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1 Introduction

In recent years, various dualities between string/gravity theories and gauge theories have

been proposed, in which the spacetime in the gravity side emerges from the strong coupling

dynamics of the quantum gauge theory. In these dualities, a precise dictionary relates the

geometric moduli of the spacetime to global parameters of the quantum theory. One inter-

esting and somewhat puzzling aspect of this dictionary is that their entries have sometimes

a very different nature. For example, the gauge theory side involves global parameters

which are discrete and real (like for example the rank of the gauge group). These pa-

rameters correspond, in the string theory side, to continuous moduli which often can take

complex values. In order to better understand these dualities, it is important to address

these hidden tensions in the dictionary.

Dualities involving topological strings have provided simplified models in which many

of these questions can be addressed in great detail. In [1, 2], a precise correspondence

was postulated between topological string theory on toric Calabi-Yau (CY) manifolds, and

quantum-mechanical systems on the real line. This correspondence, sometimes referred to

as TS/ST correspondence, leads to highly non-trivial mathematical predictions, and can

be used as an excellent testing ground to examine the subtleties involved in the dictionary

relating string theory to quantum systems.

In this paper, we will address the tension between real variables in the quantum theory

side, and complex variables in the geometry side.1 In the TS/ST correspondence, some

1Some aspects of the tension between discrete and continuous variables were addressed in [3].
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of the Kähler moduli of the CY correspond to parameters in the Hamiltonian. On the

topological string side, Kähler moduli are naturally complex (in fact, they are mapped

to complex structure moduli through mirror symmetry). However, on the spectral theory

side, complex parameters lead to non-Hermitian operators. In general, the spectral theory

of non-Hermitian operators is much more subtle than the one of Hermitian operators,

and a precise definition of the spectral problem is needed. Usually, one has to perform

an analytic continuation of the eigenvalue problem as the parameter under consideration

rotates into the complex plane. This often uncovers a rich structure, as was demonstrated

in the pioneering work of Bender and Wu on the quartic oscillator [4]. An important

example of such a situation occurs when there are resonances : in this case, the operator

is symmetric but it does not have conventional bound states, nor a real spectrum. For

example, in non-relativistic quantum mechanics, real potentials which are not bounded

from below, like the cubic oscillator or the inverted quartic oscillator, lead to a resonant

spectrum of complex eigenvalues.

For the operators appearing in the TS/ST correspondence, the non-Hermitian case

is largely unexplored, since one has to deal with difference operators. We are then in a

situation in which one aspect of the theory -its behavior when the parameters become

complex- is easy to understand on one side of the duality (in this case, on the topological

string theory side), but is more difficult on the other side (in this case, in the spectral theory

side). One can then use the topological string to obtain predictions for the spectral theory

problem in the non-Hermitian case. One such prediction, already noted in [5], is that we

will have generically an infinite discrete spectrum of complex eigenvalues, which can be

easily computed on the string theory side by analytic continuation. The analysis of [5]

focused on real values of the parameters leading to resonances. However, the predictions

from topological string theory were not verified on the spectral theory side.2

The first goal of this paper is to develop methods to compute this spectrum of complex

eigenvalues, directly in spectral theory. In conventional quantum mechanics there are two

different methods to compute such a spectrum. The first method is based on complex di-

latation techniques (see [8] for an introductory textbook presentation). The second method

is based on the Borel resummation of perturbative series, and it has been used mostly to

compute resonances of anharmonic oscillators. This second method is not always guar-

anteed to work, since there might be additional contributions to the resonant eigenvalues

from non-perturbative sectors [9]. However, it leads to correct results in many cases (like

for example for the resonances of the cubic oscillator, as proved in [10]). The results of [11]

suggest that, in the case of quantum curves, the Borel resummation of the perturbative

series leads to the correct spectrum without further ado. We will consider both methods

in some detail and, as we will see, we will obtain results in perfect agreement with the

predictions of topological string theory. One unconventional aspect of our analysis is that

we consider perturbative expansions around complex points in moduli space, leading to

perturbative series with complex coefficients. Many of the complex resonances that we cal-

2In this paper we consider the case in which the mass parameters become complex, while ~ remains real.

The case in which ~ is complex was studied in [6, 7].

– 2 –



J
H
E
P
0
4
(
2
0
2
0
)
1
5
0

culate are not obtained by lateral Borel resummation of a non Borel-summable real series,

as it happens in the conventional cubic and quartic oscillators, but by the conventional

Borel resummation of a complex Borel-summable series.

In general, Hamiltonians with complex parameters lead to complex spectra, but this

is not always the case. A famous example is the pure cubic oscillator with Hamiltonian

H =
p2

2
+ ix3. (1.1)

Due to PT-symmetry (see e.g. [12]), the spectrum of this Hamiltonian is purely real, as orig-

inally conjectured by Bessis and Zinn-Justin. In many examples, the reality of the spectrum

can be already seen in perturbation theory. What is in fact intriguing is the reappearance of

complex eigenvalues in some PT-symmetric Hamiltonians, due to the spontaneous breaking

of PT symmetry. For example, the Hamiltonian

H =
p2

2
+ ix3 + iαx (1.2)

has a complex spectrum when α is sufficiently negative. This turns out to be a genuinely

non-perturbative effect in which small exponential terms become dominant for a certain

range of parameters [13, 14]. The theory of quantum curves leads to Hamiltonians with

similar properties (see e.g. [15]). In this paper we focus on a particular limit of the theory

of [1, 2] which was studied in detail in [16]. The resulting Hamiltonians have the form

H = cosh(p) + VN (x), (1.3)

where VN (x) is a polynomial of degree N . Appropriate choices of VN (x) lead to PT-

symmetric Hamiltonians which display similar physical phenomena. One can use the con-

jectural exact quantization conditions (EQCs) predicted in [16] to study PT symmetry

and its spontaneous breaking in great detail. This study can be regarded as a preci-

sion test of the predictions of [16], and as a new family of examples in the world of PT-

symmetric models.

This paper is organized as follows. In section 2 we study non-Hermitian operators in

the theory of quantum mirror curves. We present two basic methods to compute complex

spectra in quantum mechanics, we apply them to the operators obtained in the theory

of quantum curves, and we compare the results to the predictions of the TS/ST corre-

spondence. In section 3 we consider PT-symmetric operators appearing in the theory of

quantized SW curves. In particular, we consider a deformed version of the cubic oscillator

studied by Delabaere and Trinh [13]. We show that this oscillator displays the same pat-

tern of PT symmetry breaking, and we show that this is in complete agreement with the

exact quantization conditions obtained in [16] for this system. In section 4 we conclude

with some open problems for the future. Appendix A contains some technical details on

the WKB analysis of the PT symmetric, deformed cubic oscillator.

2 Resonances and quantum curves

2.1 Resonances and non-Hermitian quantum mechanics

In conventional quantum mechanics, we typically require that operators describing observ-

ables are symmetric and self-adjoint. There are however important situations in which
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this is not the case. We might have for example potentials which do not support bound

states, but lead to resonant states (also called Gamow vectors) and to a complex spectrum

of resonances (see e.g. [17] for a pedagogical overview, and [18] for physical applications).

More generally, one can consider operators which are not even symmetric (involving for

example complex parameters) and define in an appropriate way a spectral problem leading

to complex eigenvalues. In many interesting examples, resonances are particular cases of

this more general spectral problems. In this paper, we will refer to the complex eigenvalues

of a spectral problem as resonances, whether they come from the resonant spectrum of a

symmetric Hamiltonian, or from the complex spectrum of a non-symmetric Hamiltonian.

The most canonical example of non-Hermitian quantum mechanics is perhaps the

quartic anharmonic oscillator, with Hamiltonian

H =
p2

2
+

x2

2
+ gx4. (2.1)

If g > 0, this is an essentially self-adjoint operator on L2(R) with a trace-class inverse,

therefore H has a real, discrete spectrum. The behavior at infinity of the eigenfunctions

can be obtained with WKB estimates, and one finds

ψ(x) ≈ exp

[
∓1

3

√
g

2
x3

]
, x→ ±∞. (2.2)

In fact, the eigenfunctions exponentially decrease in a wedge around the real axis defined by

|arg(±x)| < π

6
, (2.3)

and shown in Fig. 1. Now suppose that we start rotating g counterclockwise into the

complex plane, with an angle ϕg:

g = |g|eiϕg . (2.4)

Then, the wedges where the WKB wavefunction decreases at infinity rotate clockwise, and

are now defined by ∣∣∣∣arg(±x) +
1

6
ϕg

∣∣∣∣ < π

6
. (2.5)

The center of these rotated regions is at an angle

ϕx = −ϕg
6
. (2.6)

For example, if ϕg = π, we have to rotate the wedge region an angle −π/6, as shown

in Fig. 1. We can now consider the following spectral problem, for arbitrary complex g:

the eigenfunctions ψ(x) should be solutions of the Schrödinger equation for the quartic

potential, and satisfy

lim
|x|→∞

ψ(x) = 0 (2.7)

inside the wedge (2.5). This defines a discrete spectrum of eigenvalues En(g), n =

0, 1, 2, · · · , for any complex g [4, 19, 20]. Note that, when g is complex, the Hamilto-

nian (2.1) is not even symmetric. When g is real but negative, the Hamiltonian (2.1) is
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Figure 1. On the left, we depict the regions in the complex x plane where the eigenfunctions of

the quartic oscillator with g > 0 decay at infinity. As g becomes complex, we can define a spectral

problem by requiring that the eigenfunctions decay at infinity in the rotated wedges (2.5) of the

complex plane. The figure on the right shows the relevant wedges for g < 0.

symmetric but it is not essentially self-adjoint (see e.g. [21]). One can however define res-

onant states or Gamow vectors by imposing so-called Gamow-Siegert boundary conditions

(see [17] for a pedagogical review). The spectrum of resonances obtained in this way agrees

with the spectrum defined above for general complex g, when we specialize it to ϕg = π.

Bender and Wu [4] discovered that the functions En(g) obtained in this way display

a rich analytic structure: when |g| is large enough, they define multivalued functions of

the coupling with three sheets (in particular, En(g) has 6π periodicity as a function of the

argument of g). As |g| decreases, one finds an infinite set of branch points, called Bender-

Wu branch points. Asymptotically, the branch points form a two-dimensional quasi-lattice

in the complex plane. At each of these branch points, two energy levels coalesce. This

implies in particular that one can go from one energy level to another by a change of sheet

in a single multivalued function.

A similar structure is found in the cubic oscillator with Hamiltonian

H =
p2

2
+

x2

2
− gx3. (2.8)

When g is real, the operator is symmetric but it is not essentially self-adjoint [10]. An

appropriate definition of the spectral problem for arbitrary complex g leads again to a

multivalued structure in the energy levels, and to Bender-Wu branch points [22] similar to

those obtained in [4]. When g is real, the complex eigenvalues obtained in this way agree

with the resonances defined by Gamow-Siegert boundary conditions.

In order to unveil these beautiful structures, it is important to be able to compute the

complex eigenvalues En(g) from first principles in quantum mechanics. We will consider two

different computational methods. The first one is the complex dilatation method, which is

non-perturbative and is implemented numerically by combining it with the Rayleigh-Ritz

variational method. The second one is perturbative and is based on the resummation of

asymptotic series.

Let us first describe the complex dilatation method (see e.g. [8] for a general introduc-

tion and [23] for the original application to the cubic oscillator). Let O(x, p) be an operator
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in one-dimensional quantum mechanics, which is a function of the Heisenberg operators x,

p. One considers the group of complex dilatations

UiθxU
−1
iθ = eiθx, UiθpU

−1
iθ = e−iθp. (2.9)

In principle θ ∈ C. Let us now consider the “rotated” operator,

Oθ = UiθOU
−1
iθ = O

(
eiθx, e−iθp

)
. (2.10)

In appropriate circumstances, this operator will have square-integrable eigenfunctions with

complex eigenvalues, which are independent of the precise value of θ beyond a given thresh-

old. A numerical approximation to the resulting eigenvalues can be obtained by using the

standard Rayleigh-Ritz method. To do this, one chooses a basis of L2(R) depending on

a given parameter ω, which we will denote as {|ϕn(ω)〉}n=0,1,···. A convenient choice is

the basis of eigenfunctions of the harmonic oscillator with normalized mass m = 1 but

depending on the frequency ω. Then, one considers the matrix

〈ϕn(ω)|Oθ|ϕm(ω)〉, n,m = 0, 1, 2, · · · (2.11)

One can truncate this matrix at a given level N , and calculate its eigenvalues λn(N, θ, ω),

n = 0, · · · , N . For θ beyond the threshold, one has

lim
N→∞

λn(N, θ, ω) = λn, (2.12)

which are the complex eigenvalues one is looking for. In addition, by changing the value of

the angle θ one can explore the multivalued structure of the energy levels. In practice, one

calculates the truncated versions λn(N, θ, ω), which depend on the size of the matrix, the

threshold angle, and the variational parameter ω. In many cases precision is dramatically

improved, for a given truncation level N , by a judicious choice of ω. Different criteria

have been proposed in the literature to determine the optimal value of ω. For example,

one criterion is to extremize the trace of the truncated matrix, i.e. to choose an ωopt such

that [24, 25]

∂

∂ω

N∑
n=0

〈ϕn(ω)|Oθ|ϕn(ω)〉
∣∣∣∣
ω=ωopt

= 0. (2.13)

This criterion turns out to be very efficient in conventional quantum mechanics. In the

study of resonances for quantum mirror curves, the stationarity condition is more difficult

to implement, since there are typically many values of ω satisfying (2.13) and one has to

do a careful study to determine the best choice of variational parameter.

Another method to compute resonances in quantum mechanics is to perform Borel

resummations of perturbative series for energy levels. In many cases, the energy of the

n-th level of a quantum-mechanical system has an asymptotic expansion of the form,

En(λ) ∼ b(λ) + ϕ(λ), ϕ(λ) =
∑
k≥0

ak(n)λk. (2.14)

– 6 –



J
H
E
P
0
4
(
2
0
2
0
)
1
5
0

Here, λ is a small control parameter (it could be a coupling constant or the Planck constant

~) and the coefficients ak(n) diverge factorially, for large k and fixed n,

|ak(n)| ∼ k!, k � 1. (2.15)

In (2.14), b(λ) is a λ-dependent constant which might arise when writing the Hamiltonian

as a perturbed harmonic oscillator (see the first term in (2.25) for an example). One can

then define the Borel transform of the formal power series above as

ϕ̂(ζ) =
∑
k≥0

ak(n)

k!
ζk. (2.16)

The Borel resummation of the original power series is then given by

s(ϕ)(λ) =

∫ ∞
0

e−ζϕ̂(λζ) dζ = λ−1

∫ ∞
0

e−ζ/λϕ̂(ζ) dζ, (2.17)

where we have assumed that λ > 0 (more general values of λ can be addressed by rotating

the integration contour appropriately). If this integral is well-defined, we say that the

original series is Borel summable. A typical obstruction to the existence of this integral

is the presence of singularities of the Borel transform along the positive real axis. When

this is the case, one can still define a generalized Borel resummation along the direction θ,

as follows

sθ(ϕ)(λ) =

∫ eiθ∞

0
e−ζϕ̂(λζ) dζ. (2.18)

In particular, if θ = ±δ, with 0 < δ � 1, the integration contour in (2.18) can be deformed

to a contour C± just above or below the positive real axis, respectively. The resulting

generalized Borel resummations are called lateral Borel resummations and denoted by

s±(ϕ)(λ) = λ−1

∫
C±

dζ e−ζ/λϕ̂(ζ). (2.19)

In favorable cases, (lateral) Borel resummations of the perturbative series make it possible

to recover the exact eigenvalue or resonance En(λ). A well-known example is the cubic

oscillator with Hamiltonian (2.8). The energy levels have an asymptotic expansion of the

form (2.14), where the control parameter is λ = g2. When g is real, the resulting series

is not Borel summable, but the lateral Borel resummations are well-defined and they give

precisely the resonances of the cubic oscillator (see e.g. [10, 26]). In some cases, however,

one has to supplement the perturbative series with a full trans-series including exponentially

small corrections. This happens for example in the resonances of the cubic oscillator when

Im(g) < 0 [9].

In order to build up the perturbative series (2.14), one typically has to write the Hamil-

tonian as a perturbation of a harmonic oscillator. In the case of resonances, this oscillator

might have a complex frequency, and even if the original Hamiltonian has real coefficients,

one obtains in this way a perturbative series with complex coefficients. When this series

– 7 –
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is Borel resummable, one can use conventional Borel resummation to obtain a complex,

resonant eigenvalue. An elementary example of such a situation is the Hamiltonian

H =
p2

2
− x− g2 x

3

3
, [x, p] = i~. (2.20)

We can write it as a perturbed harmonic oscillator by introducing the operator

z = g1/2

(
x− i

g

)
, (2.21)

so that

H = − 2i

3g
+ H2 −

g1/2

3
z3, [z, p] = ig1/2~. (2.22)

Here,

H2 =
p2

2
− iz2 (2.23)

is the Hamiltonian of a harmonic oscillator with frequency

ω2
c = −2i. (2.24)

We can now use standard perturbation theory to write down an asymptotic expansion for

the energy levels of this Hamiltonian. For the ground state energy we find, by using the

BenderWu package [27],

E0(g) ∼ − 2i

3g
+

1− i

2
+

11g

288
− 155

27648
(1− i)g2 + · · · , (2.25)

where we set for simplicity ~ = g−1/2. This series is Borel summable along the real axis

and it can be easily resummed by using Borel-Padé techniques. One finds for example,

with high precision,

E0(1) = 0.533167708417867457252 . . .− 1.170055989168924629250 . . . i, (2.26)

in agreement with a calculation using complex dilatation techniques. Let us note that, when

we have a resonance, the sign of the imaginary part of the eigenvalue is not uniquely defined,

since it depends on an underlying choice of branch cut. In the case of the resonances of the

cubic oscillator (2.8), this choice corresponds to the different lateral Borel resummations

of a non-Borel resummable series. In the example above, what determines the sign is the

choice of square root in the frequency of the oscillator (2.24).

As emphasized in [28], there is no guarantee that the resummation of a Borel-

resummable series reproduces the exact value that one is after. For example, the per-

turbative WKB series of the PT-symmetric cubic oscillator (1.2) is Borel resummable, but

its resummation misses important non-perturbative effects [13] (see [29] for a detailed il-

lustration). However, the perturbative series for the energy levels obtained in stationary

perturbation theory are often Borel summable to the right eigenvalues. The same phe-

nomenon has been observed for quantum mirror curves in the case of conventional bound

states with real energies [11].3

3As shown in [30], even when the perturbative series is not Borel summable, one can often deform the

Hamiltonian so as to obtain a Borel summable series which leads to the correct spectrum.
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2.2 Quantum mirror curves

In this section we will focus on the spectral theory of the operators obtained by quantization

of mirror curves. This theory was first considered in [31, 32], and a complete conjectural

description of the exact spectrum of these operators was put forward in [1, 2]. The starting

point is the mirror curve Σ of a toric CY manifold X, which can be written as a polynomial

in exponentiated variables:

WX(ex, ey) = 0. (2.27)

This equation can be written in many ways, but in order to extract the relevant operator

one should use an appropriate canonical form, as described in [1, 2]. The mirror curve

depends on the complex structure moduli of the mirror CY. It turns out that these moduli

are of two types [33, 34]: gΣ “true” moduli, where gΣ is the genus of the curve, and a certain

number of mass parameters ξk, k = 1, · · · , rΣ. The quantization of the curve (2.27) involves

promoting x, p to Heisenberg operators x, p on R, with the standard commutation relation

[x, p] = i~. (2.28)

In this way, one obtains an operator OX on L2(R) (when gΣ > 1, one obtains in fact gΣ

different operators, as explained in [2], but for simplicity we will focus for the moment

being on the case gΣ = 1). The mass parameters appear as coefficients in the operator

OX , and its spectral properties depend crucially on their values, and in particular on their

reality and positivity properties. There is a range of values of the parameters in which OX
is self-adjoint and its inverse

ρX = O−1
X (2.29)

is of trace class. Outside this range, the operator is no longer self-adjoint.

For concreteness, let us consider two operators which will be our main focus in this

section. The first operator is associated to the toric CY known as local F0, and it reads:

OF0 = ep + e−p + ex + ξF0e−x. (2.30)

This operator involves a mass parameter ξF0 . The operator is self-adjoint and has a trace

class inverse as long as ξF0 > 0 [35]. A closely related example is the operator associated

to the local F2 geometry,

OF2 = ex + ep + e−2x−p + ξF2e−x. (2.31)

This operator is self-adjoint and it has a trace class inverse as long as ξF2 > −2 [36]. In

fact, for this range of parameters, the operator (2.31) is equivalent to the operator (2.30),

in the following precise sense [35, 37]. Let λF0 be an eigenvalue of the operator OF0 with

parameter ξF0 . Consider now the operator OF2 with parameter

ξF2 = ξ
1/2
F0

+ ξ
−1/2
F0

. (2.32)

Then, the eigenvalues λF2 of OF2 are given by

λF2 = ξ
−1/4
F0

λF0 . (2.33)

– 9 –
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What happens when the mass parameters are outside the range in which the operator

is self-adjoint and has a trace-class inverse? Let us consider for example (2.30). When

ξF0 < 0, we are in a situation similar to the quartic oscillator with negative coupling,

in the sense that the operator is symmetric but does not support bound states. As in

conventional quantum mechanics, it should be possible to perform an analytic continuation

of the eigenvalue problem leading to a discrete spectrum of resonant states, with complex

eigenvalues. This should be also the case for more general, complex values of ξF0 . We

expect to have a similar situation for the operator (2.31) when ξF2 < −2. There are two

indications that this is in fact what happens, as discussed in [5]. The first one is that, in

some cases, the spectral traces of the inverse operators ρF0,F2 = O−1
F0,F2

can be computed in

closed form as functions of ξF0 or ξF2 . For example, one has, for ξF0 > 0 and ~ = 2π,

Tr ρF0 =
1

8π

log(ξF0)

ξ
1/2
F0
− 1

. (2.34)

This function of ξF0 can be analytically continued to the complex plane, where it displays

a branch cut along the negative real axis. The second indication is that the TS/ST cor-

respondence predicts a discrete spectrum of complex resonances for the operators OX , for

any complex value of the mass parameters, as explained in [5]. This spectrum can be

computed from the conjectural form of the spectral determinants proposed in [1, 2]. In the

case of genus one curves, one can also use the EQC proposed in [38]. Unfortunately, the

predictions of the TS/ST correspondence for resonant eigenvalues were not verified against

first principle calculations in spectral theory. One of the goals of the present paper is to

fill this gap by developing computational methods to compute resonances, directly in the

spectral theory.

Let us briefly review what are the predictions for the spectrum from topological string

theory (we refer the reader to the original papers [1, 2, 38] for more details and explanations,

and to [39] for a review). The spectrum of the operator ρX can be found by looking at the

zeros of its spectral determinant,

ΞX(κ) = det (1 + κρX) . (2.35)

When ρX is trace class, this is an entire function of κ and it has an expansion around κ = 0

given by

ΞX(κ) = 1 +

∞∑
N=0

ZX(N)κN , (2.36)

where ZX(N) are the fermionic spectral traces of ρX and can be computed from the con-

ventional spectral traces Tr ρ`X . According to the TS/ST correspondence, these traces can

be obtained as Laplace transforms,

ZX(N) =
1

2πi

∫
C

eJX(µ)−µNdµ. (2.37)

In this equation, C is an Airy-like contour of integration, and JX(µ) is the so-called grand

potential of topological string theory on X, which can be explicitly obtained from the BPS

invariants of X, as explained in [1, 2, 39].
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When the mirror curve has genus one, the condition for the vanishing of the spectral

determinant can be written as an EQC of the form [38],

rCt2

2
+D(ξ)t+B(ξ, ~)+~

(
fNS (t, ξ, ~) + fNS

(
2πt

~
, ξ

2π
~ ,

4π2

~

))
= 2π~

(
n+

1

2

)
, (2.38)

where n = 0, 1, 2, · · · is a non-negative integer. In this equation, ξ = (ξ1, · · · , ξrΣ) is the

vector of mass parameters, and we denote ξ
2π
~ = (ξ

2π
~

1 , · · · , ξ
2π
~
rΣ ). The function B(ξ, ~) has

the form,

B(ξ, ~) = B

(
1 +

~2

4π2

)
+ b(ξ), (2.39)

C, r, and B are constant coefficients depending on the geometry under consideration, D(ξ)

and b(ξ) are functions of the mass parameters, and t is related to the true modulus of the

curve,

κ = eE , (2.40)

through the so-called quantum mirror map [40]:

t = t(E, ξ, ~). (2.41)

The function fNS(t, ξ, ~) can be expressed in terms of the Nekrasov-Shatashvili (NS) limit

of the refined topological string free energy [41], which we will call NS free energy and will

denote by FNS(t, ξ, ~). The precise relation is,

fNS(t, ξ, ~) = r
∂F inst

NS

∂t
. (2.42)

The superscript indicates that we only keep the “instanton” part of the NS free energy,

which can be computed by knowing the BPS invariants of the CY X. We also recall that

FNS(t, ξ, ~) =
1

~
F0(t, ξ) +O(~), (2.43)

where F0(t, ξ) is the genus zero free energy of the toric CY in the large radius frame,

F0(t, ξ) =
C

6
t3 +D(ξ)t+ F inst

0 (t, ξ). (2.44)

The equation (2.38) determines energy levels En, n = 0, 1, · · · , for the modulus E, while

the eigenvalues of ρX are given by e−En .

In the following, it will be useful to understand the operators obtained by quantization

of mirror curves from the point of view of perturbation theory. To this end, we expand

them around the minimum (x0, p0) of the corresponding function. In this way we will make

sure that they can be regarded as perturbed harmonic oscillators. By doing this, we shift

x→ ~1/2x− x0, p→ ~1/2p− p0, (2.45)

so that the operator is written as

O = s(ξ)S, (2.46)
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where s(ξ) is a function of the mass parameter, and the operator S can be expanded as [11]

S = f(ξ) +
~
2

(
α(ξ)x2 + β(ξ)p2 + γ(ξ)(xp + px)

)
+O(~3/2), (2.47)

where f(ξ) is a c-number. One can now perform a linear canonical transformation to

eliminate the cross term xp+ px, and find in this way a harmonic oscillator with frequency

ω2
c = α(ξ)β(ξ)− γ2(ξ). (2.48)

The extended version of the BenderWu program due to [11] makes it possible to calculate

a formal series expansion in powers of ~ for the eigenvalues of O:

1

s(ξ)
eEn ∼ f(ξ) +

~ωc
2

(
n+

1

2

)
+O(~2), n = 0, 1, · · · (2.49)

In appropriate conditions, the Borel resummation of this series should give the correct

value of the (in general complex) eigenvalue En.

2.3 Resonances in local F0

The TS/ST correspondence of [1, 2] gives predictions for the spectrum of non-Hermitian

Hamiltonians in which the mass parameters take complex values. In principle, this spec-

trum can be found directly in operator theory, by first defining an appropriate analytic

continuation of the spectral problem, and then computing this spectrum with an appropri-

ate approximation technique. In this paper we will assume that the analytic continuation

can be performed rigorously, and then we will determine the resulting spectrum with both

complex dilatation techniques and Borel resummation techniques.

Let us start the discussion with the operator (2.30) associated to local F0. As ex-

plained above, when ξF0 < 0, and more generally for complex ξF0 , we expect to find a

resonant spectrum. Indeed, if the EQC (2.38) holds also in this regime, it leads to complex

eigenvalues. In this example, the parameters and functions appearing in the EQC (2.38)

are given by,

r = 2, C = 1, D(ξF0) = − log(ξF0), B =
2π2

3
, b(ξF0) = 0. (2.50)

The quantum mirror map has the structure

t(E, ξF0 , ~) = 2E − 2(1 + ξF0)e−2E +O
(
e−4E

)
. (2.51)

Therefore, the EQC involves both ξF0 and log(ξF0), which appears in the function D(ξ)

and in the argument of fNS:

ξ
2π
~
F0

= exp

(
2π

~
log(ξF0)

)
. (2.52)

When ξF0 < 0, this leads to an imaginary part in En.

Precise predictions about the resonant spectrum can be also found if we take into

account the relationship (2.32), (2.33) between OF0 and OF2 . In spectral theory, this relation
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is derived in [36] when both operators are of trace class, but since the same relationship can

be derived for the mass parameters of topological string theory [37], we expect it to hold as

well for complex values of ξF0 , ξF2 , once the analytic continuation is properly implemented.

One easy consequence of this relation is the following: if

ξF0 = eiφ, φ ∈ R, (2.53)

we have

ξF2 = 2 cos(φ), (2.54)

so that −2 ≤ ξF2 ≤ 2 and the spectrum of OF2 is real. It follows from (2.33) that

ξ
−1/4
F0

eEn(ξF0
) (2.55)

should be real. In other words, for complex values of ξF0 in the unit circle of the complex

plane, i.e. of the form (2.53), we expect

Im (En) =
φ

4
, (2.56)

independently of n and of ~.

The appearance of complex resonances is also natural when we consider the opera-

tor (2.30) from the point of view of perturbation theory. After expanding around the

minimum

p0 = 0, x0 =
1

2
log ξF0 , (2.57)

we find the operator

OF0 = ep + e−p + ξ
1/2
F0

(
ex + e−x

)
. (2.58)

As already pointed out in [32], this is a perturbed harmonic oscillator of frequency

ω2
c = 4$2 = 4ξ

1/2
F0
, (2.59)

where we have introduced the renormalized frequency $. When ξF0 < 0 this oscillator has

a complex frequency, just as in the example (2.24). By expanding around this oscillator,

one can write down perturbative series for the energy levels. For example, one finds, for

the ground state energy,

eE0 =
(
2$2 + 2

)
+$~ +

1

16

(
$2 + 1

)
~2 − 3$4 − 10$2 + 3

768$
~3 +O(~4). (2.60)

The structure (2.56) for mass parameters in the unit circle can be also deduced from the

explicit form of perturbation theory, since in the case (2.53) the renormalized frequency $

introduced in (2.59) is also a pure phase, $ = eiφ/4, and the perturbative series is of the

form $, times a formally real series (this can be easily checked in the first terms of (2.60)).

If this real series is Borel summable, as it is the case, the only imaginary contribution to

its Borel-Padé resummation comes from the overall factor $. This leads to the imaginary

part (2.56).
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~ 2π π 2π/3

c.d. 2.7606757803 1.97575795104945 1.69010343823507799

BP 2.7606757803195866 1.97575795104945438307691 1.690103438235077991455

EQC 2.7606757803195866 1.97575795104945438307691 1.690103438235077991

Table 1. Real part of the first resonance for local F0 with log ξF0
= πi and three different values

of ~. Here, c.d. denotes the complex dilatation method, while BP denotes the Borel-Padé method.

Let us now present some detailed calculations of the eigenvalues for different values of

the parameter ξF0 in the resonant region. We have focused on three values of ~, namely,

2π, π and 2π/3, where the EQC can be written in a simpler form (the case ~ = 2π is

the “self-dual” or “maximally supersymmetric case”, where the theory simplifies consid-

erably, as already noted in [1]; the simplification in the cases of ~ = π, 2π/3 follows from

the results of [42]). The first computational method is complex dilatation, where we use

the Rayleigh-Ritz method with the harmonic oscillator basis and an optimal value of the

frequency satisfying (2.13). The second method involves the Borel-Padé resummation of

the perturbative series, and finally we obtain the prediction for spectrum based on the

EQC and the TS/ST correspondence. We will focus on the ground state, although we have

studied as well excited states.

Let us first consider values with |ξF0 | = 1, where we expect the imaginary part of

the energy to be given by the simple expression (2.56). A simple case is ξF0 = −1, with

the choice of logarithmic branch given by log ξF0 = πi. The imaginary part should be in

this case

Im(En) =
π

4
. (2.61)

We find that the three methods reproduce this imaginary part with arbitrary precision.

The results for the real part of the first resonant state are shown in table 1. In the complex

dilatation method, we used matrices of rank 200 for the Rayleigh-Ritz approximation, and

in the Borel-Padé resummation we used 150 terms generated with the BenderWu program.

These two methods become more efficient for smaller values of ~. In the EQC, we have used

100 terms in the instanton expansion. As we see, we obtain perfect agreement between the

three methods (in the case of ~ = 2π/3, the Borel-Padé method and the EQC can be seen

to agree up to 35 digits). Similar results can be found when ξF0 = i, and with the choice

of logarithmic branch log ξF0 = πi/2. The imaginary part should be in this case

Im(En) =
π

8
. (2.62)

We show some of the results in table 2. Again, the imaginary part was reproduced with

arbitrary precision. In the complex dilatation method, we used matrices of rank 200− 400

for the Rayleigh-Ritz approximation (depending on the value of ~), and in the Borel-Padé

resummation we used 100 terms generated with the BenderWu program. In the EQC, we

used again 100 terms in the instanton expansion.

We have performed tests for values of ξF0 which are not of the form (2.53), and therefore

the imaginary part does not have a closed form. For example, in table 3 we list the first
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~ 2π π 2π/3

c.d. 2.851995310270838 2.111510733777354897475 1.8523966583371164256660

BP 2.8519953102708 2.111510733777354897475 1.852396658337116425665972544

EQC 2.851995310270838 2.111510733777354897475 1.852396658337116425665972544

Table 2. Real part of the first resonance for local F0 with log ξF0 = πi/2 and three different

values of ~.

~ π

c.d. 2.36465369971376 + 0.94715399106287 i

BP 2.364653699713759905588127 + 0.947153991062872399610128 i

EQC 2.36465369971375990558812739733 + 0.947153991062872399610128166 i

Table 3. First resonance for local F0 with log ξF0 = 2 log(2) + πi and ~ = π.

resonance when ξF0 = −4 and ~ = π. All methods agree up to the numerical precision we

have achieved. All these results support the conclusion that the conjecture of [1] (or its

reformulation in [38]) is still valid in the complex realm, when one considers resonances.

They also support the conjecture that Borel resummation of the perturbative series in ~ is

sufficient to reconstruct the exact answer, without the need of adding additional instanton-

like corrections in ~. These corrections are expected to be of order exp(−4π2/~) [1], i.e. of

order 10−3 for ~ = 2π and of order 10−9 for ~ = 2π/3. Our calculations are precise enough

to detect such corrections, if present. In view of our results, instanton corrections of this

type are very likely to be absent.

The operator corresponding to local F2, given in (2.31), can be analyzed very similarly

to local F0. In this case, the extremum of the underlying function OF2(x, p) occurs at

x0 = −p0 =
1

2
log (ξF2 + 2) , (2.63)

and when we expand around this value we obtain

OF2 =
√
ξF2 + 2 SF2 , (2.64)

where

SF2 = ex +
1

ξF2 + 2
ep +

1

ξF2 + 2
e−2x−p +

ξF2

ξF2 + 2
e−x. (2.65)

This operator is a perturbed harmonic oscillator with frequency

ω2
c =

4

2 + ξF2

. (2.66)

The lack of trace class property for ξF2 < −2 is obvious from this description: the min-

imum (2.63) moves to the complex plane, and the frequency of the oscillator becomes

imaginary. We have studied the spectrum of resonant states for various values of ξF2 .

Numerically, this operator leads to less precision than (2.30), but we have obtained again

full agreement between the different methods (complex dilatation, Borel resummation and

exact quantization conditions).
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2.4 Resonances in perturbed local P2

In [5] the following operator was considered,

O1,1,ξ = ex + ep + e−x−p + ξe−2p. (2.67)

It can be regarded as a perturbation of the operator associated to local P2, by the term

ξe−2p. It arises by quantization of the mirror curve of the local Y 3,0 geometry. This curve

has genus two, so in order to obtain the spectrum of O1,1,ξ one has to consider the higher

genus version of the TS/ST correspondence presented in [2] and further studied in [5]. In

particular, one has to calculate the relevant spectral determinant, and the quantization

condition can not be put in the simple form presented in [38]. The operator (2.67) is trace

class for ξ ≥ 0, and as explained in [5] it is expected to display resonances when ξ < 0.

Some insight on the structure of this operator can be obtained by writing it as a

perturbed harmonic oscillator. In this case, the minimum of the underlying function

O1,1,ξ(x, p) occurs at

ex0 = X0 =
1

21/3

(
1 + 4ξ +

√
1 + 8ξ

)1/3
, ep0 = P0 =

X0

4

√
1 + 8ξ − 1

ξ
. (2.68)

If we shift x, p around this minimum, we find that

O1,1,ξ = X0Sξ, (2.69)

where

Sξ = ex +

√
8ξ + 1− 1

4ξ
ep +

8ξ(√
8ξ + 1− 1

) (
4ξ +

√
8ξ + 1 + 1

)e−x−p

+
2ξ(

4ξ +
√

8ξ + 1 + 1
)e−2x.

(2.70)

After expanding around x = p = 0, we find a harmonic oscillator whose frequency is

given by

ω2
c (ξ) =

24ξ
(
8ξ +

√
8ξ + 1 + 1

)(√
8ξ + 1− 1

) (
4ξ +

√
8ξ + 1 + 1

)2 . (2.71)

When

− 1

8
< ξ < 0 (2.72)

we have a perturbed harmonic oscillator with a positive frequency, and the perturbative

series for the energy levels has real coefficients. Since the operator does not have bound

states but resonances, we expect that the perturbative series is not Borel summable, as

in the conventional cubic oscillator. For example, when ξ = −1/9, one finds for the

perturbative series for the ground state,

eE0 =

(
2

3

)2/3(15

4
+

3

4
~− 79

48
~2 − 12659

576
~3 − 32066045

62208
~4 − · · ·

)
, (2.73)

which has non-alternating signs and is not expected to be Borel summable. A study of the

Borel plane with Padé approximation techniques indicates indeed the existence of a branch
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ξ −1/9 −9/8

c.d. 17.6475073 + 4.7738402 i 21.4121476 + 8.3088781 i

EQC 17.647507 + 4.77384 i 21.41215 + 8.30888 i

Table 4. Value of eE0 for the operator (2.67) and ~ = 2π, for ξ = −1/9 (left) and ξ = −9/8 (right).

cut singularity along the real axis. We expect that resonances are obtained in this case by

lateral resummation of a non-Borel summable series. In contrast, when

ξ < −1

8
(2.74)

the perturbative series has complex coefficients, as in the example of local F0 with ξF0 < 0.

In order to test the TS/ST conjecture for the resonant regime of the operator (2.67),

we have calculated the spectral traces from the Airy integral formula (2.37), used these

to calculate an approximation to the spectral determinant, and finally determined the

zeroes of this determinant to locate the resonances. In our calculations we set ~ = 2π, we

calculated the traces up to N = 10 and we used an approximation up to seventh instanton

order for the grand potential JX in (2.37). The results for the first resonance, for ξ = −1/9

and ξ = −9/8, are presented in table 4, and compared to results obtained by complex

dilatation with a matrix of rank 800 (only stable digits are shown, as usual). Although the

precision is smaller than the one achieved in the simpler cases of genus one, we still find

full agreement between the predictions of the TS/ST correspondence and a first-principles

computation of the resonant spectrum. The result for ξ = −9/8 can be also reproduced by

using the Borel-Padé resummation of the perturbative series. In the case of ξ = −1/9 we

have to use lateral resummation and the standard Borel-Padé method does not converge

well, due to the high value of ~. It would be interesting to improve on this to obtain these

resonances by resummation techniques.

2.5 Multivalued structure

In conventional quantum mechanics with polynomial potentials, like (2.1) and (2.8), the

spectrum has a non-trivial multivalued dependence on the complex values of the couplings.

For example, as we mentioned in section 2, in the case of the quartic oscillator, the energy

levels have 6π periodicity as functions of the argument of g, when |g| is sufficiently large.

In the case of the operators obtained from mirror curves, the energy levels depend

generically on the logarithm of the mass parameters. Therefore, they should have an in-

finitely sheeted structure as we consider complex values of these parameters, corresponding

to the different choices of the branches of the logarithm. In the case of local F0, for example,

this is strongly suggested by exact trace formulae like (2.34), by the structure of the EQC

(see e.g. the comment around eq. (2.52)), and also by the equivalence (2.32) between local

F0 and F2. Indeed, in order to obtain values of ξF2 in the resonant region, i.e. ξF2 < −2,

one should consider values of ξF0 of the form

log ξF0 = 2 cosh−1

( |ξF2 |
2

)
+ 2kπi, (2.75)
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where k is an odd integer. This multivalued structure can be also partially seen in the

perturbative calculation of the energy levels. If we consider again the example of local F0,

we see that the determination of the frequency ωc requires a choice of branch for ξ
1/4
F0

.

In our calculations in the previous sections we have chosen implicitly the principal

branch of the logarithm of the mass parameter, but we can explore other branches. This is

in principle straightforward in the EQC, where one simply considers different branches of

the logarithm. In the complex dilatation method, reaching other sheets requires rotating

θ or of the variational parameter ω in the complex plane. In the Borel resummation

technique, one might have access to other sheets by a choice of different branches in ωc
(but only to finitely many). We have performed a preliminary investigation of this multi-

sheeted structure. For example, in the case of local F0 with ~ = 2π, one can consider the

value log(ξF0) = 3πi, instead of πi, as we did in table 1. The EQC gives,

E0 = 1.510433421361 . . .+
3πi

4
. (2.76)

It is possible to access this sheet with the complex dilatation method, by changing the

value of ω (this is equivalent to choosing a different value of θ), and one finds:

E0 = 1.510433421 . . .+
3πi

4
. (2.77)

In the perturbative calculation (2.60), this sheet corresponds to the choice $ = 3πi/4,

instead of $ = πi/4. Although the usual Borel-Padé method displays in this case an oscil-

latory behavior, the result of the resummation is compatible with the values shown above.

An additional difficulty to explore the multivalued structure is that, in some cases, the

EQC (2.38) does not converge when one tries to access other sheets for the log of the mass

parameter. The EQC is given by a power series expansion, which in the trace class case

converges for values of the modulus corresponding to the physical spectrum. However, in

the complex case, the convergence depends on the choice of sheet, of level n, and of ~. For

example, for log(ξF0) = 3πi and ~ = π, we have not been able to obtain the first resonance

(n = 0) with the EQC. This raises interesting issues that we discuss in the concluding

section of the paper.

3 PT-symmetric quantum curves

3.1 PT symmetry and non-perturbative effects

A particularly interesting subset of non-Hermitian operators are those which display PT

symmetry. A PT transformation changes the Heisenberg operators as

x→ −x, p→ −p, (3.1)

and it also changes the imaginary unit i into −i. Operators which are invariant under

this transformation are called PT-symmetric operators. A simple example is the Hamil-

tonian (1.1), with a purely cubic, imaginary potential, but more general examples are

possible: the cubic oscillator (2.8) leads to a PT-symmetric operator when Re(g) = 0.
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When an operator is PT-symmetric, its eigenvalues are either real or come in complex

conjugate pairs. In the first case (which is realized in (1.1)) we say that PT is unbroken,

while in the second case we say that PT symmetry is broken. It turns out that, in many

quantum mechanical models, the breaking of PT symmetry is a non-perturbative effect,

due to complex instantons. A beautiful example which illustrates the phenomenon is the

Hamiltonian (1.2), studied in detail by Delabaere and Trinh in [13] (a similar model is

studied in [14], and related considerations on the importance of non-perturbative effects in

PT symmetry breaking are made in [43]). When α > 0, the eigenvalues of this Hamiltonian

are real. However, as α decreases and takes negative values, we find a decreasing sequence

of values αn < 0, n = 1, 2, · · · , for which the energy levels En−1 and En coalesce and

become complex conjugates. Therefore, if

αn+1 < α < αn, (3.2)

the first 2n energy levels come in complex conjugate pairs. This phenomenon can be

understood quantitatively by using EQCs and the complex WKB method [13] (see also [44]

for a closely related analysis of Bender-Wu branch points with exact EQCs). Let us first

note that the potential

V (x) = ix3 + iαx, (3.3)

has three turning points when α ≥ 0: one of them, x0, is in the imaginary axis, while

the other two, denoted by x±, are in the fourth and the third quadrant of the complex

plane, respectively. Let γ be a cycle encircling the turning points x0 and x+. By using

the all-orders WKB method, one obtains a WKB period associated to γ, which can be

decomposed into real and imaginary parts as

Πγ =
1

2
Πp −

i

2
Πnp, (3.4)

where p, np stand for “perturbative” and “non-perturbative.” The periods Πp, Πnp are

real formal power series in ~2,

Πp,np =
∑
n≥0

Π(n)
p,np~2n, (3.5)

which turn out to be Borel summable [13, 45, 46]. We will denote by s(Πp), s(Πnp) their

(real) Borel resummations. The Bohr-Sommerfeld (BS) approximation to the spectrum is

given by (see e.g. [12, 47])

Π(0)
p = 2π~

(
n+

1

2

)
, n = 0, 1, 2, · · · (3.6)

This can be promoted to an all-orders, perturbative WKB quantization condition

s (Πp) = 2π~
(
n+

1

2

)
, n = 0, 1, 2, · · · (3.7)

The perturbative quantization conditions (3.6), (3.7) lead to real spectra, so they can not

explain the breaking of PT symmetry observed in this model. However, a careful analysis
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based on the exact WKB method shows that these conditions miss non-perturbative effects

due to complex instantons [48]. The correct quantization condition is given by

2 cos

(
1

2~
s(Πp)

)
+ e−

1
2~ s(Πnp) = 0. (3.8)

The second term in the l.h.s. gives a non-perturbative correction to (3.7). This correction

is crucial to obtain the right results, but it is typically exponentially small (see [29] for a

recent implementation of (3.8) in this typical regime). However, as shown in [13, 14], as α

becomes more and more negative, the non-perturbative correction becomes of order one,

and the quantization condition (3.8) does not have solutions for real E. Therefore, PT

symmetry is broken.

The qualitative structure of PT symmetry breaking is already captured by consider-

ing the leading approximation to the full quantization condition (3.8), but including the

contribution due to Πnp also at leading order, as pointed out in [14]. This leads to the

approximate quantization condition

2 cos

(
1

2~
Π(0)

p

)
+ e−

1
2~Π

(0)
np = 0. (3.9)

The functions Π
(0)
p,np can be explicitly written down in terms of elliptic integrals, by using

e.g. the results of [29, 49]. The equation (3.9) describes the curves of possible energy levels

in the (α,E) plane, in very good agreement with numerical results, as shown in Fig. 2 for

~ = 1. It is clear that the breaking of PT symmetry leads to two different phases in the

(α,E) plane: one phase of real values, and another of complex values. Since the phase

transition is triggered by a non-perturbative effect becoming of order one, the boundary

separating the two phases can be described approximately by

Π(0)
np (α,E) = 0, (3.10)

as we also illustrate in Fig. 2. This is reminiscent of large N phase transitions triggered by

instantons [50] (see [51] for a textbook exposition), where the transition point is defined

by the vanishing of the instanton action as a function of the moduli. A careful analysis

of (3.9) leads for example to a semiclassical, asymptotic formula for the values of αn:

αn = −x4/5
n , xn ∼ (4n− 1)

π

ω0
, n = 1, 2, · · · (3.11)

where

ω0 = Π(0)
p (1, E0), (3.12)

and the energy E0 is defined as the zero of (3.10) when α = 1. The sequence of values αn
is a one-dimensional ray of the two-dimensional quasi-lattice of Bender-Wu singularities of

the cubic oscillator [22].

3.2 PT symmetry in deformed quantum mechanics

In [16], a deformed version of one-dimensional quantum mechanics was introduced. The

Hamiltonian of this theory is given by

HN = ΛN
(
ep + e−p

)
+ VN (x), (3.13)
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Figure 2. (Left) The curves in the (α,E) plane defined by the approximate quantization condi-

tion (3.9), for ~ = 1. The red dots are numerical values for the spectrum of (1.2) obtained with

complex dilatation. (Right) There are clearly two different phases in the (α,E) plane separated by

the line (3.10), which is shown here in dashed red.

where

VN (x) =

N−1∑
k=0

(−1)kxN−khk (3.14)

is a degree N potential, and we take h0 = 1, h1 = 0 without loss of generality. We will refer

to Λ, hk, k = 2, · · · , N − 1 as the moduli of the potential. As explained in detail in [16],

the Hamiltonian (3.13) can be obtained by quantizing the Seiberg-Witten (SW) curve of

SU(N), N = 2 Yang-Mills theory [52–54], and in this case the parameters Λ, hk correspond

to the dynamically generated scale and the Coulomb branch moduli, respectively. One

interesting aspect of the Hamiltonian (3.13) is that its spectrum of resonances or bound

states is encoded in an EQC which can be written in closed form for any N . As in the

conventional exact WKB method, this condition can be written in terms of resummed

WKB periods of the underlying SW curve:

ΛN
(
ep + e−p

)
+

N∑
k=0

(−1)kxN−khk = 0, (3.15)

where (−1)N−1hN can be regarded as the eigenvalue of the Hamiltonian (3.13). As shown

in [55], these WKB periods are nothing but the quantum periods appearing in the NS

limit [41] of N = 2 super Yang-Mills theory. They are denoted by

ΠAi = 2πai, ΠBi =
∂FNS

∂ai
, i = 1, · · · , N − 1, (3.16)

and they have a formal power series expansion in ~2. The zero-th order terms of this

expansion are given by the usual SW periods. In this equation, FNS is the free energy of

SW theory in the NS limit of the so-called Omega-background. It has the structure,

FNS = F pert
NS + F inst

NS , (3.17)
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where F pert
NS is the so-called perturbative piece, and F inst

NS is the instanton piece, which

can be computed by using instanton calculus in the gauge theory [56]. This leads to an

expansion in powers of Λ2N , of the form

F inst
NS =

∑
`≥1

F
(`)
NS(~, ai)Λ2N`. (3.18)

In addition to this series, one can also obtain gauge theory expansions for the moduli hk
of the SW curve in terms of the A-periods ai,

hk = hpert
k +

∑
`≥1

h
(`)
k (~, ai)Λ2N`, (3.19)

where hpert
k is a classical or perturbative piece which can be determined by elementary

algebraic considerations. These expansions for the moduli are sometimes called “quantum

mirror maps” and they provide a dictionary between the moduli of the curve and the

quantum A-periods ai. More details, explicit expressions and examples for the series (3.18)

and (3.19) can be found in [16]. Let us note that, in contrast to the standard WKB

expansions in ~2, the instanton expansions (3.18) and (3.19) are expected to be convergent

in the so-called large radius region or semiclassical region of the SW moduli space, where

the moduli ai are large in absolute value. They provide explicit resummations of the

quantum periods and make unnecessary the use of Borel techniques, as emphasized in [16].

It is clear that, by an appropriate choice of the moduli Λ, hk, k = 2, · · · , N − 1, we

can easily engineer Hamiltonians of the form (3.13) which are PT symmetric. In fact, any

PT symmetric Hamiltonian of the form

H =
p2

2
+ V (x), (3.20)

where V (x) is a polynomial potential, leads to a deformed Hamiltonian of the form (3.13).

For concreteness, we will focus on the deformed version of the Hamiltonian (1.2), which is

obtained by taking N = 3 and Λ = i. One has

H = iH3 = 2 cosh(p) + ix3 + iαx, (3.21)

where α = h2, and we want to solve the spectral problem

H|φ〉 = E|φ〉, E = ih3. (3.22)

The spectrum is expected to have a structure qualitatively similar to the one obtained

in [13] for (1.2), and indeed our analysis will confirm this. We will rely on the EQC

conjectured in [16]. The comparison of our explicit numerical results with the predictions

of this EQC will provide additional support for the conjecture of [16], and therefore for the

TS/ST correspondence of [1, 2].

Before presenting the conjecture of [16], let us make a cautionary remark concerning its

general applicability in the study of PT-symmetric Hamiltonians. In defining the spectral

problem for these Hamiltonians, one has to make a careful choice of boundary conditions
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for the eigenfunctions. In the case of the PT symmetric cubic oscillator, the boundary con-

dition is square integrability along the real axis. This agrees with the boundary condition

that one obtains by analytic continuation in the coupling constant [22]. However, there are

cases in which the boundary conditions appropriate for PT symmetry are different from the

boundary conditions obtained by analytic continuation. For example, the quartic oscillator

with potential −x4, which is PT symmetric, leads to a real spectrum when appropriate

boundary conditions are used. If one does instead an analytic continuation in the coupling

constant, the appropriate boundary condition is exponential decay in the wedge (2.5), and

one obtains a spectrum of complex resonances [12]. The EQCs obtained in [16] describe

resonances obtained by analytic continuation in the parameters. Therefore, they cannot

be used to describe e.g. the real spectrum of an inverted, PT-symmetric quartic oscillator.

Let us now present the EQC for the Hamiltonian (3.21). By setting Λ = i in the EQC

for N = 3 in [16], one obtains

1 +
1− e−2πa1/~

1− e−2π(a1+a2)/~ e−πa2/~+iφ2 +
1− e−2πa2/~

1− e−2π(a1+a2)/~ e−πa1/~+iφ1 = 0, (3.23)

where

φ1 =
1

~

(
∂FNS

∂a2
− 2

∂FNS

∂a1

)
, φ2 =

1

~

(
2
∂FNS

∂a2
− ∂FNS

∂a1

)
. (3.24)

When N = 3, the perturbative piece of the NS free energy is determined by

∂F pert
NS

∂aj
= 2γ(aj , ~) + 2γ(a1 + a2, ~), j = 1, 2. (3.25)

where the function γ(a, ~) was introduced in [57] and it is given by4

γ(a, ~) = a log ~− π~
4
− i~

2
log

Γ(1 + ia/~)

Γ(1− ia/~)
. (3.26)

The quantum mirror maps (3.19) relating α,E to the quantum periods a1, a2 are given, at

the very first orders in Λ6, by

α =− 1

3
(a2

1 + a1a2 + a2
2)

+
2(a2

1 + a2
2 + a1a2 + 3~2)

(~2 + a2
1)(~2 + a2

2) (~2 + (a1 + a2)2)
(−Λ6) +O(Λ12),

(3.27)

E =− i

27
(a1 − a2)(a1 + 2a2)(2a1 + a2)

− i(4a3
1 + 6a2a

2
1 − 6a2

2a1 − 4a3
2)

3(~2 + a2
1)(~2 + a2

2) (~2 + (a1 + a2)2)
(−Λ6) +O(Λ12).

(3.28)

Although we have written down explicitly the powers of Λ to make clear the instanton

order, we have to set Λ = i in actual computations.

4The definition of γ differs from the one in [16] by the factor a log Λ which in our case (Λ = i) is already

included in (3.23).
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It will be useful to write down the EQC (3.23) in a form similar to (3.8):

F (U, Y ) = 1 + 2eU cosY = 0, (3.29)

where the functions U , Y are given by

U =
1

2
log

(
(1− e−2πa1/~)(1− e−2πa2/~)

(1− e−2π(a1+a2)/~)2

)
− π

2~
(a1 + a2) +

3i

2~

(
∂FNS

∂a2
− ∂FNS

∂a1

)
, (3.30)

Y =
1

2i
log

(
1− e−2πa1/~

1− e−2πa2/~

)
+

π

2i~
(a1 − a2) +

1

2~

(
∂FNS

∂a2
+
∂FNS

∂a1

)
. (3.31)

The EQC (3.29) is a prediction of the TS/ST correspondence for the spectral problem

defined by the Hamiltonian (3.21). A first question to ask is how this EQC compares to

standard semiclassical results, like for example the BS quantization condition. If we write

the SW curve (3.15) in the form

2 cosh(p) + V (x) = E, (3.32)

we notice that the turning points are the solutions of the equation

E − V (x) = 2. (3.33)

In the case

V (x) = ix3 + iαx, (3.34)

and for α smaller than a certain αc > 0, there are three turning points x0, x± in the

imaginary axis and the fourth and third quadrant, respectively, as in the undeformed case

considered in (3.3). As in [12, 47], the relevant period corresponds to a cycle going from

x− to x+, given by

ΠBS = 2

∫ x+

x−

p(x)dx, (3.35)

and the BS quantization condition is

ΠBS(E) = π~
(
n+

1

2

)
. (3.36)

In contrast to the situation in conventional quantum mechanics, this can not be expressed

in terms of elliptic integrals, since the underlying SW curve has genus two. One possibility

to calculate the period above is to write down an appropriate Picard-Fuchs operator which

annihilates ΠBS, and then use it to obtain a power series expansion for large energies. The

details are presented in appendix A, and one obtains at the end of the day an expression

of the form

ΠBS(E) =
1

2
ε
(

6
√

3 log(ε) + π + 3
√

3(log(3)− 2)
)

+
α
(
−6
√

3 log(ε) + π − 3
√

3 log(3)
)

6ε

+
−6
√

3
(
α3+18

)
log(ε)− π

(
α3+18

)
− 3
√

3
(
α3(log(3)− 1)−6+18 log(3)

)
162ε5

+O(ε−7), (3.37)
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where ε = E1/3. One can verify that (3.36) provides an excellent approximation to the

energy levels of the PT-symmetric Hamiltonian (3.21), in particular for highly excited

states, as expected from the BS approximation.

Let us now compare the BS approximation with the EQC (3.29). First of all, let us

note that the functions U and Y have an asymptotic expansion in powers of ~2 of the form

Y ∼
∑
n≥0

Yn~2n−1, U ∼
∑
n≥0

Un~2n−1. (3.38)

Note that the logarithmic terms in (3.30), (3.31) do not contribute to this asymptotic

expansion, as they are exponentially small in ~. The asymptotic series (3.38) can be

obtained by using the gauge theory instanton expansion for F inst
NS and expanding each

order in Λ6 in powers of ~2. This leads to explicit expressions for Yn, Un as expansions in

Λ6, which are suitable for the large radius region in which |a1|, |a2| � 1. Let us give an

explicit example of such an expansion. To do this, we parametrize a1,2 as

a1 = ρ eiφ, a2 = ρ e−iφ. (3.39)

When ρ, φ ∈ R, a1 and a2 are complex conjugate

a1 = a2, (3.40)

and this leads to real values of α and E, so this describes the phase of unbroken PT

symmetry. In addition, U and Y are also real. The gauge theory instanton expansion of

the function Y0 is, in the polar variables above,

Y0 = ρ
(
(π − 2φ) sinφ+ (−6 + 6 log ρ+ 4 log(2 cosφ)) cosφ

)
− (7 cos(2φ) + 2 cos(4φ) + 3) sec3(φ)

4ρ5
(−Λ6) +O

(
Λ12
)
,

(3.41)

while for the function U0 one finds,

U0 = ρ
(
(6φ− π) cosφ+ (−6 + 6 log ρ) sinφ

)
+

3(4 cos(2φ) + 3) tan(φ) sec(φ)

2ρ5
(−Λ6) +O

(
Λ12
)
.

(3.42)

Note that the power of Λ is correlated with the inverse power of ρ, so the expansion in

powers of Λ, typical of the gauge theory instanton expansion, is also an expansion around

the large radius region ρ→∞, as expected.

The BS quantization condition should be recovered from (3.29) by setting e−U ∼ 0

and keeping the first term in the asymptotic expansion of Y , i.e.

cos(Y0/~) = 0 ⇒ Y0 = π~
(
n+

1

2

)
, (3.43)

so we should have

Y0 = ΠBS. (3.44)
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Figure 3. The black lines show the values of (α,E) in the spectrum of (3.21) at ~ = 1. The dashed

red line is the solution of the equation (3.45), which defines the boundary between the phases of

broken and unbroken PT symmetry.

This can be verified by using the quantum mirror map and expanding ΠBS in power series

around ρ = ∞ and φ = π/3 (which corresponds to α = 0). This expansion can be easily

compared to the series (3.41), and one finds that (3.44) holds to very high order.

In view of the structure of the EQC (3.29), which is formally identical to the one in the

undeformed case (3.8), the deformed Hamiltonian (3.21) might also undergo PT symmetry

breaking. As in the undeformed case, this can happen if the non-perturbative correction

e−U becomes of order one. Semiclassically, this occurs when

U0(α,E) = 0. (3.45)

The solutions to this equation, if they exist, define a curve in the (α,E) plane separating

the two phases. Note that U0 is completely determined by the explicit expression (3.30),

which is in turn a prediction of the TS/ST correspondence.

It is easy to verify numerically that indeed, PT symmetry breaking takes place in this

model, when α < 0. As in the undeformed case, there is a sequence of values

αk, k = 1, 2, · · · , (3.46)

for which the energy levels become degenerate Ek−1 = Ek, and take complex conjugate val-

ues afterwards. The curve determined by (3.45) provides a qualitatively accurate boundary

between the resulting two phases, as shown in Fig. 3. The EQC (3.29) turns out to capture

as well the precise pattern of symmetry breaking. To see this, we consider the leading

order approximation to (3.29), but taking into account the contribution of U , which is the

responsible for symmetry breaking, also at leading order, as we did in (3.9). We obtain in

this way the approximate quantization condition,

2 cos(Y0/~) + e−U0/~ = 0, (3.47)
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Figure 4. The black lines show the curves satisfying the approximate EQC (3.47), in which U0,

Y0 are given by the gauge theory instanton expansion up to order Λ6. In the gray lines, only the

perturbative part (i.e. the very first terms in the expansions (3.41), (3.42)) has been used. The

red dots represent numerical values of the spectrum of the operator (3.21), obtained with complex

dilatation techniques. Here ~ = 1/5.

similar to the condition (3.8) in the undeformed case. The equation (3.47) defines a discrete

set of curves in the (α,E) plane, which we show in Fig. 4 for ~ = 1/5. The functions Y0,

U0 are defined by the expansions (3.41), (3.42). In drawing the gray lines, we have just

used the very first term in this expansion (which takes into account only the perturbative

contribution to FNS), while in drawing the black lines we have included the first gauge

theory instanton correction. The red dots are numerical values for the spectrum of the

operator (3.21), and as we can see they are located with good precision on the curves

defined by (3.47).

Another consequence of the EQC is an asymptotic expression for the branch points of

the spectrum, i.e. for the values of α (3.46) at which the energy levels coalesce. These are

the points satisfying (3.29), and in addition the singularity condition

∂F

∂E
= 0. (3.48)

Since αk with k � 1 occurs at higher energies, in order to obtain the leading asymptotic

value of αk it suffices to use the leading terms in (3.41), (3.42). A careful analysis shows

that the branching points obey two different conditions. The first one, not surprisingly,

is (3.45), which is solved by

ρ(φ) ≈ exp

(
π

6φ

)
(3.49)

The second condition is

sin(Y ) ≈ −1, (3.50)

which is solved by

Y ≈ 2kπ − π

2
, k = 1, 2, · · · . (3.51)
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Figure 5. The black dashed line represents the solution of the spectrum, for ~ = 1. The red dots

are the branch points. The green and orange lines are the curves (3.49) and (3.51).

This result is illustrated in Fig. 5, where we show the curves (3.49), (3.51) in the (α,E)

plane. Their intersection agrees with good precision with the branching points of the

spectrum. The values of ρ satisfying the two conditions (3.49), (3.51) can be written down

explicitly as

ρk =
Xk

W
(

e
c
6Xk

) , (3.52)

where W (z) is the Lambert W function defined as the solution of the equation W (z)eW (z) =

z, and

Xk =
~π(2k − 1/2)

6
, c = 4 log 2− 6. (3.53)

4 Conclusions and outlook

The correspondence between quantum spectral problems and (topological) strings put for-

ward in [1, 2, 38] has been mostly studied in the case in which reality and positivity

conditions lead to trace class, self-adjoint operators. However, it is natural to extend this

correspondence to general complex values of the mass parameters. On the topological

string side, the mass parameters are identified with complex moduli of the CY target,

and we can perform a straightforward analytic continuation. In the spectral theory side,

this continuation is more delicate since one has to consider a problem in non-Hermitian

quantum mechanics. In this paper we have started to explore the TS/ST correspondence

in the complex realm of the mass parameters. In the spectral theory side, we have devel-

oped techniques to compute accurately the complex spectra, by using complex dilatation

techniques and Borel-Padé resummation of perturbative series. We have found, in various

models, that these techniques provide results in precise agreement with the predictions of

the TS/ST correspondence.
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In addition, we have explored PT-symmetric Hamiltonians arising in the quantization

of SW curves. These Hamiltonians provide an interesting generalizations of the more

conventional PT-symmetric quantum-mechanical models, and they can be analyzed in

detail by using the exact quantization conditions conjectured in [16], which also followed

from the TS/ST correspondence. In this paper we have analyzed in detail the deformed

model of [16] with a PT-symmetric cubic potential. We have shown that the quantization

conditions conjectured in [16] describe very precisely the properties of the spectrum. In

addition, we have shown that the deformed model displays as well the spontaneous breaking

of PT-symmetry observed in [13, 14].

There are many interesting problems open by this investigation. The most important

one, in our view, is a deeper understanding of the multivalued structure of the spectrum of

quantum mirror curves. As we have pointed out, the exact solution conjectured in [1, 2, 38]

indicates that there should be an infinitely-sheeted structure due to the logarithmic depen-

dence on the mass parameters. Although we have been able to access some of these sheets

in spectral theory, a full understanding of this structure is still lacking. In addition, the

exact quantization conditions in [1, 2, 38] involve series expansions which do not always

converge when one considers arbitrary sheets of the logarithm. This raises the possibil-

ity that these conditions have to be reformulated in order to describe the full analytic

continuation of the spectral problem.

In our analysis of PT-symmetric models, we have focused for simplicity on quantum

SW curves, but it would be nice to find interesting examples of PT-symmetric quantum

mirror curves.5 Conversely, in the case of quantum SW curves, we have not studied in

detail the general multivalued structure of the spectral problem. Since these models are

deformations of conventional quantum mechanical potentials, we should have analogues

of the Bender-Wu branch points for the quartic [4] and the cubic case [22]. It would

be very interesting to explore the analytic structure of the energy levels with the exact

quantization conditions of [16], similar to what was done in [13, 44]. This might lead to a

beautiful interplay between the complex geometry of the spectral problem and the quantum

moduli space of Seiberg-Witten theory.
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A Picard-Fuchs equation for the deformed cubic oscillator

An efficient way to compute the BS period (3.35) is to find out the Picard-Fuchs (PF)

equation that it satisfies, and then solve this equation in a power series in appropriate

variables. As a starting point, one can derive the following PF equation when α = 0,

corresponding to the pure cubic potential:

Π′(E) +
3

4

(
3
(
E2 − 4

)
Π(3)(E) + 7E Π′′(E)

)
= 0. (A.1)

To simplify notation, we have denoted Π = ΠBS. This ODE can be solved in closed form as

Π′(E) = c1
P
(
−1

2 ,
1
6 ,

E
2

)
12
√
E2 − 4

+ c2
Q
(
−1

2 ,
1
6 ,

E
2

)
12
√
E2 − 4

, (A.2)

where P (n,m, x) are Legendre polynomials, and Q(n,m, x) are Legendre functions of the

second kind. The PF equation for arbitrary α is more involved:

0 = 192
(
8α3 + E2 − 216

)
Π′(E)−

(
−3483E3 − 18064α3E + 487728E

)
Π′′(E)

−1

3

(
3328α6 + 6912α3 − 18063E4 − 71088α3E2 + 1942704E2 − 2612736

)
Π(3)(E)

−2

3

(
− 3645E5 − 11232α3E3 + 326592E3

+1744α6E − 864α3E − 1248048E
)
Π(4)(E)

−1

9
(−128α9 + 10368α6 − 279936α3 − 2187E6 − 5184α3E4 + 174960E4

+1680α6E2 + 2592α3E2 − 1294704E2 + 2519424)Π(5)(E) (A.3)

To solve this ODE, we use the following ansatz

Π′(E) = log(E)

∞∑
n=0

anE
− 2n

3
− 2

3 +

∞∑
n=0

bnE
− 2n

3
− 2

3 (A.4)

By plugging (A.4) into (A.3), we can solve for an and bn. Doing so, we are left with only

four undetermined constants, say an and bn with n ∈ {0, 1}. These can be fixed by various

boundary conditions for the problem, and they turn out to be given by

a0 = − 1√
3
, b0 =

1

6

(
−π − 3

√
3 log(3)

)
, (A.5)

a1 = − α

3
√

3
, b1 =

α

18

(
π − 3

√
3(log(3)− 2)

)
.

By using the above results, one can derive the expansion (3.37). Let us note that (3.35) is

a period of SU(3) SW theory, so it should be possible to write it as a linear combination

of the basis of periods obtained in [59] in terms of Appell functions.
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