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1 Introduction

The physics of de Sitter space has posed both conceptual and technical challenges to our

understanding of the universe. Ultimately, the lack of a fixed boundary in the presence

of dynamical gravity is an unavoidable challenge in defining physics in de Sitter space [1–

6]. Yet, there have long been more mundane challenges associated with divergences in

perturbation theory [7–16], with and without dynamical gravity. Resolving the origin of

these divergences is a more tangible problem than quantum gravity in de Sitter itself and

is surely a necessary step towards a complete theory of (quantum) cosmology.

Significant progress has been made in our understanding of perturbation theory in

cosmological spacetimes. In the particular case of cosmological correlators in single-field

inflation, it has been shown to all-loop order that time-dependent contributions from in-

dividual diagrams must vanish when all the diagrams are summed together [17, 18]. In

essence, in the case of single-field inflation, the secular growth is not physical. The ab-

sence of such terms is unique to the metric fluctuations due to the nonlinear symmetries

– 1 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
4

of these modes [19, 20], which are also responsible for the separate universe description of

cosmology [21] and the single-field consistency conditions [5, 22].

In contrast to the metric fluctuations, the divergences associated with conventional

quantum fields in cosmological backgrounds can be physical [14, 23–33]. In some cases,

these divergences can be re-summed using known techniques from quantum field theory

(QFT) [9, 34–38]. The dynamical renormalization group (DRG) [39–41] is one such ap-

proach that is well-suited for secular growth in cosmology [42–45]. This growth is at most

logarithmic in the scale factor [13, 14] and thus the leading logs can be resummed us-

ing the DRG. Unfortunately, the meaning of this resummation lacks the clear physical

interpretation that we associate to the renormalization group in flat space.

In recent work, a number of non-trivial features of tree-level perturbation theory in

de Sitter space have been connected to conventional physics in flat space. For instance,

the analytic structure of correlations functions has been seen to encode the flat space S-

matrix [46–49]. In addition, these cosmological correlators display the analogues of simple

poles and factorization associated with the exchange of new particles [50, 51]. These types

of observations have helped demystify otherwise peculiar properties of these calculations.

In this work, we will explore the origin of secular growth in de Sitter space and their

relation to physics in flat space. To make the origin of this growth manifest, we will study

theories that flow to perturbative IR fixed points in flat space. At the fixed point, the

theories are conformal and their de Sitter correlators are determined by a Weyl transfor-

mation [52] from flat space to de Sitter,

〈O1(~x1, τ1) . . .On(~xn, τn)〉dS =

(
n∏
i=1

a(τi)
−∆̃i

)
〈O1(~x1, τ1) . . .On(~xn, τn)〉flat , (1.1)

where ∆̃i are the dimensions of the operators at the IR fixed point, τ is the conformal

time,1 a(τ) = (−Hτ)−1 is the scale factor and ~x are the spatial coordinates. In perturbation

theory, ∆̃i = ∆i+γi where ∆i is the dimension at the UV fixed point and γi is the anomalous

dimension calculated in perturbation theory. Expanding the dS correlator in γi, one sees

that perturbation theory in de Sitter must contain (γi log a(τi))
N terms that are not present

in the flat space calculation. Given only the lowest order term, γi log a(τi), one can use the

DRG to recover the full power-law in equation (1.1) as required by conformal invariance.

When the coupling is not tuned to be at the IR fixed point, the theory is not conformal

and the de Sitter correlators are not necessarily related to flat space correlators by a Weyl

transformation. Yet, the perturbative calculation does not depend on the precise value of

the coupling and the form of the secular growth remains unchanged. We will show that

these logarithmic terms can still be resummed and the resulting power law is determined

by the (scale-dependent) flat space anomalous dimension, γ(µ), calculated at the scale of

horizon crossing, µ = H.

We will first analyze a general version of this problem using conformal perturbation

theory in de Sitter space. When conformal perturbation theory is applicable in flat space,

1Our eventual interest is in cosmological correlators and therefore our discussion is limited to late-time

correlators in the flat slicing of de Sitter. Additional secular terms can arise in different coordinates and

for different observables [31].
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the same expansion can be used in de Sitter space using the map described in equation (1.1).

We show explicitly in conformal perturbation theory that anomalous dimensions in flat

space becomes secular growth in de Sitter. We then show how these terms can be resummed

using the DRG equations. These insights will apply to a wide variety of theories, including

perturbative QFTs involving gauge fields, fermions and/or conformally coupled scalars.

We will show this explicitly in several examples.

The organization of this paper is as follows: in section 2, we demonstrate our main

results using conformal perturbation theory. In sections 3 and 4, we show how these general

results arise in the specific examples of a conformally coupled scalar with a λφ4 interaction

in d = 4 − ε dimensions and Yukawa interactions in four dimensions. We conclude in

section 5. Details of the calculations are presented in the appendices.

2 Conformal perturbation theory

2.1 Definition

Conformal perturbation theory in flat space is a powerful tool for understanding a defor-

mation around any fixed point, whether weakly or strongly coupled. We imagine that the

fixed point is described in terms of some action, SCFT, that is deformed by one of the

operators in the CFT,

S = SCFT + λµd−∆

∫
ddxO(x) , (2.1)

where x is a d-vector, µ is the renormalization scale, λ is the dimensionless coupling, and

∆ is the dimension of the operator. From the Euclidean path integral description, it is easy

to see that a correlation function in the perturbed theory can be related to a correlation

function in the CFT via

〈Oi(y) . . .〉 = 〈Oi(y) . . . e−λµ
d−∆j

∫
ddxOj(x)〉CFT , (2.2)

where 〈. . .〉CFT means we are calculating a correlation function in the (unperturbed) CFT.

Taylor expanding the exponential then gives the result in terms of correlation functions

CFT,

〈Oi(y) . . .〉 =
∑
n

(−λµd−∆j )n

n!

(
n∏
k=1

∫
ddxk

)
〈Oi(y) . . .

n∏
k=1

Oj(xk)〉CFT . (2.3)

This procedure is very general and is even applicable to theories where SCFT is unknown

(or doesn’t exist). Of course, as a practical tool for calculations, it is limited to cases where

the correlation functions are known and can be integrated.

Given a theory in flat space described by conformal perturbation theory, we can apply

the same procedure to define perturbation theory in de Sitter space, now writing S =

SCFT + λµd−∆j
∫
dτdd−1x

√
−gOj(x). Using ds2 = a(τ)2(−dτ2 + d~x2) and

√
−g = ad(τ)

in conformal time, we can write

〈Oi(y) . . .〉dS = a−∆i(τy)
∑
n

(−λµd−∆j )n

n!

(
n∏
k=1

∫
ddxka

d−∆j (τk)

)
〈Oi(y) . . .

n∏
k=1

Oj(xk)〉CFT

(2.4)

where 〈. . .〉CFT is the correlation function at the UV fixed point in flat space.
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2.2 Perturbative flow between fixed points

We will consider a CFT in d = 4 dimensions that contains an operator of dimension

∆ = 4− ε. We will first consider the RG flow in flat space and then address the behavior

in de Sitter. In flat space, we deform the theory by S = SCFT + λµε
∫
d4xO(x).

The first thing we must determine is what happens under RG flow. At leading order,

the β-function is given2 in terms of the dimension of the operator, βλ = µdλdµ = −(4−∆)λ =

−ελ. We calculate the correction to the β function, noticing that a generic correlator of

quadratic order in λ takes the form

〈. . . λ2µ2ε

∫
d4x1d

4x2O(x1)O(x2)〉 . (2.5)

We will assume the operator product expansion (OPE) of O contains the term

O(x1)O(x2) ⊃ C

|x12|∆
O(x2) , (2.6)

where xij = xi − xj , and C 6= 0 is the OPE coefficient. Using the OPE, our generic

correlator contains the term

〈. . . 1

2!
λ2µ2ε

∫
d4x1d

4x2O(x1)O(x2)〉 ⊃ 〈. . . 1

2!
λ2µ2εC

∫
d4x12 |x12|−4+ε

∫
d4x2O(x2)〉

⊃ 〈. . . 1

2!
λ2µ2εC 2π2

∫ 1
µ

0

dx12

|x12|1−ε

∫
d4x2O(x2)〉

⊃ 〈. . . λ
2µεπ2C

ε

∫
d4x2O(x2)〉 , (2.7)

where µ is the normalization scale in units of energy. We have regulated the divergent

integral with a cutoff in position space for clarity, but we will otherwise use dimensional

regularization throughout. This divergence can be absorbed into a counterterm δλ =

+π2Cλ
ε by changing the action to S+(λµε)(1+δλ)

∫
d4xO(x). Differentiating this modified

coupling constant with respect to µ, we find

βλ = −ελ+ π2Cλ2 +O(λ3) . (2.8)

This beta function drives the theory from the UV fixed point at λ = 0 to the IR fixed point

at λIR = ε
π2C

. Since ε � 1, the behavior at the IR (UV) fixed point can be understood

purely from perturbation theory around the UV (IR) fixed point.

Two-point function in flat space. Let us now derive the perturbative correction to the

equal time two point function in flat space, in anticipation of the cosmological calculation.

Expanding to first order in conformal perturbation theory, we have

〈O(~x1, τ0)O(~x2, τ0)〉 = 〈O(~x1, τ0)O(~x2, τ0)〉∗ − λµε〈O(~x1, τ0)O(~x2, τ0)

∫
d4x3O(~x3)〉∗ ,

2µ is an energy scale which decreases to zero as we flow from the UV fixed point to the IR fixed point.
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where 〈. . .〉∗ is a correlation function calculated at the UV fixed point. Inserting the

correlation function (A.5) with a = 1 and using (B.2) to perform the integral, we find

〈O(~x1, τ0)O(~x2, τ0)

∫
dτ3d

3x3O(~x3, τ3)〉∗ =
C

x∆
12

∫
dτ3d

3x3

|x2
13 + τ2

E |∆/2|x2
32 + τ2

E |∆/2

ε→0
≈ 4π2C

x2∆
12

(
1

ε
+ log(µx12) + . . .

)
,

where xij = |~xij |. Reintroducing the coupling, λ, the bare two point correlation function

is then

〈O(~x1, τ0)O(~x2, τ0)〉 ≈ 1

x2∆
12

(
1− 4π2Cλ

ε
(µx12)ε

)
The 1

ε divergence can be removed by introducing a counterterm δZ = −2π2Cλ
ε so that the

two-point function of the renormalized operator, O = ZOR, takes the form

〈OR(~x1, τ0)OR(~x2, τ0))〉 = (1− 2δZ) 〈O(~x1, τ0)O(~x2, τ0))〉

=
1

x2∆
12

(
1− 4π2Cλ log(µx12) + . . .

)
. (2.9)

As a result, OR acquires the anomalous dimension

γO = µ
d

dµ
(δZ) = 2π2Cλ . (2.10)

Notice that at the IR fixed point the dimension of operator O becomes

∆IR = ∆ + γO = 4− ε+ 2π2CλIR = 4 + ε , (2.11)

which is consistent with the IR fixed point being attractive. In fact, from the perspective of

the IR fixed point, the RG flow from the deformation of λ = λIR + δλ should be controlled

by the dimension of the operator at the IR fixed point,

βδλ = −(4−∆IR)δλ+O
(
δλ2
)
. (2.12)

Taylor expanding equation (2.8) around the fixed point, one finds βδλ = εδλ as required

from equation (2.11).

Two-point function in de Sitter space. Now let us consider what happens to this

theory when we compute late-time correlation functions in dS. At the UV fixed point,

the power spectrum in dS follows from the conformal map from flat space to de Sitter,

equation (1.1),

〈O(~x1, τ0)O(~x2, τ0)〉∗,dS =
a(τ0)−2∆

x2∆
12

.

We will use conformal perturbation theory in de Sitter, equation (2.4), to determine the

leading correction to this two point function. From the outset, we know the theory in

flat space flows to a CFT in the IR where O acquires a non-trivial anomalous dimension.

Therefore, as explained in the introduction, there must be a log a(τ0) term associated with

– 5 –
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this two-point function in de Sitter space. Our goal is to find this secular term explicitly

and understand the behavior away from the fixed point.

Equal-time in-in correlators are most easily computed using the analytic continuation

to Euclidean time, as explained in appendix A. Applying this formalism at linear order in

λ requires that we calculate the quantity

I = −λµε
∫
d3x3

∫ ∞
−∞

dτE a(iτE + τ0)4 〈O(~x1, τ0)O(~x2, τ0)O(~x3, iτE + τ0)〉∗

= −λµεC a(τ0)−2∆

x∆
12

∫ ∞
−∞

dτE

∫
d3x3

a(iτE + τ0)ε

|x2
23 + τ2

E |∆/2|x2
31 + τ2

E |∆/2
. (2.13)

A priori, it might seem surprising that the above integral contains a divergence as τ0 → 0.

At fixed x3 6= x1, x2, the integral in τE is manifestly convergent. Similarly, at fixed τE the

integral over ~x3 convergences. However, we are integrating over both τE and ~x3 and there

are divergences associated with taking ~x3 → ~x1, ~x2 and τE → 0 simultaneously. We can

estimate the degree of this divergence by noting that the integral of ~x3 around either ~x1 or

~x2 is regulated by τE so that
∫
d3x3 ≈ τ3

E . If we then perform the τE integral, it scales as

τd−∆
E = τ εE which becomes a logarithmic divergence as ε→ 0.

The integral in equation (2.13) is performed explicitly in appendix B.2 using Fourier

transforms. The resulting log-divergence arises precisely as expected from the above scaling

argument, and leads to

I
(B.4)
≈ −λC a(τ0)−2∆

x2∆
12

4π2

(
1

ε
+ log

(
−µx12

Hτ0

)
− γE + . . .

)
. (2.14)

Putting it all together, the two point function of O is given by

〈O(~x1, τ0)O(~x2, τ0)〉dS =
a(τ0)−2∆

x2∆
12

(
1− 4π2Cλ

(
1

ε
+ log

(
−µx12

Hτ0

)
+ . . .

))
(2.15)

We see that the coefficient of the log is the anomalous dimension in flat space, 4π2Cλ = 2γO.

2.3 Dynamical RG

The two-point function in de Sitter space contains a number of divergent terms. The first

thing we should do is remove the 1
ε divergence. Introducing a counterterm δZ = −4π2C λ

ε ,

we get the renormalized two point function:

〈OR(~x1, τ0)OR(~x2, τ0)〉 =
a(τ0)−2∆

x2∆
12

(
1− 4π2Cλ

(
1

ε
+ log

(
−µx12

Hτ0

)
+ · · · − δZ

))
=
a(τ0)−2∆

x2∆
12

(
1− 4π2Cλ log

(
−µx12

Hτ0

)
+ . . .

)
.

The interpretation of the remaining log is more transparent if we separate the two dimen-

sionless ratios as follows,

log

(
−µx12

Hτ0

)
= log

( µ
H

)
+ log

(
x12

|τ0|

)
. (2.16)
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The distance must appear in the ratio x12/|τ0| in order to remain invariant under the rescal-

ing x → ρx and a(τ) → ρ−1a(τ) which leaves the metric fixed. Furthermore, additional

interactions are known to give rise to pure log µ/H [15] and log x/τ terms and therefore

must be treated separately.

We can easily eliminate log µ/H divergences by choosing µ = H. Physically, this means

that we should use standard RG to run the effective couplings of the theory to the energy

scale H (or simply define them at the scale H). Since H is fixed in de Sitter, this choice en-

sures that there will be no large logs associated with µ. We will define λH = λ(µ = H) as a

reminder that we fixed the renormalization scale. This is also a physically sensible result as

H is usually the physical scale where non-trivial (cosmological) correlations are generated.

Renormalization in the conventional sense does not address the logarithmic growth

in conformal time. In fact, the mode is only super horizon when, x12/|τ0| � 1, and

our log is necessarily large. We can formally resum the large logs in analogy with the

renormalization group via the DRG. Following the procedure in [43, 45], we introduce a

reference time and distance, τ? and x?. We then add a counter-term to the operator,

δZ → δZ(1 + 2π2CλH log x?/|τ?|), to get

〈OR(~x1, τ0)OR(~x2, τ0)〉 =
a(τ0)−2∆

x2∆
12

[
1− 4π2CλH log

(
x12τ?
x?τ0

)]
.

Of course the operators of the theory are independent of x? and τ? so that we have a

differential equation for the two point function

∂

∂ log(x?/|τ?|)
〈OR(~x1, τ0)OR(~x2, τ0)〉 = 2γ(H) 〈OR(~x1, τ0)OR(~x2, τ0)〉 (2.17)

where we have defined

γ(H) =
∂

∂ log(x?/|τ?|)
δZ |µ=H = 2π2C λH +O(λ2

H) . (2.18)

Here we make a crucial assumption that all the secular terms can be absorbed with counter-

terms such they vanish when τ? = τ0 and x? = x12. We will return to discuss the justifica-

tion for this assumption.

By construction, x?/τ? only appears in the ratio x12τ?/(x?τ0) so we can rewrite this

equation as

∂

∂ log(x12/|τ0|)
〈OR(~x1, τ0)OR(~x2, τ0)〉 = −(2∆ + 2γ(H)) 〈OR(~x1, τ0)OR(~x2, τ0)〉 , (2.19)

where we introduced the additional factor of 2∆ to account for the tree-level power spec-

trum. We can solve this equation to find

〈OR(~x1, τ0)OR(~x2, τ0)〉 =
1

|a(τ0)x12|2∆+2γ(H)
(1 +O(λH)) . (2.20)

where the O(λH) corrections are not logarithmically enhanced. We have used our freedom

to choose the overall normalization of the operator to write the result in terms of a(τ0) =

−1/(Hτ0).
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An important open question we will not address in this work is the range of applicability

of the DRG for cosmological correlators. Instead, we will use the proximity to a conformal

fixed point ensures that the DRG is accurately resuming our secular terms in the cases of

interest. At the conformal fixed point, the DRG will resum all the secular logs as required

by symmetry. Away from the fixed point, the structure of perturbation theory ensures the

DRG will resum the leading logs as desired. However, for a generic theory in de Sitter

space, the applicability of the DRG is less certain. In would be desirable to have a general

result, like in flat space [53], that characterizes the validity and limitations of the DRG.

2.4 Summary

Using conformal perturbation theory, we have seen that for a theory that flows between

two fixed points, the (leading-log) two-point function in de Sitter space is given by

〈OR(~x1, τ0)OR(~x2, τ0)〉 =
1

|a(τ0)x12|2∆+2γ(H)
, , (2.21)

where γ(H) = γ(λ(µ = H)) is the anomalous dimension calculated in flat space at the

renormalization scale µ = H. Since the correlators in de Sitter are invariant under the

group of de Sitter isometries, the higher point correlators must be de Sitter invariant with

an effective scaling dimension of ∆̄ = ∆ + γ(H).

The derivation of this result implicitly assumed that we were studying a deformation by

a slightly relevant operator. However, we must also find the same result from the perspec-

tive of the IR fixed point, in which case the deformation would have been slightly irrelevant.

These results will apply to a wide range of interacting theories, including massless

particles with spin and conformally coupled scalars. When these theories are perturbative,

they are close to the Gaussian fixed point and therefore can be understood as being close

to a CFT. Light scalar fields in de Sitter are not captured by this description because

equation (1.1) does not apply when m2/H2 6= d(d− 2)/4.

3 Scalar field theory

We would like to see how the general behavior described in section 2 arises in explicit

examples. In this section, we will calculate the power spectrum of the φ2 operator in the

λφ4 theory in dS. These types of self-interactions are particularly common for inflationary

models and are of broad interest. From flat space, we know an anomalous dimension arises

at one-loop and thus the same should be true in de Sitter. Furthermore, by choosing

d = 4 − ε, the theory flows to the Wilson-Fisher fixed point and, as a consequence, the

dynamics in de Sitter must approach the behavior of the CFT by construction.

3.1 The 〈φ2φ2〉 correlator

Given a free real scalar field φ of mass m in de Sitter space, one expands the fields in modes

according to

φ(~x, τ) =

∫
dd−1k

(2π)d−1
ei
~k·~x {v~k(τ)a~k + v∗~k(τ)a†~k

} .

– 8 –
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(a) The tree level diagram. (b) The order λ correction.

Figure 1. The Feynman diagrams involved in the calculation of 〈φ2φ2〉.

In the Bunch-Davies vacuum, the modes are given by

v~k(τ) = −iei(ν+ 1
2)π2

√
π

2
H

d−2
2 (−τ)

d−1
2 Hν(−kτ) ,

where k = |~k| and Hν is the Hankel function of the first kind with ν =
√

(d−1)2

4 − m2

H2 . The

free field theory in flat space maps to the conformal theory with mass m2 = d(d− 2)H2/4

in dS, which means ν = 1
2 . Therefore the mode functions are

v~k(τ) =
−i

a(τ)
d−2

2

e−ikτ√
2k

.

These are just the modes for a free massless theory in flat space, scaled by factors of a−∆φ

as it should be in a conformal field theory.

As explained in appendix A, we can compute equal-time (in-in) correlation functions

as an anti-time-ordered Euclidean correlation function. The anti-time-ordered propagator

for our perturbative calculations is therefore

〈T
(
φ(~k, iτE + τ0)φ(−~k, τ0)

)
〉 =

1

a(iτE + τ0)∆φa(τ0)∆φ

e−k|τE |

2k
. (3.1)

Note that τ0 < 0 will be fixed throughout the calculation and τE ∈ (−∞,∞).

We begin by computing the equal-time in-in correlator 〈φ2φ2〉 in d = 4− ε dimensions

using the expression [54]

〈φ2(~k,τ0)φ2(−~k,τ0)〉= 〈T
(
φ2(~k,τ0)φ2(−~k,τ0)exp[−

∫ ∞
−∞

dτE Hint(iτE +τ0)a(iτE +τ0)]

)
〉 ,

(3.2)

where Hint(τ) = +λµε

4!

∫
dd−1x

√
−gφ4(τ, x). The lowest order term in this expansion cor-

responds to figure 1a and it evaluates to

〈φ2(~k, τ0)φ2(−~k, τ0)〉∗ =
1

2a4∆φ(τ0)

∫
dDp

(2π)D
1

|~k + ~p|p
=

c

2a(τ0)2∆φ2
k1−ε , (3.3)

where D = 3 − ε, d = D + 1 and c ≈ −1/(4π2) is a constant (see (B.7)). Note that,

∆φ = d−2
2 and ∆φ2 = d − 2. The computation of the momentum integral is detailed in

appendix B.3.
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Now we can calculate the first order correction to 〈φ2φ2〉 from the diagram in figure 1b.

Expanding equation (3.2) to first order gives

−λµ
ε

4!
〈T
(
φ2(~k, τ0)φ2(−~k, τ0)

∫ ∞
−∞

dτE a(τ3)D+1φ4(τ3)

)
〉

= −λµε
∫ ∞
−∞

dτE ad(τ3)

(∫
dDp

(2π)D
1

a(τ3)2∆φa(τ0)2∆φ

e−|
~k+~p||τE |

2|~k + ~p|
e−p|τE |

2 p

)2

. (3.4)

We have used the shorthand τ3 ≡ iτE + τ0 in the interest of space. The loop integral in the

parentheses is computed in (B.10). Substituting this into (3.4) the first order correction

simplifies to

− λµε k1−ε

a(τ0)4∆φ
M2

∫ ∞
−∞

dτE
a(iτE + τ0)ε

|τE |1−ε
K2

ε−1
2

(k|τE |) . (3.5)

Comparing this with (3.3) we see that tree level behavior of the correlation function has

already factorized out.

Finally, we are left with only the time integral to compute. This integral is the source

of the secular growth. In the limit |~kτ0| � 1 and ε→ 0, (3.5) is approximately

+
λ

64π4

k1−ε

a(τ0)4∆φ

(
1

ε
+ log

( µ
H

)
− log(−kτ0) + . . .

)
, (3.6)

where . . . are terms that vanish in the limit |~kτ0| � 1. The 〈φ2φ2〉 correlation function at

order λ is then

〈φ2(~k, τ0)φ2(−~k, τ0)〉 =
c

2a(τ0)2∆φ2
k1−ε

[
1 +

λ

32π4c

(
1

ε
+ log

( µ
H

)
− log(−kτ0) + . . .

)]
.

(3.7)

Removing the divergence in (3.7) and performing a dynamic RG resummation:

〈φ2(~k, τ0)φ2(−~k, τ0)〉 µ=H
=

c

2a(τ0)2∆φ2
k1−ε exp

(
− λH

32π4c
log(−kτ0) + . . .

)
(1 + . . . )

=
c

2a(τ0)2∆φ2
k1−ε(−kτ0)2γφ2 (H) (1 +O(λ2

H))

=
cH−2γφ(H)

2a(τ0)2∆φ2+2γφ2 (H)
k1−ε+2γφ2 (H) (1 +O(λ2

H))

where

γφ2(H) = − λH
64π4c

= +
λH

16π2
. (3.8)

Comparing with (3.3) we see that the effective dimension of the φ2 operator is corrected

to:

∆φ2 → ∆φ2 + γφ2(H) = 2− ε+
λH

16π2

which is precisely ∆φ2 + γφ2(µ = H) at one-loop, where γφ2(µ = H) is the anomalous

dimension in flat space at the scale µ = H.
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3.2 Implications for λφ4 in four-dimensions

As we discussed in section 2.4, our results don’t crucially require that there is an inter-

acting IR fixed point. As such, we can also view the above calculation as the dimensional

regularization of λφ4 in four-dimensions by taking the ε→ 0 limit. In that case,

∆φ2 = 2 +
λH

16π2
(3.9)

where λH = λ(µ = H) as before. Unlike the ε > 0 case, in four-dimensions the theory

flows to the trivial fixed point in the IR, λ(µ→ 0) = 0. Nevertheless, since the anomalous

dimension is fixed at µ = H we still have a finite λH . As a result, the power spectrum

of φ2 in de Sitter space will acquire a fixed anomalous scaling with time and space in the

super-horizon limit.

We can similarly conclude that conformally coupled scalars in de Sitter will acquire

anomalous scaling in four-dimensions. The anomalous dimension for φ in λφ4 is generated

at two-loops and a direct calculation is beyond the scope of this work. Nevertheless, we

can conclude that such a two-loop de Sitter calculation should find that equation (2.21)

holds with

γφ(H) =
λ2
H

12(4π)4
, (3.10)

in accordance with the anomalous dimension in flat space.

4 Yukawa interaction

As a final example, we will study the RG flow of a scalar field theory in d = 4 dimensions

that is perturbed by a Yukawa coupling Lint = λφψ̄ψ, where ψ is a massless Dirac fermion.

In flat space, φ acquires an anomalous dimension at one loop and therefore will exhibit

1-loop secular growth in dS. In this sense, the Yukawa coupling is the simplest example

where the power spectrum of a fundamental scalar (as opposed to a composite operator)

exhibits secular growth of the type discussed in this paper.

The calculation of this effect does not require us to discuss the mode functions of

the fermions directly. For the purpose of our calculation, ψ̄ψ = O is just an operator of

dimension ∆ = 3− ε in a free CFT, where we have introduced ε as our regulator. We can

therefore use the action

S[φ] + λµε
∫
d4x
√
|g|φO (4.1)

and evaluate the correlation functions of O using the same conformal perturbation theory

approach described in equation (2.4).

The two point correlation function for φ receives a 1-loop (O(λ2)) correction from the

Yukawa interaction,

I ≡〈φ(~k,τ0)φ(−~k,τ0)〉1−loop =
(λµε)2

2!

∫ ∞
−∞

dτE a
4(τ)

∫ ∞
−∞

dτ ′E a
4(τ ′) (4.2)

×〈T
(
φ(~k,τ0)φ(−~k,τ0)φ(−~k,τ)O(~k,τ)φ(~k,τ ′)O(−~k,τ ′)

)
〉 ,
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where τ ≡ iτE + τ0 and τ ′ ≡ iτ ′E + τ0. We evaluate this correlator by Fourier transforming

the real-space correlation function of O given in equation (1.1). Using (B.15) and (3.1)

in (B.12), we find

I =
(λµε)2

a(τ0)2
N

∫ ∞
−∞

dτE a
ε(τ)

∫ ∞
−∞

dτ ′E a
ε(τ ′)

∫ ∞
∞

dω

2π

e−k(|τE |+|τ
′
E |)+iω(τE−τ ′E)

(2k)2
(k2 + ω2)1−ε

=
(λµε)2

a(τ0)2
N

∫ ∞
∞

dω

2π
I(ω, k) I(−ω, k) (k2 + ω2)1−ε , (4.3)

where we have factorized the two time integrals by defining:

I(ω, k) =

∫ ∞
−∞

dτE a
ε(iτE + τ0)

e−k|τE |+iωτE

2k
. (4.4)

We could compute this integral explicitly and substitute it back into (4.3) to proceed.

However, the calculations become complicated if we take that route. We will therefore

pursue a simpler strategy: first, we will evaluate (4.4) in flat space-time i.e. we set a(τ) = 1.

Next, we will compute (4.4) setting τ0 = 0. In each case we substitute the result back

into (4.3) and extract the ε → 0 behavior. The final answer for the general τ0 6= 0 case is

then obtained by requiring that it match with these calculations in the respective limits.

The details are given in appendix B.4; the final results are (see (B.4) and (B.18))

I
a=1
= − λ2

16π2 k

(
1

ε
+ 2 log

(µ
k

)
− γE + . . .

)
(4.5)

I
τ0→0

= − λ2

16π2 a(τ0)2 k

(
1

ε
+ 2 log

( µ
H

)
+A+ . . .

)
, (4.6)

where A is a divergent piece defined in (B.19). Requiring that the general answer must

reduce to these expressions, we find the first order correction (4.3) is

I
ε,τ0→0
≈ − λ2

16π2 a(τ0)2 k

(
1

ε
+ 2 log

(
− µ

kHτ0

)
+ . . .

)
. (4.7)

Note that setting τ0 = 0 in the log will cause it to blow up. This is the origin of the term

A in (4.6). Putting it all together, 〈φφ〉 is

〈φ(~k, τ0)φ(−~k, τ0)〉 =
1

2 a(τ0)2 k

(
1− λ2

8π2

(
1

ε
+ 2 log

(
− µ

kHτ0

)
+ . . .

))
. (4.8)

We remove the divergence in (4.8) using a counterterm δZ = −π2λ2

8 ε and perform a dynam-

ical RG resummation to find

〈φ(~k, τ0)φ(−~k, τ0)〉 µ=H
=

H−2γφ(H)

2 a(τ0)2+2γφ(H) k1−2γφ(H)
,

where

γφ(H) = +
λ2
H

8π2
. (4.9)
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Comparing with (3.1) we see that the dimension of the φ2 operator is corrected to:

∆φ → ∆φ + γφ(H) = 1 +
λ2
H

8π2
.

As expected, γφ(H) is precisely the anomalous dimension found in four-dimensional flat

space from a Yukawa coupling of a scalar to a Dirac fermion.

5 Conclusions

Secular terms present a significant challenge to perturbative calculations of cosmological

correlators. In this paper, we have shown that a certain class of such terms have their

origins as anomalous dimensions in flat space. Like anomalous dimensions, they can be

resummed to give corrections to the power law behavior at late times. This interpretation

of the growth is unambiguous as this resummation is required to match the predictions at

the conformal fixed point.

Our results apply to a wide range of quantum field theories in de Sitter space. Massless

particles with spin are generically conformally coupled and admit a description in terms

of conformal perturbation theory. In contrast, scalar fields with generic masses are not

conformal in de Sitter and thus our treatment is limited to the case m2 ≈ d(d − 2)H2/4.

Scalar fields of generic masses are far from conformal and display a wider range of IR

phenomena not addressed here. Ultimately, one hopes to have a complete understanding of

secular growth both of quantum fields in de Sitter and in the presence of dynamical gravity.

The main conclusion from this paper is that there is a broad class of secular terms that

are expected in QFT in de Sitter space and has an unambiguous and simple interpretation.

The meaning of IR divergences in de Sitter (particularly in the presence of gravity) has been

the subject of significant ongoing interest and we believe these simple calculable examples

can serve as a useful test-bed for future investigations.

The broader problem of characterizing all possible IR divergences of cosmological cor-

relators remains an outstanding problem. Significant progress has been made recently on

the divergences associated with massless scalars in de Sitter [29, 32, 33] and ultimately

confirm the validity of the stochastic inflation framework [9] for understanding the non-

trivial long distance behavior. While light scalar fields have certainly presented a unique

challenge to perturbative calculations, we have seen here that there are still secular terms

associated with massive fields that arise as an interplay between the short-distance and

late-time behavior. A complete understanding of all such divergences at the same level as

QFT in flat space would be a desirable outcome of a renewed focus on IR effects in de Sitter.
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A Analytic continuation of the in-in formalism

Throughout the paper, we have integrated in Euclidean time to simplify time integration.

In this appendix, we will review this procedure following [54].

We will use the in-in formalism to define equal-time correlations functions in the Bunch-

Davies vacuum. These are most easily calculated using the interaction picture operators

Qint and Hamiltonian Hint(t) via [13]

〈Q(τ0)〉=

〈
T̄ exp

[
i

∫ τ0

−∞(1+iε)
Hint(τ)a(τ)dτ

]
Qint(τ0)T exp

[
−i
∫ τ0

−∞(1−iε)
Hint(τ)a(τ)dτ

]〉
.

(A.1)

The Hamiltonian is given in terms of a Hamiltonian density, Hint(τ, x), via

Hint(τ) =

∫
d3x a3(τ)Hint(τ, x) . (A.2)

The deformation of the contour by a factor of (1 ± iε) defines the Bunch-Davies vacuum

of the interacting theory and ensures that the integrals converge as τ → −∞. We can

make this convergence manifest by Wick rotating the contours on the left and right of

the operator by τ → ±iτE + τ0 [54, 55]. The resulting expression for the in-in correlators

becomes an anti-time ordered integral

〈Q(τ0)〉 =

〈
T̄

(
Qint(τ0) exp

[
−
∫ ∞
−∞

Hint (iτE + τ0) a (iτE + τ0) dτE

])〉
(A.3)

This is particularly useful for CFT correlators, where the anti-time order correlators in

Euclidean time are given by

〈O(iτE + τ0, ~x)O(iτ ′E + τ0, ~x
′)〉 =

a(iτE + τ0)−∆a(iτ ′E + τ0)−∆[
(τE − τ ′E)2 + (~x− ~x′)2

]∆ (A.4)

〈O(~x1, iτ1)O(~x2, iτ2)O(~x3, iτ3)〉 =
C a(iτ1)−∆a(iτ2)−∆a(iτ3)−∆

|x2
12 + τ2

12|∆/2|x2
23 + τ2

23|∆/2|x2
31 + τ2

31|∆/2
, (A.5)

where τij = τi− τj and ~xij = ~xi− ~xj . We left the τ0 dependence in equation (A.5) implicit

in the interest of space. It is important to notice that all correlators are calculated at equal

Lorentzian time, τ0, and therefore the τ0 dependence cancels in τij , as shown explicitly in

equation (A.4).

B Details of loop integration

The explicit calculations of some of the loop integrals in the main text are performed in this

appendix. A number of these integrals are divergent but are made finite with dimensional

regularization and/or analytic continuation. We will therefore explain the regularization

schemes first and then apply it to the integrals needed for the main text.
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B.1 Dimensional regularization

Throughout this paper, integrals are regulated by a parameter ε that controls the scaling

behavior of the integral. This may or may not be related to the dimension of space-time,

as indicated in each section. In section 2, we have general dimension d and an operator of

dimension ∆ = d− ε, where d and ε are independent parameters. It is therefore useful to

think of the d and ∆ dependence of these integrals as independent.

We will often be interested in d-dimensional radial Fourier transform of the correlation

functions. As a result, we often have to evaluate the following integral

1

|x|2∆
= π

d
2 2d−2∆ Γ(d2 −∆)

Γ(∆)

∫
ddk

(2π)d
eik·x

1

|k|d−2∆
. (B.1)

This integral is convergent for 2∆ < d. We will not be in this regime, but we will define the

integral at other values of ∆ by analytic continuation of the above formula. This is a stan-

dard technique in QFT but is also commonly used as a definition of the Fourier transform.

This choice is justified because the divergent contributions we are neglecting are associated

with δ-functions in position space (contact terms) and therefore vanish when x 6= 0.

For conformal perturbation theory, one is often calculating an integral over a conformal

three-point function. Using equation (B.1) and the convolution theorem, it is straightfor-

ward to show that∫
ddx3

(x2
13)∆(x2

32)∆
= π

d
2

(
Γ
(
d
2 −∆

)
Γ(∆)

)2
Γ
(
2∆− d

2

)
Γ(d− 2∆)

1

x4∆−d
12

. (B.2)

This result is again defined by analytic continuation, the divergent contributions are contact

terms and vanish when x12 6= 0.

B.2 De Sitter conformal perturbation theory

The leading correction to the two point correlation function 〈OO〉 in de Sitter space involves

the integral (see (2.13))

I = −λµεC a(τ0)−2∆

x∆
12

∫ ∞
−∞

dτE

∫
d3x3

a(iτE + τ0)ε

|x2
23 + τ2

E |∆/2|x2
31 + τ2

E |∆/2
.

Shifting ~x3 → ~x3 + ~x1, we see that the ~x3 integral is just a convolution of the function

F (~x, τE) = (x2 + τ2
E)−∆/2 with itself,

I = −λµεC a(τ0)−2∆

x∆
12

∫ ∞
−∞

dτE a(iτE + τ0)ε
∫
d3x3

1

|(~x21 − ~x3)2 + τ2
E |∆/2|x2

3 + τ2
E |∆/2

= −λµεC a(τ0)−2∆

x∆
12

∫ ∞
−∞

dτE a(iτE + τ0)ε
∫

d3k

(2π)3
ei
~k·~x21F̃ (~k, τE)2 .

In the last step, we have applied the convolution theorem,∫
dDy F (~x− ~y)F (~y) =

∫
dDk

(2π)D
ei
~k.~xF̃ (~k)2 , (B.3)
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and introduced

F̃ (~k, τE) =

∫
d3x e−i

~k·~x 1

(x2 + τ2
E)∆/2

=
2π3/2

Γ
(
2− ε

2

) ( k

2 |τE |

) 1−ε
2

K ε−1
2

(k |τE |) .

The full expression is therefore

I = −λµεC a(τ0)−2∆

x∆
12

∫ ∞
−∞

dτE a(iτE + τ0)ε

×
∫

d3k

(2π)3
ei
~k·~x21

4π3

Γ
(
2− ε

2

)2 ( k

2 |τE |

)1−ε (
K ε−1

2
(k |τE |)

)2
.

Computing the k integral,

I = −λµεC a(τ0)−2∆

x∆
12

4π2

Γ
(
2− ε

2

)2 ∫ ∞
−∞

dτE a(iτE + τ0)ε

× 2−5+ε |τE |−5+2ε Γ

(
5

2
− ε
)

Γ
(

2− ε

2

)
2F̃1

(
5

2
− ε, 2− ε

2
;
5

2
− ε

2
;− x

2
12

4τ2
E

)
.

where 2F̃1 is the regularized hypergeometric function. Carrying out the integral over τE
and taking the limits ε→ 0 and τ0 → 0, we get

I ≈ −λC a(τ0)−2∆

x2∆
12

4π2

(
1

ε
+ log

(
−µx12

Hτ0

)
− γE + . . .

)
. (B.4)

B.3 Integrals in the λφ4 theory

The equal time correlation function for the φ2 operator (see equation (3.3) and figure 1a)

involves the loop integral ∫
dDp

(2π)D
1

|~k + ~p|p
. (B.5)

Usually, one computes loop integrals like this with Feynman parameters. However, there is

another way to do this calculation which is particularly useful for unequal times. We notice

that the integral (B.5) is just a convolution of the function k−1 with itself. Therefore, we

can use the convolution theorem in the form∫
dDp

(2π)D
F̃ (~k − ~p)F̃ (~p) =

∫
dDx e−i

~k.~xF (~x)2 , (B.6)

i.e. F̃ ∗ F̃ F.T←→ F 2. If F̃ (~p) is radially symmetric we can change ~p→ −~p without changing

the result. Therefore, all we need to do is find the Fourier transform of k−1 and square it.

Using (B.1) we see that 2π2k−1 F.T←→ x−2+ε and therefore∫
d3−εk

(2π)3−ε
1

|~k + ~p|p
(B.6)
=

∫
d3−εx e−i

~k·~x
(

1

2π2x2−ε

)2
(B.1)
= c k1−ε ,

where

c =
Γ
(
1− ε

2

)2
Γ
(
ε−1

2

)
23−επ

5−ε
2 Γ(2− ε)

≈ − 1

4π2
+O(ε) . (B.7)
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We can use the same strategy to evaluate the loop integral in (3.4),∫
d3−εp

(2π)3−ε
e−|

~k+~p||τE |

2|~k + ~p|
e−p|τE |

2p
. (B.8)

Notice that the loop integral is a convolution of the function F̃ (~k) = e−k|τE |

2k with itself.

Moreover
e−k|τE |

2k
=

∫ ∞
−∞

dω

2π
eiωτE

1

ω2 + k2
≡ F̃ (~k) ,

and therefore the Fourier transform of the function F̃ (~k) is

F (~x) =

∫
dDk

(2π)D
e−k|τE |+i

~k·~x

2k
=

∫
dDk

(2π)D

∫
dω

2π
eiωτE+i~k·~x 1

ω2 + k2

(B.1)
=

Γ(2−ε
2 )

π
4−ε

2 22

1

(x2 + τ2
E)

2−ε
2

.

We can now apply the convolution theorem (B.6) to the loop integral in (B.8) to find∫
d3−εp

(2π)3−ε
e−|

~k+~p||τE |

2|~k + ~p|
e−p|τE |

2p
=

Γ2(2−ε
2 )

π4−ε24

∫
d3−εx

e−i
~k.~x

(x2 + τ2
E)2−ε . (B.9)

This result can be simplified using (B.1) if we turn dDx e−i
~k·~x → ddx e−iK·x where K ≡

(ω,~k) and x ≡ (τ, ~x). To accomplish this we rewrite

1

(x2 + τ2
E)2−ε =

∫ ∞
−∞

dτ δ(τ − τE)
1

(x2 + τ2)2−ε =

∫ ∞
−∞

dτ

∫ ∞
−∞

dω e−iω(τ−τE) 1

(x2 + τ2)2−ε ,

so that our integral becomes∫
d3−εx

e−i
~k.~x

(x2 + τ2
E)2−ε =

∫ ∞
−∞

dω eiωτE
∫
d4−εx

e−iK·x

|x|4−2ε

(B.1)
= π

4−ε
2 2ε

Γ( ε2)

Γ(2− ε)

∫ ∞
−∞

dω
eiωτE

(ω2 + k2)ε/2

=
π

3−ε
2 2

1+ε
2

Γ(2− ε)

(
k

|τE |

) 1−ε
2

K ε−1
2

(k|τE |) ,

where Kν(z) is the modified Bessel function of the second kind. Plugging this back into

equation (B.9), the loop integral turns out to be

∫
d3−εp

(2π)3−ε
e−|

~k+~p||τE |

2|~k + ~p|
e−p|τE |

2p
= M

(
k

|τE |

) 1−ε
2

K ε−1
2

(k|τE |) (B.10)

where

M =
Γ2(2−ε

2 )

2
7−ε

2 π
5−ε

2 Γ(2− ε)
ε→0
=

1√
128π5

+O(ε) . (B.11)
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B.4 Integrals for the Yukawa calculation

In the main text, we found the one-loop correction to the φ power spectrum was determined

by the correlation function

I = (λµε)2

∫ ∞
−∞

dτE a
4(τ)

∫ ∞
−∞

dτ ′E a
4(τ ′) (B.12)

× 〈T

(
φ(~k, τ0)φ(−~k, τ0)φ(−~k, τ)O(~k, τ)φ(~k, τ ′)O(−~k, τ ′)

)
〉 ,

where we have shown the contractions required for a connected correlator. To evaluate

this correlation function we need the anti-time-ordered two-point correlation function of O.

However, unlike a generic operator in a CFT, the normalization of O = ψ̄ψ is determined

by the propagator of the free fermion. With this normalization factor, the power spectrum

of this operator is given by

〈T (O(~k, τ)O(−~k, τ ′))〉 =

∫
d3x e−i

~k·~x 〈T (O(x, τ)O(0, τ ′))〉 (B.13)

=
1

π4

∫
d3x e−i

~k·~x a−∆(τ)a−∆(τ ′)

(x2 + (τE − τ ′E)2)3−ε (B.14)

(B.1)
= N

∫ ∞
−∞

dω

2π
eiω(τE−τ ′E)(k2 + ω2)1−εa(τ)−3+εa(τ ′)−3+ε , (B.15)

where, in the second line, the factor of π−4 arises for matching to a Dirac fermion and

where we have defined

N =
1

22−2επ2

Γ(−1 + ε)

Γ(3− ε)
ε→0
= − 1

8π

(
1

ε
− 2γE + . . .

)
+O(ε) .

We now turn our attention to computing (4.3) in two simple cases: (i) In flat space-time

and (ii) when τ0 = 0. Starting with the flat space-time limit,

I(ω, k)
a(τ)→1

=

∫ ∞
−∞

dτE
e−k|τE |+iωτE

2k
=

1

k2 + ω2
,

the first order correction (B.12) is

Iflat = (λµε)2N

∫ ∞
∞

dω

2π

1

(k2 + ω2)1+ε

ε→0
≈ − λ2

16π2 k

(
1

ε
+ 2 log

(µ
k

)
− γE + . . .

)
.

Next, we return to de Sitter space but set τ0 = 0 to find

I(ω, k) =

∫ ∞
−∞

dτE

(
− 1

H τE

)ε e−k|τE |+iωτE

2k

=
Γ(1− ε)
Hε

iε(k − iω)1−ε + (−i)ε(k + iω)1−ε

2k (k2 + ω2)1−ε . (B.16)
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This expression can be simplified using exp
(
2i tan−1

(
ω
k

))
= k+iω

k−iω . Then, the integrand

in (4.3) becomes

I(ω, k) I(−ω, k) (k2 + ω2)1−ε

=
Γ(1− ε)2

H2ε k2
cos
(

(1− ε) tan−1
(ω
k

)
+
πε

2

)
cos
(

(1− ε) tan−1
(ω
k

)
− πε

2

)
ε→0
≈ 1

k2 + ω2

(
1 +

(
2 γE − 2 logH + 2

ω

k
tan−1

(ω
k

))
ε+O(ε2)

)
. (B.17)

We can now substitute (B.17) into (4.3) to obtain

I0 =
(λµε)2

a(τ0)2
N

∫ ∞
∞

dω

2π

1

k2 + ω2

(
1 +

(
2 γE − 2 logH + 2

ω

k
tan−1

(ω
k

))
ε+O(ε)2

)
ε→0
≈ − λ2

16π2 a(τ0)2 k

(
1

ε
+ 2 log

( µ
H

)
+A+ . . .

)
. (B.18)

In the final step we have used ∫ ∞
−∞

dω

2π

1

k2 + ω2
=

1

2k

and introduced

A
k

=

∫ ∞
−∞

dω

2π

ω

k

tan−1(ω/k)

k2 + ω2
=

1

2πk

∫ π/2

−π/2
dθ θ tan θ (B.19)

with θ = tan−1
(
ω
k

)
. This term is clearly divergent and, as pointed out in the main text, it

is a consequence of setting τ0 = 0.
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