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Abstract: In this paper, we investigate the second law of the black holes in Lovelock

gravity sourced by a conformally coupled scalar field under the first-order approximation

when the perturbation matter fields satisfy the null energy condition. First of all, we show

that the Wald entropy of this theory does not obey the linearized second law for the scalar-

hairy Lovelock gravity which contains the higher curvature terms even if we replace the

gravitational part of Wald entropy with Jacobson-Myers (JM) entropy. This implies that

we cannot naively add the scalar field term of the Wald entropy to the JM entropy of the

purely Lovelock gravity to get a valid linearized second law. By rescaling the metric, the

action of the scalar field can be written as a purely Lovelock action with another metric.

Using this property, by analogy with the JM entropy of the purely Lovelock gravity, we

introduce a new formula of the entropy in the scalar-hairy Lovelock gravity. Then, we

show that this new JM entropy increases along the event horizon for Vaidya-like black hole

solutions and therefore it obeys a linearized second law. Moreover, we show that different

from the entropy in F (Riemann) gravity, the difference between the JM entropy and Wald

entropy also contains some additional corrections from the scalar field.
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1 Introduction

In 1970, Bekenstein, Hawking, Davies, and Unruh showed separately that the dynamical

quantities of the horizon in general relativity can be treated as the thermodynamical vari-

ables [1–6]. Therefore, the laws of the thermodynamical system should also be held for

the black hole system. The most profound laws are the first and second laws of black hole

mechanics. In general relativity, the first law shows that dM = TdS for the stationary

black hole where M is the energy of the black hole, the temperature T is proportional to

the surface gravity κ, and entropy S is proportional to the area A of the cross-section on

the event horizon. Then, the second law becomes that the area A of the horizon increases

irreversibly [1, 7, 8]. Also, the generalized second law states that the sum of the entropies

of the horizon and the matter outside is always increasing [3, 9–11].

After the quantum effect or string modification is taken into account, higher curvature

term should be added to the Einstein-Hilbert action [12–15]. A natural question is to ask

whether the black hole in any generally covariant gravitational theory can be regarded as

a thermodynamical system. Therefore, Wald and collaborators obtained the first law of

the stationary black holes for any diffeomorphism invariant gravitational theory based on

the Noether charge method [16, 17]. In their results, the entropy of the stationary black

hole is a local geometry quantity which is integrated over a spacelike cross-section s on the

horizon, i.e.,

SW = −2π

∫
s
dD−2x

√
γ

δL
δRabcd

ε̂abε̂cd , (1.1)

where L is the Lagrangian density of the gravitational theory, ε̂ab is the binormal of the

cross-section s, and γab is the intrinsic metric of s. The “physical process version” of the

first law was investigated in refs. [18–20]. However, there exists some ambiguity when

we consider a nonstationary black hole and the Wald entropy is just one of the possible

candidates for entropy [17, 20]. All of these candidates are only off by some quantities

which are vanishing for stationary cases.
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Therefore, the most important thing is to see whether the higher curvature corrections

spoil the second law of black hole thermodynamics and the entropy satisfies the second law

of black hole thermodynamics. In refs. [20–22], based on the field redefinition, it was shown

that the Wald entropy obeys the second law for the f(R) gravity. For other cases with

higher curvature terms, there are some violations of the second law when two black holes

merge [23]. However, as mentioned in [24], if we want to consider the general second law in

the case of an adiabatic change in a quantum black hole, it is enough for us to consider it at

linear order. If we restrict attention to linearized metric perturbations to stationary black

holes with a regular bifurcation surface, it has been shown that the Jacobson-Myers (JM)

entropy of the Lovelock gravity and the holographic entropy of quadratic curvature gravity

obey the second law [24–29]. More generally, Wall gave a general method to evaluate the

corrected entropy which satisfies the linearized second law and showed that it takes the

form [30]

S = −2π

∫
s
dD−2x

√
γ

[
∂F

∂Rabcd
ε̂abε̂cd + 8

∂2F

∂Rkaib∂Rkcjd
K

(i)
abK

(j)
cd

]
(1.2)

at linear order in F (Riemann) gravity, in which K
(i)
ab is the extrinsic curvature corresponding

to the normal direction of the cross-section s, and i, j, k denote the indices of the orthogonal

vectors in the two-normal vector space.

Most recently, it has been shown that Lovelock gravity can be conformally coupled to

a scalar field [31], which is called scalar-hairy Lovelock gravity in the following discussion.

In this theory, one can analytically work out the details of black hole geometries with

backreacting matter fields in asymptotically flat and Anti/de Sitter spacetimes [32]. In the

context of AdS/CFT correspondence, the scalar hair of the AdS case plays an important

role in holographic superconductors. The Hawking-Page type phase transitions at critical

temperature has been studied explicitly in the five-dimensional AdS black holes with scalar

hairs [33, 34]. This theory admits a black hole solution with conformal scalar hair, i.e., the

scalar field is nonvanishing and regular everywhere outside of the singularity [33–35]. In

ref. [36], the thermodynamics of the stationary black hole in this theory has been investi-

gated. They showed that the Wald entropy satisfies the first law. Because the Lagrangian

of the scalar field contains the Riemann curvature and the scalar field is nonvanishing, the

Wald entropy should also be corrected by the scalar field even for the stationary black hole

cases. However, as we all know, the JM entropy of the purely Lovelock gravity obeys the

linearized second law but that Wald entropy does not [25–27]. Therefore, as an extension of

purely Lovelock gravity, it is not difficult to believe that proper entropy of the scalar-hairy

Lovelock gravity should also be amended. Can we naively add the scalar field term of the

Wald entropy to the JM entropy of the purely Lovelock gravity to get a valid linearized

second law in this theory? If it is not, how to construct a corrected one?

The outline of this paper is as follows. In section 2, we review the gravitational theory

containing a real scalar field φ conformally coupled to Lovelock gravity. In section 3,

we turn to examine the linearized second law in the Vaidya-like black hole solution for

scalar-hairy Lovelock gravity. To be specific, in section 3.1, we evaluate the increases of

the Wald entropy along the event horizon. In section 3.2, based on the property that
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the action of the scalar field can be expressed as a purely Lovelock term after a conformal

transformation, we construct a JM entropy for the scalar-hairy Lovelock gravity by analogy

with that of purely Lovelock case and then check its corresponding linearized second law

in the Vaidya-like solution. Finally, the conclusions are presented in section 4.

2 Scalar-hairy Lovelock gravity

In this paper, we consider a gravitational theory containing a real scalar field φ conformally

coupled to Lovelock gravity. The action of this theory in D-dimensional spacetime is given

by [31]

I =
1

16π

∫
dDx
√
g

(
kmax∑
k=0

L(k) + Lmat

)
, (2.1)

where Lmat is the Lagrangian density of the extra matter fields, and

L(k) =
1

2k
δ(k)

(
akR

(k) + bkφ
d−4kS(k)

)
(2.2)

is the k-order Lagrangian density with some parameters ak and bk. Here kmax = [(D − 1)/2]

and we have denoted

R(k) =

k∏
r=1

Rcrdrarbr
, S(k) =

k∏
r=1

Scrdrarbr
(2.3)

with the generalized Kronecker tensor

δ(k) = (2k)!δ[a1c1 δ
b1
d1
· · · δakck δ

bk]
dk
, (2.4)

in which Rcdab is the Riemann tensor of the metric gab and Scdab is defined as

Scdab = φ2Rcdab − 2δ
[c
[aδ

d]
b]∇eφ∇

eφ− 4φδ
[c
[a∇b]∇

d]φ+ 8δ
[c
[a∇b]φ∇

d]φ . (2.5)

The equations of motion derived from varying this action read

Gab = T φab + 8πTab ,

kmax∑
k=0

(D − 2k)bk
2k

φD−4k−1δ(k)S(k) = ϕ , (2.6)

with the generalized Einstein tensor

Gba = −
kmax∑
k=0

ak
2k+1

δba1b1···akbkac1d1···ckdkR
c1d1
a1b1
· · ·Rckdkakbk

(2.7)

and the stress-energy tensor of the scalar field

(T φ)ba =

kmax∑
k=0

φD−4k
ak

2k+1
δba1b1···akdkac1d1···ckdkS

c1d1
a1b1
· · ·Sckdkakbk

. (2.8)
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Here Tab and ϕ are the stress-energy tensor and source of the perturbation matter fields.

It is not difficult to verify that this theory is invariant under the conformal transformation:

gab → Ω2gab and φ → Ω−1φ. It can be regarded as a natural generalization of Lovelock

gravity with a non-minimal coupling scalar field. This theory admits a scalar-hairy black

hole solution where the scalar field is nonvanishing and regular outside of the singular-

ity [33–36].

Employing the Noether charge method [16, 17], the Wald entropy of this gravitational

theory can be obtained and it is given as

SW = −2π

∫
s
dD−2x

√
γP abcdε̂abε̂cd , (2.9)

where we have denoted

P abcd =

kmax∑
k=0

∂L(k)

∂Rabcd
, (2.10)

and it can be expressed as

P cdab =
1

16π

kmax∑
k=0

k(2k)!

2k
δc[aδ

d
b δ
c2
a2δ

d2
b2
· · · δckakδ

dk
bk]

[
ak

k∏
r=2

Rarbrcrdr
+ bkφ

D−4k+2
k∏
r=2

Sarbrcrdr

]
. (2.11)

Here s is a cross-section of event horizon, γab is the induced metric on s, and ε̂ab is the

binormal to s. Because the scalar field can be nonvanishing, the Wald entropy in this

theory should also be corrected by the scalar field even for the stationary black hole cases.

The validity of the first law and thermodynamics of this entropy in charged scalar-hairy

black holes have been discussed in [36]. However, as mentioned in the introduction, the

Wald entropy of the purely Lovelock gravity does not obey the linearized second law and

we need to focus on the JM entropy [25–27]. As a direct extension of the purely Lovelock

gravity, it is natural for us to replace the gravitational part of Wald entropy with JM

entropy in the scalar-hairy Lovelock gravity. What about the scalar field part? Can we

directly utilize the scalar field term of the Wald entropy? In the following, we would like to

investigate these questions by examining Vaidya-like solutions in the scalar-hairy Lovelock

gravity. Since the case with ak = bk = 0 for k ≥ 2 is equivalent to the Einstein gravity

minimally coupled to the scalar field after performing a field redefinition and it obeys the

second law, we next only consider the case which contains the higher curvature terms.

3 Linearized second law of the scalar-hairy Lovelock gravity

The main purpose of this paper is to check whether the entropy is increasing along the

event horizon in the physical process under the linear order of perturbation. Therefore, we

need to assume that spacetime is a black hole, i.e., the physical process satisfies the weak

cosmic censorship conjecture [37]. Moreover, we assume that the background black hole

solution also has a regular bifurcation surface. With similar consideration of [24], in the

following, we would like to test the linearized second law in a Vaidya solution which can
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be constructed by the static spherically symmetric black hole with infalling matter source.

Without loss of generality, the line element can be expressed as the form

ds2 = −f(r, v)dv2 + 2dvdr + r2dΩ2
D−2 , (3.1)

where f(r, v) is an arbitrary function. The horizon of this black hole is located at r = r(v)

which is obtained from r′(v) = f(r, v)/2 with some appropriate boundary conditions. The

null generator of the horizon with the nonaffine parameter λ is given by

ka =

(
∂

∂λ

)a
= 2

(
∂

∂v

)a
+ f(r, v)

(
∂

∂r

)a
. (3.2)

The second null vector on the event horizon which satisfies kala = −1 is expressed as

la = −1

2
(dv)a . (3.3)

Then, we have ka∇akb = κkb with κ = f ′(r, v). In this paper, we would like to consider the

situation when a static black hole is perturbed by some extra matter fields and ultimately

settle down to a static state in the asymptotic future. This implies that f(r, v) will be

independent on v and ka is an exact Killing vector at sufficiently late times. For the

background geometry, κ/2 will be the surface gravity of the event horizon. Since we turn

to test the second law under the first-order approximation of perturbation, we introduce a

small parameter α such that f(r, v) = f(r) + αδf(r, v) at first-order of α. Then, one can

check that θ ∼ σab ∼ α with the expansion θ and shear σab of the event horizon. Then,

the Raychaudhuri equation gives

dθ

dλ
= − θ2

D − 2
− σabσab −Rabkakb + κθ ' −Rkk + κθ (3.4)

under the first-order approximation of α. Next, we define the entropy density ρ as

S =
1

4

∫
s
dD−2x

√
γρ . (3.5)

Then, we can define the change of entropy per unit area as a generalized expansion given by

dS

dλ
=

1

4

∫
s
dD−2x

√
γΘ . (3.6)

With simple calculation, we have

Θ =
dρ

dλ
+ θρ . (3.7)

By calculating the change of Θ, we can easily obtain

dΘ

dλ
− κΘ = −8πTkk + Ekk (3.8)

with

Ekk = Gkk − T φkk +∇k∇kρ− ρRkk , (3.9)

in which we have denoted Akk = Aabk
akb for the tensor Aab.

– 5 –



J
H
E
P
0
4
(
2
0
2
0
)
1
4
8

According to the discussion in [24], the key point to prove the entropy increases along

the event horizon is to show that Ekk ' 0 under the first-order approximation. In the

following, we turn to review this result. If Ekk ' 0 at first order, combing the null energy

condition Tkk ≥ 0, eq. (3.8) reduces to

dΘ

dλ
− κΘ ≤ 0 . (3.10)

Under the assumption that the black hole becomes a static state in the asymptotic future,

we have Θ = 0 at late times. When we focus on the calculation under first order, the

surface gravity κ in (3.8) is evaluated at zero-order and it should be positive. Then, it is

easy to verify that Θ must be positive everwhere on the event horizon, i.e., the entropy

satisfies the linearized second law. Moreover, it has been shown in [27] that this condition

also gives the generalized second law in linear order. For simplification, unless otherwise

specified, the rest of the calculations are done in the first order.

Using the explicit expression of metric in (3.1), we can further obtain

Ekk ' Gkk − T φkk − ρRkk + 4∂2vρ− 2f ′(r)∂vρ+ 2ρ′(r)∂vf . (3.11)

Performing the explicit expression of line element in (3.1), we give some useful quantities

as follows

y = Rbiaik
akb = −2∂vf

r
,

x = Rijij =
1− f
r2

,

ỹ = Sbiaik
akb = φ2y + 2φ(∂vφf

′ − 2∂2vφ− φ′∂vf) ,

x̃ = Sijij = φ2x− 2φ(∂vφ+ fφ′)

r
− φ′(2∂vφ+ fφ′) .

(3.12)

Then, the first two term of eq. (3.11) can be obtained and it can be expressed as

Gkk − T φkk =

kmax∑
k=0

(
k(D − 2)!

(D − 2k − 1)!

aky + bkφ
D−2k−2ỹ

r2k−2

)
, (3.13)

For the third term, because Rkk = (D−2)y is the first-order quantity, the entropy ρ should

be evaluated at zero-order. Since all of the candidates are same in the stationary case, we

can directly use the expression of Wald entropy to evaluate it. Under the background

geometry, we have

ρ ' ρW '
kmax∑
k=1

(
k(D − 2)!

(D − 2k)!

ak + bkφ
D−2k

r2k−2

)
, (3.14)

where the density of the Wald entropy is defined by

ρW = −8πP abcdε̂abε̂cd . (3.15)

Combing above results, the first three terms can be expressed as

Gkk − T φkk − ρRkk =

kmax∑
k=1

(
2k(D − 2)!

r2k−2(D − 2k)!

)[
(1− k)(ak + bkφ

D−2k)y

+bk(D − 2k)φD−2k−1(f ′∂vφ− 2∂2vφ− φ′∂vf)
]
.

(3.16)
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3.1 Wald entropy

In this subsection, we start by considering the Wald entropy as shown in the last section.

Performing the explicit expression of line element in (3.1), the Wald entropy density can

be further obtained and it can be expressed as

ρW =

kmax∑
k=1

[
k(D − 2)!

(D − 2k)!

(
akx

k−1 + bkφ
D−4k+2x̃k−1

)]
. (3.17)

For the second line of (3.11), we have

4∂2vρW − 2f ′∂vρW + 2ρ′W∂vf

=

kmax∑
k=0

(
2k(D − 2)!

(D − 2k)!

)[
(ak + bkφ

D−2k)

r2k−2
(k − 1)(y + f ′∂vf − 2∂2vf)

−bkφ
D−2k−1

r2k−2
(D − 2k)(f ′∂vφ− 2∂2vφ− φ′∂vf)

+
bkφ

D−2k−2

r2k−4
(k − 1)

(
4φ(∂3vφ+ φ′∂2vf)

r

+ 2φ′(2∂3vφ+ ∂2vfφ
′)− f ′φ′(2∂2vφ+ φ′∂vf)− 2φf ′(∂2vφ+ φ′∂vf)

r

)]
.

(3.18)

Combing above results, we can obtain

Ekk =

kmax∑
k=2

(
2k(k − 1)(D − 2)!

(D − 2k)!

)[
(ak + bkφ

D−2k)

r2k−2
(f ′∂vf − 2∂2vf)

+
bkφ

D−2k−2

r2k−4

(
4φ(∂3vφ+ φ′∂2vf)

r
+ 2φ′(2∂3vφ+ ∂2vfφ

′)

−f ′φ′(2∂2vφ+ φ′∂vf)− 2φf ′(∂2vφ+ φ′∂vf)

r

)]
.

(3.19)

As mentioned in the last section, we focus on the case where the action contains the

higher curvature terms, i.e., there are at least one non-zero parameters ak or bk for k ≥ 2.

Then, Ekk will be nonvanishing. Since the null energy condition for the scalar field Tkk ≥ 0

only depends on the first two order derivative of φ and the first derivative of f , there does

not exist any constraints on ∂2vf and ∂3vφ, which indicates that Ekk need not to have any

specific sign. Therefore, the linearized second law for the Wald entropy is violated in the

scalar-hairy Lovelock gravity.

Next, we consider the entropy after replacing the gravitational part of Wald entropy

with JM entropy in the scalar-hairy Lovelock gravity. It is not difficult to believe that this

correction will only change the quantities which contain the coefficient ak. This implies

that there exists at least some non-zero term containing ∂3vφ. Therefore, the linearized

second law for this corrected entropy is also violated and we cannot naively add the scalar

field term of the Wald entropy to the JM entropy of the purely Lovelock gravity.
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3.2 Jocobson-Myers entropy

In this subsection, we turn to construct a horizon entropy such that the linearized second

law is satisfied. Note that the theory is conformally invariant. By rescaling the metric

g̃ab = φ2gab, we can find

R̃cdab = φ−4Scdab , (3.20)

where R̃cdab are associated to the metric g̃ab and all of the indexes are raised by g̃ab for the

quantities with ∼. Then, the action of the scalar-hairy Lovelock gravity can be expressed as

I = I{a}[g] + I{b}[g̃] , (3.21)

where I{c}[g] is the action of the purely Lovelock gravity with the metric gab and coupling

parameter {c1, c2, · · · ckmax}, i.e.,

I{c}[g] =
1

16π

kmax∑
k=0

[∫
s
dDx
√
−g ck

2k
δ(k)R(k)

]
. (3.22)

As mentioned in the section of the introduction, it is the JM entropy of purely Lovelock

gravity that satisfies the linearized second law, not the Wald entropy. By analogy with

the JM entropy of the purely Lovelock gravity, we can also introduce a JM entropy in the

scalar-hairy Lovelock gravity as

SJM = S
{a}
JM [g] + S

{b}
JM [g̃] , (3.23)

where S
{c}
JM [g] is the JM entropy of the purely Lovelock gravity with the coefficients {ck}

and metric gab, and it can be shown as

S
{c}
JM [g] =

1

4

kmax∑
k=0

[
kck
2k

∫
s
dD−2x

√
γδ(k−1)R(k−1)

]
g

. . (3.24)

where the subscript g means that all of the quantities are evaluated on the metric gab, and

we have denoted

R(k) =

k∏
r=1

Rcrdrarbr
(3.25)

with the intrinsic curvature Rcdab of the cross-section s on the horizon. Then, the JM entropy

density can be further obtained

ρJM =
max∑
k=0

[
k

2k
δ(k−1)

(
akR(k−1) + bkφ

D−2R̃(k−1)
)]
. (3.26)

We can see that this entropy can reduce to the Wald entropy in the static black hole

geometry. From the discussion in [30], the difference between the Wald entropy and JM

entropy of the purely Lovelock gravity is given by

S
{a}
W [g]− S{a}JM [g] = 16π

∫
s
dD−2x

√
γ

∂2L{a}[g]

∂Rkaib∂Rkcjd
K

(i)
abK

(j)
cd

(3.27)

– 8 –



J
H
E
P
0
4
(
2
0
2
0
)
1
4
8

at linear order. Here L(a)[g] is the Lagrangian density of the purely Lovelock gravity with

action I(a)[g] in (3.22) the extrinsic curvature of the cross-section is given by

K
(i)
ab =

1

2
Ln(i)γab , (3.28)

and the orthogonal normal vectors n
(i)
a with i = 1, 2 are defined as

n(1)a =
√
|f |
[
(dv)a −

1

f
(dr)a

]
,

n(2)a =
1√
|f |

(dr)a .
(3.29)

The above result can naturally give the deference of the JM entropy and Wald entropy

in scalar-hairy Lovelock gravity

SW − SJM = 16π

∫
s
dD−2x

√
γ

∂2L{a}[g]

∂Rkaib∂Rkcjd
K

(i)
abK

(j)
cd

+ 16π

∫
s
dD−2x

√
γ̃

∂2L{b}[g̃]

∂R̃kaib∂R̃kcjd
K̃

(i)
ab K̃

(j)
cd ,

(3.30)

where K̃
(i)
ab is the extrinsic curvature corresponding to the normal vectors ñ

(i)
a = φn

(i)
a

and evaluated in the spacetime with metric g̃ab. Performing the conformal transformation

g̃ab = φ2gab and γ̃ab = φ2γab, we can further obtain

K̃
(i)
ab = φK

(i)
ab + 2γab∇iφ , (3.31)

where we have denoted ∇iφ = n
(i)
a ∇aφ. Then, the relationship of these two entropy can

be expressed by the quantities in the spacetime with metric gab, i.e.,

SW − SJM = 16π

∫
s
dD−2x

√
γ

[
∂2L

∂Rkaib∂Rkcjd
K

(i)
abK

(j)
cd

+4φ4
∂2L

∂Skaib∂Skcjd
γcd∇j lnφ

(
K

(i)
ab + γab∇i lnφ

)]
.

(3.32)

We can see that the difference between above JM entropy and IW entropy is different

from the result of the F (Riemann) gravity as shown in (1.2), and they also contain some

correction from the scalar field.

In the following, we would like to check whether the JM entropy increases along the

event horizon at first order in the Vaidya-like black hole solutions if the perturbation

matter fields satisfy the null energy condition. Using the line element in (3.1), we can

further obtain

ρJM =

kmax∑
k=0

[
k(D − 2)!

(D − 2k)!

(ak + bkφ
D−2k)

r2k−2

]
. (3.33)
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From the calculation at the beginning of this section, we only need to evaluate the second

line of (3.11). Using the above JM entropy density, we have

4∂2vρJM − 2f ′∂vρJM + 2ρ′JM∂vf

=

kmax∑
k=0

(
2k(D − 2)!

(D − 2k)!

)[
(k − 1)(ak + bkφ

D−2k)yxk−1

−bk(D − 2k)φD−2k−1xk−1(f ′∂vφ− 2∂2vφ− φ′∂vf)
]
.

(3.34)

Combing above results, we can see that

Ekk = 0 (3.35)

under the first-order approximation. This means that the JM entropy increases along the

horizon in the Vaidya-like black hole at the first-order approximation of perturbation. This

also implies that similar to the JM entropy in purely Lovelock gravity, the JM entropy in

the scalar-hair Lovelock gravity also satisfies the second law at first order.

4 Conclusion

In this paper, we investigated the linearized second law of the black hole in Lovelock gravity

sourced by a conformally coupled scalar field when the perturbation matter fields satisfy

the null energy condition. As we all know, the Wald entropy does not satisfy the linearized

second law for the purely Lovelock gravity. To show the validity of linearized second law

in scalar-hairy Lovelock gravity, we first considered the Wald entropy in the Vaidya-like

black hole solution and showed that it does not satisfy the linearized second law for the

case with higher curvature terms. Moreover, we also show that we cannot naively correct

the entropy by adding the scalar field term of the Wald entropy to the JM entropy of the

purely Lovelock gravity to get a valid linearized second law. Then, by rescaling the metric

g̃ab = φ2gab, we can see that the action of the scalar field can be written as a Lovelock term

with the metric g̃ab. Using this property, by analogy with the JM entropy of the purely

Lovelock gravity, we introduce a new formula of the entropy after adding the scalar field

and showed that this JM entropy increases in Vaidya-like black hole solution for the scalar-

hairy Lovelock gravity under first-order approximation. Moreover, we showed that different

from the entropy in F (Riemann) gravity obtained in [30], here the difference between the

JM entropy and Wald entropy contains the correction from the scalar field.
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