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ABSTRACT: In this work we apply effective field theory (EFT) to observables in quarkonium
production and decay that are sensitive to soft gluon radiation, in particular measurements
that are sensitive to small transverse momentum. Within the EFT framework we study
Xq decay to light quarks followed by the fragmentation of those quarks to light hadrons.
We derive a factorization theorem that involves transverse momentum distribution (TMD)
fragmentation functions and new quarkonium TMD shape functions. We derive renor-
malization group equations, both in rapidity and virtuality, which are used to evolve the
different terms in the factorization theorem to resum large logarithms. This theoretical
framework will provide a systematic treatment of quarkonium production and decay pro-

cesses in TMD sensitive measurements.
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1 Introduction

Transverse momentum distributions (TMDs) have been the subject of many theoretical
and phenomenological studies in recent years. TMD parton distribution functions (TMD-
PDFs), which encode information about the three-dimensional distribution of partons in
the nucleon, are usually studied through the kp-factorization theorems [1-5]. Processes for
which such factorization theorems exist are Drell-Yan and Higgs production [6, 7], semi-
inclusive DIS (SIDIS) [8, 9], and electron-positron annihilation to di-hadrons [10, 11] (see



also refs. [12-20] for processes involving jets). In these theorems the differential cross sec-
tion is written in terms of various perturbative and non-perturbative functions up to power
corrections. While the perturbative elements can be calculated in a systematic expansion
in the strong coupling, the non-perturbative elements need to be fit from experiments. The
true power of factorization is that non-perturbative matrix elements are universal and thus
can be extracted from one process and used to make predictions for other experiments.
Furthermore, factorization separates different scales appearing in a cross section so that
renormalization group (RG) evolution can be used to resum logarithms of ratios of disparate
scales which is often needed for convergence of the perturbative expansion. RG evolution
is a key procedure for the consistent extraction and use of the universal non-perturbative
matrix elements since different experiments can operate at widely separated scales.

The extraction of non-perturbative TMDs is achieved by parametrizing the form of
these distributions and fitting the transverse momentum differential cross section against
experimental data from various processes that are sensitive to the TMDs of interest. For
example, the Drell-Yan process gives access to the quark TMDPDFs, but is relatively
insensitive to the gluon TMDs. In fact, while unpolarized quark TMDPDFs are extensively
studied both experimentally and theoretically, the gluon TMDPDF is not well constrained.
This is because quarks can interact via electroweak processes which lead to final states that
do not intereact strongly, hence only probing the TMDPDEF. Processes in which the final
state contains hadrons (which can absorb or emit collinear and soft radiation) are sensitive
to other TMD distributions, such as TMD fragmentation functions (TMDFFs) and TMD
soft functions. Gluon fusion processes, which potentially can be used to extract the gluon
TMDPDF are dominated by hadronic final states, so that understanding soft final state
radiation is vital. Processes proposed to study gluon TMDs in collider experiments include
inclusive, exclusive, and associated quarkonium production processes [21].

In collider physics, quarkonia are studied within the framework of NRQCD factor-
ization [22-28] where the cross section is written as a sum of products of short distance
matching coefficients and the corresponding long distance matrix elements (LDMEs). The
short distance coefficients (SDCs) describe the production of the Q@ pair in a particular
angular momentum and color configuration. In the case of hadronic initial states, SDCs
are expressed as a convolution of the partonic cross section and the collinear PDFs. The
partonic cross section is calculated as an expansion in the strong coupling constant [29-36].
In contrast, LDMEs describe the decay of the QQ pair into the final color-singlet quarko-
nium state, Q, through soft and ultra-soft gluon emissions. LDMEs are fundamentally
non-perturbative objects, they need to be extracted from experiment [36-40], and are
thought to be universal. Although in principle all possible intermediate Q@ configurations
contribute to the final quarkonium state, LDMEs scale with powers of the heavy quarks rel-
ative velocity in the quarkonium rest frame, v, and thus at a fixed order in the v expansion
only a finite number of LDME contribute.

Despite many successes, the NRQCD factorization approach is only effective when the
quarkonium is produced with relatively large transverse momenta. Intuitively, in this kine-
matic regime, emissions of soft and ultra-soft gluons from the heavy quark pair cannot alter
the large transverse momentum of the quarkonium state. Ignoring these soft emissions, the



quarkonium transverse momentum is then determined from the hard process and infrared
(IR) divergences that are present in perturbative calculations of the partonic process are
absorbed into the non-perturbative LDMEs and collinear PDFs. However, when quarkonia
are produced with small transverse momenta, this soft gluon factorization assumption must
be relaxed. In refs. [41-43] the quarkonium photo/lepto-production was studied in the end-
point region which is sensitive to soft radiation where NRQCD factorization breaks down.
It was found that promoting the LDMEs into quarkonium shape functions is necessary for
accurately accounting for soft radiation from the heavy quark pair.

A central point of this paper is to introduce TMD quarkonium shape functions which
will appear generically for TMD observables involving quarkonia.! For previous studies of
quarkonium production at small transverse momentum and/or small-z, see refs. [45-52].
Although NRQCD already contains many of the necessary elements for deriving factor-
ization involving an heavy quark-antiquark pair, it must be extended to include other
effects. For example, initial or final state collinear modes are not included in NRQCD
but are crucial to describe recoil from collinear radiation. Such collinear modes are ex-
tensively studied in the framework of soft collinear effective theory (SCET) [53-56], and
were combined with NRQCD in ref. [43]. As a matter of fact, a formulation of NRQCD
using the label-momentum formalism [57] (known as vNRQCD) can be easily expanded to
incorporate collinear degrees of freedom.

Recently [58], vNRQCD was formulated in a manifestly soft gauge invariant form by
introducing the soft Wilson-lines in the vNRQCD Lagrangian. These are Wilson-lines along
the time-like direction (in the quarkonium rest frame) constructed from soft gluons. In this
paper we show that the insertion of these Wilson-lines in the quarkonium production/decay
operators — whose vacuum expectation values are the LDMEs — is required for properly
matching NRQCD onto QCD and gives the operators the correct gauge transformation
properties. This is another confirmation that vNRQCD is the correct starting point.

This paper is organized as follows: in section 2 we introduce some of the important
ingredients of SCET and NRQCD. Next, in section 3 we perform a tree level matching
with an arbitrary number of soft gluon emissions from the heavy quark-antiquark lines.
We do this for the process g7 — QQ as a simple example. This approach is important for
identifying the various operators relevant at each order of the matching and seeing how
they might be related. In the same section we demonstrate that the resulting operators are
invariant under collinear, soft, and ultra-soft gauge transformations. In section 4 we give
the factorization of the process x5 — qq, followed by the fragmentation of the light quarks
to hadrons. We study a TMD dependent observable so that the differential rate involves
the quarkonium TMD shape functions as well as TMDFFs for the final state. Using
the factorization theorem we demonstrate how our approach can be used to obtain the
relevant renormalization group equations and perform a NLL resummation. We conclude

in section 5.

While this paper was being finished ref. [44] appeared which introduces the color singlet TMD shape
function for n. production.



2 SCET and vNRQCD

SCET and vNRQCD are effective field theories that describe the degrees of freedom of
QCD in the soft and collinear, and non-relativistic limits, respectively. Both theories are
well established and address a wide spectrum of physical phenomena. We aim to study a
TMD dependent observable in x; decaying to light quarks followed by their fragmentation
to light hadrons. vINRQCD is needed for the heavy quarkonium in the initial state and
SCET is needed for the energetic hadrons as well as soft radiation in the final state. Our
alm in this section is not to give a comprehensive review of those EFTs but rather to
introduce the elements and notation necessary for the analysis we pursue.

2.1 Non-relativistic QCD

There are three important scales that appear when studying the dynamics of non-relativistic
heavy quarks: the mass of the heavy quark, m, the size of their momentum in the quarko-

2. The distance r ~ 1/(mv) gives an

nium rest frame, mv, and their kinetic energy, mv
estimate on the size of the quarkonium state and the separation between the heavy quark-
antiquark pair. The non-relativistic kinetic energy AE ~ mv? is of the same order as the
energy splittings of radial excitations. We refer to mv and mv? as the soft and ultra-soft
scales respectively. Correspondingly, gluons that have all of their four-momentum compo-
nents scaling as mv and mv? are called soft and ultra-soft gluons respectively. While the
ultra-soft scale is well within the non-perturbative regime the soft scale is about 1.4 GeV
for bottomonium and about 800 MeV for charmonium.

The effective theory of vINRQCD is a version of non-relativistic QCD introduced in
ref. [57] and recently formulated in a manifestly gauge invariant form in ref. [58]. What we
find appealing about this version of NRQCD is the clear distinction of soft and ultra-soft
degrees of freedom and the use of label-momentum notation. Both aspects are crucial for
this work. We work in the limit where the measurement is sensitive to the kinematics of
the heavy quark-antiquark pair (in the quarkonium rest frame) and therefore it is critical
to separate the various infrared degrees of freedom. Using the four-vector v = (1,0), the
four-momenta of the heavy quark, pg, can be decomposed as follows,

P = mvt + k", (2.1)

where k¥ is the kinetic energy and k is the three momenta of the heavy quark. Since the
heavy quarks we consider are on-shell i.e., pé = m?, then in the non-relativistic limit,
where the three momenta are small compared to the mass, |k| ~ mv, with v < 1 we have

p2Q =m? +mk® + (k)% — k? = m?, (2.2)
which has a solution only if k% ~ mv?. Thus, the components of k* scale as
E* ~m(v:, v, v,v). (2.3)

In the presence of both soft and ultra-soft modes it is important to separate the small
components of the four-momenta, k*, into soft (label, denoted ¢#) and ultra-soft (residual,



denoted r*) parts:
pé = mot 4+ 0F 4+ rH | (2.4)

where
rH ~m(v, v v v, O~ m(0,v,v,V). (2.5)

The QCD heavy quark field, ¥, can then be decomposed into the vNRQCD heavy
quark field, 1¢(x), as follows,

imt—itx L+ P
i _ imt—il-x ) 26
@=3 L () (26)
The soft, A}, and ultra-soft, A, gluon fields have momenta which scale (all four compo-
nents) as soft (~ mv) or ultra-soft (~ mv?), respectively.
The Lagrangian of the EFT can then be written in terms of those fields in the following
form [57]
c 5y (ipo— (PD) £n>2) T—T)+Ls(AM)+LY A¥
VNRQCD_pr ? _T djp—f— +(¢_>X7 — )+ s( q)+ (1/]7)(’ q)a
p
(2.7)
where y is the heavy antiquark field and £ are higher order terms and the superscript
n denotes the suppression in powers of v of £ relative to the leading order Lagrangian.
In eq. (2.7), L, is the soft gluon and ghost part of the Lagrangian, and £Y contains the
potential terms which have the following generic structure,

Double soft gluon emissions: Z wL (AZ‘ AZ,) Yo U (p, P, 0, 0),
p.p’ .0

Heavy quark-antiquark potential: Z <@Z}LTA¢P,/> <XTpTAXpl> V(p,p').
p,p’
The label momentum operator [55], P* = (P° P), is defined such that it projects only
onto the label momentum space,

Phapg(a) = pg(x) PRAY = R A7, (2.8)

and the covariant derivative is: iD* = 0" — gAls(z).

It is important to note that in the Lagrangian there is no interaction with a heavy
quark/anti-quark and a single soft gluon, since such terms will put the heavy quarks too
far off-shell. At order «; interactions with two soft gluons are allowed and are contained
in the potential part of the Lagrangian. These interaction make it impossible to decouple
the soft gluons form the heavy quarks, which is why they must appear in the same TMD
matrix element. Another important observation is that the first term in the Lagrangian
of eq. (2.7) is the only term in which the ultrasoft gluon couples to the heavy quarks at
leading order. As a result the ultra-soft gluon can be decoupled from the heavy quarks
using a BPS [56, 58] field redefinition,

() = Yy (w)he(x), (2.9)



where Y, (z) is the ultra-soft gluon time-like Wilson line,

Y, (x) = exp (—ig /(; dt’ A% (t + t’,x)) . (2.10)

Of course, this field redefinition will simplify the leading Lagrangian but it will introduce

n>0)

ultra-soft Wilson lines into £, and the sub-leading terms L( . We will not be working

with most of those terms but the next-to-leading contribution,

m

D -
£0 = =Y 4e) " Py, (2.11)
4
is of interest. After the BPS field redefinition this term becomes,

Bus :
£® = —ngﬁéO)T(x)TP@O) (z), (2.12)
¢

where Blis(z) = —g_lYJ(a:)(iD”)K,(a:), is the ultra-soft gluon building block.

2.2 Soft collinear effective theory

The soft collinear effective theory has been used successfully in a wide variety of topics
including TMD phenomenology. Particularly, the version of SCET that we are considering
is SCETy; which involves the collinear and soft degrees of freedom (in contrast to SCETy
which involves the ultra-soft). The power-counting parameter of SCET is usually denoted
by A. The scaling of the relevant degrees of freedom, in light-cone coordinates (p*, p~, p*),
can be written in terms of A as

collinear: p* ~ Q(A\%,1,)\),
soft: ph ~ Q(A, A, A\ (2.13)

@ is the typical hard scale and n* = (1,0,0,1) is the four-vector along which we expand
in light-cone coordinates,

pr=—p +—p"+p, (2.14)

where p~ =n-p, pt =n-p, and a* = (1,0,0,—1) such that n? =R?> =0 and n-n = 2.
We separate the label and residual components of momenta as follows:

pl o= 4t where  (F ~Q(0,1,)), and " ~QM\LANY).  (2.15)
The EFT collinear quark fields &, ¢ are then defined as

gn,é(l‘) =P, QR,E(x) ) (216)

where P, = tjt/4 and g, ¢ is the QCD label momentum partitioned field

() = 3 e g (). (2.17)
(40



The collinear (AZJ) and soft (Aié) gluons are defined similarly:

At(z) =) e T AL (x), (2.18)
20

where A¥(x) are the full theory bosons and A} = AZ,K + A% ,. The SCET Lagrangian can
be found in refs. [54-56].

Invariance under collinear, soft, and ultra-soft gauge transformations requires that
particular combinations of fields appear (rather than §,, A,, and Aj):

gn,f(m) - Sn(x)Xn,f(x) = Sn(ﬁ)Wg(l’)gn,g(l’) )
A" () = SPBY, (z) = —;Sgb”[&" (TPWi (@) (P — gAL W()) (2.19)

where W, and .S,, are the collinear and soft Wilson lines respectively, defined as:

Wy (x) = Pexp < — g /0 dsn - Ay (x +ﬁs)> ,

—00

S, (x) = P exp ( g /0 dsn - Ay(x + ns)> . (2.20)

—00

Note that collinear fields cannot directly interact with soft gluons. As a result the leading
SCET Lagrangian does not include interactions of soft and collinear gluons or quarks. On
the other hand in full QCD it is possible to have such interactions through Glauber gluon
exchanges.? These interactions can be included in the effective theory systematically. This
part of the Lagrangian was extensively studied recently in ref. [64]. In this work we focus
on processes that are not sensitive to Glauber gluon exchanges such us lepton annihilation
to di-hadrons or semi inclusive DIS.

In this section we have introduced two power counting parameters, one for vNRQCD
(v), and one for SCET (). Its is natural to ask about the hierarchy between these small
parameters. We are interested in two distinct cases:

e v ~ A. The two EFTs overlap in the region of soft dynamics. Particularly the soft
gluon of one theory is the same as in the other. In this case the two EFTs merge into
a single one containing all degrees of freedom. We will refer to this EFT as SCETq.

e v < \. There is no overlap and thus we need to work with both EFTs. Factorization
theorems for this region can be achieved by matching from SCETq onto vNRQCD.

For the rest of this paper we will be assuming v ~ A and use SCETq.

*For Glauber gluon exchanges in SCET see refs. [59-64].



3 Operators, matching, reparametrization invariance, and gauge
invariance

In this section we consider the operators that appear in the hard sector of the Lagrangian
by performing tree level matching of the QCD diagrams with an arbitrary number of soft
gluon emissions from the heavy quark and antiquark lines. We then study the simple
but non-trivial example of ¢ — QQ -+ gluons. We match these QCD diagrams onto
NRQCD operators with soft Wilson lines and the Q@ in relative S- and P-waves. We
apply reparameterization invariance (RPI) of the EFT to show that two of the operators
appearing in the P-wave channel are related to the S-wave operator by RPI transformations.
Finally, we discuss gauge invariance in the effective theory and show that our results respect
all gauge symmetries of the EFT.

3.1 Diagrammatic analysis

To keep the discussion as generic as possible, we consider the QCD diagram on the left-
hand side of figure 1, where the vertex with the ® symbol corresponds to an arbitrary color
and spin structure, denoted in the equations below by I'. We will evaluate a diagram with
n gluons attached to the antiquark line and m to the quark line, then sum over n and m.
The diagram in the full theory is given by

dr(m,n) = u(pq) (igy"' T*) D(pq + p1) (igy"*T*%) - - - (igy""T*") D(pq + pe(m))
x T(pi(m), pQ, py(n), pg) D(—pg — pi(n)) (im”"Tb”) (igv”Tb?)
x D(=pg — 1) (197" T" ) vlpg) x AL (E)AR ML) -+ A (mr),  (31)
where

k
ACEDYF (3.2)

)

and similarly for the primed gluon momenta p;”’ labelled in figure 1. The heavy quark and

anti-quark momenta are

pq=P+q)/2, pg=(P—-q)/2, (3.3)

where P is the total momentum of the heavy quark and antiquark and ¢ is their relative
momentum. We will calculate these diagrams for S-wave and P-wave QQ states. For the
S-waves we can set ¢ to zero and P-waves are extracted by expanding to linear order in q.
Each coefficient of the g-expansion is further expanded in the small parameter A and here
we consider only the leading non-trivial terms in the A-expansion. The leading term in the
g-expansion, O(q"), gives the overlap with the S-wave states where the O(q') terms give
the overlap with the P-wave states

dr(m,n) = d\ (m,n)(1 + O(\) + d (m, n)(1 + O(N)) + - - (3.4)

with dr(m,n) the result of evaluating the diagram. Supercripts denote the order in ¢ of
the expansion, and the ellipsis corresponds to terms of order O(q?) or higher. In the g¢-
expansion we need to consider expanding all elements that could depend on the momenta



(1+0W)
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Figure 1. A diagrammatic illustration of the matching procedure from full QCD onto EFT
operators.

of the heavy quark and antiquark, pg and pg respectively. Those are the spinors, u and v,
the propagators, D, and the vertex, I'. The spinor and propagator expansions in ¢ and A
are given in appendix A. We use the following notation for the vertex expansion,

T (pe(m), pq. pi(n), pg) = T (pe(m), pi(n)) (1+ON) +a-TW (py(m), p(n)) (1+O(N)) +

(3.5)
First we consider the projection onto S-wave states
t i(1+9) . i+y) i(1+9)
d(o) m,n) = u(U) Zg,y,ulTal 9’7“2Ta2 o« (igytmTem
o) = (o) i T gy T Gy ) 20fim)
_ i(1—-9) /.
F(O) / ( o ¢) I/nTbn .. I/QTbQ Z( . V1 Tb1 (0)
x I (pe(m), pi(n)) 20(n) (Zm ) (zm ) 200 (1) (Zg’y ) v
X AY AR AR (3.6)
where we use the label-momentum notation also used in the context of vVINRQCD:
a — pa b — »b
A Toh — =A ( ) ) Ai’,u = Au(p;) . (37)
Further we use
V(L +¢) = (1 =gy + 201, (I=¢)y" =" (1 +¢) — 20", (3.8)

along with eq. (A.5) to rewrite dl(ﬂo) as follows

n

AY ,
d (m,m) = (ut )[ ”ﬂlo ]w><>@mnpq1§ﬁgﬁpw.<mn

1pt s=1

Since gluons are bosons we can sum over all possible permutations within each product
and normalize with the number of permutations. Furthermore since we are considering an
arbitrary number of soft gluons we need to sum over all possible n and m which gives

f
4" = (u(0>) SE 1O 4O (3.10)

We have omitted the arguments of I'©) which could depend on the total momenta of soft
gluons attached to the heavy quark and antiquark lines. Here S, is given by

=7 il H [ bl s] (3.11)

n  perms




which is the momentum space expansion of the time-like Wilson line of soft gluons,
Sy(x, —00), defined as,

—0o0

Sy(z, —c0) = P [exp ( —ig /0 dr v - Agope (2" + vﬂf)ﬂ . (3.12)

Eq. (3.10) is our final result for the generic treatment of soft gluon emissions from

S-wave quarkonia. For the specific mechanisms of interest, e.g., 3S£8), 1531), ..

., to obtain
the exact operator form we need to specify the hard process and then evaluate the vertex
I' and its expansion in ¢ and A. We will do a particular example in the next subsection.
Next we perform a tree-level, diagrammatic analysis for the case where the QQ are in
a P-wave. To achieve this, we need to expand in the relative momenta of the heavy quark-
antiquark pair and keep only the linear terms in gq. As mentioned earlier there are three
sources that will contribute: the spinors u and v, the propagators D, and the vertex T'.

The procedure for the expansion of the vertex is identical to the analysis following eq. (3.6)
.i.
iV = (u<0>> Shq-TM 5,0 (3.13)

From the expansion of the propagators, D(pg + p), we have two contributions, the one
proportional to p’ and the other to +*, see eqs. (A.6) and (A.7). We consider the former
independently and the latter along with the contributions from the spinor expansions; we

(1)

refer to these terms as dg) and dgl) respectively. The term d},” can be written as the sum

of contributions where the expanded propagators lie along in the quark line dg)(quark) or
antiquark line dg)(antiquark)
dg) = d%)(quark) + dg)(antiquark) . (3.14)

(1)(

Here we demonstrate the calculation for d},’(quarks) only. For all other terms refer to
appendix C. We begin by expanding the i-th propagator along the quark line at leading

order in q. Then using eq. (3.8) and summing over i we have

P T

i=1 w1 P s=ip1 Pt
(0) / n - A(n+1—8)’ (0)
I (pe(m), pi(n)) | g H? v (3.15)

Using eq. (A.8) we get

i

L i . A(s)
pi )(m n; quark) = ( ) ZZ 2mp [ 9)'a-p(7) H O(s)

=1 p=1 s=1 by

) A9 m A0
[gp_z H s So ] [(_g)m_p H T 0
s=i+1

Drmit1 Dovivi—e s=pt1 ZE:p—i—l Dy

n AO ,
PO (py(m), pi(n)) [g” I1 (”31‘5)] @, (3.16)
s=1 Dy (5)

~10 -



Now summing over all permutations within each product, using the bosonic nature of
gluons, and considering all values of m and n we have

2mu - P

T 1
= — (4© ——  _Stlq-P 10 g (0
<u ) [2mv : S) {q Sv} } STV S,vt) . (3.17)

.I_
d%)(quark) = (u(0)> [ ! [q . ’PSJ,} Sv} S;EF(O)SUU(O)

Here we used the notation where the label momentum operator acts upon fields to the
right which are enclosed within the same square brackets (including sub-brackets). A

similar analysis for the antiquark yields
d(l)(antiquark) = (u(o))T sir@g, #ST q-PS,| v, (3.18)
D v 2mov - P

Therefore, the sum in eq. (3.14) gives an anti-commutator in the following form

f —1
) = (u(0)> {SlF(O)SU, [ 51 [q : ’PSUH }v“” : (3.19)

2mu

Similarly from eqs. (C.15) and (C.25) we have

f 1
(1) — (4, () Tq - — o~ (0)
dy (u ) {Svr S, [va : Pqu ASU} ~ q}v . (3.20)

The total contribution to the P-wave QQ states is given by

T
d = dP 4+ a}) ) = L (u<0>) {Sgr@sv, [U 1 54 BS} }v(o) (3.21)

- 2m

N (um))T Shq. (1“(1) _ ;n{p<o>,7}>5w<o> 7

where the building block, BY, is defined as follows

B — —;sg [(73“ - gA“)SU] (3.22)
and was introduced and studied in the context of vYNRQCD in ref. [58]. We demonstrate
its importance for the gauge invariance of the EFT operators later in this section. In the
next subsection, we show how the form of the terms involving T'(®) can be understood using
reparametrization invariance (RPI).

Egs. (3.10) and (3.21) are the main results of this section. Using these equations we
can now easily identify the operators that do have nonvanishing matching with the full
theory at any fixed order in the ay expansion. Here we wish to make a few important
observations. In eq. (3.21) there are three distinct contributions, each proportional to one
of: By, IM, and ~. We refer to those as Type I, Type II, and Type III contributions.
For a given T'© Type I and Type III will never match onto the same operator due to the
presence of B,. They will also not contribute to QQ with the same quantum numbers
because the two operators have different spin angular momentum. If I'©) is a color-singlet

- 11 -



then Type I contributions will be color-octets and Type II will be color singlets. Finally,
as will see in a later subsection Type I and Type III are related to the S-wave operators
responsible for eq. (3.10) so their matching will be the same to all orders in perturbation
theory. In section 4 we will see that this has important implications for the IR finiteness
of the EFT matching coefficients.

It should be noted that in the current formulation of the SCETQ operators we cannot
distinguish between the past and future going Wilson lines. Such a distinction is impor-
tant when discussing universality of soft functions and properties of rapidity divergences.
Although this analysis can be done in SCETQ we do not pursue this in this work. Such
an analysis will be useful for discussing cancellation of rapidity divergences to all orders in
perturbation theory, which we leave for future work. In addition, in our results no trans-
verse gauge link is present, contrary to other soft functions such as those in Drell- Yan and
electron-positron annihilation. This is a consequence of working in Feynman gauge (or any
other covariant gauge). For full gauge invariance including axial gauges one should include
the transverse gauge link.

3.2 A simple example

Now we demonstrate how the analysis and results of the previous section can be used in
order to perform the matching for a particular process. As an example we study QQ pair
production(decay) from(to) a light quark-antiquark pair. The relevant QCD diagram is
shown in figure 2. The two on-shell light quarks have momenta with collinear scaling:

P~ 2m(\31,0) Pl o~ 2m(1,\%)\). (3.23)

This indicates that the collinear approximation is appropriate, and many results from
SCET can be recycled. The full theory diagram gives
dlai— QQ) = (o) () ulp) -
= 0(pp u

u(pq) (igy"* ) D(p+p1) (igy**T**) - -- (igy"™ T ) D(pQ +pi(m)) v°T¢

D(—pg—p}(n)) (ig’y”"T b”) = (igv”QT'”) D(—pg—ph) (igv’“ T’“) v(pg)

x ADL(ph) A2 (ph) -+ A% (1), (3.24)
from which we can directly read off the vertex I' = v*T%ig?/s, where s = (P + px)? is

the center of mass energy squared. We note that this expression is independent of ¢g* and
therefore I'>0) = 0. Expanding in A we find

o — 7PTCK r™—=po (3.25)
4m?2’ ' '
Using this result along with eq. (3.10) we can easily obtain for the overlap with S-wave

states:

49(q7 — QQ) = ity tu(pa) (+'T°) walpn) (V2N SITS, (Vamuy!), (3.26)
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Figure 2. QCD diagram for an arbitrary number of soft gluon emissions from the heavy quark-
antiquark pair for the process q7 — QQ|[n].

where we also expanded the collinear spinors in A. This result is reproduced by the expec-
tation value of a four fermion operator

d<°><quQ>:mswjé<Q<pQ>Q<pQ>'w*aiszTcsvxm) s‘miTcgn<o>'q<pn>q-<pﬁ>>

tree-level

(3.27)
Until now we have not yet included soft or collinear gluon emissions from the light quark
lines. This task was already tackled in SCET and here we simply use what is already well
known. The collinear gluons along the n direction can be organized in a light-like Wilson
line, W;{, acting on the collinear field &,. The product is usually denoted with

Xn(z) = lefn(:v) ) (3.28)

For more details on the collinear Wilson lines refer to section 2 and references therein.
The soft gluon attachments can also be organized into a light-like Wilson line, S,,. The
resulting operator is

sed (dﬂ adeX> X (gmis;TCSan), (3.29)
where we used

ST = §iT°S, . (3.30)
The tree-level matching coefficient for this operator is

™

Cor(*S7) = a (3.31)

SW .
We note that the only term that contributes is the projection of the heavy quark-antiquark
pair onto a 3S£8] configuration. This is to be expected from fixed order calculations in
NRCQD, where the same mechanism is the only S-wave contribution that has leading
logarithmic growth in the small traverse momentum limit at NLO.

We now repeat the same procedure for the projection onto spin triplet P-wave quarko-

nium states. Using eqs. (3.21) and (3.25) we get
d(l)(qq —QQ) = Z-qu(s‘g?]) % Ssdﬁﬁ(pﬁ) ('YiTc)

< (pa) (VI ot {77} (Vamn) {‘“733] | (3.32)
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where we used BY = BSHT® [58]. The anti-commutator {79, T¢} = d%/T/ + §% /N, will
generate both color singlet and octet projections of the heavy quark-antiquark pair. For
this reason we break the contributions to this diagram into ones coming from two different

operators: A
J\ch x Sed [ i fd;] {w 2“\/2 } X (;zmis;Tcsan) (3.33)
and , .
el 8¢ [ n{’L f ;] [w* UZQPJ fo] x (;zmis;:rcsnx”), (3.34)
with
Coa PPy = PPy = 0y (PSP (3.35)

The left-right label momentum operator is defined such that it acts on the left first,
[t 7?“)(] = [Pp]Tx — ¥T[P*x],®> and as always the square brackets denote the range
of action for the label momentum operator. Therefore, the leading term contributing to
P-wave states can be written in terms of these two operators:

(i +00) = 330
s ({Qo)@ra)|y o xset | 2] [w;’;’%x] (1 ST S o)t
q(pn>q<pﬁ>>)tree_level-

This gives the overlap with color singlet and octet P '; states which are the only ones

ef Qc P’ = A c
s 2] [0« s

+<Q(pQ)Q( )

which contribute in the light quark pair annihilation channel. Again, this is consistent with
what is observed in fixed order NRQCD calculations. Note that eq. (3.36) for the case of
3P£1] holds beyond leading order as discussed below eq. (3.21).

3.3 Reparametrization invariance

In this subsection we explain how reparametrization invariance (RPI) [65, 66] relates the
NRQCD operators whose matrix elements give the Type I and Type III terms in eq. (3.21)
to the S-wave operators whose matrix elements give eq. (3.10). The operator which gives
rise to eq. (3.10) is:

¥iSTO 5,y (3.37)
In order to match onto a diagram with the QQ in the S-wave we took the four-velocity of
the heavy quark and anti-quark to be v#* = (1,0). In order to match onto P-waves we need
to give the heavy quark and anti-quark residual momentum +¢*/2 = (0, +q/2). The four
velocities of the heavy quark and antiquark are

2
ot — ( 1—|—4q2,i2(:n>

S +o< 2>7 (3.38)

m2

3Note this is in contrast with past definitions where the action of the derivative is first on the right, see
ref. [23]. With this definition we avoid having a minus sign in-front of the P-wave operator.
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so that v3 = 1. The idea of this section is to match onto an operator like that in eq. (3.37),
but instead of using v* = (1,0) for the Wilson lines and the heavy quark and antiquark
fields label momentum, we use v (v”) for the heavy quark (antiquark) field and then
expand the resulting operator in powers of q. The NRQCD fields obey the constraint
Pihp = Pp (see eq. (2.6)), this constraint is implicit in the notation. We introduce NRQCD
fields that instead obey the constraints

?Aiq/’pi = wp,i
YiXpt = —Xp,+ (3.39)

as well as Wilson lines, S, , along the v/ directions. Matching in the S-wave is a trivial
generalization of the S-wave matching performed earlier, the operator is

¢p +ST 0) S’L),Xp,— . (340)

Now insert v{ = v#+¢*/(2m) into the first equation in eq. (3.39), write ¢p + = ¥p+ dVp 4
then expanding to O(q) and solving for dip +, one obtains

d
¢p7i = 1/’13 + Am, P
q
Xp,t = Xp + A P (3.41)

Similarly, writing S, + = S, + 5, and using the equation of motion, we have

q _
(v+ %) (P — gA)(S,y +8S,) = 0. (3.42)
Expanding to O(q) and solving for 45, we find
Sv+ =Sy + — L1 (P—-gA)S
2mov - (P — gA) 1 gL
1 1
= — 5~ Gtg. (P —
Sy + QmS” Pqu (P —gA)S,
g
= B .4
So = 5 S 7Dq (3.43)

Inserting eqgs. (3.41) and egs. (3.43) into eq. (3.40) we obtain eq. (3.37) plus operators
whose matrix elements give the Type I and Type III terms in eq. (3.21).

The RPI analysis explains the structure of the Type I and III terms in eq. (3.21),
which otherwise seems obscure. Furthermore, since these terms are related to the operator
in eq. (3.37) by RPI, we know now that the matching coefficients have to be the same to
all orders in perturbation theory. That the Type I and III terms can be derived so easily
using RPI does not mean that the rather complicated diagrammatic analysis performed
earlier in this section was an unnecessary effort. It could have been the case that expansion
of the QCD diagrams led to other operators besides those that were related to the S-wave
operator by RPI. The explicit matching calculation shows that, beside the Type II terms
which come from the O(q) terms in the vertex, the only other P-wave operators are related
to the S-wave operators by RPI.
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3.4 (Gauge invariance

In this subsection, we investigate the gauge transformation properties of the three oper-
ators that appeared in the explicit matching calculation presented earlier in the example
q7 — QQ. Within the EFT there are three types of gauge transformation: collinear,
soft, and ultra-soft. We demonstrate that all three operators are invariant under these
transformations. Collinear fields transform only under collinear and ultra-soft gauge trans-
formations and soft fields only under soft and ultra-soft. Potential (heavy quark/antiquark)
and ultra-soft fields transform only under ultra-soft gauge transformations. The exact form
of the transformations for the relevant fields and building blocks are shown in table 1.
We begin with the transformation of the collinear sector, which appears in all three of
the relevant operators:
ey SIT%S X - (3.44)

This term is invariant under the collinear transformations, since the building block x,, is
the only operator that contains collinear fields and is invariant by construction. Under soft
and ultra-soft gauge transformations:

Xﬁ7iS;LTaSan — )Zﬁ’yisrizvs/usTaV; usSan = Vg/busXﬁ'ViS;szSan y (345)

where Vg/bus is the gauge transformation matrix in the adjoint representation. Since the

generators of the adjoint representation, t¢

ab’
Lie algebra, t5, =1 fe the following relation is satisfied

are related to the structure constants of the

Ve =V Das = Ve . (3.46)

This gauge dependence needs to be cancelled by the heavy quark sector, which we
now consider. Each of the operators contains heavy (potential) fields and soft fields, and
the analysis is simpler if we consider them separately. Obviously since these terms do not
contain any collinear fields, they do not transform under collinear gauge transformations.
The elements that need to be considered are: the adjoint soft Wilson line S{}d, the color-
octet S-wave bilinear ¢fo?T%y, the soft gluon building block Bs*, and the P-wave color-
singlet and color-octet quark bilinears ¥fo? 7<5>j x and 1o’ Sj T%.

e Soft Wilson line. The ultra-soft transformation of the soft Wilson line is:

SHTd = SITS, — Vo SIVI. TV, S, Vi, = Vabshe (i yedpd . (3.47)

vus

The soft transformation is:

STl = siTes, — SIviTW,S, = VyabstiTd (3.48)

e Color-octet S-wave bilinear. Since this involves only potential fields it does
not transform under soft gauge transformations. For the ultra-soft transformation
we have:

Yo' Ty — YIe' VI TWVysex = V2 i Ty . (3.49)
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Operators collinear soft ultra-soft
Sad G.L Vab Sha Vb She(vl)ed
BaH G.L. G.L. Vab gl
XV ST Sxn | GL | VE Xy SITSuxn | VI Xay SET*Snxn
Plo?Toy G.I G.I Vb ptaiTay
ot Piy G G G

t i Bjma ab .1t i Bja
Ylo* PITy G.IL G.IL Ve plo® PIT%x

Table 1. Gauge transformation of various operators and building blocks relevant for the light quark
production/decay. Here G.I. stands for gauge invariant.

e The soft gluon building block. The octet BS* is trivially soft gauge invariant
since BY = Bs"T® is soft gauge invariant by construction. Under an ultra-soft gauge
transformation

BSHT® = B* — V,,B*VI, = Vel BIrTe (3.50)

e P-wave color-singlet bilinear. The bilinear 1o’ 7?7 x involves only potential fields
which do not vary under soft gauge transformations, and is thus soft gauge invariant.
It is also ultra-soft gauge invariant since the ultra-soft transformation commutes with
the label momentum operator, [P, V] = 0.

e P-wave color-octet bilinear. As for the color-singlet case this bilinear is invariant
under soft gauge transformations. Under ultra-soft transformations

Yot PIToy — Vbl ot PITOy . (3.51)
We collect these results in table 1. Using them and the identity
d dd/ ! ! d/ g
ATV VIl = atet (3.52)

it is straightforward to show that the operators in section 3.2 are collinear, soft, and ultra-
soft gauge invariant.

With this we conclude our analysis for the light quark pair annihilation channel. We
showed that at tree level and at leading order in A there is one relevant mechanism for
S-wave states, SSF}, and two mechanisms for P-wave states, 3P}1] and SP}B]. We showed
that the corresponding operators, obtained through a diagrammatic analysis, are collinear,
soft, and ultra-soft gauge invariant and satisfy the correct relative velocity scaling. We
also showed how RPI relates different operators. As a last comment for this section notice
that both from the diagrammatic analysis and from gauge invariance the P-wave bilinears
involve the left-right label momentum operator instead of the covariant derivative usually

seen in the NRQCD LDMEs. This is a direct consequence of power counting:

0" = q§ + qus = q5 (1 + O(X)) = P~ (3.53)
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The higher order corrections from ¢,s can be included in the following way
¢" =45 + qus = PH +1i0" — gAy, = Dy, (3.54)

where we included the ultra-soft gluon field from gauge completion.

In the next section we use the results of this section to demonstrate how the rele-
vant operators and the EFT Lagrangian can be used in order to obtain phenomenological
quantities. Particularly how to obtain a factorization theorem, perform perturbative cal-
culations, and resum large logarithmic enhancements that could potentially ruin the per-
turbative expansion. Simultaneously we perform some consistency checks of our approach
and demonstrate with an explicit calculation that up to NLO our factorization holds.

4 P-wave decays to light quarks

In this section we show how our formalism can be applied by considering a specific example:
the semi-inclusive rate for y; quarkonium decay with two observed hadrons in the final
state. As we will show, this process allows access to the TMD fragmentation function
(TMDFF) of light quarks. Of course the decay rate includes contributions from gluons
as well, however, since we are doing this analysis for illustrative purposes these will not
be included.

The events are chosen to contain two identified distinguishable hadrons, H; and Hs,
and any number of additional particles. The hadrons are required to have large energy of
order of the available center-of-mass energy M,. We assign to H; the role of a trigger,
where a measurement of the energy is carried out, and with the direction of the hadron
fixing the z-axis. With this assignment a unique plane perpendicular to the z-axis can
be chosen which splits the final state into hemispheres. Then Hs is chosen to lie in the
hemisphere not containing H7, and a measurement of the energy and momentum transverse
to the z-axis is carried out.

4.1 Factorization

To begin we consider the kinematics of the proposed process, x; — Hy + Ha + X. Let pk,
pl and py be the momenta of the x;, H; and Hy respectively. Define the dimensionless
variables [67]

_2p;i - py
Zi = M2 ’
X
_2p1-po
M%Zl '

i=1,2

(4.1)

In the center-of-mass frame z; = 2F; /M x are the fraction of the hadron energy relative to
the available energy for a back-to-back event. Neglecting the mass of H;

1
Py = §Mx znt. (4.2)

In this same frame 1
U= 52’2(1 — cos(@lg)) , (4.3)
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where 612 is the angle between p; and p,. For a back-to-back event 612 = m, and
u = z3. Treating Hy as massless the magnitudes of the z and transverse components of Hs
momenta are

1
pg = §MX22 COS (7‘1’ — 912)
1 .
Py = §sz2 sin (7 — 612) . (4.4)

To access the TMDFF we restrict ourselves to the kinematic region where 612 =~ 7. To be
specific we take 15 — ™ ~ A, where A < 1 is the SCET power counting parameter. Then
P5 ~ Myz2/2+ O()\?), and Py ~ M, ze\. In this regime we can express the Hy momentum
as a light-like vector in a direction approximately opposite to the direction of Hi:

p2

2qun

1 1
Py = §Mx unt + pl| — H= §Mx zont + plf + 1t (4.5)
where the residual momentum 7# is O(\?). The events picked out by our selection criteria
will have 1 1
Py = p; —pf —ph ~ §Mx(1 —z1)nt + §Mx(1 — z9)nt — p‘j_, (4.6)

so px ~ MZ(1 — z1)(1 — 22) +p7. For z1,2 ~ O(1) (but not too close to one) real
hard emissions with virtuality Mi are power-suppressed for gr < Mi, and virtual loop
contributions of virtuality Mi are integrated out.

Next we derive a factored form for the decay rate. To begin the S-matrix for the QCD
decay amplitude (Hi(p1)H2(p2) + X|xs) needs to be matched onto an operator matrix
element in the EFT. We did this in section 3.2 for the process in question. The result is:

(H1(p1)H2(p2) + X|xJ) — Z dwydwy CM (aS(MX),wl,wg) (4.7)

n3sl® 3 pli]
X (Hyn X Han X Xo I, 0 ) 0@ [ oy =Y ps =D o =D pr | »
In fa fs

where there is an implicit sum over the directions of the collinear fields. The relevant
SCETq currents read

35[8] . B .

le,%;.)Q = Sgd (ngleX) X (anlfy’LS:—ETcSnXﬁw2> s (48)
spl! D) a9 Bg’j : o ﬁj ) it
wi,w2 — ﬁc v mou - P 2\/m X X (anl’}’ SﬁT SnXﬁuu) .

The delta function can be decomposed into light-cone form:

S oy = P =D pr—D ps, | =26 | My=> nepp, | 6 [ My=) nepp | (49)
f fn fs fn fn

x> prnL‘i‘prﬁL‘i‘ZPst
fn fa fs
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Squaring the amplitude to obtain the scattering probability, we derive the differential
decay rate in the EFT:

dr

—— =N dwydw /dw’dw’C[n] s (M), wi,w2)CH (g (M), W, W

dzydzod?q 35[;313[1] 182 152 ( (My), w1 2) ( (My),wy 2)
n= 1 J

>y 25( znpfn)é(Mx—;n-pfn)w(zpmzpmzpﬁ)

Xy Xpn#Hy Xa#Ho fn

s

where N is a normalization factor which we will fix after factorizing. In the absence

I (0) Hyn Xos Hon X3 Xo) (H1 X Hon X X[ I (0)

wi,wW2

XJ>, (4-10)

of Glauber interactions the decay rate above can be split into three sectors: n-collinear,
n-collinear and soft. The result is a factored form of the differential decay rate:

dl’
-_ = F H d kn d2 o d2 . (5 . kn kS _
doydzmdql " Z ) (M / l/ L/ + 1+kn+ke —qy)

[8] 3P
X S[JT_L](kSJ-)Dq/Hl(ZlaknJ_)D;_/HQ(Z%kﬁ’L)7 (4.11)
where
Il
q =-= (4.12)
22 w.r.t Hy

and Iy is the LO tree level partonic decay rate. The direction 7’ is aligned with the motion
of Hs and appears after an RPI type I transformation. Note because of RPI the hard
function H is the same for 3S£ l and 3P[ ]

The TMD functions (in d dlmensmns) are defined next. The quark TMDFF is [2, 12]

Dyyy(2,kn1) = 2Ntr<0‘ B 08y — - P)6E (| — P L Jaly (2 My, 0 )ar (=My, OL)Xn(O)‘O
(4.13)
where aL(p*,p‘,p 1) is the creation operator for a hadron H with label momentum
p* = (pT,p~,p,). A similar definition exists for the antiquark TMD fragmentation func-
tion. The definition of the S-wave color-octet quarkonium shape function, which appears
for the first time in this paper?

Yot TIxS(SIT5,) 0P (k| — P 1) x (S;Tcsn)schTaiT%‘xJ
(4.14)
where the trace outside the matrix element refers to fundamental color indices. The
NRQCD bilinears 9fo?T®y, are individually traced over color and Dirac indices. The
|x) state is summed over all possible polarizations. For the P-waves to project onto the

a-2
1 —
St = G- 1)tF“<XJ

individual J =0,1, and 2 we can use the projection operators discussed in ref. [31] or the
helicity decomposition techniques in ref. [68]. Note this projection is only possible since we
sum over the polarization of the quarkonium state. For polarized quarkonium states inter-
ference terms of the same helicity but different values of J are not excluded although they

4The corresponding color-singlet shape function first appeared in ref. [44].
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might be simplified using approximate heavy quark spin symmetry of NRQCD. Applying
the projection operators at the matrix element level we obtain the P-wave color-singlet
quarkonium shape function

2

g ij
Si_J_>3PJ(kJ_) = (2J+ 1)N2 i .AJ] tI‘<XJ

c

te. D LM
vie ’Px{mvﬁ’

}sfz%s%frbsn)

<>

Bd7]
@k, — treg ygde| 25 | Vg
x 0 (ki —PL)(S\TSh)S, [mv-P]XU P

XJ> ; (4.15)

where

iJ 1 )

Aoj - d _71 6J_7
. 1 - 1 .
1) _ 51] _ 62]

A= (d—1)(d—2) +
g 1 . d— g

Ay = 6 — 5 5, (4.16)

Cd+1 (d+1)(d—1)(d—2)

where (5ij = §% — §%*. Similarly to the S-wave case the NRQCD bilinears are individu-
ally traced over color and Dirac indices. In the following sub-sections we give the O(ay)
expressions for each of the various functions in eq. (4.11).

4.2 The hard function

The hard function for the quark-antiquark fusion processes can be extracted from eq. (132)
of ref. [31]:

O [ a1 PN T el asCa (p?
H(p)=1 5 {ln <M2 +31In e +6 2B(°Sy7) - In 2 (4.17)

2 2 2\ 1
BESH) =cp <—8+7r2> +Ca <5O+ln2—7r> ——Onftp. (4.18)

3 9 3 4 9

Note the Coulomb singularities in eq. (132) of ref. [31] need to be dropped as they are
reproduced in the EFT, and the 1/e divergences are dropped as well, as they cancel against
the combined counterterm of the EFT. The running of the hard function is the “opposite”
of the combined running of the three TMD functions in eq. (4.11), and the combined
counterterm can also be extracted from eq. (132) of ref. [31]:

asCr 1 1 u? 3 asCa l

Z=1- —+-In{-— — = —. 4.19

T {62+EH<M2 T o 21 € (4.19)

Then the anomalous dimension can be determined through standard methods, from which

we infer
I asCr w2 3 asCa

it =22 i (1) 4 31 - 2 (1.20)

The hard function then satisfies the RGE
d
H(p) =~ () H(p) . 4.21
din ) = (W H () (4.21)
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It is important to note the additional divergence and associated logarithm that is propor-
tional to C'4. Since the divergences from the TMDFFs at O(ayg) are proportional to Cg
and since the total cross section needs to be independent of the renormalization scale, a
corresponding term needs to be generated from the real soft emission diagrams. The only
other element in the factorization theorem that does depend on the production mechanism
is the shape function, 5’; L)’ Thus, it is expected that such a contribution will be present
in the shape function.

4.3 The TMDFF

The TMD functions that appear in the factorization theorem are nonperturbative for
ki ~ Aqcp, but for k| > Aqep can be expanded in powers of Aqep/k1. The expansion
can be written as a convolution of short distance matching coefficients and the collinear
fragmentation functions (FF). For quark fragmentation we have [2, 12]

1
Dy (k5 p,v) = / % Tq5(2: k15 1,v) Dy, (jsu) - (4.22)
x
The matching coefficient and FF need to be evaluated at the same factorization scale, u,
before convolving. To this end we evaluate the matching coefficients at their characteristic
scale and the FFs we evolve using the standard DGLAP renormalization group equations.
The additional scale, v, that appears in the arguments of the unsubtracted TMD fragmen-
tation function and the matching coefficients in eq. (4.22) comes from the n-regulator (see
refs. [69, 70]) which we use to regulate rapidity divergences. Rapidity divergences remain
unregulated in pure dimensional regularization (dim-reg). We refer to this scale as the ra-
pidity scale or simply rapidity. The renormalized matching coefficients at next-to-leading

order (NLO) are given by (see refs. [2, 12]):

Tayi (215 p1,v) = 8456 (1—2)5) (ke ) (4.23)
asT j (U2 — 1 ILL2

where w is the minus component of the initiating parton with

_ - 1
qu(Z) = qu(Z) — ”yqd(l — Z) = (1 + 22)1_7,
(1—2)4
5 1+ (1—2)?
P(2) = Ppg(z) = =2 (124)
and )
—z z
Cqq(2) = —5—, Cqe(2) = 3 (4.25)
2 2
Here Tyy = Ty = CF,, and 74, = 75 = 3/2. The p-anomalous dimension for the TMDFF is:
asCp V2 _
Yog(M,v) = - {ln <M?) +vq}. (4.26)
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The rapidity renormalization group (RRG) equation has a convolutional form

d d2 /
D'Llh(zakL;N?V) = L2”/51(1(3_’/’6) DiLh(Z’kL_k,J_;,U’aV) (427)
dlny ¥/ (2) /
where
D asCp 1 [ p?
k = — | =] . 4.28
s = (0] (4.28)

Eq. (4.27) can be put a multiplicative form by Fourier transform to transverse position
space, b-space. Denoting b-space quantites with a tilde, eq. (4.27) transforms to

d_ =1

mDi/h(Z,tN p,v) = %Z(byli) Dﬁ]}z(zabéﬂﬂ/) (4.29)
where o -
~D _ U b _
Vog(by 1) = p {ln <4€27E) + Vq} . (4.30)

4.4 The shape functions

The analysis of the shape function is the main topic of this paper. We calculate the TMD
shape functions arising in the decay to NLO. The calculation is performed within the
EFT approach and we use the EFT Lagrangian and Feynman rules for the calculations
of the corresponding diagrams. At the end of this section our goal is to determine the
RGEs satisfied by the shape functions. As in the case of the TMDFF, in the regime of
interest the shape functions are non-perturbative objects, but for |q,| > Aqcp the soft
modes become perturbative and the TMD shape function can be expressed as a product
of NRQCD LDMEs at the usoft scale and perturbative coefficients at the soft scale. Then
the total shape function defined in eqgs. (4.14) and (4.15) can be written as:

S;HQSHL[}@] (kiipo,v0) = Y Cn(kspo, v, i) x (OM)E (4.31)

n

This matching procedure it is essentially the standard NRQCD factorization applied to the
shape function instead of the cross section. For the process we are considering and for each
value of J there are two LDMEs onto which we match:

S = tuleteTx - xTaT |xs)

CPM), = 27+ 1) (wlvie - P do - P i) - (4.32)

2N,

At NLO only these LDMEs appear in the matching but at higher orders there might be
others as well. Note that the integrated shape functions reduce to

d—2
i . — (8] L . _ (3plly1B
[#ast L gatkimn = G080 [@ast ki =GP,
(4.33)
where
2 ii <> B?’i Bg’j <>
EPIB — (27 ¢ 1)]%2A;<XJ Vo P X[m & P] [m a P}XTU By XJ> (4.34)
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The color-octet S-wave shape function. The color-octet S-wave shape function at

LO is given by simply evaluating it at gs = 0. Therefore we have

d—2 4 .
1,LO . . 2 2. 4 iga t _ira
SX~>3S£8](kL"LL7V) = 7d—15( ) (k1) 4m®no' T x £'o" T4,

and immediately get

d—2
SJ_,LO[ (ks v) = E5(2)(kl)<35£8]>Lo,

8
x—35]

where
G50 = am?ytoiTo¢ x €fo' T .

(4.35)

(4.36)

(4.37)

At NLO where only diagrams with one soft or ultra-soft gluon are needed, the con-

tributions can be categorized as follows (note we do not show the heavy-quark self energy

contributions as they are well known):

1. Ultra-soft gluon exchanges between heavy quarks and/or antiquarks. After the BPS

field redefinition the interactions of the heavy quarks through ultra-soft gluons are
pushed to the soft sector of the vNRQCD Lagrangian as well as to subleading terms
in the Lagrangian. This induces usoft Wilson lines along the directions v, n and n
to appear in operators. We will suppress these Wilson lines in the operators since,
with the exception of the interaction we consider here, usoft interactions only produce
uninteresting scaleless integrals that we drop in our scheme. However, we will consider
one subleading operator, the so-called chromo-electric dipole transition, as it leads
to mixing between the 3P1[J] and 3P8[J] channels. After the BPS field redefinition this
operator has the form:

Bus . _
S b Py 4 (0 T 1), (139
p

The diagrams associated with this contribution are shown in figure 3. Note that the
virtual contributions, diagrams (e) and (f), will mix operators that contribute to xs
decay only at higher orders in the relative velocity expansion. Thus we only consider
real contributions, diagrams (a)-(d).

. Ultra-soft gluon exchanges between heavy quarks and ultra-soft Wilson lines. These
contributions involve a single iteration of the interaction term in eq. (4.38) and a single
insertion of an ultra-soft gluon from any of the corresponding Wilson lines. Adding
the corresponding diagrams shown in the first line of figure 4 gives a contribution
that vanishes.

. Ultra-soft gluon exchanges between ultra-soft Wilson lines. The corresponding dia-
grams are shown in the second line of figure 4. They result in scaleless integrals which
are zero in our scheme. In other schemes these diagrams cancel against the zero-bin
subtraction of the corresponding soft diagrams. Thus, independent of scheme these
diagrams may be set to zero if the corresponding zero-bin subtractions are set to zero
as well.
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> >

(d) (e) (f)

Figure 3. NLO diagrams for heavy quark interaction through the chromo-electric dipole operator
from the SCETg Lagrangian.

4. Coulomb interactions between heavy quarks and antiquarks. This contribution is
generated through the coulomb interaction term in the vNRQCD Lagrangian [57],

Ao a —a

p.a

The associated diagrams are shown in figure 5.

5. Soft gluon exchanges between soft Wilson lines. The real contributions are the only
pieces with non-trivial dependence on transverse momentum. The virtual gluons
contributions only give scaleless integrals that we set to zero in our scheme. The
relevant (real emission) diagrams contributing at this order are shown in figure 6.

Next we calculate each of the contributions we listed. For the regularization of ultravi-
olet and infrared divergences we use dim-reg in d = 4 — 2¢ dimensions and for the rapidity
divergences we use the so called n-regulator. First we consider ultra-soft gluon exchanges
between heavy quarks and/or antiquarks. We calculate the diagram in figure 3(a), by first
expanding the ultra-soft gluon building block Bls:

Ft AO
BH, = Al — kous +O(g), (4.40)
and obtain the NLO amplitude
d—2 as (9 4 i krarb b i krbra,. 47K
da:mwé (k1) n'e'q"T T x £'a'q"T Ty e (4.41)

— 95—



\
o
| -+ mirror diagrams
a= Q Q i=v,n,n |
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Figure 4. NLO diagrams that involve ultra-soft Wilson lines. The first row are the real and virtual
contributions from ultra-soft Wilson lines contracted with the heavy quark/antiquark through an
insertion of the chromo-electric dipole operator. In the second row are the diagrams that involve

only contractions of ultra~soft Wilson lines.

XL X

Figure 5. Coulomb interactions at NLO.

+ mirror diagram + mirror diagram + mirror diagram

Figure 6. The NLO real soft gluon shape function diagrams. At this order real gluon emissions
can only come from soft Wilson lines. We use zigzag lines to indicate soft gluons.

In figure 3 the contributions of diagrams (b), (c), and (d) are
dy = do(TT® @ T°T* — T*T® @ TT?), de = dy, dq = dy, . (4.42)

Adding these results we find that the amplitude for real ultra-soft gluon emission from
heavy quarks and antiquarks, is proportional to the P-wave LO matrix element. However,
the final phase space integral is scaleless. In our scheme we throw this contribution out,
but it is important to appreciate its importance. Thus for now we use the 1/eyy — 1/€eR
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prescription and obtain for the sum of amplitudes:

8o 1 1
datbtetd = 97::712 s (kJ_){CF S P o + Br Z<3PL[18}>LO} ( - > , (443)

J J

where
_ NZ2-4

Br —
F= 74N,
We later show how the IR divergence that appears here cancels an IR divergence from

(4.44)

the P-wave shape function, leaving only a UV divergence in this contribution. Clearly
this is equivalent to setting this contribution to zero and interpreting the 1/e¢ term in
a real emission term of the P-wave shape function as UV. However, keeping this term
momentarily non-zero makes it clear that there is a mixing between the color-octet S-wave
operator and the P-wave operators.

We next consider the coulomb diagrams which involve the LO insertion of the coulomb
interaction term from the vNRQCD Lagrangian, diagrams (g) and (h) in figure 5. For
diagram (g) we obtain:

2 1

dg = g(CF - §CA) I4(q0,9) <3S£8]>LO 5 (k) (4.45)
where
d'p 1 1 1
Iy = —ig? / . 4.46
s 7] @) (p—a/2)? g0 + po — P2/ (2m) g0 — po — P*/(2m) (4.46)

This contribution and the corresponding one from diagram (h), are evaluated in refs. [23, 31]
and the total contribution is given by:

TO

2 1
dgin = 5(Cr = 5C) (S Lo 6@ (k). (4.47)

This result which scales as v~! relative to the LO order shape function reproduces the
coulomb singularities that arise in QCD.

Next we discuss the soft gluon contributions. The corresponding diagrams are shown
in figure 6. These diagrams will contribute to the transverse momentum measurement since
they involve a soft real gluon in the final state. The corresponding virtual contributions
yield scaleless integrals and as usual are set to zero. We denote the contribution of each
diagram by

dr = §<3S£8}>LO Cr Ir(kl_) 3 (448)

where C). are the color coefficients and I, the phase space integrals. For the coefficients C)

and the coefficients of the mirror diagrams C7 we find
1 Ne
27]\707 CJ_Cj_Ck_Ck_77

The integrals I, are defined and evaluated in appendix A, see egs. (A.9), (A.10), and (A.12).
Summing all the contributions yields

2 8 OéSCA 1
s = 505 o (Stvlin + St {1690 — 2002 i) ). (450

Ci=C=- Ci=N,. (4.49)
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where

sttes) = 02 aa ) - Lo e)] + 2 - () ]300 - oo

2m €le
2
AL 08,12+ ALo(KE, ) In (M) } (451)
is the unsubtracted Drell-Yan TMD soft function. The definition of the distributions is [70]
1 M? M2 A
Lo, k20 = [ In" ( : (4.52)

If the domain \ = p we write L, (u, k3 ;A = p) = L, (k2 , ).
Adding all the contributions together we get

d—2 asCa (1
SN esin) = 472 { svics) + 55 (100 - 260007 )| 5o

T

+ 5@ (k1) |: (CF — ;CA) . <3S£8}>Lo (4.53)

+ 34713;2 (CF S PP + Br Z<3P=[18}>LO) (1 - 1” } '
7 J

€uv €IR

We note that compared to the usual Drell-Yan or lepton fusion to di-hadron processes
the shape function contains an additional divergence and thus an additional logarithmic
scale dependence. The origin of this term is diagram (1) in figure 6 which encodes the gluon
self-exchanges of the QQ state. We discuss this divergence later and how the logarithmic
scale dependence cancels in the fixed order cross section against the virtual contributions
from the hard process.

The P-wave shape function. The contribution of the P-wave starts at order o because
of the presence of the soft gluon field operator, Bg’k in the shape function. Thus, as we
define LO as O(a?) this shape function starts at NLO. The diagram corresponding to this
contribution is given in figure 7, and we have:

S;I;‘;[]l g =0 (4.54)
and
SE N ) = E AT (PR (4.55)
where g evep?\ € dér 1 iy .
I(ky) = 92< = ) / W%a(zz)a@m — Kk )(6902 — 0. (4.56)

After contracting with A% the integral can be expressed in terms of I} and I,, in eqgs. (A.12)
and (A.13). Expanding in € and keeping the non vanishing terms we get

8asC 1
SN es) = 5 S P o <€6<2><km —2£o(3, 1) + w) (5T
J

x—3 Py 97rm?
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Figure 7. The only O(«s) (real) soft gluon diagram contributing to the 3P£1} shape function.

where

) 7 41
_ 2 - _ =——. 4.58
o=—7. o= = (458)
Up to color factors the calculation of the color octet shape function is the same. Reevalu-
ating the color factors using

d®eqib? = 4Bp5? (4.59)

we get

sB
§HNLO (g _804 FZ3P8] LO( (k) —2L0(K2, 2)+CJ). (4.60)
J

Matching in the perturbative region at NLO. As discussed before, in the region
where k| < Agcp we can match the shape function onto usoft vNRQCD operators. The
matching is performed by expanding the left and right hand side of eq. (4.31) to the same
order. This results in recursive relations

Clo(Ohy g = g+ 10
Chro(0M) o = SHNO — ¢l (010

(4.61)
From a direct comparison with eqs. (4.36) and (4.54) we find:
3 g8l 2 3P[1/8]
Cry = 55@) (k1), Cog =0. (4.62)

Next to obtain the NLO matching coefficients we need the NLO S-wave matrix element.

These diagrams have already been calculated; namely diagrams (a)-(h) in figures 3, 4 and 5.
We find

oy, 11
<35£8}>NLO = SWO;nQ {CF Z<3P}1]>LO + Br Z<3P38]>Lo} ( - >
J J

€uv €IR

1 s
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Note that this matrix element introduces a non-trivial dependence on the P-wave matrix
elements at leading order. We discuss the significance of this in the following sections.
Using this result we obtain the matching coefficients at NLO

35[8] 2 asCA
Crilo i) = 3 (Sbvlisinn) - 200 12)).
3 plll 8a;Cr
Cnio (ks p) = = < —2Lo(k%, p?) + CJ) ,
3P[8] 80ésBF
Oxro (kusp) = 53 < —2Lo(kK7, p?) + az) : (4.64)

Here we introduce the renormalized Drell-Yan function:

1 asCr 2 2 V2 9 9y T
Spy (ki p,v) = o 4Lo(k7, ") In 2 —4£1(kbu)—€5(k¢) . (4.65)

Next we discuss the form of various divergences and how those cancel or renormalized
in order to obtain finite and meaningful predictions. At the end of this section we describe
the RG evolution properties of the shape function and give the prescription to resum
logarithms in the TMD spectrum of x; decay.

Treatment of divergences. Before proceeding with renormalization and RG evolution
we wish to point out some salient points regarding divergences in our calculation. First
we discuss the importance of the operator mixing terms arising from diagrams (a)-(d) in
figure 3. This is followed by a discussion of the soft-soft interaction in diagram (1) of
figure 6.

Channel mizing. As mentioned earlier, diagrams (a)-(d) give part of the NLO contribution
of the 3S£8] LDME and the result has the spinor structure of the P-wave LDME. Although
they give a scaleless contribution and should be set to zero in our scheme, doing so would
lead one to miss the significant role these diagrams play. Specifically, they lead to operator
mixing under renormalization. If we had set this contribution to zero and taken the 1/e
in eq. (4.60) as a UV divergence needing to be absorbed into the P-wave shape function
we would have missed this mixing. This is why we choose not to discard this particular
contribution.

Non-singlet divergences from diagram (1). As pointed out earlier diagram (1) which de-
scribes soft radiation from the color octet S-wave QQ) state results in a divergence in
eq. (4.50) proportional to C'4. This divergence is accompanied by In(q, /u) that needs to
be resummed through RG evolution. The presence of this divergence (and the associated
logarithm) serves also as a non-trivial check of factorization at NLO. The scale indepen-
dence of the cross section requires a corresponding logarithm proportional to C4 to be
present in another of the functions in the factorized decay rate. Since the (un-subtracted)
TMDEFFs are universal and channel independent this term needs to appear in the corre-
sponding hard function. Indeed, in the virtual cross section calculation (see ref. [31]) we
find such a term.
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Renormalization, evolution, and resummation. The shape function we are consid-
ering here is related to the transverse momentum measurement of the quarkonium state.
As expected the perturbative calculation suffers from rapidity divergences along with the
usual IR and UV divergences. The rapidity scale dependence introduced by the necessary
regulator is described by the rapidity renormalization group evolution (RRGE). In this
section we address both the virtuality and rapidity evolution equations one at a time.

As discussed in section 4.3 running which involves a convolution in k|, can be made
multiplicative under a Fourier transform to b-space. In this section, for simplicity we will
work with quantities in b-space, which are denoted by the tilde. Note some quantities like
the LDMEs do not depend on transverse momentum and are unaffected by transforming.

First we consider the virtuality RGE which has non-trivial matrix structure. The RG
equations satisfied by the matching coefficients C,,(k;u,v) in eq. (4.31) and the LDMEs
they multiply are:

4
dlnp

~ ~S cnm nm \ d n nm m
Cn(b;%’/):z<755 +7C )Cm(b;uﬂ/)a m«%bm :Z%’) <O[ ]>§<’f,),

m

(4.66)

where by consistency :y;j = —%I;IHD , and W,f“‘QD is the sum of the hard and TMDFF
anomalous dimensions. From consistency of the factorization theorem we also have

e =-0. (4.67)

In this section we calculate the anomalous dimensions in eq. (4.66) and solve the corre-
sponding RG equations. We begin our analysis with the LDMEs and then perform the
analogous analysis for the matching coefficients. At the order we are working we need only
to consider two channels: 3S£8] and 3P0[1]. These two channels are the leading channels in
the velocity expansion based on the NRQCD power-counting.

We define the renormalized LDMEs, <(9["]>§<“J) as follows,

(o, , = zgmolmhw (4.68)

and the anomalous dimension is given in terms of the renormalization matrix Z:

1 d
dln p

zmk (4.69)
Since at this order only (O, = <35£8]>X , needs to be renormalized we have

10 dags(p)Cp1 (01
Zy o) = ok il 4.
35f <O 1) + 3rm?2 e \00) "’ (4.70)

which gives the LDMEs anomalous dimension matrix:

8as()Cr (01
: = —= . 4.71
sl 3mm? (0 0) (4.71)
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We can now solve the RG equation to obtain the evolved LDMEs. At next-to-leading-
logarithmic accuracy (NLL or NLL') we have
8 m m
SO = U () O (4.72)
where in practice the scale p ¢ is the scale at which the LDMEs are extracted and p the scale

at which they are evaluated. Most recent extraction use puy = 2mg ~ M. The evolution
kernel U 151 (1, fir) is
1

1 wy ofs (11, i) 8Cr as (1)
u:ﬂsgg] (:u’ /‘Lf) = (0 351 1 ’ w:ss?] (,LL,,U/f) = 737%260 In (Oé (Mf)) . (473)

As mentioned already, this is not a new result since the scale dependence of the NRQCD
long distance matrix elements is a well known fact, see for example refs. [23, 31]. Never-
theless it is instructive to reproduce these results here.

To perform the analogous analysis for the matching coefficients C,(k,;pu,v) in
eq. (4.31) we work in Fourier transform space where the RG equations simplify from con-
volutions to simple multiplications. We use the formulas collected in appendix B. The
renormalized matching coefficients are defined as follows

Cn(b) = Z¢&™ (bs 1, v) o (b5 1, ) - (4.74)

Since Cy starts at order O(a?) the renormalization matrix cannot be determined uniquely
at this accuracy. From the perturbative calculations of the matching coefficients we have

Zc(byp,v) = Zg(bs p, v) (1 0) _ dos)Cr (0 0) : (4.75)

01 3mm2 e \10
where
as(u)Cr 4 17 21 2 as(u)Cal
Zs(b;/,b,l/)zl—f-%{—nlzb“re +E z—h’l E +Tg, (476)
with 12,2
- I
Ly=1n (462%) . (4.77)

The corresponding anomalous dimension is given in terms of the renormalization matrix

oo + 38k = —(Zgm (b, p) ! Z2R (b, ) (4.78)

dlnp

The O(as) contribution to the Zg renormalization kernel multiplying the leading 3P(£1]

shape function will result in O(a?) terms which we have not calculated yet. Therfore the
renormalization matrix cannot uniquely be determined at this order and it is easier to
determine the anomalous dimension by simply taking the derivative of the renormalized
matching coefficients. Note that this means that the order O(as) contribution to the corre-
sponding diagonal term (in this case the one associated with 3P(£H) cannot be determined.
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We complete the missing element by consistency of factorization. To show that this is the
correct completion through explicit calculation one needs to perform the NNLO calculation
of the associated shape function. This gives

a,C v? asCy 8as()Cr (00
T =~ 290 = 2= In (MQ) + P 1019 ( ) . (479)

T T 3mm?2 10

The solution of the RG equation for the matching coeflicients is then given by

C™(b; p, v) = Us (s o, v) X UG™ (1, 110)C™ (b5 pro, v) (4.80)

where

1 wO(MOn“’)) 7 (481)

UL (1, 110) = Up (11, 110) = Uo (110, 1) = (0 )

and Ug is a function we give in the appendix B. We now have all the ingredients to write
the virtuality evolution of the total shape function

S 0:1.) = Us o ) | €O . 1)Ut 1) (©)) | (452)

This is our result for the virtuality evolved shape function. We next consider the
rapidity-RG evolution which is the same as in traditional TMD observables. The rapidity
evolution of the shape function should match the evolution of the unsubtracted TMDFFs.
Furthermore the rapidity scale dependence is isolated in the matching coefficients and
thus we can obtain the corresponding anomalous dimension considering only the diagonal
element of the renormalization matrix Zg. The rapidity scale dependence of the shape
function is described by:

d ~

— St (b pyv) =5 (b, v) x SE(b; ), v (b, p) = Zg

—7 4.
o S, (4.83)

where
g C’F

The fully evolved and resummed shape function is then given in terms of the rapidity and

Ly. (4.84)

virtuality evolution kernels,

501 1.) = Us o o, )V 0, ) |0 o o ) ()| (485)
where
Vs (v, v0, 1) = exp [vf(b, p) In <Vy>] : (4.86)
0

Note that the rapidity and virtuality evolution are coupled and the order or path we wish
to choose for the two-dimensional evolution changes the form of the evolution kernels. See
ref. [71] on a recent treatment of double scale evolution. The path of evolution we choose
here is (10,v0) — (po,v) = (1, v). In the RG and RRG evolution the initiating scales 1
and v are usually chosen to minimize large logarithms in the Fourier space.
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In the small transverse momentum limit when ¢; ~ Aqcp the expression in the square
brackets of eq. (4.85) is sensitive to non perturbative effects and the matching coefficients
(', should be convolved with a model function, f,

én(bQ Ho, VO) — én(ba Ho, VO) X fn(b) . (487)

Since the two shape functions in this process mix under RG evolution we assign the same
model function to the matching coefficient for both shape functions. Thus at the order we
are working (NLL) only one model function is introduced.

4.5 Resummed cross section and numerics

Here we combine the results of the past section to obtain the NLL resummed cross section
for the annihilation of y s to light quarks which further decay into hadrons. As was already
discussed in the past section, we consider both rapidity and virtuality renormalization
group equations. In order to resum all logarithms up to NLL, the various elements of
factorization need to be evaluated at the same virtuality and rapidity scales. We choose
the final scales of evolution to be p = pp = 2 Exp(—~g)/b and v = M, in impact parameter
space. Starting from the factorization theorem and using the results of appendix B we have

1 darxJ
FO quJ_dzl dZQ

:/0 bdb Jo(bq.) U (e, My )Vs(My, po, 116) Dy pr, (215 p, My) Dy, (223 iy M)

<3P[1]

Fag (b) x |1+ <35‘[]8]>w35£81 (ko M) | - (4.88)
1

For the discussion that follows the model function f, g8 is not implemented. The per-
turbative evolution kernels U and Vg are constructed as described in appendix B. The
non-perturbative part of the rapidity evolution is usually implemented through a model in
the rapidity anomalous dimension:

Vo (b, 1) = 5 (b, 1) + gic () - (4.89)

The model function g (b) is chosen such that it vanishes in the small b limit so that we
recover the perturbative prediction. Also from the operator product expansion we can
show that at leading order gx (b) is quadratic in b. The model we use here was introduced
in ref. [72] and subsequently used in various phenomenological studies,

9K (b) = —gab?. (4.90)

The parameter go is a non-perturbative parameter that needs to be extracted from the
experimental data but is universal among various processes. The effect of this implemen-
tation is to widen and shift the differential spectrum to larger values, see the plot on the
left-hand-side of figure 8.
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Figure 8. Differential cross section for the process xp0 — 77 + 7~ + X at NLL. We demonstrate
the effect of varying the various non-perturbative parameters such as the LDMEs and the rapidity
anomalous dimension.

The rapidity anomalous dimension is not the only non-perturbative parameter needed
to obtain a prediction. The LDMEs also need to be extracted and are also considered uni-
versal parameters. It is important to notice that for the shape of the spectrum only the ratio

p=(sPm?/ (Pl (4.91)

is needed. The value of this ratio also modifies the shape of the distribution. The smaller
the ratio we use the wider the distribution becomes, see the right-hand-side of figure 8.

To demonstrate the numerical impact of the non-perturbative parameters we show the
differential cross section for various values of these parameters in figure 8. For these plot
we choose Hio = 7/~ with z1 = z9 = 0.6. The collinear fragmentation functions at
NLO are taken from ref. [73]. It is also important to note that the scale p; becomes non-
perturbative in the region of integration and eventually the integrand diverges as we reach
the Landau pole. For this reason we implement an upper cutoff in the b integral in eq. (4.88)
at bpax = 5 GeV L. This value is determined by searching where the integral in eq. (4.88)
converges. What we note from these results is that both the rapidity anomalous dimension
and the ratio of LDMESs have significant impact on the distribution. This suggests that
for well constrained LDMEs one can use quarkonium production or decays to access non-
perturbative aspects of TMD distributions.

5 Summary and outlook

The goal of this paper is to study factorization and resummation for transverse momentum
dependent observables involving quarkonium production or decay process. In the first
part of the paper we give a diagrammatic analysis involving an arbitrary number of soft
gluon emissions from a heavy quark pair. We derived the general form of the operators
involving soft Wilson Lines for both S- and P-wave production and decay (see egs. (3.10)
and (3.21)). We showed how RPI constrains the form of these operators and explains their
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structure. This symmetry constrains the matching coefficients of these operators to be the
same to all orders in perturbation theory. Using this analysis we obtained the operators
and the associated matching coefficients contributing at NLL for the process ¢ — QQ[n].
Finally we showed that the operators are invariant under collinear, soft, and ultra-soft
gauge transformation.

As an application of our methods, we derived the factorization and resummation for
the process x; — ¢gq, followed by fragmentation to identified hadrons H; and Hy. The
cross section studied is differential in the relative transverse momentum of the two hadrons.
This particular process demonstrates some new features one encounters in the studies of
quarkonium with observables that are transverse momentum dependent. We showed that
a new TMD element appears in the place of soft functions. The new functions which we
refer to as quarkonium shape functions encode all the information about soft radiation
from light (collinear) partons but as well as from the heavy quark pair (see also ref. [44]).
The contribution from the heavy quarks can be non-trivial even in the case of color singlet
channels. Mixing between different production mechanisms can be generated by RG evo-
lution. We derive the mixed renormalization group equations satisfied by the quarkonium
shape functions for this particular example and solve those up to NLL accuracy.

At the end of this paper we construct the NLL resummed cross section. An important
result of our analysis is that we find that the differential cross section is sensitive to both
the values of the LDMESs and the non-perturbative model of the rapidity anomalous dimen-
sion. This demonstrates that the LDMEs need to be well-constrained in order to extract
parameters related to the TMDs. This has important implications for phenomenological
studies of transverse momentum dependent observables involving quarkonium. Our anal-
ysis does not include the gluon decay channel but it would be straight forward to include
them and this does not change this qualitative observation.

Extending our analysis to spin-triplet S-wave quarkonia such as Y(1S) and J/v in-
volves one more non-trivial step. For example the process Y(1S) or J/¢ — gg + X gets
a significant contribution from the color singlet mechanism 3511 . Although this channel
does not contribute at leading power in X it is enhanced by v—* compared to the color octet
and A-leading mechanisms: 15'([)8] and 3P(gég. Therefore, in order to obtain reasonable and
consistent results resummation of sub-leading logarithms from the color singlet channel is
necessary.

Expanding this analysis to the deep inelastic scattering process which is relevant for
the proposed electron-ion collider (EIC) is of major importance [49]. The partonic hard
scattering process g +v* — QQ[n] + X which is the dominant mechanism for quarkonium
production at —¢? > M, 5 can give access to gluon TMDs. As we have shown in this paper
quarkonium shape functions are important for this process and need to be included in
future analyses. Resummation of large logarithms similar to what we have performed in
this paper will be important as well. We will study this issue in future work.
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A Definitions, notation, and formulae

We will work in the chiral representation of Dirac matrices:

0 o# _
= _ , where ot =(1,0), d*=(1,-0). (A1)
ot 0

The Dirac spinors in this representation then take the form:

VP o ¢ VP-on
ulp) = - 5 v(p) = _ . A2

() (Wﬁ Q —/p-an (A.2)
Using pg /g = (P+/—q)/2, the ¢ and \ expansion of the spinors is given by

up) = (1= %0 o )1+ 00), wlng) = (1= G2 4+ o1+ 00V,
(A.3)

where the ellipsis denotes terms of order O(¢?) or higher. The normalized rest frame spinors
u© and v(© are given by

u® = /m <£> : v = /m < g > (A.4)
-n
and satisfy the equation of motion
(1—p)u® =0, (1+9)0® =0, (A.5)

with v* = (1, 0).
The expansion of the heavy quark and antiquark propagator when soft momenta is
inserted to the quark line is given by,

+ +m 1 ; 1
D(pQ—i—pSOft):i pQ psoft2 5= i _g¢ ZO < ;_¢
(p Q ~+ Dsoft ) -m 2p soft 4mp soft \ Psoft

psoft—’y) Q- } (1+0(N).
(A.6)
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Similarly for the antiquark we have

PG T P T _[.1—;& i (1—;&

D(=pg — psott) =1 =i -
@ > (pQ + pSOf'C)2 —m? 2p:(s)oft 4mp20ft pgoft

psoft"_'y) -q+-~-}(1+0(/\))-

(A.7)
A useful formula that we used extensively is
1 11 A | N~ L T A%(ps)
< | (=g)" = 9" :
P (i) I—L pi(s) pzip?(p) l_L D imit1 Pt
m— s Ao(pS)
e T o) ay
s=pt1 Lat=p+1P¢

A.1 Useful integrals

Here we give all the integrals necessary for the calculation of the real soft emissions of the
shape function. This corresponds to diagrams (i)-(m):

eVE 2\ € dk n-n o wl
== 2< 4: ) / (2m)=1 (n-k)(n- k) |2k‘3|775(2)(0u — ke (k))3(k?)
)

agw® 2678 T(1/2 — n/2)T(n/2)0(1 +1/2 + ) <V>" 1 <M2 ) thernz (A.9)

o 2T T(1+n/2) n) 2mp®\ p2

YA d?k v-n w?u ) L 2
b= (%) | e e~ 50

w2 () 1 (YRR 10
2r T(+n/2)  n\p) 2mp?\q? ! |

where we use the following relation for ¢ > 0

+eo dx Feo dx
/oo (22+c)(Va+c—x) |z|n :/oo (:U2—|—c)1+77/2(\/w2+c—a:)+O(n)

1 /2

:W<n+21n(2)+0(77)> (A.11)
B2\ ¢ Ak 0? eEcse(me) 1 2\

L= _2 EZH / (g, —kr(k* 2) = g —

= () [ i e R ()602) =, LT L -
(A.12)

G’YE/J,Q € ddk U2k2 2

fn == 2< A ) /(27r)d—1 (v.k)ié@)(ql_kT(ku))é(m:§[1' (A.13)

B Evolution and resummation

In this appendix we discuss both virtuality and rapidity renormalization group equations
and the solutions of those equations. All factorization elements (hard, soft, soft-collinear,
collinear-soft, and jet) satisfy renormalization group equations, but only transverse mo-
mentum dependent quantities have rapidity RGEs.
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B.1 Renormalization group evolution

The RGEs we consider have the following form

d
dlnp

Pl = .0 P00 = [ lasln (2 ) + 2oflas]| P00 (1)

where 75 is the virtuality anomalous dimension. We refer to the first term in the square
brackets as the cusp part since I‘E [as] is proportional to the cusp anomalous dimension,
[cusp, and the second term, Afyf [as], as the non-cusp part. Both the cusp and the non-cusp
terms have an expansion in the strong coupling. For the cusp term we have

oo
% 14+n
Fﬁ[as] - (FO /Fcusp) cusp — (FO /Fcusp) Z (ﬁ) F?usp’ (B2)
n=0
and similarly the non-cusp part is given by
oo
o 14+n
A'yu ag]) Z ( S) v (B.3)
n=0

The solution to the RGE in eq. (B.1) is

m 2 wr(p,10)
Fl) = Us (s 50) o), Un (s pio) — exp (K (s o) (mF) . (B4
with
a(i) oy F *  dd (i) doy P
= — —A .
Ke(opo) =2 | *gorllel [ gone [ gkl )
B (1) doy »
wr(, o) = /Q(#O) mfu [a]. (B.6)

Since in this work we are interested only in the NLL and NLL' result we keep only the first
two terms in the perturbative expansion of the cusp part (i.e., I'}, I‘gusp, and Fiusp) and
only the first term form the non-cusp part (7%). Performing this expansion we get

1
’yF 2709 | r—1—rlnr Fcusp f1\l1=r+lnr p1 .,
Kr(pu, Inr— + In“r
PO =5 M T | )\ A)  dmBmAs
(B.7)
F(}]? Ftltusp ,81 aS(MO)
where r = a(u)/a(po) and B, are the coefficients of the QCD S-function
doug L sag 1+
Blos) = pg > = —2a, ) (E) Bn . (B.9)

n=0
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Function | H(qq — 3S£8}) St St(@D+)?
Y, —8Cp 8Cr 8Cr
7% —12Cp —4Cy4 | 4C4 | 12Cp +4Cy
mp Q Vs Q
&p n.a. 2 n.a.
ANE n.a. O(a? n.a.

Table 2. Anomalous dimensions coefficients up to NLL accuracy.

The expressions for all ingredients necessary to perform the evolution of any function that
appears in the factorization theorems we considered in this paper are given in table 2. The
coefficients for the expansion of the cusp anomalous dimension are

r(gmp =40k
67 w2 20

245 134 , 11 , 22 200 5
12 —a0p| (22 o222 St 220+ (- 22 4 22— L )8cunT
cusp F[( 6 "t T3t it Q” AT LR

64
27T >]

B.2 Rapidity renormalization group evolution

1
+ (16C3 - ;CFTLJCTR (B.IO)

In this section we summarize the solution for the rapidity renormalization group equations
for the soft TMD functions. The RRG equation for transverse momentum measurements
(in Fourier space) of the function S+ takes the following form,

d

i _ x5 i
Ty () = (k) x 57k, v), (B.11)
where
55(1) = 25 oy In (“’M ) + Ml (B.12)
The solution of this equations is
SL(% V) :VS(/% v, VO)SL(.L% VO)» (B13)
where
L ns (v;v0)
Vs(p, v;vp) = exp(ks(p, v, 1)) X <M> (B.14)
and
S v s v
ns(w, v, 1v9) = 2T, [ In o) ks(p, v, 1) = Avyyla)ln o) (B.15)
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with vg the characteristic scale from which we start the evolution. This scale is chosen such
that rapidity logarithms are minimized. The first term in the rapidity anomalous dimension
in eq. (B.12) is proportional to the cusp anomalous dimension and the proportionality
constant we denote with &g, (i.e. I'S = £sTeusp). The two loop non-cusp part of the soft
rapidity anomalous dimensions which we need for the NNLL resummation is

AvS = — (O‘ﬁ)) C; [(138 - 56(3) Ca+ ﬁo} +0(0?). (B.16)

C Details for the matching calculation

In this section we give some of the details of the calculations for the results presented in
the main sections. We begin with the calculation of dg)(antiquak) which is presented in
eq. (3.18). We begin by expanding one of the propagators in the antiquary line at leading
order in q and summing over all possible expansions. After some simplifications we have

(1) : o\ I M /
dp’ (m,n;antiquark) = — (u ) (—9) H 20(s) ™ (pe(m), pi(n))
s=111
n A0 (s i AV
(n+iti=s) | 9 PH(E) | g (i+1-s) | { (0)
X 7 0 - g ’ v .
Z{[ I i lzmpﬁ(z)[ =) ”

(C.1)
Using eq. (A.8) we have

dg) (m,n;antiquark) = — (u(0)>T [(—g)m ﬁ p;((i)] F(O)( Z Z { 2mp;°
s=1

=1 p=i

P 0 i 40
n p ] l (n+p+1 s)’ _ \n—p—t | | (p+i+1—s)’ p.(i ) | I (i+1-s) ’U(O)
Z[ p+1pé ] [( g) s 0 ]q pt( )[g o] pto(s) ]} Y

s=p+1 s=i+1 Zl:iﬂ Ppriti—e
(C.2)

which after summing over permutations and normalizing correspondingly for each product
and considering all possible values of n and m we have

d'}) (antiquark) = — ( (© )) Sir@s, [ 7)ST [q PS ”v(o)- (C.3)
2mu

This is the result quoted in eq. (3.18). We now proceed with the evaluation of d(yl) which
as mentioned earlier is the contribution from the terms proportional to q - v from the
expansion of the propagators and spinors. Similar to the case of d(Dl) we break down the
calculation into expansions along the quark and antiquark lines:

d(V = dV (quark) + d'V (antiquark) . (C4)

Starting with dgl)(quark) we performed the following decomposition

dgl)(m, n; quark) = dgl)(m,n;quark) + Z dgl)(m,n;quark) ‘ (C.5)
U =1 i
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corresponding to the expansion of the spinor @(pg) and the ith propagator. We then
immediately have for the general case i # m

i—1
t A9 1 A9
dgl)(m, n; quark)’ = —(—g)™ ( (0)> H s Aiq -y A (1 +9) H o
im s p(s) | 8mpf(i)pf(i+1) | 27, pi(s)
n A9
x TOp )| g ] it ““ ) ) (C.6)
s=1 p
Then using
f}/lu'i ,-Y nyiJrl(l _j’_ Zé) — (1 _ %)ryl“"l ,-Y fyﬂi+1 _j’_ 2,0,“41',7 fyﬂi+1 _j’_ 2fvﬂi+1fyﬂi ,-y (C?)

along with the eq. (A.5) we have

i—1

d{P (m, n; quark) =—(=g)" (u(o)) 845 4 7A2()+1. +OA.Zq T
i#m 1 Pt (s) Ampy (i)py (i + 1)
m AO n AO )
x = [ DO py(m). ) | " [] = [0 (C8)
L R e
For the special case i = m we get
m—1
f AY | Ana-y
dM (m, n; quark =—(=¢)" (u® z m
v = =0 ) I s | amgpn
n AO ,
PO @u(m).,pi(m) |g" [] =g =2 [0 @. ()
s=1 pt (S)
Expanding the spinor we find
A+ ¢) AL
dM (m, n; quark)| = g (0) v s
7 )u (=) ( ) 8mp! S:H2p?(8)
n AO ,
x DO (py(m), ph(n) | 9" [ —Sar= | (C.10)
s=1 Dy (8)
and using
T T
YA +4) = (14 §) 7 7" + 20, (u®) (4 p) =2 () (C.11)
we have
m A +a-vAY
A (m. s quark)| = —(—g) (u©)' | SR H
u 5= 2pt
x T (p,(m [ H ”*1 2 ] 0 (C.12)
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Therefore from eq. (C.5)we have

t i—1 A0 A m A0
D (. — (=) (u© A Erwr: :
dy’ (m,n;quark) = —(—g) (u ) Z{ [ p?(s)] 2mp? (i) L_l_[ p?(s)] }

i P (s)
t oy A . / Alnt1-sy
() [Hp;@) ‘*njr@(pt(m),pt(n))[g"ﬂ;f())] v
1 s=1
(C.13)
Using eq. (A.8)
) m m i—1 AO
(1) (0) g —g) —|a

P 0 ML 0
X [gpi H s ASO ][(_g)mp H Zs AS 0

s—it1 ZZ:i+1pp+i+1—€ s=pt1

n AO
X[gnHW]Um

=1 Pt O(s)

- m 77 (0) m). v (n n M ’U( )_ )
( ) [ Hlpt i L (pe(m), pi( ))[g 5”1 05 ] (C.14)

After summing over permutations within each product, normalizing with the corresponding
number of permutations and considering all values of n and m we find

t f :
(1) - (0) f - 00 g 40 _ (,@) gt LT 1(0) g ()
dy’ (quark) —i—(u ) [va 7DS’Uq ASU]SUF Syv (u ) S) i r'Ys, ™.
(C.15)

antiquark) which corresponds to the

(1)(

The last element we calculate in this section is dy
q - 7 proportional terms from the properer and spinor expanding along the antiquark line.
Following similar decomposition as in eq. (C.5) we have

m
+ Z dgyl) (m, n; antiquark)
wo =1

dfyl) (m, n; antiquark) = dgyl) (m, n; antiquark)

(C.16)

%

where

1 ot
dg )(m, n; antiquark)

- (o >[ 11

S=

n 'fl A / A
r© / "““ ) ”1 q L
X (pe(m), py(n)) ZZ} { [ 8mpt (i+1)

s=i+2

0
II Afés)’] }v«» .

o1 Pt (s)
(C.17)
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Then using egs. (A.5) and (C.7) we rewrite the above as

=0 (o) [ T

d) (m,n;antiquark)

gl
i#n s= lp
0) , n A(()n+i+2—s)’ A(i+l)’q'7Ai/ +A(()l+1)/q7Az’ =l A(()i—s)’ 0)
xI’ (pt(m)’pt(n)) H 0 0/ 0/ H 0 v .
s—ito Pt (s) dmp,” (i)p, (i+1) o1 Pt (s)
(C.18)
For the special case ¢ = n we have
3 n T m = Ag
a0 s antiquark)| = g™ (u @) | (=g)™ TT 5= [T pi(m), ()
i#En s=1 Y2 (S)
n—1 AO
q-yA, (n=s)' | (0)
7 G Ch (C.19)
o) | 500 ]
Expanding the spinor we get
3 n T m s Ag
d(vl)(m,n;anthuark) =g (u(O)) [(_g) H 0 O (p,(m), pi(n))
u s=1
n 0
< | 11 Ansasy | (L= Pl A)a 7 o) (C.20)
=2 Pt ( ) 4mp10
and using
(L= vy ="y (1—¢) - 20" 7, (1= pp® =20 (C.21)
we arrive at
(1) ; n (0) f m A(()n+2 s)!
a1 (m, m; antiquark)| = g (u®)" | (- H ol ). i) ] G
u s=2 t
o Av)a-y - Al’q 7)1)(0). (C.22)
4mp1
Adding all contribution from eq. (C.16)
m
dgl)(m n; antiquark) = g" (u ) [ H
n i—1 A0
« T )(pt (n+2+1 s)’ A( ) | L0
1 s= z+1 s= 1 pt ( )
40 0

—<>! fig

A )
(m), py(n) LT ™ [g Hm]vw). (C.23)

s=1
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Which can be rewritten using eq. (A.8)

m

T 0
d(Dl)(mv n; antiquark) = (u(o)) [(g)m H 14(
s=1 pt S

) TO(p Z Z { o

7,1,07,

n—p n+p+l-—s) n p—i P+Z+1 s)! i—1 (Z s) (0)
l szpzﬂ I ] it

s=p+1 s=i+1 ZZ ’L+1pp+z+1 1 s=1 pt
AO
m q n+l-—s
_<“ ) [ Hp (pe(m ),pi(n))[g ||(+)]v(0). (C.24)
=1 t

4m s=1 Py ( )
After summing over permutations within each product, normalizing with the corresponding

number of permutations and considering all values of n and m we obtain

T
&) antiquark) = + (@) Sir@s, [ STq-ASU]v(O)—@(O)) Sir® 4 5,0

" (C.25)

P

From egs. (C.15) and (C.25) we finally obtain

i 1
(1) _ (O iT0g |1 gily. _ L0
d; (u ) {SUF Sy, [2mU‘PSv[q ASU” 7}1) . (C.26)
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