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Abstract: In [1], two of the present authors along with P. Raman attempted to extend

the Amplituhedron program for scalar field theories [2] to quartic scalar interactions. In

this paper we develop various aspects of this proposal. Using recent seminal results in

Representation theory [3, 4], we show that projectivity of scattering forms and existence of

kinematic space associahedron completely capture planar amplitudes of quartic interaction.

We generalise the results of [1] and show that for any n-particle amplitude, the positive

geometry associated to the projective scattering form is a convex realisation of Stokes

polytope which can be naturally embedded inside one of the ABHY associahedra defined

in [2, 5]. For a special class of Stokes polytopes with hyper-cubic topology, we show that

they have a canonical convex realisation in kinematic space as boundaries of kinematic

space associahedra.

We then use these kinematic space geometric constructions to write world-sheet forms

for φ4 theory which are forms of lower rank on the CHY moduli space. We argue that

just as in the case of bi-adjoint φ3 scalar amplitudes, scattering equations can be used as

diffeomorphisms between certain n−4
2 forms on the world-sheet and n−4

2 forms on ABHY

associahedron that generate quartic amplitudes.
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1 Introduction

[2] brought the Amplituhedron program and the world of polytopes in contact with scatter-

ing amplitudes for non-supersymmetric Quantum field theories. In a number of beautiful

results established in [2], it was shown that the amplituhedron for bi-adjoint scalar φ3 the-

ory is a particular realisation of a combinatorial polytope called associahedron An which

lives in the kinematic space of Mandelstam invariants. It was also shown that the unique

canonical top form on the associahedron gives the scattering amplitude of the theory. This

new understanding of scattering amplitude which paralleled striking developments in the

supersymmetric world [6–10], also gave rise to a novel understanding/derivation of the

CHY formula for bi-adjoint scalar field theories [2, 11].

The CHY formulae are written as integrals on the moduli space of punctured Rie-

mann sphere, M0,n. This space admits a real section, M0,n(R) which is parametrized by

an (equivalence class of) ordered set of points on a disk.1 It was shown in [2, 12] that

there exists a compactificationM0,n(R) ofM0,n(R) which is also an associahedron. CHY

scattering equations precisely generate a diffeomorphism between the world-sheet associ-

ahedron M0,n(R) and the kinematic space associahedron An such that the CHY formula

for scattering amplitude can be understood in terms of pushforward of the canonical form

between the two associahedra.

In kinematic space, attempts were made to extend the amplituhedron program to

generic scalar interactions [1, 13, 14]. In [1] it was shown that planar tree-level ampli-

tudes for massless quartic interactions in any space-time dimensions were intricately tied

to another polytope called Stokes polytope. Just as in the case of cubic interactions and

the associahedron in kinematic space, it was argued that any n particle amplitude can be

obtained from canonical forms on n−4
2 dimensional Stokes polytopes. Each Stokes polytope

is parametrized by a reference quadrangulation Q of an n-gon such that the corresponding

canonical form produces a “partial” scattering amplitude mQ
n . It was argued in [1] that a

(weighted) sum over mQ
n produces the full planar tree-level amplitude. These claims were

verified for n = 6, 8, and 10 particle scattering.

In the world of CHY formalism, it was shown in a series of seminal works [15–17]

that integrands for any monomial scalar interaction could be written down.2 These results

fit neatly into the basic paradigm of CHY formula for scattering amplitudes where the

underlying moduli space (moduli space of punctured Riemann sphere) is universal but the

integrand (which is an n − 3 form for an n particle scattering) depends on the theory.

Ideologically, this appears to be in contrast with the emerging picture in kinematic space

where for every scalar interaction the corresponding polytope is a unique member of the

“accordiohedron family” [18] and the form that corresponds to the amplitude is the unique

canonical form associated to the accordiohedron.

1This space is also known as positive moduli space and often denoted as M+
0,n in the literature.

2This came as a surprise as CHY formalism is intimately tied to perturbative string amplitudes and due

to the absence of any independent quartic vertex in perturbative string amplitude, it was perhaps expected

that no formulae could be written down in CHY formalism which were intrinsically tied to generic scalar

field theories. We thank Poul Damgaard and Ashoke Sen for discussion on this issue.

– 2 –
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This contrast raises a few questions. Just as the derivation of amplitude in bi-adjoint

φ3 scalar theory from canonical form on the associahedron was a way to re-formulate the

CHY formula, (a) can one interpret kinematic space Stokes polytopes and their canonical

forms from the moduli space perspective, and (b) can one write down world-sheet formulae

for massless planar φ4 amplitudes which are “derived” from the corresponding canonical

forms in kinematic space. There appears a major obstacle in quantifying these questions:

• Derivation of the CHY formula for bi-adjoint φ3 scalar amplitude as a pushforward

map between associahedra relied on the key result that compactification of the real

moduli space M0,n(R) is also an associahedron and that the corresponding form on

it is precisely the well known Parke-Taylor form. However, no such moduli space is

known for which the corresponding polytopal realisation is the Stokes polytope (or

any member of the accordiohedron family except associahedron).

A potential stumbling block which provides hints for defining the world-sheet forms is the

following: the CHY integrand for quartic interactions as defined in [16] is defined on the

n− 3 dimensional moduli space which is diffeomorphic to kinematic space associahedron.

Then why does this associahedron not suffice to obtain n−4
2 forms which define scattering

amplitude for quartic interactions.

Using seminal results from [3, 4], we show that, rather strikingly, certain projective
n−4

2 forms on kinematic space associahedra define planar amplitudes for massless quartic

interactions. The notion of projectivity is the same as the one introduced in [2] and is

accomplished in this case by the dependence of these forms on certain quadrangulations

Q of an n-gon. For an n particle scattering and reference quadrangulation Q we denote

these forms as ΩQ
n . Using results from [4] we show that for any n, ΩQ

n are canonical forms

on n−4
2 dimensional Stokes polytopes that can always be realised inside kinematic space

associahedra defined in [2, 5]. For a special class of quadrangulations Q which consists

of parallel diagonals of an n-gon, the corresponding Stokes polytope has a hyper-cube

topology and as we show, there is a canonical realisation of it as a boundary of a higher

dimensional associahedra.

This understanding of quartic scattering amplitude aids us in writing down world-

sheet formulae for such theories even though there is no known moduli space associated to

Stokes polytopes. We define n−4
2 forms Ω̂Q

n on M0,n(R) which are mapped (by scattering

equations) to the n−4
2 forms ΩQ

n on kinematic space associahedron For φ3 interactions these

pushforward maps are the CHY integral formula. We attempt to re-write the pushforward

maps for the lower forms as integral formulae for certain sub-manifolds in the moduli space.

We show that this is indeed true for forms which are labelled by quadrangulations that

consist of parallel diagonals of an n-gon and the corresponding sub-manifold in the moduli

space is precisely the image of kinematic space Stokes polytope under CHY scattering

equations. We also argue that for other quadrangulations, although such sub-manifolds

can be defined for which the pushforward of Ω̂Q
n can be written as an integral formula,

the sub-manifolds are not diffeomorphic to kinematic space Stokes polytopes via scattering

equations.

– 3 –
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The paper is organised as follows. In section 2 we give a quick review of the core ideas

contained in [1, 2] which are needed for the rest of the paper. In section 3 we use the

beautiful ideas of [4] to realise Stokes polytopes as convex polytopes in kinematic space.

We also show that the same idea can be used to obtain convex realisation of associahedra

and we obtain a subset of the associahedra realisation that were defined in [2, 5]. This

family of realisations which are all linearly diffeomorphic to each other are referred to as

ABHY associahedra in [5]. In section 4 we obtain a rather surprising result that starting

with a so-called planar scattering form for quartic interactions which is projective ΩQ
n ,

there is at least one ABHY associahedron such that the restriction of ΩQ
n as an n−4

2 form

onto the associahedron yields a form that is proportional to the scattering amplitude mQ
n .

In section 5 we place the results of [1] on a rigorous footing by showing that ΩQ
n are

canonical top forms on Stokes polytopes which are always realised in one of the ABHY

associahedra. In section 6 we use this result to show that on the (real section of) CHY

moduli space M0,n(R) one can define world-sheet forms Ω̂Q
n that are labelled by reference

quadrangulation Q such that their push-forward via CHY scattering equations produces

the amplitude mQ
n . In section 7 we attempt to write these pushforward maps as “CHY-

type” integral formula on n−4
2 dimensional sub-manifolds of the moduli space that we call

world-sheet Stokes geometries S̃Qn . If the reference quadrangulation Q consists of non-

intersecting diagonals then we show that S̃Qn is diffeomorphic to convexly realised SQn with

diffeomorphisms generated by CHY scattering equations. For any other Q we argue that

although such world-sheet Stokes geometries exist, they are not diffeomorphic to kinematic

space Stokes polytope via scattering equations. We end with an outlook.

2 A quick review of positive geometries in kinematic space

In this section we review key aspects of kinematic space associahedron and associated

canonical form. We also review the main results from [1] where the positive geometry for

planar quartic interactions was discussed. We encourage the interested reader to consult

the original references as well as [13, 14] for details.

In [2] it was shown that the tree-level planar amplitude for massless φ3 theory can

be obtained from a positive geometry known as the associahedron [19, 20] that sits inside

the kinematic space. A positive geometry A is a closed geometry with boundaries of all

co-dimensions and has a unique differential form Ω(A), known as the canonical form — a

complex differential form defined by following properties:

1. it has logarithmic singularities at the boundaries of A,

2. its singularities are recursive, i.e. at every boundary B, ResB Ω(A) = Ω(B),

3. when A is a point Ω(A) := ±1.

For massless scalar φ3 theory, the positive geometry for an n particle scattering is an

n − 3 dimensional polytope known as associahedron and denoted as An. The vertices of

the associahedron correspond to complete triangulations and co-dimesion k-faces represent

k-partial triangulations3 of the n-gon.

3A partial triangulation of regular n-gon is a set of non-crossing diagonals.

– 4 –
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To analyse planar amplitudes one uses planar kinematic variables:

Xij = (pi + pi+1 + . . .+ pj−1)2; 1 ≤ i < j ≤ n . (2.1)

The Mandelstam variables can be expressed in terms of these as:

sij = 2pi · pj = Xi,j+1 +Xi+1,j −Xij −Xi+1,j+1 . (2.2)

In kinematic space Kn, projectivity4 uniquely defines the planar kinematic form Ω
(n−3)
n

up to an overall sign that can be safely ignored:

Ω(n−3)
n :=

∑
planar graph g

sign(g)

n−3∧
a=1

d logXia,ja . (2.3)

To obtain the planar amplitude, as was prescribed in [2], one needs to embed the (n−3)

dimensional An inside the n(n−3)
2 dimensional Kn and then pullback Ω

(n−3)
n on to An to

read off the amplitude. To embed An in Kn the following constraints [2] are imposed:

Xij ≥ 0; 1 ≤ i < j ≤ n (2.4)

sij = −cij ; 1 ≤ i < j ≤ n− 1, |i− j| ≥ 2 . (2.5)

The first set of constraints which are inequalities cuts out a simplex (∆n) inside Kn without

reducing the dimensionality. The second set of constraints are (n−2)(n−3)
2 in numbers and

select out an (n− 3)-dimensional sub-manifold (Hn) inside Kn. Thus the associahedron in

Kn is:

An := ∆n ∩Hn . (2.6)

Notice that the above set of constraints is not unique. It is just one way of realising the

associahedron in the positive region of kinematic space — a particular convex realisation

discovered in [2] which is a special class of the more general realisations known as ABHY

associahedra.5

In [1], the program of obtaining the amplitude from positive geometry was extended to

φ4 interaction (and to other polynomial interactions in [13, 14]) for a few low values of n.

To make this article self-contained and to set up notation, we briefly summarize the main

findings of [1]. For φ4 theory, one should consider quadrangulations of an n-gon, where n is

always even. The number of ways one can completely quadrangulate an n = (2N + 2)-gon

is given by the famous Fuss-Catalan number, FN = 1
2N+1

(
3N
N

)
. The number of internal lines

for an n-particle graph which is the same as the number of diagonals in the quadrangulation

of an n-gon is given by N − 1 = n−4
2 . To connect to the positive geometry framework one

should look for a combinatorial polytope living in n−4
2 dimensions and which has FN

number of vertices. Any polytope in one dimension is a line segment. For the simplest

non-trivial case n = 6 (i.e. N = 2), although the polytope is one dimensional, it would have

4Projectivity implies Ω(A) can only be a function of ratios of Mandelstam variables.
5We will need these more general realisation of associahedra to connect the canonical form for φ4 theory

in kinematic space to the differential form living in the subspace of world-sheet moduli space (see section 4).

– 5 –
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3 vertices. To obtain a positive geometry one needs to systematically drop one of these

vertices (i.e. complete quadrangulations). The definition of the compatibility of a diagonal

with a reference quadrangulation, which we will give now, does precisely this.

The compatibility of a diagonal with a reference quadrangulation is defined as follows.

Consider a regular polygon P with n vertices and label its vertices with 1, 2, . . . , n. We will

call this polygon, solid polygon and we will call its diagonals, solid diagonals. Now, consider

the regular polygon formed by the mid-points of the sides of the solid polygon and label the

mid-points of the sides [i, i+ 1] by i′. We will call this polygon, hollow polygon and we will

call its diagonals, hollow diagonals. Given a reference quadrangulation of the solid polygon

Q a cut C(i′, j′) of the hollow diagonal (i′, j′) is a set comprising the sides [i, i+1] and [j, j+

1] of the solid polygon along with the diagonals of the quadrangulation Q which intersect the

diagonal (i′, j′). We say the solid diagonal (i, j) is compatible with the quadrangulation

Q if the cut C(i′, j′) is connected. A quadrangulation Q′ is compatible with reference

quadrangulation Q if and only if all the diagonals of the quadrangulation Q′ are compatible

with reference quadrangulation Q. This notion of compatibility is same as Q-compatiblity

defined in [21]. The vertices of the Stokes polytope with reference quadrangulation Q

are the quadrangulations that are compatible with Q. Note that the definition of Stokes

polytope depends on the reference quadrangulation and different quadrangulations will

give you different Stokes polytope.

One has to introduce a differential n−4
2 -form in the kinematic space. Using compati-

bility we can define a new operation on the n-gon called Flip. Any n-point diagram with

n ≥ 6 will have one or more hexagons inside it. Flip is an operation of replacing a diagonal

of any such hexagon inside the quadrangulation of the polygon with a diagonal compatible

with the reference quadrangulation. Flip helps assign particular signs (σ = ±1) to each

compatible quadrangulation relative to its reference quadrangulation.

Let Q be a quadrangulation of an n-gon which is associated to an planar Feynman

diagram with propagators given by Xi1 , . . . , Xin−4
2

. We define the (Q-dependent) planar

scattering form,

ΩQ
n =

∑
graphs

(−1)σ(flip) d lnXi1

∧
d lnXi2 . . .

∧
d lnXin−4

2

(2.7)

where σ(flip) = ±1 depending on whether the quadrangulation Xi1 , . . . , Xin−4
2

can be

obtained from Q by even or odd number of flips.

Given Q the differential form does not contain contribution from all the φ4 propa-

gators. Consider the simplest case, i.e. n = 6. Let’s start with Q = 14. The set of Q

compatible quadrangulations are {(14,+), (36,−)}. We have attached a sign to each of

the quadrangulation which measures the number of flips needed to reach it starting from

reference Q = 14. The form ΩQ
6 on the kinematic space is given by,

ΩQ=14
6 = (d lnX14 − d lnX36) . (2.8)

It is evident that it does not capture the singularity associated to X25 channel. We can

get around this problem by considering other possible Qs whose forms on kinematic space

– 6 –
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are given by,

ΩQ=36
6 = (d lnX36 − d lnX25)

ΩQ=25
6 = (d lnX25 − d lnX14) . (2.9)

In fact these differential forms naturally descend to the canonical forms on Stokes polytopes

SQn . Since a Stokes polytope is a positive geometry, it has a canonical form associated to it

which has (logarithmic) singularities on all the facets, such that the residue of restriction

of this form on any of the facet equals the canonical form on the facet. Once we have the

Stokes polytopes and their corresponding canonical forms we need to embed the polytopes

inside the positive region of kinematic space. To obtain the planar amplitude we pull

back the canonical forms on the polytopes. There are several convex realisations of Stokes

polytopes. Their realisation as a simple polytope is given in [21, 22]. In [1] inspired by

ideas outlined in [2] a few low dimensional Stokes polytopes (namely n = 6, 8 and 10) were

given particular convex realisation in the kinematic space. The strategy was to embed

the Stokes polytopes SQn with dimension n−4
2 inside corresponding associahedra (An) with

dimension n−3, for given number of particle n. We illustrate these ideas through a simple

example.

For n = 6 if we start with reference Q1 = (14), the Q1 compatible set is given by

{(14,+), (36,−)}. The corresponding Stokes polytope is one dimensional with two vertices.

We locate this Stokes polytope inside the kinematic space via the following constraints.

sij = −cij ∀ 1 ≤ i < j ≤ n− 1 = 5, |i− j| ≥ 2

X13 = d13, X15 = d15, with d13, d15 > 0 . (2.10)

The first line of constraints are precisely the ones which define the three dimensional

kinematic associahedron A6 inside K6. The other two extra constraints have been imposed

to make it a one-dimensional Stokes polytope S{14}
6 sitting inside A6. From the perspective

of Feynman diagrams, these constraints are rather natural as planar variables from this set

can never occur in Feynman diagrams of φ4 theory.

Using the above constraints, it can be checked that the planar kinematic variables

satisfy,

X36 +X14 = c14 + c24 + c15 + c25 =

2∑
i=1

5∑
j=4

cij ≥ 0,

X25 > 0 (2.11)

It is interesting to note that these constants on the r.h.s. of equation (2.11) are independent

of dij ’s. As we will see in section 4, this observation is a corollary of a theorem which will

have rather serious ramifications for us. We can now pull back the canonical form Ω
{14}
6

on S{14}
6

ωQ1
6 =

(
1

X14
+

1

X36

)
dX14 =: m6(SQ1

6 ) dX14 . (2.12)

– 7 –
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m6(SQ1
6 ) is the canonical rational function associated to the Stokes polytope SQ1

6 . This

is just a partial planar amplitude. To obtain the full planar amplitude we need to consider

contributions from the other two Stokes polytopes (with Q = 36 and 25). For Q2 = (25)

the Q2-compatible set is given by {(25,+), (14,−)} and for Q3 = (36) the Q3-compatible

set is {(36,+), (25,−)}.
For the full planar amplitude one adds up the canonical rational functions associated

to all different Stokes polytopes with particular weights,

M̃6 := αQ1 m6(SQ1
6 ) + αQ2 m6(SQ2

6 ) + αQ3 m6(SQ3
6 ) (2.13)

= αQ1

(
1

X14
+

1

X36

)
+ αQ2

(
1

X25
+

1

X14

)
+ αQ3

(
1

X36
+

1

X25

)
. (2.14)

It is evident that M̃6 =M6 (the planar amplitude) if and only if αQ1 = αQ2 = αQ3 = 1
2 .

Higher point amplitudes can also be obtained in a similar way since thanks to [4] we

have a convex realisation of Stokes polytopes inside ABHY associahedra for arbitrary n.

To obtain the n-point planar amplitude for φ4 we need to consider the rational function

contributions from all possible Stokes polytopes and sum them up with particular weights,

M̃n =
∑
Q

αQ mn(Q). (2.15)

The weights αQ may look like arbitrary free parameters but they are constrained by

physical factorization of amplitudes which is in one to one correspondence with combina-

torial factorization of Stokes polytopes. Given any diagonal (ij), the corresponding facet

Xij = 0 is a product of two lower dimensional Stokes polytopes,

SQn
∣∣∣∣
Xij=0

≡ SQ1
m × S

Q2
n+2−m (2.16)

where Q1 and Q2 are such that Q1∪Q2∪(ij) = Q. It can also be seen that the residue over

each Stokes polytope which contains a boundary Xij → 0 factorizes into residues over lower

dimensional Stokes polytopes. This factorization property naturally implies factorization

of amplitudes as follows. Consider the n-gon with a diagonal (ij) (with i, j such that

this diagonal can be part of a quadrangulation). This diagonal subdivides the n-gon into

a two polygons with vertices L := {i, . . . , j} and R := {j, . . . , n, 1, . . . i} (see figure 1).

These two polygons, by construction, correspond to two Stokes polytopes M̃|j−i+1| =: M̃L

and M̃n+2−(|j−i+1|) =: M̃R respectively. This implies if one takes Xij → 0 the amplitude

factorizes to two lower point ones,

M̃n

∣∣∣∣
Xij = 0

= M̃L
1

Xij
M̃R . (2.17)

This in turn put constraints on αQ’s which have to satisfy the following relation,∑
Q containing(ij)

αQ =
∑

QL,QR

αQL
αQR

(2.18)

where QL and QR range over all the quadrangulations of the two polygons L and R.

– 8 –



J
H
E
P
0
4
(
2
0
2
0
)
1
4
9

Figure 1. A dual polygon breaks into two smaller polygons when a φ4 propagator is taken on-shell.

In this example, a 12-gon breaks into an octagon and a hexagon.

3 Convex realisation of Stokes polytope in the kinematic space

Convex realisations of accordiohedra provide us with positive geometries whose canonical

forms yield scattering amplitudes for planar scalar field theories with polynomial interac-

tions [1, 2, 13, 14]. For cubic interactions, such a realisation of associahedron was derived

in [2]. In the context of quartic interactions, based on certain physics inputs motivated

by the ideas in [2] an attempt was made in [1] to define a convex realisation of Stokes

polytopes in kinematic space. In contrast to the associahedron case, this construction

did not provide a canonical convex realisation of an arbitrary Stokes polytope of generic

dimension, and only a few examples of low dimensional Stokes polytopes were given. A

rigorous and complete realisation of Stokes polytopes as embedded in kinematic space was

provided in [4]. For sake of pedagogy and to ease the task of fellow travellers who venture

in these worlds, we will now give a detailed transcription of the state of the art construction

developed in [4] to a working physicist’s language.

Although the construction in [4] relies on inputs from theory of quivers and correspond-

ing path algebras [3], the convex realisation of Stokes polytope can be understood without

a detailed knowledge of them. In the following we state the key result in [4] pertaining to

such realisations (theorem 2.44 in [4]) and explain the construction “algorithmically”.

• We consider an n-gon with ordered vertices which go clockwise. We label the external

edges such that the one that connects vertices i and i+ 1 is [i, i+ 1]. We denote by E
the set of all edges. We consider a reference quadrangulation Q that consists of n−4

2

diagonals, which divide the n-gon into quadrilaterals. We refer to these quadrilaterals

as cells and use C to denote them. The diagonals in Q are labelled such that if one

of them intersects vertices p and q with p < q we denote it as Dp,q. We then consider

those edges of the n-gon that do not intersect any of the diagonals and refer to the

set of such edges as Qc. We place a “hollow” vertex on each edge [i, i + 1] ∈ E \ Qc

and label it ṽi. We also place a hollow vertex on every Dpq ∈ Q and label it vpq. See

figure 2 for an example.

• In each cell we draw line segments such that,

– they have one end point on the hollow vertex on an external edge and the other

on the hollow vertex on a diagonal which intersects the external edge,

– they have their end points on two diagonals if the two intersect at a vertex of

the n-gon.
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Figure 2. {14,16} quadrangulation of the octagon and the hollow vertices on the external edges

and the diagonals.

We place arrows on these line segments such that within each cell C, a path pC
comprising of such arrows, which begins on an external edge and ends on another is

oriented counter-clockwise. See figure 3 for an example. It is easy to see that within

each cell such a path is unique.

• We then consider the set of all possible internal paths p{vik,jk,...,vi`,j`
} which begin

on vik,jk and end on vi`,j` without intersecting any external edge. Once again it is

clear from the figure that such paths are unique. Note that the set includes paths

of length zero (pvi,j for some vi,j) which are the hollow vertices on diagonals them-

selves. The cardinality of this set denoted as K depends on the choice of reference

quadrangulation.

We now define the set of proper walks. A proper walk is a path between two

hollow vertices on the external edges such that it does not contain two segments in

the same cell. We denote the set of such proper walks by W.

• Given a path p we define a subset of proper walks that are the key players in the

construction.

– A proper walk containing p, wp reaches peak at p if both the arrows on wp
incident on p are outgoing. A walk wp passing through p which has a peak

p and is such that all arrows not on p and not incident on p are incoming is

denoted as Xp X.

– Similarly, wp reaches a dip at p if the two arrows on it which are incident on p

are incoming. If wp is such that all arrows not on p and not incident on p are

outgoing, it is denoted as

X

p
X

.

– We call wp neutral if one of the incident arrows on p is incoming and the other

is outgoing with incoming (outgoing) arrow preceded (followed) by arrows with

reverse orientation. We denote the two neutral paths incident on p as Xp
X

and

X

p Xrespectively.

• It was shown in [4] that for each path p, there is a unique proper walk wp which has

a peak (or a dip) at p and there are precisely two neutral walks at p.
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Figure 3. Paths within the three cells are marked in green.

With the above algorithm in hand, we can now paraphrase in physicist’s language the main

theorem in [4] concerning convex realisation of Stokes polytopes as follows:

In the positive region of kinematic space and for any choice of constants dp1 , . . . , dpK ,

the following constraints locate Stokes polytope:

XXpi X+X X

pi
X −XXpi

X −X X

pi X= dpi , ∀ i ∈ {1, . . . ,K} . (3.1)

This result provides a convex realisation of Stokes polytopes (and in general any accordio-

hedron) inside the positive hyper-quadrant of the kinematic space. We work out a simple

example of this algorithm in appendix B.

We will now show that the convex realisation of any accordiohedron discussed above

includes a subset of (generalised) associahedra defined in [2, 5].

3.1 Convex realisations of associahedra

Unlike Stokes polytopes (and other accordiohedra based on p-angulations with p > 3)

there is a unique combinatorial associahedron associated to partial triangulations of a

polygon. However, there are several inequivalent convex realisations of an associahedron

in an ambient Euclidean space. A special class of these realisations that correspond to the

triangulation T = {(1, 3), (1, 4), . . . , (1, n − 1)} of the n-gon was discovered in [2] and we

denote them by An. We denote realisations based on a triangulation T other than the

one mentioned above by ATn . These realisations were discussed in [4] and analysed as a

sub-set of a wider class of generalised associahedra in [5]. Following the analysis of [5] we

will refer to ATn as ABHY associahedra. However we note that ATn are only a sub-set of

convex realisations discussed in [5], namely those associated to linear quivers with arbitrary

ordering.6,7

6The easiest way to see this is via the comparison of so-called vertices and arrows of the linear quiver

in [5] with hollow vertices and arrows on T that generate AT
n . A detailed discussion on this, though

straightforward will cause too much digression and we avoid it in the interest of pedagogy.
7We are indebted to Song He for pointing out this injection between {AT

n} and ABHY associahedra

to us.
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Figure 4. Arbitrary triangulation of an n-gon.

Claim 3.1. For a reference triangulation T of an n-gon, the algorithm described in section 3

gives rise to a convex realisation of the n− 3 dimensional associahedron ATn in the n(n−3)
2

dimensional planar kinematic space (with basis given by planar kinematic variables) with

the constraints:

sij = −cij ∀ (ij) /∈ T c and |i− j| ≥ 2 , (3.2)

where T c is the triangulation obtained via a 2π
n rotation of each diagonal in T in the

counterclockwise sense, i.e. if (k, `) ∈ T then (k − 1, `− 1) ∈ T c.

Proof. Consider the path p that starts on Dikjk and ends on Di`j` . Both Dikjk and Di`j`

belong to two triangular cells, one which contains an arrow of p and one which does not.

Let k be the third vertex of the triangular cell adjacent to Dikjk and does not contain an

arrow of p. Similarly, let ` be the third vertex of the triangular cell adjacent to Di`j` and

does not contain an arrow of p. See figure 4. The outgoing arrow from vik,jk goes to the

diagonal/edge Dk,jk and the subsequent incoming arrows go to the hollow vertex ṽk. The

incoming arrow from vik,jk goes to the diagonal/edge Dik,k and the subsequent outgoing

arrows go to the hollow vertex ṽk−1. A similar analysis on the ` side tells us XXp X= Xk,`,

X X

p
X = Xk−1,`−1, XXp

X = Xk,`−1, and X X

p X= Xk−1,`. Thus we have:

XXp X+X X

p
X −XXp

X −X X

p X= Xk,` +Xk−1,`−1 −Xk−1,` −Xk,`−1

= −sk−1,`−1 , (3.3)

where the second line follows from the definition of planar kinematic variables in (2.1).

Since the diagonal Dk,l intersects the diagonals Dik,jk and Di`,j` , it does not belong to

the reference triangulation T . Thus (k − 1, `− 1) /∈ T c and hence are constants according

to (3.2). Imposing this in (3.3) we obtain:

XXp X+X X

p
X −XXp

X −X X

p X= ck−1,`−1 , (3.4)
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which is precisely the associahedron constraint associated with the path p. Such an equation

is valid for every diagonal which does not belong to the reference triangulation. This proves

the claim.

4 Planar φ4 amplitudes from lower forms on ABHY associahedra

There is a happy relationship between the Stokes polytope constraints in equation (3.1)

and the associahedron constraints in equation (3.4) if Q ⊂ T . In appendix D, we show that

the Stokes polytope constraints (3.1) are a linear combination of the ABHY associahedron

constraints (3.4). This observation immediately implies that the restriction of the projective

planar scattering form ΩQ
n (2.7) onto the ABHY associahedron ATn (with Q ⊂ T ) is an n−4

2

form proportional to the partial contribution to the amplitude mQ
n .

A rather striking consequence of this assertion is that the convex realisation of Stokes

polytope never enters the picture. The positive geometries which produce the amplitudes

for φ3 as well as for φ4 massless planar interactions are always the ABHY associahedra.

While amplitudes in bi-adjoint φ3 theory are given by the canonical top form on any one

of the associahedra ATn (e.g. An), the forms for φ4 theory are a set of lower n−4
2 forms on

{ATn}. These forms are simply the restrictions of the projective planar scattering form ΩQ
n

for some reference quadrangulation Q.

We first illustrate these ideas in the concrete example of 6 particle scattering. Let us

first consider Q = {14} and the ABHY associahedron A6 defined using equation (3.4) with

T = {13, 14, 15}. Using associahedron constraints we get:

X14 +X36 =

2∑
i=1

5∑
j=4

cij . (4.1)

We see that on A6 the planar scattering form Ω
{14}
6 (2.8) descends to a one-form as:

Ω
{14}
6

∣∣∣∣
A6

=

(
1

X14
+

1

X36

)
dX14 . (4.2)

Let us now consider Q = {36} and the associahedron A{13,35,36}
6 . Associahedron con-

straints give:

X36 +X25 = c13 + c14 + c36 + c46 . (4.3)

Thus on A{13,35,36}
6 the planar scattering Ω

{36}
6 in (2.9) descends to:

Ω
{36}
6

∣∣∣∣
A{13,35,36}6

=

(
1

X36
+

1

X25

)
dX36 . (4.4)

We now consider Q = {25} and the associahedron A{24,25,26}
6 . As before we can use

associahedron constraints to show that:

X25 +X14 =

3∑
j=2

6∑
j=5

cij . (4.5)
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On A{24,25,26}
6 the planar scattering Ω

{25}
6 in (2.9) descends to:

Ω
{25}
6

∣∣∣∣
A{24,25,26}6

=

(
1

X25
+

1

X14

)
dX25 . (4.6)

We thus see that the complete amplitude m6 =
∑

Q αQ mQ
6 is obtained by summing over

rational functions associated to Ω
(Q)
6 |AT

6
with Q ⊂ T .

It can be readily seen that this result generalises to the n point amplitude. Since the

constraints relating Xij such that (ij) ∈ Q∪Qm,8 are contained in the associahedron con-

straints when Q ⊂ T , we have the following result: all “partial” amplitudes mQ
n associated

to quadrangulation Q are simply restrictions of the projective planar scattering form ΩQ
n

to any of the ABHY associahedra ATn with Q ⊂ T .

We thus see that there are unique projective forms on ABHY associahedra, such that a

weighted sum over all of them produces the planar amplitude mn for quartic interactions.

Combinatorics of a Stokes polytope is used to define projective forms but rather than

viewing these forms as top forms on a convex polytope, we can view them as lower forms

on a kinematic associahedron.

We find this perspective rather appealing as the only positive geometries needed to

define amplitudes for φp theories are the ABHY associahedra. But rather than considering

only canonical top forms on it which generate (planar) φ3 amplitude, we need to consider

projective forms of various lower ranks which generate planar amplitudes for other scalar

interactions. Although our analysis in this section and appendix D are restricted to quartic

interactions, it can be generalised to all polynomial interactions.

5 Convex realisation of Stokes polytopes inside ABHY associahedra

In the last section we saw that projectivity and ABHY associahedra are enough to obtain

the planar amplitudes in scalar field theory with quartic interactions. In the case of φ3

interactions, the projective form is the unique canonical top form on kinematic space as-

sociahedron. Hence a natural question is if the lower dimensional projective forms ΩQ
n can

also be understood as canonical top forms on positive geometries in kinematic space. This

idea was realised in [1, 13, 14] where convex realisations of Stokes polytopes (and accor-

diohedra in general) were used to restrict the planar scattering forms as unique canonical

top forms on them and thereby extract the amplitude of various theories.

In this section we analyse such realisations in the context of Stokes polytopes. We

denote such convex realisations as SQn . In [1] one, two and three dimensional Stokes poly-

topes were convexly realised inside the kinematic space. In fact the realisation was such

that the polytopes sat either in the interior of, or on the boundary of An. We will now

try to realise generic (in any dimension and for any quadrangulation Q) Stokes polytopes

inside9 ABHY associahedra ATn . In appendix E we also prove that the canonical forms

8Qm is the set of all diagonals obtained from Q by mutation.
9By “inside” we mean either in the interior of the associahedron or embedded as one of the lower

dimensional facets of the associahedron.
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associated to SQn indeed generate amplitudes for planar quartic interactions, a result that

was anticipated in [1, 13]. Our primary result in this section is that any Stokes polytope

with a reference quadrangulation Q and “size” determined by certain constants dij can

always be embedded inside (at least) one of the ABHY associahedra which satisfies the

following properties:

• It is an ABHY associahedron ATn with reference triangulation T ⊃ Q.

• The constants cij which determine the size of ATn in Kn bound dij from above and

below, as in e.g. equation (5.10).

In the following we prove our claim for Q = {(1, 4), (1, 6), . . . , (1, n − 2)} where the “en-

veloping” associahedron is An defined in [2].

5.1 Embedding S{14,16,...,(1,n−2)}
n in An

In this section we consider a Stokes polytope obtained by considering the reference dissec-

tion, all whose elements originate from vertex 1, i.e. Q = {14, 16, 18, . . . , (1, (n− 2))}. We

will show that one can always embed the resulting Stokes polytope inside (n − 3) dimen-

sional associahedron An.A consequence of such embedding is that a boundary of Stokes

polytope obtained by setting Xij = 0 (for some (i, j)) lie on the corresponding boundary

of the associahedron.

From [4] and as detailed in section 3 we know that the embedding of Stokes polytope

inside kinematic space is obtained via sets of constraints classified according to the length

of internal paths which ranges from k = 0 to k = n−6
2 . The constraint corresponding to a

length k path is:

Xi,i+3+2k +Xi+2,i+5+2k −Xi,i+5+2k −Xi+2,i+3+2k = di,i+k , (5.1)

where i takes all odd values in the range [1, . . . , n− 5− 2k] and di,i+k are constants.

We will now show that the constraints (5.1) are contained in the ones associated to the

ABHY associahedron corresponding to T = {13, 14, . . . , 1(n−1)}, namely An. Notice that

T ⊂ Q. The ABHY constraints in this case are given by sij = −cij |1 ≤ i < j − 1 ≤ n− 2.

Using these it is easy to show that:

Xi,i+3+2k +Xi+2,i+5+2k −Xi,i+5+2k −Xi+2,i+3+2k =

i+1∑
I=i

i+4+2k∑
J=i+3+2k

cIJ . (5.2)

We compare (5.1) and (5.2) and see that constraints that localize the Stokes polytope

S{14,16,...,1(n−2)}
n inside kinematic space are realised as a consequence of ABHY constraints.

We will now show that S{14,16,...,1(n−2)}
n in fact admits a proper embedding inside An, i.e.

on the support of S{14,16,...,1(n−2)}
n inside An, every Xij variable which does not occur as a

vertex of the Stokes polytope remains positive.

Consider the following additional constraints:

X1j = d1j for all odd j. (5.3)

These constraints can be used to locate the Stokes polytope inside kinematic associahedron

An as we show below.
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Claim 5.1. For all odd j, if
∑j−3

I=1

∑n−1
J=j+1 cIJ ≤ cj−2,j then ∃ d1j for which Xj−2,j and

Xj−1,j+1 are positive.

Proof. Let us first consider Xj−2,j for odd j. From the associahedron constraints we have:

Xj−2,j = d1j −X1,j−1 +

j−3∑
I=1

cI,j−1 . (5.4)

Hence Xj−2,j ≥ 0 iff

d1j +

j−3∑
I=1

cI,j−1 ≥ Xmax
1,j−1 . (5.5)

To obtain Xmax
1,j−1, note that (p1 + · · ·+ pj−2 + pj−1 + . . .+ pn−1)2 = 0, from which we have:

X1,j−1 +Xj−2,n =

j−3∑
I=1

n−1∑
J=j−1

cIJ . (5.6)

Since Xj−2,n for odd j can be zero, we obtain Xmax
1,j−1 =

∑j−3
I=1

∑n−1
J=j−1 cIJ . Thus from

equation (5.5) we have,

d1j ≥
j−3∑
I=1

n−1∑
J=j

cIJ . (5.7)

Let us now consider the positivity of Xj−1,j+1 for odd j. As before from associahedron

constraints we have:

Xj−1,j+1 = X1,j+1 − d1,j +

j−2∑
I=1

cIj . (5.8)

Since X1,j+1 can be zero, Xj−1,j+1 ≥ 0 implies:

d1j ≤
j−2∑
I=1

cIj . (5.9)

From equations (5.7) and (5.9), we require d1,j to satisfy the following bound:

j−3∑
I=1

n−1∑
J=j

cIJ ≤ d1j ≤
j−2∑
I=1

cIj . (5.10)

We see from (5.10) that S{14,...,1(n−2)}
n can be embedded inside An only if cij satisfy:

j−3∑
I=1

n−1∑
J=j+1

cIJ ≤ cj−2,j . (5.11)

This proves the claim.

– 16 –



J
H
E
P
0
4
(
2
0
2
0
)
1
4
9

Claim 5.2. With the above bounds on d1k for all odd k, we will now prove that for

(j − i) > 2, Xij ≥ 0 when either both (i, j) are even, or both are odd or i is even and j

is odd.

Proof. From the associahedron constraints we have,

Xij = X1j −X1,i+1 +

i−1∑
I=1

j−1∑
J=i+1

cIJ . (5.12)

Let us first consider the case when both i and j are even. Then,

Xij = X1j − d1,i+1 +
i−1∑
I=1

j−1∑
J=i+1

cIJ . (5.13)

Since d1,i+1 ≤
∑i−1

I=1 cI,i+1 and as X1j ≥ 0, we have Xij ≥ 0 when i and j are both even.

A similar analysis shows that Xij ≥ 0 when i and j are both odd. We now consider the

final case when i is even and j is odd. In this case we have,

Xij = d1j − d1,i+1 +

i−1∑
I=1

j−1∑
J=i+1

cIJ . (5.14)

Due to the bounds on d1j , we have that d1j − d1i+1 ≥ 0 for (j − i) ≥ 3. Hence Xij remain

positive for even i and odd j and (j − i) ≥ 3. This proves the claim.

Thus we see that there is always a choice of d1j for which embedding of Stokes polytope

S{14,16,...,1(n−2)}
n inside the ABHY associahedron is proper.

A few remarks are in order.

• The two dimensional Stokes polytope corresponding to reference quadrangulation

Q = {14, 16} can be convexly realised as a pentagon embedded inside the five di-

mensional associahedron A8 via the constraint X15 = d15 where d15 is bounded as∑2
I=1

∑7
J=5 cIJ ≤ d15 ≤

∑3
I=1 cI5. As stated in claim 5.1, this will be true only if

the cij themselves satisfy the corresponding bounds.

• We note that there is no canonical embedding of S{14,16,...,1(n−2)}
n inside An. We

chose a particular embedding defined by additional constraints in equation (5.3).

However we could have also considered constraints generated by linear combinations∑
j odd a1jX1j = constant.

• This analysis can be easily generalised to SQn for arbitrary Q 6=
{

14, 5n, . . . ,
(
n
2 +

1, n2 + 4
)}

and it can be shown that SQn can be convexly realised in ATn for any T

that contains Q.

• In the next section we consider S{14,5n,...,(n
2

+1,n
2

+4)}
n which arises from reference quad-

rangulation that consists of non-intersecting diagonals. In contrast to Stokes poly-

topes associated to other class of quadrangulations, in this case we show that SQn do

have canonical embedding as a (hyper-cube) boundary of An.
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5.2 A canonical embedding of S{14,5n,...,(n
2
+1,n

2
+4)}

n inside ABHY associa-

hedron

We know from [4] and the algorithm given in section 3 that the convex realisation of the

Stokes polytope S{14,5n,...,(n
2

+1,n
2

+4)}
n inside kinematic space is given by the constraints:

X14 +X3n = d1

Xab +Xa−1,b−1 = dk+2 , (5.15)

for a = 5 + k, b = n− k, where k ∈
[
0, 1, . . . , n2 − 4

]
.

Claim 5.3. For d1 =
∑2

I=1

∑n−1
J=4 cIJ and dk+2 = c4+k,n−k−1 for k ∈

[
0, 1, . . . , n2 − 4

]
,

S{14,5n,...,(n
2

+1,n
2

+4)}
n can be realised as a face of An by setting X13 = 0 and X4+m,n−m = 0

for m ∈
[
0, 1, . . . , n2 − 3

]
.

Proof. Using the associahedron constraints it is easy to see that:

X14 +X3n =
2∑
I=1

n−1∑
J=4

cIJ

Xab +Xa−1,b−1 = Xa−1,b +Xa,b−1 + ca−1,b−1 , (5.16)

for a = 5 + k, b = n− k, where k ∈
[
0, 1, . . . , n2 − 4

]
. We compare these relations with the

Stokes polytope constraints in (5.15) and see that when di take the values stated in the

claim the Stokes polytope is convex realised as the face of An obtained by setting Xa−1,b

and Xa,b−1 for a = 5 + k, b = n− k, where k ∈
[
0, 1, . . . , n2 − 4

]
to zero.

As X13 never crosses any of the dissections which occur as vertices of the Stokes

polytope we can choose X13 = 0. This proves the claim.

We refer to this embedding as canonical as it is a unique mapping which realises

Stokes polytope as a codimension n−2
2 face of An. Such a canonical realisation is not

possible for any other reference quadrangulation. This follows from the fact that it is only

for Q =
{

14, 5n, . . . ,
(
n
2 + 1, n2 + 4

)}
that all the vertices of the Stokes polytope correspond

to vertices of an associahedron labelled by Q ∪
{

4n, 5(n− 1), . . . ,
(
n
2 + 1, n2 + 3

)}
with all

the co-ordinates except those in Q set to zero. For a generic quadrangulation whether any

embedding is singled out by additional requirements is an interesting question in its own

right. We touch upon this issue in section 7.2

6 Towards world-sheet forms for quartic interactions

In this section we analyse the relationship between φ4 planar amplitudes in terms of posi-

tive geometry and projective forms and forms/integrands on the CHY moduli space. For

φ3 interactions, it was shown beautifully in [2, 11] that the canonical form on the kine-

matic associahedron is a pushforward of the CHY φ3 “half-integrand” (also known as the

Parke-Taylor form) via the CHY scattering equations. We would like to see if a similar

understanding exists between the scattering form for quartic interactions and certain forms
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on the moduli space. Our idea is to explore planar amplitudes for quartic interactions in

terms of pushforward of d ln forms on a moduli space.

Recall that we have two distinct perspectives on the positive geometry picture in

kinematic space. In this section we consider the first one, described in section 4, in which

one does not consider the Stokes polytope in kinematic space, and all projective forms are

defined on the family of ABHY associahedra {ATn}. This encourages us to define for a

given quadrangulation Q, a world-sheet scattering form Ω̃Q
n on M0,n(R) and analyze its

pushforward on ATn with Q ⊂ T . As we illustrate below, while the meromorphic piece of the

pushforward produces precisely the form proportional to mQ
n , there is an additional exact

n−4
2 d log form with no singularities in the interior of, or on the boundary of ATn . Thus

when viewed as a pushforward from certain equivalence class (defined in equation (6.9)) of

d log forms on the CHY moduli space M0,n(R) onto the kinematic space associahedra via

scattering equations, we recover a form precisely proportional to mQ
n .

We emphasise that our approach to deriving world-sheet formulae for planar quartic

amplitudes is rather simple-minded, as a sophisticated and complete answer to this question

presumably requires the existence of a (real) moduli space whose polytopal realisation

is the Stokes polytope [23]. However, no such moduli space is known to date.10,11 An

extremely interesting take on relating canonical forms on Stokes polytopes to world-sheet

was advocated recently in [24]. We believe that our analysis is consistent with the results

of that paper.

We now summarise the seminal ideas of [2, 11] on which our analysis is based. The

planar kinematic form associated to bi-adjoint scalar φ3 theory can be used to define a

form on the compactified real moduli space of the punctured Riemann sphereM0,n(R) [2].

OnM0,n(R) this form turns out to be the Parke-Taylor form. One of the beautiful results

established in [2, 11] was a derivation of the CHY formula for bi-adjoint scalar φ3 theory

by interpreting the canonical form on An as a pushforward of the Parke-Taylor form via

scattering equations. Our idea is to use this construction for planar φ4 interactions. We

now outline our strategy:

• Inspired by [2], given a projective, planar scattering form ΩQ
n associated to quadran-

gulation Q, we define the corresponding form on the real section of the CHY moduli

space, i.e. M0,n(R) by “formally substituting” Xij → uij . This yields an n−4
2 form

1
N Ω̃Q

n on the moduli space, which has log singularities on boundaries corresponding

to uij → 0 with (ij) compatible with Q, as expected of quartic interactions. N−1

is an overall normalisation and is defined to be equal to the number of solutions to

scattering equations. Although it appears rather ad-hoc at this stage, it should only

be considered as part of the definition and its role will become clear below.12

• We then study the pushforward of these world-sheet forms via scattering equations in

section 6.2. In light of arguments put forward in section 4 we expect the pushforward

10An unsurprising fact if we think of field theory amplitudes as limits of string amplitudes which do not

have quartic vertices. See however [24].
11We are indebted to Satyan Devadoss and Sushmita Venugopalan for several discussions on this issue.
12In [2], the world-sheet form was obtained by replacing Xij → σij−1 and this was precisely the Parke-

Taylor n− 3 form. We will come back to this in section 6.3.
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to produce a form which contains mQ
n . This indeed turns out to be the case, as we

show in the simplest non-trivial example of n = 6 that the pushforward is the sum

of such a form and an additional exact form ! The exact form has no singularities in

the interior of, or on the boundaries of the embedding associahedron. We thus define

a world-sheet form Ω̂Q
6 whose pushforward indeed produces the n point amplitude

compatible with Q. Ω̂Q
6 parametrises an equivalence class of d ln forms [Ω̃Q

6 ] where

equivalence is defined by addition of analytic exact forms.13 We then write down

the most general pushforward formula for any Ω̂Q
n using the diffeomorphism between

M0,n(R) and any of the ABHY associahedra.

6.1 Towards world-sheet forms

Following the discussion above, we first consider the simplest n = 6 case with Q = {14}
being the reference quadrangulation. Using Ω

{14}
6 = d lnX14−d lnX36,14 we define a 1-form

on M0,6(R) as,

Ω̃
{14}
6 :=

1

N
(d lnu14 − d lnu36)

=
1

N

(
dσ3

σ3(1− σ3)
− dσ4

σ4

)
, (6.1)

where in the second line we performed the usual gauge fixing σ1 = 0, σ5 = 1, σ6 =∞. We

would now like to see the push-forward of this form on A6. As neither of the two channels

X14 or X36 crosses X13, we can set X13 = 0 without loss of generality. This implies that

on the world-sheet we can set σ2 = 0.

The CHY scattering equations can be used to show that,

σ3 =
X14σ4

c14 + c24 + σ4(c15 + c25)
, σ4 =

X15(1− σ3) + σ3c35[∑3
I=1 cI5 − σ3

∑2
I=1 cI5

] . (6.2)

These equations are complicated to solve and hence we consider a specific kinematic con-

figuration where c15 + c25 = 0.15 In this case, we obtain for σ3 and σ4 the following:

σ3 =
X14X15

c35
∑2

i=1 ci4 − c35X14 +X14X15

, σ4 =
X15

∑2
i=1 ci4

c35
∑2

i=1 ci4 − c35X14 +X14X15

. (6.3)

Hence for such a restricted choice of kinematics, there is a unique real solution to the

scattering equations and thus N = 1.

We now use these equations to push-forward Ω̃
(14)
6 onto A6. After some algebra and

using the fact that for this special choice of kinematics, X14 +X36 = c14 + c24 we see that

13As we are working with real moduli spaces whose compactification is an associahedron as opposed to

the ones discussed in [25], we do not identify these equivalence classes with any cohomology groups. We

discuss this point in more detail below.
14Note that, when restricted to the kinematic space associahedron this yields a 1-form which is the

canonical form on ST
{14}
6 .

15This choice of kinematics is a degenerate case that corresponds to certain collinear limits. We use it

only for the purpose of illustration as will become clear below.
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the push-forward is given by,

push-forward = dX14

(
1

X14
+

1

X36

)
+ analytic term . (6.4)

For our choice of kinematics, the analytic term is given by:

Analytic term = d ln

[
c35

2∑
i=1

ci4 − c35X14 +X14X15

]
. (6.5)

This term can be understood as follows. For our choice of kinematics, it can be verified that

X14 =
2∑
i=1

ci4u14 =: f14u14

X36 =
2∑
i=1

ci4u35u36 =: f36u36 . (6.6)

We thus see that under push-forward by scattering equations,

Ω̃
{14}
6 →

(
1

X14
+

1

X36

)
dX14 − d ln

[
f14

f36

]
. (6.7)

This equation can be re-written as

Ω̃
{14}
6 + d ln

[
f14

f36

]
→
(

1

X14
+

1

X36

)
dX14

=⇒ d ln{u14 f14

u36 f36
} →

(
1

X14
+

1

X36

)
dX14 (6.8)

where f14 = c14 + c24 and f36 = σ3−σ4
σ3−1

1
σ4

(c14 + c24). Several comments are in order.

• In light of our analysis in section 4, the result of this simple example is not surpris-

ing. There it was shown that the restriction of the planar scattering form ΩQ
n onto an

ABHY Associahedron ATn (for any triangulation T which contains Q) is proportional

to mQ
n . As M0,n(R) is diffeomorphic to ATn via scattering equations, it is rather

expected that a world-sheet form with precisely the same singularity structure as ΩQ
n

produces the same singular contributions as ΩQ
n |AT

n
under push-forward by scatter-

ing equations. The above example illustrates this explicitly. A beautiful geometric

manifestation of this observation arises via intersection theory and has been explored

in [24]. Due to the argument presented above, we expect that this result can be

generalised to any n.

• In contrast to the Parke-Taylor form, Ω̃
(14)
6 also produces a term which is analytic in

A6 (it is in fact analytic in the positive quadrant of the planar kinematic space). This

makes their push-forwards more intricate than those for the canonical top forms where

such maps were just a manifestation of the CHY formula for (planar) φ3 interactions.

• The analytic piece vanishes when X46 = 0. In M0,n(R) this simply corresponds to

going to the σ4 → 1 boundary and hence reduces the world-sheet form to dσ3
σ3(1−σ3) .
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• The X46 = 0 constraint corresponds to the convex realisation of ST {14} in A6, and as

we show below, has a nice counterpart on the world-sheet. Namely, the image of the

(convexly realised) ST {14,5n,...,1(n−2)} is a boundary of M0,n(R) and the restriction

of Ω̃
{14,5n,...,1(n−2)}
n onto this boundary is such that its push-forward via the CHY

scattering equations produces precisely the amplitude. This helps us in writing a

CHY type formula for these simplest kind of Stokes polytopes.

6.2 Lower forms on M0,n(R)

In this section we analyse the pushforward of Ω̃Q
n via the CHY scattering equations. Gen-

eralizing the result in [2], in appendix F we propose a map from world-sheet associahedron

to ABHY associahedron with arbitrary reference triangulation. Inspired by this map and

the discussion in section 4 we make the following claim.

Claim 6.1. The pushforward of Ω̃Q
n via CHY scattering equations equals mQ

n
∏

(ij)∈Q dXij

up to an exact form.

Proof. Our primary argument is the following: Ω̃Q
n is a d log form with simple poles on

a boundary subset of M0,n(R), where the subset of boundaries is in one to one corre-

spondence with Q-compatible quadrangulations. Scattering equations are diffeomorphisms

between the world-sheet associahedron and any of the ABHY associahedra.16 Hence if we

consider an equivalence class of the d ln forms

[Ω̃Q
n ] = {Ω̃Q

n + exact-form} (6.9)

where by “exact-form” we mean forms which are analytic on M0,n(R), the scattering

equations induce the map at the level of [Ω̃Q
n ]. As the restriction of planar scattering form

ΩQ
n (which is also a closed form) to ATn equals mQ

n
∏

(ij)∈Q dXij , pushforward of Ω̃Q
n to

ATn produces mQ
n
∏

(ij)∈Q dXij up to analytic (non-singular) form. Hence CHY scattering

equations map Ω̃Q
n to ΩQ

n |AT
n

up to an exact form.

We now quantify this argument in detail. Consider the map between the world-sheet

associahedron and kinematic space associahedron as expressed in appendix F:

Xij =
∑

i≤k≤j−2

j≤`≤i−2

ck`
σi−1,`σk,j−1

σk,`σi−1,j−1
=

∑
i≤k≤j−2

j≤`≤i−2

ck`
∏
i≤p≤k
j≤q≤`

upq . (6.10)

For simplicity we restrict our attention to An (as opposed to ATn ) in the kinematic space.

The associahedron constraints associated to An are:

Xij = X1j −X1,i+1 +
∑

1≤k≤i−1
i+1≤l≤j−1

ck`. (6.11)

16Strictly speaking there is no proof of this conjecture to the best of our knowledge. However, it has been

verified up to n = 10 [2].
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Combining equations (6.10) and (6.11), and after some algebra we get:

Xij =
∑

1≤k≤i−1
i+1≤`≤j−1

ck`
∏

k+1≤p≤i
`+1≤q≤n

upq +
∑

i≤k≤j−2
j≤`≤n−1

ck`
∏

1≤p≤k
j≤q≤`

upq +
∑

1≤k≤i−1
j≤`≤n−1

ck`
∏

1≤p≤k
j≤q≤`

upq
∏

k+1≤r≤i
j≤s≤n

ur,s .

(6.12)

Notice that each Xij is of the form

Xij = uijfij(u), (6.13)

where assuming the existence of diffeomorphism between world-sheet and kinematic space

associahedra, we deduce that fij is a non-vanishing polynomial in the other uk`.

Let us now consider the following form which equals Ω̃Q
n up to a d log form:

Ω̂Q
n :=

1

N
∑

Q′∈STQ

sgn(Q′)
∧

(ij)∈Q′
(d log[uij ] + d log[fij(u)]) . (6.14)

Using equation (6.13) it can be readily checked that, on each solution to the scattering

equation the pushforward of this form produces ΩQ
n |AT

n
. Thus summing over all the solutions

and dividing by N produces the amplitude.

The primary argument written above equation (6.10) then implies that Ω̂Q − Ω̃Q is

exact, i.e. it has no singularities on the CHY moduli space. We note that as Ω̂Q
n −Ω̃Q

n is sum

of n−4
2 forms each of which has at least one differential of the form d ln[fij(u)] and hence

the primary argument is equivalent to the claim that all the functions ln fij are analytic

on M0,n(R).

Let us illustrate this with an example. We again consider the simplest non-trivial case

of n = 6 with Q = {14} being the reference quadrangulation. From section 6.1 we consider

the following 1-form on M0,6(R):

Ω̃
{14}
6 = d lnu14 − d lnu36 . (6.15)

From scattering equations we have:

X14 = u14f14(u) ,

X36 = u36f36(u) ,

where f14(u) = (c14 + c15u15 + c24u24 + c25u15u24u25) ,

f36(u) = (c14u25u35u26 + c15u26 + c24u35 + c25) . (6.16)

Therefore Ω̂
{14}
6 in (6.14) is given by:

Ω̂
{14}
6 = d log u14 − d log u36 + d log

(
c14 + c15u15 + c24u24 + c25u15u24u25

c14u25u35u26 + c15u26 + c24u35 + c25

)
. (6.17)

Since c14 + c15 + c24 + c25 ≥ f14 ≥ c14 and c14 + c15 + c24 + c25 ≥ f36 ≥ c25, the extra term is

an exact form. Using (6.16) we see that pushforward of Ω̂
{14}
6 equals Ω{6}|A6 = m

{14}
6 dX14.
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Although we quantified our arguments for An, it can be generalised to any Q and any

ATn using the analysis in appendix F. Thus for any Q and n we have a pushforward map

at the level of the equivalence classes [Ω̃Q
n ]

Ω̂Q
n

scattering equations−−−−−−−−−−−−→ mQ
n

∏
(ij)∈Q

dXij . (6.18)

It is clear that Ω̂Q
n are representatives of the equivalence class [Ω̃Q

n ] defined in equa-

tion (6.9). In the case of complexified moduli spaceM0,n, [Ω̃Q
n ] belongs to the cohomology

groups H
n−4
2 (M0,n).17 But as the compactification of the real moduli space that we are

working with is simply an associahedron, we do not identify these equivalence classes with

a cohomology class.18

6.3 Further scrutiny of the world-sheet form

In the previous section we argued that the push-forward of the world-sheet form Ω̂Q
n by

scattering equations generate the corresponding amplitude contribution mQ
n . Ω̂Q

n was ob-

tained by considering the planar scattering form in kinematic space and simply replacing

Xij with uij fij .

We could try to apply the same idea for φ3 interactions and revisit the results of [2].

However in this case, we know that the world-sheet form (whose push-forward by scattering

equations yields the planar amplitude) is the well known Parke-Taylor form. In the σ1 =

0, σn−1 = 1, σn =∞, this form is given by,

ωws
n =

dσ2 ∧ · · · ∧ dσn−2

σ2 σ23 . . . σn−2,n−1
. (6.19)

It is rather obvious that Ω̂n is not equal to the Parke-Taylor form. Although, Ω̂n is defined

on the world-sheet, it depends on the kinematic data. This is in contrast to Parke-Taylor

form which is the canonical top form on the Moduli space. Hence the ideas laid out in

previous section seems to break down for cubic theory. If this were the case, it would be

rather surprising and would require more scrutiny of the definition of Ω̂n. We will now argue

by means of an example that this is not the case. Namely, on the solutions of scattering

equations, the two forms are equal and the push-forward of Ω̂n and the Parke-Taylor form

both yield the canonical form on the kinematic space Associahedron. We would like to

emphasise that this comparison also shows that for quartic interactions Ω̂n is not the final

answer and there must exist a form “intrinsic” to the world-sheet whose push forward will

produce the corresponding contribution to the amplitude. However derivation of such form

has eluded us so far.
17We note that Parke-Taylor forms form a basis for Hn−3(M0,n) [27], for both the integral cohomology

classes or cohomology over C. Whether the Q-compatible forms generate such a basis for n−4
2

dimensional

cohomology classes remains outside the scope of the paper.
18As an aside we note that cohomology classes of a different compactification of the real moduli space

(which for n = 4 is simply the one point compactification) has been analysed in [25, 26]. This compacti-

fication leads to M0,n(R) which are Eilenberg-MacLane spaces K(π, n) and are non-orientable for n ≥ 5.

It will be extremely interesting to analyse the relationship (if any) of “Q-compatibility” with rank n−4
2

cohomology classes for such compactification.
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Our claim is that even in the case of φ3 theory, we have the following.

Ω̂n − ωws
n → 0 . (6.20)

Even though we lack a general proof of this statement, we verify it for n = 5 point case,19

i.e. we compute ∑
solns to scatt eqs.

Ω̂5 − ωws
n

and show that it indeed vanishes.

For n = 5 case, the scattering equations for X13 and X14 in our choice of gauge

(σ1 = 0, σ4 = 1, σ5 =∞) are given by [2]:

X13 =
σ2

σ3
(c13 + σ3c14)

X14 =
1

1− σ2
((σ3 − σ2)c24 + σ3(1− σ2)c14). (6.21)

As shown in [2], push-forward of world-sheet forms on the kinematic space associahedron

is obtained by substituting solutions to the scattering equations. For generic choices of

cij computing the push-forward of Ω̂ is rather complicated and hence in the interest of

pedagogy, we consider two choices of cij . In the first case, we consider c14 = 0 while other

cij s are arbitrary. We see that for this choice of cij Ω̂5 matches ωws
5 and hence their push

forward under the scattering equations trivially match.

We then consider the case where cij = 1 for ∀ (i, j) and compute the push-forward.

The scattering equations have two distinct solutions and hence the overall normalisation

factor of Ω̂5 is 1
2 . As we show explicitly in appendix G, the push-forward of Ω̂5 once again

matches the push-forward of Parke-Taylor form. In fact we have checked that the push-

forwards match for generic cij , but the intermediate expressions are quite complicated and

we don’t present them here.

The fact that Ω̂5 matches with the Parke-Taylor form only on the solutions to the

scattering equations has a precedence in CHY formalism. For example, the reduced Pfaffian

which generically shows up in CHY integrands is well defined only on the solution to the

scattering equations.

We conclude this section with a few comments:

• In a recent work [24], the author initiated the study of intersection theory for Stokes

polytopes and derived formulae for mQ
n from intersection numbers of certain d log

forms on the (complexified) moduli space M0,n. We believe that, as in the case of

bi-adjoint amplitudes [28], this approach is closely tied to the pushforward map in

equation (6.18). However, a detailed comparison of the two approaches is beyond the

scope of this paper.

• In the n = 6 case, we wrote an explicit form Ω̂
{14}
6 whose pushforward produces partial

amplitude m
{14}
6 . This form is obtained by subtracting out the exact form d ln f [u14]

19Verification for the first non-trivial, that is n = 4 case is trivial and we leave it as an exercise for the

reader.
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from the world-sheet form Ω̃
{14}
6 . Interestingly enough, it can be readily checked

that the exact form d ln f [uij ] vanishes when X46 = 0. The constraint precisely

corresponds to the convex realisation of S{14}
6 in A6 defined in section 5.2.

• InM0,6(R) X46 = 0 is mapped via the scattering equations to the σ4 → 1 boundary.

We refer to this boundary as a world-sheet Stokes geometry and denote it as S̃{14}
6 .

Hence restriction of the world-sheet form (6.1) to S̃{14}
6 equals dσ3

σ3(1−σ3) such that its

pushforward via scattering equations equals m
{14}
6 dX14.

In the following section we expand on these observations. We show that the image of

the convexly realised S{14,5n,...,1(n−2)}
n under diffeomorphism generated by CHY scattering

equations is a boundary of M0,n(R) and restriction of Ω̃
{14,5n,...,1(n−2)}
n on this boundary

is such that the corresponding pushforward under CHY scattering equations precisely pro-

duces the amplitude thus aiding us in writing a CHY type formula for the Stokes polytopes

with hyper-cube topology.

7 World-sheet Stokes geometries

For the bi-adjoint scalar amplitudes, the pushforward of the canonical form on world-sheet

associahedron can be written in an integral representation which is the CHY formula for

bi-adjoint scattering amplitudes. In this section we try to analyse if a similar formula can

be written down in the present case, i.e. if the pushforward map defined in equation (6.18)

can be expressed as a “CHY-inspired” integral formula [29].

We first consider the quadrangulation consisting of parallel diagonals
{

14, 5n, . . . , n2 +

1, n2 + 4
}

and analyse the pushforward of world-sheet form from the perspective mentioned

towards the end of previous section.

We will see that the unique convex realisation of S{14,5n,...,(n
2

+1,n
2

+4)}
n as boundary of

An helps us in writing “CHY-type” integral formula for these special class of quadrangu-

lations.

In section 7.1 we use the canonical embedding of S{14,5n,...,(n
2

+1,n
2

+4)}
n as a boundary

of An to define the world-sheet Stokes geometry S̃{14,5n,...,(n
2

+1,n
2

+4)}
n . We then show that

restriction of ΩQ
n on S̃Qn (which we denote as ω̃Qn ) is such that its pushforward via scattering

equations equals scattering amplitude. We finally write this pushforward map as an integral

formula on S̃{14,5n,...,(n
2

+1,n
2

+4)}
n .

We then argue that there is an “intrinsic” characterization of S̃{14,5n,...,(n
2

+1,n
2

+4)}
n in

M0,n(R). This characterisation is obtained by defining S̃Qn as a n−4
2 dimensional positive-

geometry embedded in the moduli space on which the exact form Ω̂Q
n − Ω̃Q

n vanishes. This

characterisation leads us to a definition of the world-sheet Stokes geometry S̃Qn for other

class of quadrangulations in section 7.2.

7.1 World-sheet Stokes geometries for Q =
{
14, 5n, . . . ,

(
n
2

+ 1, n
2

+ 4
)}

We begin this section by considering again the n = 6 case with Q = {14} being the

reference quadrangulation. Let us note that the exact form on the r.h.s. of equation (6.17)
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has an interesting structure. If we approach the co-dimension 2 boundary of M0,6(R)

obtained by setting u46 and u13 to 0, it vanishes. Thus the restriction of Ω̃
{14}
6 on to this

boundary is such that its pushforward by scattering equations produces exactly the partial

amplitude m
{14}
6 .

In kinematic space this boundary corresponds to X46 = 0 and X13 = 0, which from

our discussion in section 5.2 gives precisely the canonical convex realisation of S{14}
6 as

a boundary of A6. Image of this convex realisation under (inverse of) diffeomorphism

generated by scattering equation is thus a one-dimensional positive geometry in M0,6(R)

which we will refer to as world-sheet Stokes Geometry and denote as S̃{14}
6 . We denote the

restriction of 1
N Ω̃

{14}
6 on to S̃{14}

6 as ω̃
{14}
6 and it is given by:

ω̃
{14}
6 =

du14

u14(1− u14)
. (7.1)

Let us now generalise the above discussion to arbitrary n when Q =
{

14, 5n, . . . ,
(
n
2 +

1, n2 + 4
)}

. As we know from section 5.2 and the discussion above, world-sheet Stokes

geometry S̃{14,5n,...,(n
2

+1,n
2

+4)}
n is obtained by setting uij = 0 ∀ (ij) ∈ Qc :=

{
13, 4n, 5(n−

1), . . . ,
(
n
2 + 1, n2 + 3

)}
. The restriction of Ω̃

{14,5n,...,(n
2

+1,n
2

+4)}
n on to this Stokes geometry

is an immediate generalisation of (7.1):

ω̃
{14,5n,...,(n

2
+1,n

2
+4)}

n =
du14 ∧ du5n ∧ · · · ∧ du(n

2
+1),(n

2
+4)

u14(1− u14) . . . un
2

+1,n
2

+4

(
1− un

2
+1,n

2
+4

)
=

∧
(ij)∈{14,5n,...,(n

2
+1,n

2
+4)}

duij
uij(1− uij)

. (7.2)

We will now verify that under pushforward by scattering equations, (7.2) reproduces

the partial amplitude m
{14,5n,...,(n

2
+1,n

2
+4)}

n . We notice the following linear relations be-

tween Xij and the corresponding uij (see appendix H for a derivation of these relations):

X14 = u14

∑
4≤j≤n−1

(c1j + c2j) ,

Xab = uab ca−1,b−1, a = 5 + k, b = n− k, k ∈
[
0, . . . ,

n

2
− 4
]
,

X3n = u3n

∑
4≤j≤n−1

(c1j + c2j) ,

Xab = uab cab, a = 4 + k, b = n− k − 1, k ∈
[
0, 1, . . .

n

2
− 4
]
. (7.3)

As the canonical form on S̃{14,5n,...,(n
2

+1,n
2

+3)}
n is simply a direct product of d ln 1-

forms (7.2), we can immediately see that its pushforward using scattering equations (7.3)

is the canonical form on S{14,5n,...,(n
2

+1,n
2

+4)}
n :

1

|solns|
∑
solns

∏
(ij)∈Q

duij
uij(1− uij)

= mQ
n ∧(ij)∈Q dXij , (7.4)

– 27 –



J
H
E
P
0
4
(
2
0
2
0
)
1
4
9

where the sum is over all the solutions of (7.3) and Q =
{

14, 5n, . . . ,
(
n
2 + 1, n2 + 4

)}
. Thus

for this class of quadrangulations, the pushforward can be expressed as a “CHY-type”

integral formula where the integrand is an n−4
2 form and integration is over the world-sheet

Stokes geometry:

mQ
n =

1

|solns|

∫ ∏
(ij)∈Q

duij
uij(1− uij)

δ(Xij − cijuij) (7.5)

where Q =
{

14, 5n, . . . ,
(
n
2 + 1, n2 + 4

)}
.

The definition of S̃{14,5n,...,(n
2

+1,n
2

+4)}
n above is as an image of S{14,5n,...,(n

2
+1,n

2
+4)}

n

under scattering equations. However it is easy to see that this world-sheet Stokes geometry

can also be defined by evaluating the exact form Ω̂ − Ω̃ along the lines of equation (6.17)

and locating a co-dimension n−2
2 hyper-surface in M0,n(R) on which this form vanishes.

As the exact form is a linear combination of world-sheet forms each of which contains at

least one d ln fij [u], the zero-locus hyper surface is obtained by setting fij = constant.

In the present case when Q =
{

14, 5n, . . . ,
(
n
2 + 1, n2 + 4

)}
it can be readily verified

that each of the fij is given by,

fij = ci,j +
∑

i≤k≤j−2
j≤`≤i−2

(k,`) 6=(i,j)

ck,`
∏
i≤p≤k
j≤q≤`

(p,q) 6=(i,j)

up,q . (7.6)

A simple way to see this is that for this reference quadrangulation, Ω̃Q
n is a product of

1-forms for each hexagon which is such that in each such hexagon precisely one of the

(ij) ∈ Q is a reference quadrangulation. It can be shown that all of fij = constant is

equivalent to umn = 0 ∀ (mn) ∈
{

13, 4n, 5(n− 1), . . . ,
(
n
2 + 1, n2 + 3

)}
.

Hence the upshot is that S̃{14,5n,...,(n
2

+1,n
2

+4)}
n is a co-dimension n−2

2 boundary of

M0,n(R) and ω̃{14,...,(n
2

+1,n
2

+4)} is its corresponding canonical form.20

In section 7.2, we use this intrinsic definition of world-sheet Stokes geometry for

Q = {14, 16} and argue that this positive geometry is not diffeomorphic (via scattering

equations) to any of the convex realisation of the Stokes polytope in A8.

7.2 Towards world-sheet Stokes geometries for other quadrangulations

In the previous section, we defined the world-sheet Stokes geometry S̃Qn corresponding to

Q =
{

14, 5n, . . . ,
(
n
2 + 1, n2 + 4

)}
in two equivalent ways:

1. SQn in Kn is mapped on to S̃Qn through (inverse of) diffeomorphism generated by

scattering equations.

20We use the word canonical form slightly loosely here: a top form which has (a) log singularities only on

the boundary and (b) residue of this form on any face equals form on the face when thought of as a lower

dimensional positive geometry. For criteria (b) to be satisfied, we need positive geometry to be such that

restriction of Ω̃Q should have no exact form.
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2. S̃Qn is a positive geometry in the moduli space obtained by setting umn = 0 where

(mn) ∈ Qc. These conditions ensure that the additional exact forms contained in Ω̃Q
n

vanish identically.

For a topologically inequivalent quadrangulation such as Q = {14, 16, . . . , (1, n − 2)},
we did not have a criterion to identify a specific embedding of Stokes polytope inside

associahedron. Thus it is not clear how to arrive at a “canonical” definition of world-sheet

Stokes geometries for such cases and consequently it is not clear how to define an integral

formula similar to equation (7.5).

We will now argue that point (2) can be used to define world-sheet Stokes geometries

for arbitrary Q. We propose to define S̃Qn for arbitrary Q by demanding that the restriction

of Ω̃Q
n on such a positive geometry has no exact form.21 Although we do not analyse this

proposal in detail in this paper, the investigation of n = 8 case with Q = {14, 16} in the

following makes further analysis worth pursuing.

Consider Ω̂
{14,16}
8 as defined in equation (6.14):

Ω̂
{14,16}
8 = (d log u14 + d log f14) ∧ (d log u16 + d log f16)

− (d log u14 + d log f14) ∧ (d log u58 + d log f58)

− (d log u36 + d log f36) ∧ (d log u16 + d log f16)

+ (d log u38 + d log f38) ∧ (d log u58 + d log f58)

+ (d log u36 + d log f36) ∧ (d log u38 + d log f38) ,

(7.7)

where the analytic functions fij are given by:

f14 = c12,4 + c12,5u15 + c12,67u15u16

f38 = c12,4u35u36 + c12,5u36 + c12,67

f16 = c12,67 + c3,67u36 + c4,67u36u46

f58 = c12,67u38u48 + c3,67u48 + c4,67

f36 = c12,4u35u38 + c12,5u38 + c12,67u16u38 + c3,67u16 + c4,67u16u46 ,

(7.8)

in which we introduced the notation cij,k = cik + cjk, cij,k` = cik + ci` + cjk + cj` and

ci,jk = cij + cik. As we proved in section 6.2, the pushforward of Ω̂
{14,16}
8 via scattering

equations produces m
{14,16}
8 dX14 ∧ dX16.

We would now like to find a two-dimensional positive geometry S̃{14,16}
8 in M0,8(R)

such that the exact form vanishes on this geometry. Without loss of generality we set

σ2 = σ1 = 0 and σ6 = σ7 = 1, i.e. we try to locate S̃T
{14,16}

in a co-dimension two

boundary of the (compactified) moduli space. The two dimensional Stokes geometry can

be parametrized by an equation of the form:

F(σ3, σ4, σ5) = 0 . (7.9)

21In section 7.1 we saw that for Q =
{

14, 5n, . . . ,
(
n
2

+ 1, n
2

+ 4
)}

this restriction is in fact the canonical

form on S̃Q
n .
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For generic kinematics ({cij}) the form of fij is rather complicated and it is not clear

to us how to analytically find such an F . However we can determine the location of the

boundaries of S̃{14,16}
8 in M0,8(R) rather easily.22

Let us first consider the u16 → 0 facet. Residue of Ω̂
{14,16}
8 on this facet involves the

exact form d ln f14
f36

. This form vanishes for generic choice of kinematics if f14 = f36. It can

be easily verified using Plücker relations that this implies:

F(u16 = 0) = u46 f1(u14, u15) , (7.10)

where f1 is an arbitrary analytic function which remains undetermined. Similarly we can

show that S̃{14,16}
8 intersects the u14 = 0, u38 = 0, u58 = 0 facets of M0,8(R) at:

F(u14 = 0) = u15f2(u16) ,

F(u38 = 0) = u35 ,

F(u58 = 0) = u48f3(u14) ,

(7.11)

where f2 and f3 remain undetermined. It can be easily seen that on the u36 = 0 facet the

exact form trivially vanishes.

With the boundary locations of S̃{14,16}
8 we can see that the following holds:∫

S̃{14,16}8

Ω̃Q
8 δ(X14 − u14 f14) δ(X16 − u16 f16) = m

{14,16}
8 . (7.12)

However in contrast to the world-sheet Stokes geometries for Q =
{

14, 5n, . . . ,
(
n
2 + 1, n2 +

4
)}

, the image of S̃{14,16}
8 cannot be any (linear) convex realisation of ST {14,16} inside the

kinematic space associahedron A8. We prove this as follows. If there is indeed such a

convex realisation it would be determined by a linear relation:

a14X14 + a15X15 + a16X16 = C , (7.13)

where aij and C are positive constants. However from equations (7.10) and (7.11) these

constants are constrained.

At u14 = 0 boundary, X14 → 0 and from equation (7.11) we have that X15 → 0. Thus

equation (7.13) becomes:

X16 = const. , (7.14)

which is meaningless, as X14 → 0 is a one dimensional facet of the pentagon S{14,16}
8 .

As we saw in section 5.1, there is no canonical embedding of a Stokes polytope with

Q = {14, 16} in A8. We now see that from the perspective of world-sheet and scattering

equations we do not get any linear realisation of Stokes polytope in kinematic space, i.e. if

we seek a world-sheet Stokes geometry on which the exact form vanishes then even though

there does exist such a positive geometry inM0,8(R), it does not get mapped to any convex

realisation of Stokes polytope in kinematic space! Although our data point is merely one

22We note that to write an integral formula as in equation (7.5), it is enough to locate the boundaries

of S̃T
Q

in M0,8(R) such that fij vanish on the boundary. This is because as Ω̃Q
n = Ω̂Q

n + exact form and

hence integral of Ω̃Q
n on S̃T

Q
equals the integral of Ω̂Q

n .
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example, we believe the lesson drawn is more general and will be valid for arbitrary n and

any quadrangulation other than Q =
{

14, 5n, . . . ,
(
n
2 + 1, n2 + 4

)}
. Whether there exists

diffeomorphisms which map S̃Qn to a convex realisation of Stokes polytope in kinematic

space is a question we leave for future investigation.

8 Outlook

The CHY formalism and the Amplituhedron program are two of the most outstanding

recent developments in our conceptual understanding of S Matrix theory. For bi-adjoint

scalar φ3 amplitudes, these paradigms are two avatars of the same underlying object,

namely, associahedron and its corresponding canonical form. However for generic non-

supersymmetric QFTs, the relationship between CHY formula and positive geometries

program is still in its nascent stages if we move beyond cubic vertices. In this paper we

tried to analyse just such a relationship for planar quartic scalar interactions.

A key result that was obtained thanks to recent developments in the theory of clus-

ter algebras, quivers and accordiohedra is that φ4 amplitudes can be obtained via lower

projective forms on kinematic space associahedra. The subset of the entire class of ABHY

associahedra defined in [5] were used to deduce this fact. From this perspective, only the

combinatorial data of a Stokes polytope (defined via a reference quadrangulation Q) was

required to define a projective lower form on the associahedron. Although our analysis

was for quartic interactions, we believe it can be readily generalised to φp where p > 4

interactions with projective forms of appropriate ranks and their restriction to ABHY as-

sociahedra generating the corresponding amplitudes. One may wonder if we can classify all

such scalar theories in terms of projective forms of varying ranks on ABHY associahedra.

We leave such speculation for future investigation.

The above mentioned result was then transcribed to the world-sheet where there are

indeed lower forms on the CHY moduli space whose pushforward via scattering equations

produced mQ
n . We also showed that these lower forms on kinematic space associahedra are

canonical forms on Stokes polytopes which admit a realisation in the interior or on the

boundary of associahedra.

Our analysis is rather preliminary. However it brings to the fore lower ranked d ln forms

(and corresponding cohomology groups) on the CHY moduli space which generate scatter-

ing amplitudes of (planar) scalar interactions. We conclude with certain open questions

which may be worth investigating.

Focussing on projective lower forms on ABHY associahedra offers a new possibility

to revisit the issue of weights αQ which appeared in equation (2.15). Computation of

αQ (which only depends on Q up to cyclic permutation) was performed in [1, 13] by

demanding that when summed over all Q’s, each channel contributes to mn with a unit

residue. This criterion relied on input from outside the domain of polytopes and canonical

forms to compute the amplitude and that was philosophically a step back from the tenets

of the Amplituhedron program (where the geometry of the polytopes is enough to compute

amplitude of the theory which turned out to be unitary and local). The problems originated

from the fact that when viewed as canonical forms on Stokes polytopes, each ΩQ
n has unit
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normalisation. But when viewed as lower forms on associahedra, the normalisation of

these forms is not determined apriori and opens up a possibility to define it via some new

criterion which may depend on Q and ATn .

As we argued in section 7.2, for Q 6=
{

14, 5n, . . . ,
(
n
2 + 1, n2 + 4

)}
although there may

exist world-sheet Stokes geometries in M0,n(R) on which CHY-inspired integral formulae

could be written down to compute mQ
n , these positive geometries are not diffeomorphic to

any linear realisation of Stokes polytopes inside the kinematic space. A detailed analysis

of such positive geometries and investigation of diffeomorphisms which map them to kine-

matic space Stokes polytope is required to write CHY type integral formulae for arbitrary

quandrangulations and perhaps use to define a moduli space whose polytopal realisations

are Stokes polytopes.

It is also important to investigate the relationship of the n−4
2 forms

∑
Q αQ Ω̂Q

n with

the n−3 forms for φ4 theory defined in [16]. As these forms have singularities on the same

boundaries of M0,n(R), we believe that a precise relationship between them must exist

but may require further conceptual inputs than the ones given in this paper.

Finally, in [24], a different outlook on the world-sheet perspective was provided by

computing intersection numbers for Stokes polytopes in the moduli space. We believe that

the pushforward maps derived in this paper are rather closely tied to the ideas advocated

in [24], and a more precise analysis of this relationship is worth pursuing.
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Figure 5. {14,16} quadrangulation of an octagon.

A Notation

We collect the relevant notation that goes into the paper below:

• Kn: kinematic space for n massless momenta

• T : triangulation of an n-gon

• Q: quadrangulation of an n-gon

• An: ABHY associahedron in kinematic space associated to T = {(13), (14), . . .

(1, n− 1)}

• ATn : ABHY associahedron in kinematic space associated to any other triangulation

• ΩQ
n : projective planar scattering form associated to quadrangulation Q of an n-gon

• SQn : Stokes polytope in kinematic space associated to quadrangulation Q of an n-gon

• mQ
n : canonical rational function/ partial amplitude associated to SQn

• mn: tree level planar n-point scattering amplitude

• M0,n(R): real section of the moduli space of genus 0 with n punctures

• M0,n(R): compactification of M0,n(R)

• Ω̃Q
n : projective form on the moduli space corresponding to ΩQ

n

• S̃Qn : world-sheet Stokes geometry associated to quadrangulation Q

• ω̃Qn : restriction of Ω̃Q
n on to S̃Qn

B Convex realisation of Stokes polytopes: an example

Algorithm given in section 3.1 gives us a geometric realization of Stokes polytope inside

the kinematic space. Here we will look at an example of geometric realization of Stokes

polytope with n = 8 and reference quadrangulation (1, 4), (1, 6).
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• We first draw hollow vertices ṽ1, ṽ3, ṽ4, ṽ5, ṽ6 and ṽ8 on the edges (1, 2), (3, 4), (4, 5),

(5, 6), (6, 7) and (8, 1) respectively. We place a hollow vertex v1,4 on the diagonal

D1,4 and a hollow vertex v1,6 on the diagonal D1,6.

• Now we draw the following arrows, (ṽ1, v1,4), (v1,4, ṽ3), (ṽ4, v1,4), (v1,6ṽ5), (ṽ6, v1,6),

(v1,6, ṽ8) and (v1,4, v1,6). Here the direction of arrow (a, b) is from a to b.

• For this quadrangulation there are three internal paths, two paths of length zero and

a path of length one. Let p1 = v1,4, p2 = v1,6 and p3 = v1,4v1,6.

• The subset of proper walks that appear in the algorithm given in section 3.1 are:

Xp1 X= ṽ3v1,4v1,6ṽ6

X

p1
X

= ṽ1v1,4ṽ4 Xp1
X

= ṽ3v1,4ṽ4

X

p1 X= ṽ1v1,4v1,6ṽ6.

Xp2 X= ṽ5v1,6ṽ8

X

p2
X

= ṽ3v1,4v1,6ṽ6 Xp2
X

= ṽ5v1,6ṽ6

X

p2 X= ṽ3v1,4v1,6ṽ8.

Xp3 X= ṽ3v1,4v1,6ṽ8

X

p3
X

= ṽ1v1,4v1,6ṽ6 Xp3
X

= ṽ3v1,4v1,6ṽ6

X

p3 X= ṽ1v1,4v1,6ṽ8 .

Therefore the constraints for Stokes polytope with reference quadrangulation (1, 4),

(1, 6) are

X36 +X14 −X16 = dp1 ,

X58 +X36 −X38 = dp2 ,

X38 +X16 −X36 = dp3 . (B.1)

This algorithm captures the notions of Q-compatibility in Stokes polytope and compat-

ibility in a general accordiohedron. A diagonal Di,j is compatible with given reference

dissection if and only if there exists a proper walk between hollow vertices ṽi and ṽj . To

see this we first notice that the proper walk between hollow vertices ṽi and ṽj , with j 6= i±1

can be continuously deformed to get the hollow diagonal D◦i,j . Therefore, the vertices of the

proper walk are precisely the vertices on the diagonals which intersect the hollow diagonal

D◦i,j . Since the arrows are drawn only between the diagonals and edges which intersect,

the set of edges [i, i + 1], [j, i + 1] and diagonals which intersect the hollow diagonal D◦i,j
is connected. On the other hand if the set of edges [i, i+ 1], [j, i+ 1] and diagonals which

intersect the hollow diagonal D◦i,j is connected it is easy to see that we can construct a

proper walk between the hollow vertices ṽi and ṽj .

C Convex realisation of Stokes polytopes via an equivalent set of con-

straints

In this appendix a second set of constraints which locate Stokes polytope in kinematic

space.23

Let Pk` be the set of all hollow vertices (paths of length zero) at which the proper walk

between vertices ṽk and ṽl peaks, and let Vk` be the set of all hollow vertices at which the

23These set of constraints are derived in theorem 2.33 in [4]. The complete derivation of these constraints

involves describing Stokes Polytopes via g-vectors.
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proper walk between the two vertices deeps. It can be shown that the constraints given in

equation (3.1) are equivalent to the following:

Xij =
∑

(pq)∈Vij

Xpq −
∑

(pq)∈Pij

Xpq + εij , (C.1)

for all Xij compatible with the reference quadrangulation. Here εij are linear combinations

of the dpk in equation (3.1).

These constraints appear to be very different then the ones defined in equation (3.1).

While the previous set of constraints were |K| in number which (if the reference quadran-

gulation Q does not contain any parallel diagonals) equals the number of Q-compatible

planar variables minus the dimension of the Stokes polytope n−4
2 , this set of constraints

have cardinality equal to the number of Q-compatible Xij . However if (ij) ∈ Q then these

constraints are trivially satisfied.

The advantage of writing the constraints this way is that it gives all the compatible

Xij in terms of diagonals of the reference quadrangulation.

We derive these set of constraints for n = 8 case and Q = {14, 16} to show that they are

indeed equivalent to those given in equation (B.1). The proper walk between the vertices

ṽ3 and ṽ6 is ṽ3, v1,4, v1,6, ṽ6. It peaks at hollow vertex v1,4 and deeps at hollow vertex v1,6.

Therefore the sets P3,6 and V3,6 are given by P3,6 = {v1,4} and V3,6 = {v1,6}. Similarly, we

can find the sets Pk` and Vk` for other proper walks.

P1,4 = ∅ V1,4 = {v1,4} (C.2)

P3,8 = {v1,4} V3,8 = ∅ (C.3)

P1,6 = ∅ V1,6 = {v1,6} (C.4)

P5,8 = {v1,6} V5,8 = ∅ (C.5)

Therefore we get the following constraints from equation (C.1),

X14 = X14 X16 = X16 (C.6)

X38 = −X14 + ε38 X58 = −X16 + ε58 (C.7)

X36 = X16 −X14 + ε36 . (C.8)

Now it is easy to see that with ε38 = dp1 + dp3 , ε58 = dp2 + dp3 and ε36 = dp1 the above

equation (C.6) are equivalent to the equation (B.1).

We use the above constraints to restrict the planar scattering form onto Stokes poly-

tope. In appendix E we show that this restriction is proportional to the partial quartic

n-point amplitude mQ
n .

D Analysing geometric constraints on Xij (ij) ∈ Q

In this appendix we will show that the Stokes polytope constraints in equation (3.1) are

linear combinations of associahedron constraints in equation (3.2). We will consider the

set of constraints given in equation (C.1). These equations provide a convex realisation
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Figure 6. Arrows and vertices near the diagonal (k, l).

of accordiohedra, in particular they provide a convex realisation of Stokes polytope and

associahedron. We will show that the set of constraints given in equation (C.1) for Stokes

polytope is a subset of set of constraints given in equation (C.1) for associahedron. Since,

the constraints in equation (C.1) for Stokes polytope are equivalent to constraints in equa-

tion (3.1) and the constraints in equation (C.1) for associahedron are equivalent to con-

straints in equation (3.2), we would have proved our claim.

For a given Xij compatible with the reference dissection D we denote by PD,i,j the

set of all hollow vertices at which the proper walk between the vertices ṽi and ṽj peaks

and similarly we denote by VD,i,j the set of all hollow vertices at which the proper walk

between the vertices ṽi and ṽj peaks.

Claim D.1. If D1 and D2 are two dissections of an n-gon such that D1 ⊂ D2, then

PD1,i,j = PD2,i,j and VD1,i,j = VD2,i,j for all (i, j) compatible with reference dissection D1.

Proof. We will show that for an arbitrary dissection D of an n-gon if we remove a diagonal

(k, l) ∈ D from D then PD\(k,l),i,j = PD,i,j and VD\(k,l),i,j = VD,i,j for all (i, j) compatible

with reference dissection D \ (k, l).

Given a diagonal (k, l) ∈ D, the arrows and vertices near the diagonal (k, l) look like

figure 6, where (k, p), (l, q), (l, r) and (k, s) are sides or diagonals in D. Any walk containing

vk,l contains one of the following paths; vs,kvk,lvk,p,vl,rvk,lvl,q,vs,kvk,lvl,q or vk,pvk,lvl,r. The

walks containing vs,kvk,lvl,q have a peak at (k, l) and walks containing vk,pvk,lvl,r have a

deep at (k, l).

Now if we remove the diagonal (k, l) from the reference dissection, that is if consider

the reference dissection D \ (k, l), the arrows and diagonals look like figure 7. The walks

in reference D containing vs,kvk,lvk,p or vl,rvk,lvl,q reduce to walks containing vs,kvk,p or

vl,rvl,q respectively. While the walks containing vs,kvk,lvl,q or vk,pvk,lvl,r can not be reduced

to walks of D \ (k, l). In other words if (i, j) is compatible with dissection D then (i, j) is

compatible with the dissection D \ (k, l) if and only if the walk in D between vertices ṽi
and ṽj do not peak or deep at (k, l).

Since the directions of arrows remain same in the reduced walks, other peaks and deeps

of walks in D are same as peaks and deeps of walks in D \ (k, l). Therefore

PD,i,j = P(D\(k,l)),i,j VD,i,j = V(D\(k,l)),i,j , (D.1)

for all (i, j) compatible with the dissection D \ (k, l).
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Figure 7. Arrows and vertices without diagonal (k, l).

Now, removing diagonals one by one it is easy to see that, if D1 and D2 are two

dissections of an n-gon such that D1 ⊂ D2, then PD1,i,j = PD2,i,j and VD1,i,j = VD2,i,j for

all (i, j) compatible with reference dissection D1.

The convex realisations of accordiohedra are given by

Xij =
∑

(p,q)∈Vi,j

Xp,q −
∑

(p,q)∈Pi,j

Xp,q + εi,j , (D.2)

for all Xij compatible with given reference dissection. Using claim D.1 it is easy to see that

the set of constraints for Stokes polytope is a subset of set of constraints for associahedron.

E Canonical form on kinematic space & scattering amplitude: proof

In this section we review and generalise the results of [1] and show that given a refer-

ence quadrangulation Q and the corresponding canonical form ΩQ in kinematic space, the

induced form on SQn produces a partial contribution to φ4 scattering amplitude.

Claim E.1. Given a reference dissection D, suppose Xij and Xkl are mutations of each

other, i.e. Xij and Xkl are compatible intersecting diagonals and there exists a set of com-

patible diagonals S such that {Xij}∪S and {Xk`}∪S are maximal compatible dissections.

Let ΩS =
∧
Xa,b∈S dXa,b. Then

dXij ∧ ΩS = −dXk` ∧ ΩS . (E.1)

Proof. Given any intersecting diagonals Xij and Xk` with i < k < j < l, they divide the

vertices of the polygon in four sets, viz. Vi,k = {i, i + 1, . . . , k}, Vk,j = {k, k + 1, . . . , j},
Vj,l = {j, j + 1, . . . , l} and Vl,i = {l, l + 1, . . . , i}. Any diagonal which does not intersect

Xij and Xk` has both the end points in one of the above four sets. That is, if Xp,q does

intersect Xij and Xk` then both p, q belong to one of Vi,k,Vk,j ,Vj,l or Vl,i.

Notice Xik, Xkj , Xj` and Xl,i do not intersect with any diagonal whose both the end

points are in one of Vi,k,Vk,j ,Vj,l or Vl,i, other than themselves. Therefore, if Xp,q ∈
{Xik, Xkj , Xj, l,Xl,i} is a compatible diagonal then Xp,q ∈ S.

Xij and Xk` intersect, therefore the proper walk between ṽi and ṽj , Wi,j and the proper

walk between ṽk and ṽl, Wk,l have a path ρ in common such that one of Wi,j and Wk,l
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peaks at ρ and the other one deeps at ρ. Without loss of generality let’s assume Wk,l peaks

at ρ and Wi,j deeps at ρ.

Case I. Suppose the length of ρ is greater than zero. That is, ρ is not just a vertex.

Suppose ρ starts at vertex va,b and ends at vertex vc,d, ρ = va,bρ̃vc,d. Let αi, αj , αk, αl
be such that

Wi,j = αiva,bρ̃vc,dαj Wk,l = αkva,bρ̃vc,dαl. (E.2)

Consider walks Wi,l = αiva,bρ̃vc,dαl and Wk,j = αkva,bρ̃vc,dαj . Wi,l is a proper walk

if and only if it peaks or deeps at some vertex in Wi,l, similarly Wk,j is a proper walk

if and only if it peaks or deeps at some vertex in Wk,j .

Now, we note the following obersvations,

• A walk in {Wi,j ,Wk,l,Wi,l,Wk,j} peaks/deeps at a vertex v in ρ̃ if and only if

all other walks in {Wi,j ,Wk,l,Wi,l,Wk,j} peak/deep at v.

• Wi,j peaks/deeps at a vertex v ∈ αiva,b if and only if Wi,l peaks/deeps at v.

• Wi,j peaks/deeps at a vertex v ∈ vc,dαj if and only if Wk,j peaks/deeps at v.

• Wk,l peaks/deeps at a vertex v ∈ αkva,b if and only if Wk,j peaks/deeps at v.

• Wk,l peaks/deeps at a vertex v ∈ vc,dαl if and only if Wi,l peaks/deeps at v.

Therefore using the constraints given in equation (C.1) it is easy to see that

Xij +Xk` −Xi,l −Xkj = εi,j + εk,l − εi,l − εk,j . (E.3)

In case Xi,l or Xkj are not compatible diagonals that is, Wi,l or Wk,j are not

proper walks, we can take Xi,l = εi,l = 0 or Xkj = εk,j = 0 and the above equation

will hold.

Case II. Suppose ρ is just a vertex. Let αi, αj , αk, αl be such that

Wi,j = αiραj Wk,l = αkραl. (E.4)

Consider walks Wi,l = αiραl and Wk,j = αkραj . Wi,l and Wk,j are proper walks if

and only if they peak or deep at some vertex.

Now, we note the following observations,

• Wi,j peaks/deeps at a vertex v ∈ αi if and only if Wi,l peaks/deeps at v.

• Wi,j peaks/deeps at a vertex v ∈ αj if and only if Wk,j peaks/deeps at v.

• Wk,l peaks/deeps at a vertex v ∈ αk if and only if Wk,j peaks/deeps at v.

• Wk,l peaks/deeps at a vertex v ∈ αl if and only if Wi,l peaks/deeps at v.

Wi,l and Wk,j do not peak or deep at ρ but Wi,j deeps at ρ and Wk,l peaks at ρ

therefore just as in case I we have

Xij +Xk` −Xi,l −Xkj = εi,j + εk,l − εi,l − εk,j . (E.5)

In case Xi,l or Xkj are not compatible diagonals that is, Wi,l or Wk,j are not

proper walks, we can take Xi,l = εi,l = 0 or Xkj = εk,j = 0 and the above equation

will hold.
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Therefore, d(Xi,j+Xk,l) = dXi,l+dXk,j . Whenever Xi,l and Xk,j are compatible

they belong to S and when Xi,l is not compatible dXi,l = 0, and when Xk,j is not

compatible dXk,j = 0. Hence,

d(Xi,j +Xk,l) ∧ ΩS = 0. (E.6)

The planar scattering form is given by

ΩD
n =

∑
D′

sign(D′)

 ∏
(i,j)∈D′

1

Xi,j

 ∧
(i,j)∈D′

dXi,j , (E.7)

where the sum is over dissection compatible with the reference dissection D. Now, using

equation (E.6) it is easy to see that the pull back of the planar scattering form on the

accordiohedron is given by

ωD =
∑
D′

 ∏
(i,j)∈D′

1

Xi,j

 ∧
(i,j)∈D

dXi,j . (E.8)

Thus, the induced form on the accordiohedron produces a partial contribution to the

scattering amplitude. In particular, the induced form on SQn produces a partial contribution

to the φ4 scattering amplitude.

F Map from world-sheet associahedron to ABHY associahedron

In this appendix, we will propose a map from the world-sheet associahedron to ABHY

associahedron with arbitrary reference triangulation. In [2] Arkani Hamed et al. gave

a map from the world-sheet associahedron to ABHY associahedron with reference T =

{(13), (14), . . . , (1, n−1)} using the scattering equations, but there is nothing special about

this reference triangulation and we expect that the scattering equations will give a map

from world-sheet associahedron to any ABHY associahedron. The most rigourous way to

arrive at a diffeomorphism between M0,n(R) and an ABHY associahedron is to generalise

the derivation in [2] suitably. We believe this is possible but instead of attempting such

a rigourous proof and propose a map (based on certain arguments given below) which we

believe is the map induced by scattering equations.

Given a triangulation T , using equation (C.1) we can express any planar variable Xmn

in terms of {Xk`|(k, `) ∈ T} and
⋃

(k,`)∈T {cp,q| the diagonal (p, q) intersects the diagonal

(k − 1, `− 1)}. Therefore, once we have a map from the world-sheet associahedron to Xij

for (i, j) ∈ T we can get the map from world-sheet associahedron to ABHY Associahderon.

The map to Xij for (i, j) ∈ T should be of the form

Xij =
∑

(k,`)∈Cij

ck`fi,j,k,`(σ). (F.1)
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Here we expect the set Cij to depend only on (i, j) and not the reference triangulation.

Hence, the natural choice for Cij is Cij = {cp,q| the diagonal (p, q) intersects the diagonal

(i − 1, j − 1)}. We expect that the function fi,j,k,`(σ) is a SL(2,C) invariant function

of σs which depends only on (i, j, k, `). A natural choice of such a function is the cross

ratio fi,j,k,`(σ) =
σi−1,`σk,j−1

σk,`σi−1,j−1
. Now we note the following identity which relates Plücker

coordinates to the σ coordinates, ∏
a≤p≤b
c≤q≤d

upq =
σa−1,dσb,c−1

σb,dσa−1,c−1
. (F.2)

Using this identity we can write the map between world-sheet associahedron and ABHY

associahedron as follows,

Xij =
∑

i≤k≤j−2

j≤`≤i−2

ck`
σi−1,`σk,j−1

σk,`σi−1,j−1
=

∑
i≤k≤j−2

j≤`≤i−2

ck`
∏
i≤p≤k
j≤q≤`

upq . (F.3)

It can be checked that this map reduces to the map given in [2] for reference triangu-

lation T = {(13), (14), . . . , (1, n − 1)}. We have verified that for n = 6 with reference tri-

angulations {(13), (14), (46)} and {(13), (35), (15)} the scattering equations give the above

map (F.3).

G Five point push forward

We begin with the following form:

Ω̂ = (d log u13+d log f13)∧(d log u14+d log f14)+(d log u35+d log f35)∧(d log u13+d log f13)

+(d log u14+d log f14)∧(d log u24+d log f24)+(d log u25+d log f25)∧(d log u35+d log f35)

+(d log u24+d log f24)∧(d log u25+d log f25),

(G.1)

where the fij are given by

f13 = c13 + c14u14

f14 = c14 + c24u24

f24 = c13u25 + c14u14u25 + c24u14

f25 = c13u24 + c14

f35 = c14u25 + c24 . (G.2)

After some tedious algebra we simplify the form in (G.1) to get,

Ω̂ =
du13 ∧ du14

u13(1− u13)u14(1− u14)

+
c13c14c24 ((c14 + (c24 − u13f13)) (c13 − (c24 − u14f14)))

f13f14f24f25f35(1− u13u14)
du13 ∧ du14 .

(G.3)
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In our choice of gauge σ1 = 0, σ4 = 1, σ5 =∞,

u13 =
σ2

σ3
, u14 = σ3, u25 = 1− σ2, u35 =

1− σ3

1− σ2
, u24 =

σ3 − σ2

(1− σ2)σ3
, (G.4)

and

f13 = c13 + c14σ3

f14 = c14 + c24
σ3 − σ2

(1− σ2)σ3

f24 = c13(1− σ2) + (c14(1− σ2) + c24)σ3

f25 = c13
σ3 − σ2

(1− σ2)σ3
+ c14

f35 = c14(1− σ2) + c24 . (G.5)

After some algebra, the form (G.1) can be re-expressed as:

Ω̂ =

[
1

σ2(σ2 − σ3)(σ3 − 1)
+R

]
dσ2 ∧ dσ3. (G.6)

Where

R =
c13c14c24 ((c14 + (c24 − u13f13)) (c13 − (c24 − u14f14)))

f13f14f24f25f35(1− u13u14)u14
. (G.7)

Notice that for our first choice of kinematics where c14 = 0, we have N1 = 0 and we see

from (G.6) that the form Ω̂ reduces to the Parke-Taylor form and hence matches ωws
5 as

was claimed in section 6.3.

In the special choice of kinematics c13 = c14 = c24 = 1 the form is given by

Ω̂ =

(
1

σ2(σ2 − σ3)(σ3 − 1)
+

1

(2− σ2)(1 + σ3)(1− σ2 + (2− σ2)σ3)

)
dσ2 ∧ dσ3. (G.8)

For a general choice of kinematics the solutions to the scattering equations (6.21) are:

σ2 =

√
(c13(c14+c24)+X14(c14+X13)−c24X13)2−4c14X13X14(c13−c24+X14)+c13(c14+c24)+c14X14−c24X13+X13X14

2c14(c13−c24+X14)

σ3 = −
√

(c13(c14+c24)+X14(c14+X13)−c24X13)2−4c14X13X14(c13−c24+X14)+c13(c14+c24)−c14X14−c24X13+X13X14

2c14(c14+c24−X13)

(G.9)

and

σ2 =
−
√

(c13(c14+c24)+X14(c14+X13)−c24X13)2−4c14X13X14(c13−c24+X14)+c13(c14+c24)+c14X14−c24X13+X13X14

2c14(c13−c24+X14)

σ3 =

√
(c13(c14+c24)+X14(c14+X13)−c24X13)2−4c14X13X14(c13−c24+X14)−c13(c14+c24)+c14X14+c24X13−X13X14

2c14(c14+c24−X13)
.

(G.10)
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For the special choice of kinematics c13 = c14 = c24 = 1 the solutions become,

σ2 =

√
(X13(X14 − 1) +X14 + 2)2 − 4X13X2

14 +X13(X14 − 1) +X14 + 2

2X14

σ3 =

√
(X13(X14 − 1) +X14 + 2)2 − 4X13X2

14 +X13(X14 − 1)−X14 + 2

2(X13 − 2)
(G.11)

and

σ2 =
−
√

(X13(X14 − 1) +X14 + 2)2 − 4X13X2
14 +X13(X14 − 1) +X14 + 2

2X14

σ3 =

√
(X13(X14 − 1) +X14 + 2)2 − 4X13X2

14 +X13(−X14) +X13 +X14 − 2

2(2−X13)
(G.12)

The push forward of (G.8) along each of above solutions (G.11), (G.12) gives(
−X13X14 + 2(2−X13) + 4X14

(2−X13)X13(2−X14)X14(−X13 +X14 + 1)

)
dX13 ∧ dX14. (G.13)

which is equal to the following for the special choice of kinematics, c13 = c14 = c24 = 1(
1

X13X14
+

1

X13X35
+

1

X14X24
+

1

X24X25
+

1

X25X35

)
dX13 ∧ dX14. (G.14)

H Linear diffeomorphism for hyper-cube case

As we saw in section 5.2 there is a convex realisation of S{14,5n,...,(n
2

+1)(n
2

+4)}
n as a facet

of An given by the constraints (5.15) where the dk take the values given in claim 5.3. The

corresponding polytope coincides with a co-dimension n
2 − 1 facet of An−3 given by setting

some of the Xij to zero as stated in claim 5.3. This boundary is diffeomorphic to the

boundary of Ãn−3 obtained by setting a set of Plücker co-ordinates to zero:

u13 = 0, & u4+k,n−k = 0 for k ∈
[
0, 1, . . . ,

n

2
− 3
]
. (H.1)

Claim H.1. Scattering equations provide a linear diffeomorphism between the aforemen-

tioned facet of Ãn−3 and the convex realisation of SQn where Q=
{

14, 5n, . . . ,
(
n
2 + 1

) (
n
2 + 4

)}
:

Xij = Dij uij , ∀ (ij) ∈ {14, (5 + k, n− k), 3n, (4 + k, n− k − 1)} , (H.2)

where k =
{

0, . . . , n2 − 4
}

and Dij = Dij({cmn}) are linear sums of cij ’s as given in (7.3).

Proof. Our proof will go in two stages. In the first stage we will use scattering equations to

write planar variables labelled by elements of Q in terms of world-sheet co-ordinates and

show that due to (H.1) such a map is linear between Xij and the corresponding uij . In the

second stage we will show that the map between uij and corresponding Xij is linear also

for (ij) ∈
{

3n, 4n− 1, . . . , n2
n
2 + 3

}
.
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Stage 1. Let us first consider X14. The scattering equations give:

X14 =
∑

1≤i≤2

∑
4≤j≤n−1

σi,3
σi,j

cij . (H.3)

We express the world-sheet coordinates σi that appear on the r.h.s. of (H.3) in terms

of Plücker coordinates u1j and then substitute u1j = 1 for j = 5, . . . , n − 1 which

arise from the respective crossing relations and impose u14 = 0 from (H.1) to obtain

the linear map between X14 and u14 in (7.3). Since for n = 6, Q is just {14} for

which we obtained the linear map for general n let us now consider n > 6.

Let us now consider X5n. From the scattering equations we have:

X5n =
∑

1≤i≤4

∑
6≤j≤n−1

σ5,j

σi,j
cij . (H.4)

We will make use of the identity:

σ5,j

σi,j
=

5∏
m=i+1

n−j∏
k=1

um,j+k , 1 ≤ i ≤ 4, 6 ≤ j ≤ n− 1 . (H.5)

Using u4,n = 0 and u5,n−1 = 0 from (H.1), it is easy to see that the r.h.s. is non-

vanishing only when i = 4 and j = n − 1. This gives the linear map between X5n

and u5n in (7.3).

Now that we have shown the linear map for Xij corresponding to the labels

(14), (5n) ∈ Q, let us consider the scattering equations for Xab with (ab) ∈ Q and

a = 5 + k, b = n− k such that k ∈
{

1, . . . , n2 − 4
}

:

Xab =
∑

1≤i≤a−1

a+1≤j≤b−1

σaj
σij

cij +
∑

a≤i≤b−1

b≤j≤n−1

σib−1

σij
cij +

∑
1≤i≤a−1

b≤j≤n−1

σab−1

σij
cij . (H.6)

To analyse the first summand we find the following identity useful:

σaj
σij

=

a∏
`=i+1

n∏
m=j+1

u`m, ∀1 ≤ i ≤ a− 1, a+ 1 ≤ j ≤ b− 1 . (H.7)

Using ua(b−1) = 0 and u(a−1)b = 0 from (H.1) we see that the only non-vanishing

contribution to the r.h.s. comes from i = a − 1, j = b − 1. Using uam = 1 ∀ m ∈
{b + 1, . . . , n} we see that the contribution of this term to the first summand is

uab c(a−1)(b−1).

To analyse the second summand (H.6) the following identity is useful:

σi,b−1

σij
=

i∏
c=1

j∏
d=b

ucd, a ≤ i ≤ b− 1, b ≤ j ≤ n− 1 . (H.8)

It can be seen that ∀i, j in the above range, there is at least one ucd on the r.h.s. such

that c + d = 4 + n and 4 ≤ c ≤ n
2 + 1 which we know from (H.1) is zero. Thus the

contribution from the second summand is zero.
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We now come to the third summand in (H.6). For 1 ≤ i ≤ a− 1, b < j ≤ n− 1:

σa,b−1

σi,j
=

a∏
c=1

uc b

j∏
d= b+1

u1d

a∏
r=i+1

n∏
s=b+1

urs

i∏
r=2

j∏
s=b+1

urs . (H.9)

The first product on the r.h.s. contains ua−1,b which is zero (H.1). For 1 ≤ i ≤
a− 1, j = b we make use of the following identity:

σa,b−1

σi,b
=

a∏
c=1

uc b

a∏
`=i+1

n∏
m=b+1

ul,m, 1 ≤ i ≤ a− 1 . (H.10)

This is also zero since the r.h.s. contains ua−1,b. Thus the contribution of the third

summand in (H.6) is also zero. This completes Stage 1 of our proof where we have

shown that ∀ (a, b) ∈ Q = {14, 5n, . . . ,
(
n
2 + 1

) (
n
2 + 4

)
} there is a linear map between

Xab and uab as given in the first two lines of (7.3).

We now come to the second stage of the proof where we show that a similar

linear map exists also for labels (ij) ∈
{

3n, 4n− 1, . . . , n2
n
2 + 3

}
.

Stage 2. Using the first constraint in (5.16), the linear map between X14 and u14 in (7.3),

and the crossing relation u14 = 1− u3n we obtain

X3n = u3n

∑
4≤j≤n−1

(c1j + c2j) , (H.11)

as given in the third line of (7.3). We note the crossing relation:

u3+k,n−k = 1− u3+k+1,n−k+1 ∀ k ∈
[
1, . . . ,

n− 6

2

]
, (H.12)

where we have used the cyclicity of polygon vertices n + 1 =: 1. This is rather

straightforward as ∀ k ∈
[
1, . . . , n−6

2

]
every dissection except (3 + k, n− k) intersects

at least one of the (i, j) in the set
{

(1, 3), (4, n), . . . ,
(
n
2 + 1, n2 + 3

)}
for which the

corresponding uij = 0 from (H.1). Using constraint equations given in the second

line of (5.16), linear maps in the second line of (7.3), and the crossing relations

in (H.12) it follows that the map between uij and corresponding Xij ’s is linear for{
X4n−1, . . . , Xn

2
n
2

+3

}
:

Xij = cij uij , ∀ i = 4 + k, j = n− k − 1, for k =
{

0, 1, . . .
n

2
− 4
}
, (H.13)

as stated in the last line of (7.3). This completes the proof of claim H.1.
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