKL(q,q′) in the forward direction one makes the following

substitution

αs →
√
αs(q2)αs(q′

2). (3.5)

(iii) In the non-forward direction the kernel KBFKL(q1,q2; q′1,q
′
2)=K̃(q,k,k′) is modified

according to

αs →
(
αs(q

2
1)αs(q

2
2)αs(q

′
1

2)αs(q
′
2

2)
)1/4

. (3.6)

As discussed before, we will consider this prescription as a first approximate attempt

to include the running coupling and for the forward direction the eigenvalue equations will

be modified in the following way:

αs(k
2)K(0)(k,k′)→

√
αs(k

2)K(0)(k,k′)

√
αs(k

′2), (3.7)

and the trajectory functions will be simply multiplied by αs(k
2).

Finally, for the t-slopes we have to leave the forward direction. In addition to the q2

expansions of the kernel and of the trajectory function described in section 7.2 of [24], we

also need the expansion of the running couplings in (3.4) and (3.6). As we will see, in the

computation of several expressions one has to plug in expansions where also terms linear

in q are kept (see (3.15) and (3.16) below).

Next let us take a closer look at the dependence of the kernel on the momentum

transfer q2. Again we start from [24], section 7.2. The q2 slopes of the eigenvalues are

obtained from

ωn(q2) = ω(0)
n + q2

∫
d2k

∫
d2k′fn(k

′

m)
[
K(1)(k,k′) + 2δ(2)(k− k′)ω

(1)
g (k2)

]
fn( km)∫

d2k|fn( km)|2
, (3.8)

where ω
(0)
n are the eigenvalues of the forward kernel K(0), fn(k/m) the corresponding

Odderon eigenfunctions, and K(1), ω(1) the corrections of the order q2 to the forward

BFKL kernel and the gluon trajectory, resp.

3Another possible approach preserving the bootstrap property as in [17] is considered in another analysis

elsewhere [31].
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In order to find K(1)(k,k′) we expand the kernel in the small q2 region to first order

in q2:

K(q,k,k′) = K(0)(k,k′) + q2K(1)(k,k′). (3.9)

With the shorthand notations

D = k2 +m2, D′ = k′
2

+m2, D0 = (k− k′)2 +m2 (3.10)

we find:

K(q,k,k′) =
ᾱs
2π

[
2

D0

(
1− (2qk)(2qk′)

4DD′
+

(2qk)2

8D2
+

(2qk′)2

8D′2

)

−
m2N

2
c +1
N2

c

DD′

(
1+

1

2

(
qk

D

)2

+
1

2

(
qk′

D′

)2

−q2

4

(
1

D
+

1

D′

))
−q2 1

DD′

]
. (3.11)

Note that there are no terms of the order q.

For the integration over the azimuthal angles in (3.8) we have to observe the angular

dependence of the wave functions which leads to the additional factor

ei(ϕ−ϕ
′), (3.12)

where ϕ and ϕ′ denote the angle of the vectors k and k′, resp. We immediately see that

for the terms in the second line of (3.11) the angular integrations give zero. In the first

line we use

1

(2π)2

∫ 2π

0
dϕ

∫ 2π

0
dϕ′ei(ϕ−ϕ

′) (2qk)(2qk′)

(k− k′)2 +m2
= 2q2kk′

k2 + k′2 +m2

S0S1
(3.13)

and
1

(2π)2

∫ 2π

0
dϕ

∫ 2π

0
dϕ′ei(ϕ−ϕ

′) (2qk)2

(k− k′)2 +m2
= 2q2k2 2kk′

S0S1
.

With these expressions we find:

1

2π

∫ 2π

0
dϕ

∫ 2π

0
dϕ′ei(ϕ−ϕ

′)K(1)(k,k′) = ᾱs
2kk′

S1

1

S0DD′

(
−m

2

2

)[
1 +

(k2 − k′2)2

DD′

]
.

(3.14)

For the q2-expansion of the trajectory function we have the same expressions as for

the Pomeron case, since the delta functions δ(2)(k−k′) lead to ei(ϕ−ϕ
′) → 1. Following [24]

we define

ωg

((q

2
+ k

)2
)

= ωg(k
2) + ω(1/2) + q2ω(1)(k2) (3.15)

and

αs

((q

2
+ k

)2
)

= αs(k
2)
[
1 + α(1/2) + q2α(1)(k2)

]
, (3.16)

where ω(1/2) and α(1/2) are of the order O(q). The RG improvement of the trajectory

therefore leads the product of such expressions which should be azimutally averaged

〈
[
1 + α(1/2) + q2α(1)(k2)

][
ωg(k

2) + ω(1/2) + q2ω(1)(k2)
]
〉

= ωg(k
2) + 〈α(1/2)ω(1/2)〉+ q2α(1)(k2)ωg(k

2) + q2ω(1)(k2) . (3.17)
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Figure 4. The first 30 eigenvalues.

The expressions for 〈α(1/2)ω(1/2)〉 and α(1)(k2) can be found in eqs. (7.44) and (7.39)

of [24] respectively. Moreover using also the expansion

(
αs(q

2
1)αs(q

2
2)αs(q

′
1

2
)αs(q

′
2

2
)
) 1

4
=

√
α(k2)α(k′

2
)

[
1 + q2 α̃(k2) + α̃(k′

2
)

2

]
, (3.18)

where α̃(q2) can be found in eq. (7.41) of ref. [24] one has all the ingredients to compute

the final result for the q2 part of eq. (3.11):√
α(k2)α(k′

2
)K(1)(k,k′) + 2δ(2)(k− k′)ω(1)(k2) + 2δ(2)(k− k′) < α(1/2)ω(1/2) >

+

[√
α(k2)α(k′

2
)K(0)(k,k′) + 2δ(2)(k− k′)ωg(k

2)

]
α̃(k2) + α̃(k′

2
)

2
, (3.19)

from which we can obtain, for each eigenstate, the q2-slope. With these approximation we

are now ready to present numerical results for the eigenvalues and for the slopes.

3.2 Numerical results

We begin with the eigenvalues. Again we introduce the energies En = −ωn and find a

sequence of positive eigenvalues starting at

E1 = 4× 10−6, E2 = 28× 10−6, E3 = 74× 10−6, (3.20)

which we interpret as approximating a cut in the positive energy plane starting at zero.

The first eigenvalues are shown in figure 4. The curve in figure 4 keeps the shape of figure 1

and is only shifted a little bit.

For the eigenfunctions we find that they again oscillate with same behaviour, extending

over the full lattice region k2 > m2.

The effect of the running coupling constant is mainly to smoothen the behaviour of the

wave function, as one can see from the figure 2 and figure 5 and to shift the center of them
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Figure 5. The first three wavefunctions as a function of ln k2

m2 for the running coupling constant.

States with n = 1, 2, 3 correspond to color blue, orange and green, respectively.
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Figure 6. logarithmic (left) and linear (right) radii for the first 20 eigenfunctions for the running

coupling.

to the right. For example, for the leading eigenvalue, the single node has its center (in the

logarithmic scale) at approximately 88, compared with 57 for the fixed coupling case:

< ln
k2

m2
>1 = 87.97

< ln
k2

m2
>2 = 107.26

< ln
k2

m2
>3 = 109.86 , (3.21)

which translates into the linear radii

r1 = 6.83× 1018 GeV

r2 = 1.06× 1023 GeV

r3 = 3.89× 1023 GeV. (3.22)

More in general this is illustrated in figure 6.
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Figure 7. Comparison of the wave functions f1, f2 and f3 (with the mass regulator) and running

coupling constant (blue curve) versus pure oscillatory functions (orange curve) of eq. (3.25).

It may be useful to remember that for the massless case the BFKL eigenfunctions in

the forward direction (for the symmetrized BFKL kernel) are given by

f(k) ∼ (k2)−1/2−iνeinϕ. (3.23)

Near the beginning of the cut at ω = 0 we have ν = 0. Our lattice eigenfunctions have to

be compared with kf(k): our leading eigenfunctions should therefore be seen as the lattice

approximation of

kf(k) ∼ (k2)−iν eiϕ. (3.24)

Since we are introducing a mass as regulator of the infrared region, we expect that the

wave function is suppressed in the region k2 < m2, and the form (k2)−iν is valid only for

larger values of k2. Putting t = ln k2

m2 , we find that the wave function can be described

approximately by

fn(
k

m
) ∼ sin νn(t− t∗) , for t > t∗(m) , (3.25)

where t∗ is a suitable parameter. For the first and second eigenfunctions we find that

the behaviour is well described by 0.065 sin ν1(t − t∗) with ν1 = π
(tmax−t∗) = 0.016, and

by 0.055 sin ν2(t − t∗) with ν2 = 2ν1, respectively. In figure 7 one can see the behavior

for leading wavefunction obtained with our mass regulator compared with the oscillatory

behaviour of the massless case of the BFKL functions.

Finally, in figure 8 we show the behavior of the slopes from our numerical calcula-

tion. One can observe that the slope increases with n but still remain smaller than a few
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Figure 8. q2-slopes of the trajectory functions of the first 20 Odderon eigenstates.

times 10−5. For the leading eigenvalues we find

E1 = 3.9× 10−6, α′1 = 1.26× 10−5

E2 = 2.8× 10−5, α′2 = 1.77× 10−5

E3 = 7.4× 10−5, α′3 = 2.08× 10−5. (3.26)

3.3 Dependence on the lattice size

To further support our interpretation as a (fixed) cut in the energy plane, we note the

following. In a continuum formulation of the BFKL eigenvalue equation, we expect the

leading eigenvalue at exactly zero. For our finite lattice the leading eigenvalue turns out to

be small and positive but nonzero, and for increasing lattice it should go to zero. Indeed,

for the much larger lattices with (etmin , etmax) = (10−40, 1080), (10−40, 10100), (10−40, 10160)

(keeping Nstep = 600 fixed), one can see the decrease with increasing lattice size:

E1 = 3.9× 10−6, E1 = 2.0× 10−6, E1 = 4.7× 10−7,

E2 = 2.8× 10−5, E2 = 1.5× 10−5, E2 = 3.6× 10−6. (3.27)

More general, in figure 9 we show how all the eigenvalues decrease as we increase the upper

limit tmax.

Simultaneous variation of the upper and lower limit lead to a further decrease of the

eigenvalues, e.g. for Nstep = 600 and (etmin , etmax) = (10−100, 10160)

E1 = −3.38× 10−9, E2 = 3.11× 10−6. (3.28)

Finally, for comparison we also vary Nstep = 600, 1000 and 1400, keeping the lattice

size constant (etmin , etmax) = (10−40, 1080):

E1 = 3.909× 10−6, E1 = 3.921× 10−6, E1 = 3.926× 10−6 . (3.29)

This indicates that the numerical results are much less sensitive to Nstep.
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Figure 10. Behavior of the wave functions for a larger lattice limit etmax = e160.

For the slope, we extend our numerical analysis, keeping Nstep = 600 fixed. Comparing

(etmin , etmax) = (10−40, 1080) and (etmin , etmax) = (10−40, 10160)

α′1 = 1.26× 10−5 , α′1 = 3.17× 10−6

α′2 = 1.77× 10−5 , α′2 = 4.41× 10−6 (3.30)

we find analogous results also for the slope: they decrease with increasing lattice size.

Similarly, for the wave functions (see figure 10) with n-nodes we find that with increas-

ing lattice size the nodes move into the UV region. i.e. the location of the extrema become

larger with increasing lattice extension.
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As to numerical values of the radii of the leading state, we again compare (etmin , etmax) =

(10−40, 1080) and (etmin , etmax) = (10−40, 10160):

< ln
k2

m2
> = 88, < ln

k2

m2
> = 174.83

r1 = 6.8× 1018 GeV, r1 = 4.98× 1037GeV. (3.31)

All these results further support our conclusion that, at q2 = 0, our lattice formulation

approximates the cut structure beginning at E = 0 with wave functions extending to very

large momenta or even to infinity. We see that lattice artifacts are under control.

4 Summary and outlook

In this paper we have extended our previous analysis of the BFKL Pomeron to the Odderon

case. We have performed a numerical analysis of the BFKL equation for conformal spin=1,

using a massive infrared regulator and the running coupling constant, introduced with a

specific prescription. The main result of our work is that the spectrum remains essentially

the same as it was without cutoff and with fixed coupling. Let us note that in a forthcoming

publication [31], M. Braun and G.P. Vacca have obtained very similar results: in that

analysis a different infrared regulator is used which preserves the bootstrap condition of

the BFKL equation. This supports the expectation that, in fact, the energy spectrum is

fairly independent of the detailed form of the infrared regulator.

It is important to stress the differences between the QCD Odderon and the Pomeron.

As already stated in the introduction, the same procedure applied to the BFKL Pomeron

equation leads to a discrete set of Pomeron states with intercepts above one and nonva-

nishing t-slopes. Moreover, the leading state is soft and its wavefunction has its support

in the region of small transverse momenta. In contrast, the Odderon has no such discrete

states for the leading (BLV) family of solutions: the fixed cut starts at ω = 0, the wave

functions have very small slopes, and their main support lies in the UV region. To study

the implications of this UV dominance one has to couple the rapidity dependent Odderon

Green’s function to specific external particle impact factors which have their characteristic

hadronic scale. Because of the difference of the momentum scales one would expect that

this coupling is small, at least much smaller than that of the leading Pomeron state.

It may be interesting to say a few words about the connection between the results of

the present paper with the fixed point analysis performed in [26] in the soft region. In that

paper we have investigated the interaction of Pomeron and Odderon fields, assuming that,

away from the infrared region, we have non-vanishing self-interactions of the Pomeron and

interactions of Pomeron and Odderon, in particular a (real valued) Pomeron → 2 Odderon

vertex and an (imaginary) Odderon → Odderon+Pomeron vertex. We have found an

infrared fixed point with two relevant (i.e. UV stable) directions. At this fixed point, both

the Pomeron and the Odderon have intercept one and non vanishing slopes; the Odderon

slope is slightly smaller than the Pomeron slope. When approaching this fixed point, in the

parameter space of masses and interactions, from the IR stable directions both intercepts

initially are above one, and in the IR limit they then approach unity, the Odderon slightly
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faster than the Pomeron. If we associate the IR momentum cutoff k with the radius R of

the scattering system k2 ∼ 1/R2, and assume R2 = R2
0 + 2α′ ln s, we would expect that at

large but finite energies the Odderon intercept would be slightly above unity, but smaller

than the Pomeron intercept.

When trying to connect these results with the findings of the present paper, one would

be tempted to draw the following picture. Starting in the UV region with the perturbative

results for the Pomeron obtained in [24] and for the Odderon described in the present

paper, one introduces interactions between Pomeron and Odderon fields and studies the

RG flow as a function of the IR cutoff parameter k. In order to arrive at the IR fixed

point described before, these interactions have to lower the initial intercept above one of

the BFKL Pomeron field, but also to modify the fixed-cut structure of the Odderon state.

A study of this transition is in progress.
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