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1 Introduction

The N = 1 supersymmetric Yang-Mills (SYM) theory is the minimal supersymmetric ex-

tension of the pure gauge sector of QCD, describing the strong interactions of gluons and

their fermionic superpartners, the gluinos. Unbroken supersymmetry requires the physical

bound states of N = 1 SYM to form supermultiplets of degenerate masses. Based on super-

symmetric effective actions, the lowest-lying supermultiplet has originally been proposed in

ref. [1] to be a chiral supermultiplet formed out of a scalar and a pseudoscalar meson and a

spin-½ bound state of gluons and gluinos, called gluino-glue. The original analysis has been

extended in refs. [2, 3] to include also glueball operators which can mix with the meson

operators carrying the same quantum numbers. The scalar and pseudoscalar bound states

are therefore created by linear combinations of meson-like and glueball-like operators. The

mass hierarchy and the amount of mixing are difficult to predict theoretically from the

effective Lagrangian and are in general unconstrained by supersymmetry.
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Numerical simulations of N = 1 SYM on a space-time lattice are required to verify

and extend the analytical predictions about the low energy effective theory. The study of

the lightest bound states of N = 1 SYM with SU(2) gauge symmetry has been the main

subject of several publications by our collaboration [4–8]. The results reveal the expected

degeneracy of the members of the chiral multiplet in the continuum limit. In particular,

the scalar glueball and the scalar meson masses, extrapolated to the continuum limit, have

compatible values, which hints at mixing of the states in this channel.

In the present work we have optimised our techniques to extract the masses with respect

to our previous work. This allows for the first time to investigate the mixing properties of

the two lowest supermultiplets from the lattice gauge ensembles we have generated. In this

article we explain these methods and their optimisations. We show, in particular, that the

construction of an enlarged correlation matrix including both, the meson and glueball oper-

ators, is crucial to extract the physical states in the scalar channel. Using these techniques

systematic errors stemming from excited state contributions can be controlled much better.

We reanalyse the gauge configurations of previous investigations yielding more reliable and

more precise results for the lightest masses. In addition, we are able to extract the masses of

excited states in the scalar, pseudoscalar, and fermionic channel. In this way we provide first

results concerning the possible formation of a supermultiplet of excited states on the lattice.

The formation of supermultiplets at the level of the excited states is strong evidence for

the fact that the unavoidable breaking of supersymmetry on the lattice can be kept under

control. The states with higher masses are affected stronger by lattice artefacts, and hence

the predicted degeneracy of these states is more sensitive to the breaking of supersymmetry

on the lattice. The present work represents the first step towards an investigation of the

spectrum of excited states of N = 1 SYM. An alternative determination of supersymmetry

violations beyond the ground state level would be the weighted sum of all energy differences

in terms of the derivative of the Witten index, see [9].

In addition to our results on excited states, we confirm our earlier results concerning the

mixing of glueball and meson operators in the ground state, and we are able to determine

the glueball and the meson contents. Eventually this might lead to a better understanding

of the conjectures concerning the low energy multiplets of the theory.

In this work we have optimised our methods for SYM with gauge group SU(2). The

techniques are, however, also suitable for other theories. Currently we are applying the

same methods successfully to SYM with gauge group SU(3), for which the results will be

published soon. Our techniques are also applicable to lattice QCD, where similar investi-

gations are being done.

It should be noted that our studies, and corresponding investigations in QCD as well,

are quite challenging due to the noisy signals from glueball operators and the disconnected

meson contributions.

This paper is organised as follows: N = 1 SYM in the continuum and on the lattice is

introduced in the next section. The current paper is particularly focused on the technical

aspects, which are explained in sections 3, 4, and 5. The physical results, the improved

signal for the ground states, the mixing, and the excited states, are finally presented in

sections 6 and 7.

– 2 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
0

2 Supersymmetric Yang-Mills theory on the lattice

The Lagrangian L of the N = 1 SYM in Euclidean space-time,

L =
1

4
F aµνF

a
µν +

1

2
λ̄aγµ(Dµλ)a +

mg

2
λ̄aλa , (2.1)

is similar to the one of one-flavour QCD. The main difference is that supersymmetry

requires the gluino field λ to be a Majorana fermion field in the adjoint representation of

the gauge group. Correspondingly the gauge covariant derivative is the adjoint one, given

by (Dµλ)a = ∂µλ
a + g fabcA

b
µλ

c. The gluino mass term breaks supersymmetry softly and

the renormalised gluino mass must be tuned to zero to recover the full supersymmetry. In

this work we focus on the theory with gauge group SU(2). The light mesons in the particle

spectrum of SYM are similar to the mesons in QCD, apart from the difference that the

constituent fermions are gluinos and not quarks. Due to this similarity, the scalar meson

is called a-f0 and the pseudoscalar meson is called a-η′ where the “a” indicates the adjoint

representation. The mesons are expected to mix with the corresponding glueballs with the

same quantum numbers. In addition to these particles, the low-energy spectrum contains a

spin-½ bound state of gluons and gluinos, called gluino-glue, which has no analogy in QCD.

On the lattice, the fermion part of the action is discretised using the Wilson-Dirac

operator DW , which effectively removes the doublers from the physical spectrum, but at

the same time explicitly breaks chiral symmetry. As shown in ref. [10], chiral symmetry

and supersymmetry can be recovered simultaneously in the continuum limit by tuning of

the bare gluino mass. This tuning can be achieved in different ways. One way is to de-

termine the point where the renormalised gluino mass vanishes from the supersymmetric

Ward identities [11]. Another way is to employ the adjoint pion mass, which is defined in

a partially quenched approach [12], and to extrapolate to the point where it vanishes. For

non-zero lattice spacings, lattice artefacts introduce a small mismatch between these deter-

minations. Because the adjoint pion mass can be measured quite precisely and effectively,

we use this quantity to define our extrapolations to the chiral point. This corresponds to

the point where supersymmetry should be restored in the continuum limit.

N = 1 SYM is asymptotically free, and the running of the strong coupling has been

investigated non-perturbatively in ref. [13]. The extrapolation to zero lattice spacing a→
0 corresponds to the weak coupling limit g → 0. The lattice spacing a used for the

extrapolation to the continuum limit is measured in terms of the infrared scale w0 defined

from the gradient flow [8, 14, 15]. In order to suppress lattice discretisation effects, we use

a tree level Symanzik improved action together with stout smearing on the gauge links in

the Wilson-Dirac operator, see [6] for further details.

The production of the gauge field configurations is performed with the two-step poly-

nomial hybrid Monte Carlo (PHMC) algorithm [4, 16]. A mild sign problem of our lattice

formulation arises from the integration of the Majorana fermions [17] and is corrected

by reweighting.
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3 Techniques for the determination of light states

In order to gain insights into the structure of the low energy spectrum of SYM, consisting of

gluino-glue particles as well as mixtures of mesons and glueballs, we determine their masses

as well as the glueball and meson content in the scalar and the pseudoscalar states. These

quantities can be reliably extracted from the gauge field ensembles using the well-known

variational method for which we have systematically optimised the required techniques

and parameters.

Our approach is to use a set of basic interpolators of the physical states to which

we then apply smearing techniques to create the operator basis used in the variational

method. In sections 3 to 5 we explain in detail the techniques and the tunings used within

this approach.

The mesons in SYM are all flavour-singlet ones, which require techniques for the mea-

surement of all-to-all propagators. We have found that a preconditioned stochastic esti-

mation is optimal for our lattice volumes. This is explained in section 3.3.

3.1 Computation of the masses using the variational method

A set of interpolating operators Oi must be chosen in order to extract information about

physical states within the variational method. In principle the only requirement is that

the operators Oi have the same quantum numbers under the lattice symmetry group as

the physical state of interest. In practice the choice of this variational basis has a crucial

influence on the precision of the results, and therefore we explain in detail the optimisation

of these operators. To extract the masses of physical states using the variational method,

the correlation matrix is built from the time-slice correlators of the set {Oi}

Cij(t) =
〈
Oi(t)O

†
j(0)

〉
. (3.1)

The solution of the generalised eigenvalue problem (GEVP) associated with the correlation

matrix C(t),

C(t)~v (n) = λ(n)(t, t0)C(t0)~v (n), (3.2)

provides generalised eigenvalues λ(n) and their corresponding eigenvectors ~v (n). In ref. [18]

it has been shown that the generalised eigenvalues λ(n)(t, t0) satisfy

lim
t→∞

λ(n)(t, t0) ∝ e−mn(t−t0)
(

1 +O
(

e−∆mn(t−t0)
))

, (3.3)

with

∆mn = min
l 6=n
|ml −mn| , (3.4)

where mn are the masses of the physical states. In order to suppress contributions of higher

excitations, it has been suggested in ref. [19] to use t0 ≥ t/2. This, however, leads to very

noisy eigenvalues λ(n) for the correlators considered here and we therefore use t0 = 0 or

t0 = 1 when necessary. A first estimate can be obtained from the effective mass

m
(n)
eff (t, t0) = ln

λ(n)(t, t0)

λ(n)(t+ 1, t0)
. (3.5)
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Figure 1. Gauge-loop Cijk(x) used in the interpolating field of 0−+-glueball.

A more precise mass estimation is obtained by fitting the eigenvalues λ(n)(t, t0) to an

exponential function of t.

The set of interpolating fields ideally should have large overlaps with the physical

states of interest and small overlap with higher excited states, otherwise terms coming

from higher order excitations might create large corrections to the expected exponential

behaviour of the eigenvalues.

3.2 Interpolating operators

The basic interpolators for glueballs are built from gauge link loops that represent the spin

and parity quantum number of the respective state. For the scalar glueball we use a sum

of gauge plaquettes

Ogb++(x) = Tr [P12(x) + P23(x) + P31(x)] , (3.6)

where Pij denotes a plaquette in the i-j plane. For the pseudoscalar glueball we use

Ogb−+(x) =
∑
R∈Oh

[Tr [C(x)]− Tr [PC(x)]] , (3.7)

where the sum is over all rotations of the cubic group Oh, and PC is the parity conjugate

of the loop C, which is depicted in figure 1.

The basic interpolating fields for the scalar mesons are

Oa-f0(x) =λ̄(x)λ(x), Oa-η′(x) = λ̄(x)γ5λ(x). (3.8)

When inserted into the correlation matrix, Wick contractions of these fields lead to con-

nected and disconnected pieces

〈λ̄(x)Γλ(x)λ̄(y)Γλ(y)〉
= Tr

[
ΓD−1

W (x, x)
]

Tr
[
ΓD−1

W (y, y)
]
− 2 Tr

[
ΓD−1

W (x, y)ΓD−1
W (y, x)

]
, (3.9)

where D−1
W (x, y) denotes the propagator from x to y (spin and group indices suppressed)

and Γ represents 1 or γ5.

The interpolating field of the gluino-glue state is given by

Oαgg(x) =
3∑

i<j=1

σαβij Tr
[
Pij(x)λβ(x)

]
with σµν =

i

2
[γµ, γν ]. (3.10)
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The gluino-glue correlation matrix consists of an odd and an even part under time reversal

Cαβgg (t) = C1(t)δαβ + Cγ4(t)γαβ4 . (3.11)

Projections to the odd part C1(t) and to the even part Cγ4(t) both provide valid correlators

to be used in the GEVP. For the tuning of our methods we use C1(t) and for the final

results we use a weighted sum of the results from both C1(t) and Cγ4(t).

3.3 Stochastic estimator technique (SET)

The calculation of correlators including more than one gluino field in the interpolating op-

erators requires the estimation of the fermion propagator from all to all lattice points. Since

a complete determination of the inverse of the Dirac-Wilson operator DW is prohibitively

expensive, we approximate D−1
W by using the stochastic estimator technique (SET) [20],

which is improved by a truncated eigenmode approximation and even-odd precondition-

ing, see [21] for further details. The preconditioned approximation converges faster to the

exact result and the numerical computation of the eigenspace of the preconditioned matrix

is much faster than the one of the full matrix. For the inversion of the preconditioned

Dirac matrix Dp we use its Hermitean version, obtained by multiplication with γ5, since

the singular value decomposition provides a better approximation.

The idea of SET is to solve the Dirac equation on a set of source noise vectors
∣∣ηi〉

fulfilling the relation

1

NS

NS∑
i

∣∣ηi〉 〈ηi∣∣ = 1 +O
(

1/
√
NS

)
. (3.12)

The entries of the vectors
∣∣ηi〉 are Z4 complex numbers of the form (±1 ± i)/

√
2. The

propagator D−1
p is then approximated by

D−1
p =

1

NS

NS∑
i

∣∣si〉 〈ηi∣∣+O
(

1/
√
NS

)
, with

∣∣si〉 = D−1
p

∣∣ηi〉 , (3.13)

and D−1
p

∣∣ηi〉 is calculated using a conjugate gradient solver.

For the truncated eigenmode approximation the NE lowest eigenvalues λi and eigen-

vectors |vi〉 of the Hermitean operator γ5Dp are computed. The truncated eigenvector

approximation of the inverse matrix is

D−1
p ≈

NE∑
i=1

1

λi
|vi〉〈vi| . (3.14)

The two approximations are easily combined: the noise vectors of SET are just pro-

jected to the subspace orthogonal to the one spanned by the lowest eigenvectors. In the

end both contributions are summed, gaining also a speedup of the inversions due to the

better condition number of the projected operator.

D−1
p ≈

NE∑
i=1

1

λi
|vi〉〈vi| +

1

NS

NS∑
i

∣∣si⊥〉 〈ηi⊥∣∣ .= NE+NS∑
i=1

ai|wi〉〈ui| . (3.15)

– 6 –
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For the case of plain Wilson fermions, investigated in the current study, the even-even

part Mee of the Wilson-Dirac matrix is just the identity. More generally, the inverse of

the block diagonal matrix Mee can be computed exactly. However, in order to simplify the

smearing procedure, we have used a large number of stochastic sources to approximate the

inverse of this matrix. These can be computed very efficiently.

We have optimised the parameters of this approximation in order to reduce the noise

and to speed up the computations. The tuning of the number of noise vectors required for

a reliable estimation of the disconnected piece is discussed in section 4.4. The eigenspace

of the preconditioned matrix computed in the measurement of disconnected contributions

is also used for a deflation of the inversions in other measurements, like the connected

meson or the gluino-glue correlators. Concerning speedup, the optimisation is also machine

dependent, e. g. our runs on KNL based machines require quite different parameters.

3.4 Smearing techniques

The different interpolating fields used in the variational method are constructed by applying

smearing techniques to the basic interpolating fields defined in 3.2.

We use APE-smearing [22] on the gauge links in order to create smeared gluino-glue

and smeared glueball operators. We use a smearing parameter εAPE = 0.4 for smearing

the gluino-glue interpolators and εAPE = 0.5 for smearing the glueball interpolators.

For the construction of the fermion source we use gauge invariant Jacobi smearing [23]

λ→ λ̃ = Fλ with the smearing operator

Fβb,αa(~x, ~y) = CNJJ δβα

(
δ~x,~y +

NJ∑
i=1

(H i)ba(~x, ~y)

)
, (3.16)

with

Hba(~x, ~y) = κJ

3∑
i=1

[
δ~y,~x+îŨi,ba(~x) + δ~y,~x−îŨ

†
î,ba

(~x− î)
]
. (3.17)

Here NJ is the integer Jacobi smearing level, κJ is a Jacobi smearing coefficient, CJ is a

normalisation constant and Ũi(x) are APE smeared adjoint gauge links. The tuning of the

parameters NJ , κJ and CJ and the smearing of the gauge links is explained in section 4.

Smearing the fermions fields is equivalent to replacing the propagator D−1
W with the

smeared propagator

D−1
W → D̃−1

W = FD−1
W F † . (3.18)

For the disconnected piece, this translates to smearing the source and sink vectors in

equation (3.15)

Tr
[
D̃−1
W

]
≈ Tr

NE+NS∑
i,~x

aiF |wi〉 〈ui|F †
 . (3.19)

The connected piece is calculated using standard delta sources on which F †, D−1
W and F

are subsequently applied:

D̃−1
W δ = FD−1

W F †δ. (3.20)

– 7 –
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4 Optimising the methods

Significant sources of possible systematic errors are non-optimal parameters of the smear-

ing techniques, the operator basis in the variational method, the stochastic estimation of

disconnected propagator pieces, and the fitting methods and parameters. In this section

we discuss their influence and optimisation.

4.1 Jacobi smearing

Aiming to achieve a good signal-to-noise ratio for the meson measurements, we system-

atically optimise the Jacobi smearing parameters κJ , CJ , the smearing level NAPE of the

smeared gauge fields Ũ and the Jacobi smearing levels NJ .

As explained in [24] there is a critical value of the parameter κcJ . For values smaller

than κcJ , the smearing operator F converges in the limit NJ →∞, while for values larger

than κcJ it diverges. In order to smear efficiently and at the same time to avoid large

numerical errors we choose a value

κJ = 0.2 , (4.1)

which is just above κcJ . With this choice the smearing radius is less than 6 lattices spacings

up to smearing levels NJ = 100 [24]. The normalisation factor CJ is chosen such that the

values of the correlation functions stay at the same order of magnitude for large and small

smearing levels. We use

CJ = 0.87. (4.2)

In principle, the final results do not depend on the values for κJ and CJ . The efficiency

could, however, depend on the choice of the values of the smearing parameters and one

could re-tune them for every ensemble. In our experience from different ensembles of SYM

with gauge group SU(2) and SU(3), the dependency on these parameters is very mild, and

it is not necessary to always find the optimal values. We have therefore kept fixed the

values stated here.

For the tuning of the smearing levels we have used SU(2) gauge ensembles at β = 1.75

and κ = 0.14925. There are in total 6800 thermalised configurations of which we have mea-

sured every 64th for our tests. We use 40 stochastic estimators for the disconnected pieces.

4.2 Presmearing of the gauge fields

The application of Jacobi smearing defined with unsmeared gauge links introduces addi-

tional noise to the signal of the disconnected contribution to the a-f0 meson, see figure 2. We

have observed that this noise can be suppressed by using smeared gauge fields in the Jacobi

smearing. We have tested APE and Stout smearing together with different smearing levels

for the preparation of the gauge field. Our results indicate that NAPE = 20, εAPE = 0.5

leads to a noise reduction for Jacobi smearing levels up to NJ = 80. The results are

not very sensitive to NAPE, and values of NAPE between 10 and 80 all feature sufficient

noise suppression. Larger values for NAPE lead again to a degradation of the signal, see

NAPE = 160 in figures 2, 3. Using Stout smearing instead of APE smearing didn’t improve

the noise suppression in our tests and we therefore stay with APE smearing.

– 8 –
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Figure 2. Jackknife-error of the disconnected piece (left) and of the full a-f0 correlator (right)

averaged over the interval t ∈ [3, 12] plotted against the Jacobi smearing level using different

smearing levels for the gauge-field Ũ in the smearing kernel (3.17). Higher Jacobi smearing levels

are affected by larger errors. Using smeared gauge fields in the Jacobi smearing suppresses this error

significantly. The disconnected piece and the full correlator have been normalised to 1 at t = t0.
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Figure 3. Left: jackknife-error of the a-η′ correlator averaged over the interval t ∈ [3, 12] plot-

ted against the Jacobi smearing level, using different smearing levels for the gauge-field Ũ in the

smearing kernel (3.17). Right: effective mass of the a-η′ correlator using different levels of APE

smeared gauge fields in the Jacobi smearing. The Jacobi smearing level is fixed to NJ = 20. Using

smeared gauge fields more effectively suppresses excited state contributions than Jacobi smearing

with unsmeared gauge fields (blue). The correlator has been normalised to 1 at t = t0.

In the case of the a-η′ correlator, using smeared gauge fields in the Jacobi smearing

has a different effect than on the a-f0 correlator. It does not suppress the noise that is

introduced by Jacobi smearing (see figure 3). However, when smeared gauge fields are

used instead of unsmeared ones, Jacobi smearing more effectively suppresses excited state

contributions to the correlator. Again, the results are not very sensitive to the exact value

of NAPE as long as it is in a suitable range 10 ≤ NAPE ≤ 80.

Considering both a-f0 and a-η′ correlators, the smearing level NAPE = 20 is chosen,

as it appears to be a good choice for suppressing noise and excited state contributions.
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4.3 Variational operator basis

A variational basis for the GEVP can be built from different smearing levels of the in-

terpolating operators. There is a trade-off between the cost required to build a large

variational basis from many different smearing levels and the gain of new information from

such operators. Each new smearing level requires additional inversions for the gluino-glue

correlator and for the connected piece of the meson correlator. Therefore it is important

to find those smearing levels which are most relevant for the extraction of the masses.

For this purpose we consider the set of operators constructed from the smearing levels

NSmearing ∈ {0, 5, 15, . . . , 95}, where Jacobi smearing is used for the meson interpolators

and APE smearing is used for the glueball and gluino-glue interpolators. From these sets

we have systematically chosen different subsets to analyse which smearing levels allow the

most efficient estimation of the lowest two states in each sector.

For each number n of operators we have picked the following sets:

1. Small smearing levels: only the smallest n smearing levels of the full set are taken

into account.

2. Large smearing levels: only the largest n smearing levels of the full set are taken into

account.

3. Uniformly distributed: out of the full set we chose the smallest and the largest one

and n− 2 additional smearing levels uniformly distributed in between.

4. Mid-large, uniformly distributed: out of the full set we chose a medium level

(NSmearing = 35) and the largest one, and n− 2 additional smearing levels uniformly

distributed between them.

To judge the quality of a mass determination with a chosen correlation matrix, the

effective masses of the lowest two states at fixed t are used as estimators. Note that we

use a rather small value of t here to demonstrate the suppression of excited states by

choosing relevant operators. The fitting intervals for the final extraction of the masses are

chosen more carefully (cf. section 6). The results from the described procedure are shown

in figures 4 and 6 together with the best estimate for the mass obtained by fitting the

eigenvalues using the full set of interpolating operators.

The results for the dependency of the effective masses on the smearing levels is similar

for all three particles: smallest smearing levels obviously lead to unwanted contributions of

higher excitations so that the effective masses at small t are significantly higher than the

best estimate. Using only the largest smearing levels leads to the strongest suppression of

these excited state contributions. The uniformly distributed subsets also suppress excited

state contributions, but not quite as much as the large smearing levels. Note that the error

of the effective masses is almost constant for the different combinations of the smearing

levels. We conclude that it is optimal to use a set of rather large smearing levels for the

mass estimations.
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Figure 4. Effective masses of the lowest and first excited state of the gluino-glue using only C1(t)

(left) and the a-η′ (right) from the GEVP based on correlation matrices of different sizes. Results for

the matrices from the least-smeared operators are shown in orange, results from the most-smeared

operators are shown in blue. The final result of the fit to the eigenvalues is shown for comparison.

4.4 Number of stochastic estimators

With the optimised Jacobi smearing parameters we also tested the influence of the number

of SET estimators on the error of the disconnected pieces. For this estimation we used

every fourth configuration of our test ensemble. The aim is to find a value for the number

of stochastic estimators where the error from the stochastic estimators is much smaller than

the gauge noise. We find that higher smearing levels require less stochastic estimators, see

figure 5, and the scalar correlator requires more stochastic estimators than the pseudoscalar

one. At around 20 stochastic estimators the error is dominated by the gauge noise (the

stochastic error is smaller than 15% of the gauge noise) for all tested smearing levels except

for the unsmeared scalar correlator.

5 Extended variational basis

In general, an operator transforming according to a given irreducible representation of the

lattice symmetry group has a non-zero overlap with all the eigenstates of the Hamiltonian

with same quantum numbers. Mixing occurs if two operators share the same transforma-

tion properties, independently of their fermion or gluon field-content. In the case of the

0++ or 0−+ channels the relevant operators can be constructed from glueball-like combina-

tions of Wilson loops and meson-like operators of the form λ̄Γλ. Therefore the variational

basis (3.2) can be enlarged to include the most general mixing between glueball and me-

son operators.

– 11 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
0

5 10 15 20 25 30 35 40

number of stochastic estimators

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
<

∆
C

(t
)
>

NJ=0

NJ=3

NJ=20

NJ=40

5 10 15 20 25 30 35 40

number of stochastic estimators

0.050

0.075

0.100

0.125

0.150

0.175

0.200

<
∆
C

(t
)
>

NJ=0

NJ=3

NJ=20

NJ=40

Figure 5. Jackknife error estimates of the disconnected piece averaged over the interval t ∈ [3, 10]

for the scalar (left) and the pseudoscalar (right) meson as a function of the number of stochastic

estimators. For other values of t the results are similar. The disconnected pieces are normalised to

1 at t = t0.

Taking both kinds of operators into account, the full correlation matrix has the fol-

lowing form

C(t) =

 〈
Ogb(t)O†gb(0)

〉 〈
Ogb(t)O†meson(0)

〉〈
Omeson(t)O†gb(0)

〉 〈
Omeson(t)O†meson(0)

〉 . (5.1)

Each entry of C(t) is a submatrix consisting of the correlators among different interpolat-

ing fields, where Ogb stands for glueball-like operators and Omeson stands for meson-like

operators. Since the meson and the glueball operators are constructed from quite different

components, it is expected that their mutual overlap is small. Using this larger correlation

matrix we expect to obtain significantly improved signals.

Scalar 0++ channel. The results of our calculations show that the enlarged variational

basis leads to a more effective suppression of excited states contributions than using meson

or glueball operators alone. Even the minimal choice of using only one meson and one

glueball operator appears to be sufficient to extract the masses of the lowest two states in

the scalar channel, see figure 6. Using more than one glueball or more than one meson

operator does not improve this estimation, but provides better access to the excited states.

We therefore conclude that it is crucial to include both meson and glueball operators in

the variational basis to reliably extract the ground state in the scalar channel.

Pseudoscalar 0−+channel. In this channel the estimation of masses does not improve

when the enlarged basis also includes glueball operators. The lowest two states can be

analysed sufficiently by using only meson operators, see figure 7, which means that the

glueball operators do not mix significantly with these states. This is in accord with the

observation that the entries in the off-diagonal blocks of the correlation matrix (5.1) are

zero (within rather large errors).
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Figure 6. Left: the ground state and the first excited state of the 0++-channel are accessible

with the mixed basis of one meson and one glueball operator (blue). Adding further meson or

glueball operators (blue) doesn’t improve the projection to the state. If only meson or only glueball

operators are used (orange and green) excited contributions are not as effectively suppressed as

compared to the mixed basis. Right: shown are the first three generalised eigenvalues λ(n) of the

GEVP in the 0++-channel. In orange the results from using a mixed basis including one meson

operator (smearing level 40) and one glueball operator (smearing level 48) are shown. Adding

a further operator (mesonic, smearing level 20) to the mixed basis (also blue) doesn’t change the

signal for the ground state and the first excited state, but a signal for a second excited state appears.

6 Supermultiplets

Using the methods explained above we have reanalysed the low-lying spectrum using the

gauge configurations of our previous investigations [5]. The parameters of the configura-

tions, on which the present investigation is based, are compiled in table 1.

The main improvements compared to the previous analysis are the use of the variational

method in all three channels including glueball and meson operators in the 0++ channel (in

previous investigations the variational method was only applied to the glueball analyses),

the inclusion of the additional gluino-glue correlator Cγ4(t), and the use of smeared gauge

fields in the definition of Jacobi smearing. Due to these improvements, the contributions

from higher states to the correlators and noise stemming from the Jacobi smearing are

suppressed so that the effective mass plateaus can be estimated more reliably and smaller

values of tmin can be used as the lower boundary of the fitting intervals. Consequently, we

not only obtained more reliable and more precise estimates of the ground state masses, but

we were also able to extract the masses of the first excited states, see figure 8.

For this investigation the full set of smearing levels under consideration consists of

the gluino-glue smearing levels NAPE = (5, 15, . . . , 95) and the glueball smearing levels

NAPE = (4, 8, . . . , 64). Note, that in contrast to the analysis above, we used a more

conservative choice of smearing levels for the meson operators, namely NJ = (0, 3, 20, 40).
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Figure 7. Effective masses in the 0−+-channel from a basis consisting of two mesonic operators

(smearing levels 20 and 40) (blue), and a basis including an additional glueball operator (smearing

level 48) (orange). The estimation of the ground state (lower panel) doesn’t change when the

glueball operator is included. In the upper panel the first and second excited states of the mixed

basis are shown (orange). They are of similar mass. Apparently one is the excited meson state

(it aligns well with the excited state of the purely mesonic basis (blue)), and the other one is the

glueball ground state.

It is preferable to use not more than four smearing levels in the 0++ channel since this

assures that the eigenvalues of the GEVP are clearly separated in the region of the fit

and additional operators do not reduce the contamination by excited states further. We

therefore use combinations of two meson operators, e.g. NJ = (20, 40) and two glueball

operators NAPE = (24, 48) in this channel. As explained above, including the glueball

operator in the GEVP for the pseudoscalar channel does not improve the results, thus we

have analysed the pseudoscalar meson a-η′ and the glueball gb−+ separately.

The fit intervals were determined at each ensemble individually based on the formation

of effective mass plateaus and the stabilisation of the χ2/d.o.f of the fit. Using the mixed

basis of glueball and meson operators allowed to include smaller time separations tmin for

the scalar channel compared to the a-η′. For the ensemble β = 1.9, κ = 0.14415 e. g.

we used tmin = 4 for the ground state and tmin = 3 for the excited state in the scalar

channel whereas we used tmin = 7 for ground and excited states of the a-η′. The errors

were obtained statistically using the standard Jackknife procedure together with binning

in order to properly take into account autocorrelations.

Due to the increased precision, we observed that in the chiral extrapolation the gluino-

glue mass deviated strongly from the assumed linear behaviour at the ensemble with the

largest adjoint pion mass at β = 1.9, κ = 0.1433. This resulted in a χ2/d.o.f ≈ 7.5 of the

linear fit to the chiral limit. We therefore neglected this data point for the gluino-glue. This

also contributes to the fact that the updated result for the gluino-glue mass is smaller than
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Figure 8. Extrapolation to the continuum of the masses of the ground states and first excited

states in the 0++, 0−+ and 1/2+ gluino-glue channels as explained in the text.

the one from our previous investigation. We also tested to use a second order polynomial

instead, which gave a consistent result, but a slightly larger error.

The results for the masses, extrapolated to the chiral and to the continuum limit, are

collected in table 2. The ground state masses, extrapolated to the continuum limit, agree

quite well with each other within errors. Similarly to the ground states, the respective

excited states also seem to form a mass degenerate supermultiplet of approximately three

times the ground state mass. Interestingly the 0−+-glueball ground state and the excited

state of the a-η′ both have similar masses, but they appear as two independent states in

the variational method which do not mix.

In the continuum limit, the two-particle decay threshold is well below the mass of

the excited supermultiplet, meaning that decays into particles of the ground state are

allowed. Since the operators presently used in the GEVP very likely have only small

overlap with two-particle states, the full consideration of the effects of the strong decay

channels would require to include in our variational basis also multi-particle operators,

such as two glueballs with opposite momenta or a glueball and a gluino-glue. The resulting

spectrum would be enlarged and would include also energy levels corresponding to two-

particles interacting on a periodic box, fulfilling a quantisation condition that determines

the resonance properties, such as the phase shift, of the excited supermultiplet [25]. Such

calculations require, however, a very good precision that is out of reach in the singlet

sectors within the current statistics. The excited energy levels within the single-hadron

approximation are already a good estimate of the mass of the excited supermultiplet.

Compared to our previous investigations [5] the extracted ground state masses turn

out to be slightly smaller. The differences to the old results can be viewed as systematic

errors of the old results, which are now much better under control. This includes the

correct estimation of the fitting intervals and the exclusion of the gluino-glue mass at

β = 1.9, κ = 0.1433 in the chiral extrapolation.
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ID β κ L3 × T #Conf ama-π am
(0)
gg am

(0)
a-η′ am

(0)
0++

A 1.6 0.15500 243 × 48 1404 0.5757(41) 0.929(28) 0.626(13) 0.98(12)

B 1.6 0.15700 243 × 48 1324 0.3208(38) 0.730(16) 0.459(35) 0.540(75)

C 1.6 0.15750 243 × 48 1612 0.201(10) 0.633(31) 0.378(43) 0.458(68)

D 1.75 0.14900 243 × 48 9300 0.2380(14) 0.4043(88) 0.319(12) 0.463(15)

E 1.75 0.14920 243 × 48 9816 0.2026(18) 0.3709(90) 0.292(14) 0.395(24)

F 1.75 0.14925 243 × 48 6428 0.1968(20) 0.3714(69) 0.270(17) 0.330(30)

G 1.75 0.14930 243 × 48 10228 0.1897(26) 0.336(21) 0.265(20) 0.346(45)

H 1.75 0.14940 323 × 64 4956 0.1615(14) 0.3575(57) 0.258(23) 0.376(22)

I 1.75 0.14950 323 × 64 1692 0.1263(65) 0.3347(75) — 0.287(59)

J 1.9 0.14330 323 × 64 10176 0.28694(42) 0.3312(46) 0.3165(34) 0.336(24)

K 1.9 0.14387 323 × 64 10144 0.21330(92) 0.2842(25) 0.2447(58) 0.204(21)

L 1.9 0.14415 323 × 64 20704 0.17780(63) 0.2482(44) 0.2126(43) 0.288(20)

M 1.9 0.14435 323 × 64 10648 0.1498(32) 0.2255(72) 0.1978(50) 0.204(19)

ID am
(1)
gg am

(1)
a-η′ am

(1)
0++ c

(0)(g)
0++ c

(0)(m)
0++ c

(1)(g)
0++ c

(1)(m)
0++

A 1.31(11) 1.398(46) — 0.42(25) 0.71(13) — —

B 1.15(16) 1.077(60) 0.84(17) 0.82(22) 0.616(91) 0.44(11) 0.853(30)

C — — 0.65(25) 0.822(77) 0.586(74) 0.63(17) 0.68(13)

D 0.751(31) 0.724(24) 0.741(31) 0.602(71) 0.615(20) 0.787(75) 0.750(21)

E 0.756(23) 0.689(28) 0.715(44) 0.685(98) 0.604(35) 0.591(79) 0.784(24)

F 0.663(39) 0.764(21) 0.645(29) 0.718(67) 0.516(38) 0.523(44) 0.827(19)

G 0.621(44) 0.669(29) 0.688(58) 0.715(93) 0.654(39) 0.700(54) 0.732(30)

H 0.725(31) 0.688(35) 0.673(38) 0.650(84) 0.702(31) 0.70(10) 0.734(25)

I 0.695(75) — 0.69(10) 0.49(11) 0.686(55) 0.754(58) 0.685(76)

J 0.618(12) 0.708(15) 0.524(12) 0.920(13) 0.316(17) 0.266(34) 0.903(10)

K 0.560(10) 0.550(48) 0.451(16) 0.927(19) 0.352(27) 0.320(37) 0.901(11)

L 0.503(13) 0.497(27) 0.440(15) 0.797(37) 0.543(36) 0.499(40) 0.828(16)

M 0.505(14) 0.589(30) 0.435(19) 0.789(41) 0.577(45) 0.581(48) 0.793(31)

Table 1. Summary of the ensembles, masses of the lowest (superscript 0) and excited (superscript 1)

states in lattice units, and mixing coefficient of the scalar channel. The ensembles have been

presented in [4–6]. For consistency we use only the ensembles with one level of stout smearing. In

some cases the data could not be extracted, because the fit intervals could not be determined reliably.
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β w0/a am
(0)
0++ am

(0)
a-η′ am

(0)
gg am

(1)
0++ am

(1)
a-η′ am

(1)
gg am

(0)

gb−+

1.6 1.859(4) 0.37(7) 0.36(4) 0.62(2) 0.5(4) 0.93(9) 1.1(2) 1.01(1)

1.75 3.41(2) 0.25(4) 0.19(3) 0.312(9) 0.59(6) 0.68(5) 0.66(5) 0.7(1)

1.9 5.86(8) 0.17(3) 0.151(5) 0.17(1) 0.39(2) 0.46(3) 0.46(1) 0.50(5)

cont. 1.1(2) 0.98(6) 0.93(7) 2.8(3) 3.1(2) 3.1(2) 3.4(4)

Table 2. Ground and excited state masses in lattice units extrapolated to the chiral limit (κ = κc),

and the extrapolations to the continuum limit in units of the scale w0. The subscript 0++ denotes

the result in the mixed channel, gg the gluino-glue, a-η′ the pseudoscalar meson and gb−+ the

pseudoscalar glueball. The masses in the continuum limit are given as w0m. The quoted errors are

statistical.

7 Mixing between glueballs and mesons

The numerical results of the extended variational approach indicate mixing between glue-

ball and mesonic states. Such a mixing has been predicted in the literature on the structure

of the lowest chiral supermultiplets [2, 3]. From the calculated correlation matrices we can

get insights about the nature of the physical states with respect to their mesonic and

glueball content.

From the eigenvectors ~vn of the GEVP (3.2) the corresponding physical states |n〉
can be reconstructed and decomposed into a glueball contribution |φ(g)〉 and a meson

contribution |φ(m)〉:

|n〉 =

ng∑
i=1

v
(g)
ni Ô

(g)
i |Ω〉+

nm∑
i=1

v
(m)
ni Ô

(m)
i |Ω〉 (7.1)

=

ng∑
i=1

v
(g)
ni |φ

(g)
i 〉+

nm∑
i=1

v
(m)
ni |φ

(m)
i 〉

.
= |φ(g)

n 〉+ |φ(m)
n 〉 , (7.2)

where v
(g)
ni and v

(m)
ni are the components of the eigenvectors ~vn corresponding to the glueball

operators O
(g)
i and the meson operators O

(m)
i , respectively, and |Ω〉 is the vacuum state.

Note that |n〉 , |φ(g)〉 and |φ(m)〉 are not normalised here.

The inner products cni
.
= 〈φi|n〉 can be calculated as the vectors dual to the ~vn by

means of [19] ∑
i

v∗micni = δmn. (7.3)

So they are the row vectors of M−1, where M is the matrix formed by the column vectors

~vn. Let us denote c
(g)
ni = 〈φ(g)

i |n〉 and c
(m)
ni = 〈φ(m)

i |n〉 the restrictions of the cni to the

glueball and the meson components, respectively. The normalisations of the vectors can

be obtained as

N (g)
n

2
= 〈φ(g)

n |φ(g)
n 〉 =

∑
ij

v
∗(g)
ni v

(g)
nj 〈φ

(g)
i |φ

(g)
j 〉 =

∑
ij

v
∗(g)
ni v

(g)
nj

∑
k

c
(g)
ki c
∗(g)
kj (7.4)
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β c(0)(m) c(0)(g) c(1)(m) c(1)(g)

1.6 0.57(7) 0.88(9) 0.6(2) 0.8(3)

1.75 0.70(5) 0.8(1) 0.77(4) 0.4(2)

1.9 0.59(4) 0.83(3) 0.83(2) 0.62(5)

continuum 0.62(6) 0.80(6) 0.91(7) 0.6(1)

Table 3. Meson and glueball contents of the ground state (0) and excited state(1) in the scalar

channel, extrapolated to the chiral limit.

N (m)
n

2
= 〈φ(m)

n |φ(m)
n 〉 =

∑
ij

v
∗(m)
ni v

(m)
nj

∑
k

c
(m)
ki c

∗(m)
kj (7.5)

N2
n = 〈n|n〉 =

∑
ij

v∗nivnj
∑
k

ckic
∗
kj . (7.6)

Now we define the glueball and the meson contents of the physical state |n〉 as the overlap

of this state with the glueball and meson contributions

c(g)
n

.
=

1

N
(g)
n Nn

〈φ(g)|n〉 =
1

N
(g)
n Nn

∑
i

v
∗(g)
ni c

(g)
ni (7.7)

c(m)
n

.
=

1

N
(m)
n Nn

〈φ(m)|n〉 =
1

N
(m)
n Nn

∑
i

v
∗(m)
ni c

(m)
ni . (7.8)

We would like to point out that the glueball contribution |φ(g)〉 and the meson contribution

|φ(m)〉 are not necessarily orthogonal to each other and therefore c
(g)2
n and c

(m)2
n in general do

not add up to 1. The formulae above are independent of the time separation t. Therefore,

we calculate the glueball and meson contents at each t and perform a fit to a constant over

the region where the values form a plateau to extract the final results.

We have determined the glueball and meson contents c
(g)
n and c

(m)
n of the ground state

and excited state in the scalar channel using again two meson and two glueball operators

as in the analysis of the masses, see figure 9 and table 3. Extrapolated to the continuum

limit, we find that the ground state has a glueball content of c(g) = 0.82(3) and a meson

content of c(m) = 0.62(6), meaning that the ground state in the scalar channel shows

significant mixing of glueball and meson contents. The excited state appears to have the

opposite glueball and meson contents than the ground state, namely c(g) = 0.6(1) and

c(m) = 0.91(6). While the ground state is more glueball like, the excited state is more

meson like. This is especially visible in the chiral extrapolation at our smallest lattice

spacing, figure 9. Interestingly the squares c(g)2 and c(m)2 do add up to 1 within errors as

in the orthogonal case.

8 Conclusions

In this work we have presented in detail our improved techniques for the estimations of

bound state masses in N = 1 supersymmetric Yang-Mills theory. We have used the vari-

ational method in all three channels, including a combined basis of glueball and mesonic
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Figure 9. Left: chiral extrapolation of the glueball and meson contents c(g) and c(m) in the 0++

ground state (0) and excited state (1) for our finest lattices (β = 1.9). Right: extrapolation of the

overlaps at different lattice spacings to the continuum limit.

.

operators in the scalar channel. The enlarged basis allows for the first time an investigation

of the mixing between these two classes of operators. Furthermore, we have optimised the

Jacobi smearing, which now includes presmearing of the gauge fields and included an addi-

tional correlator Cγ4(t) in the gluino-glue channel. The new techniques reduce excited state

contributions and therefore allow more reliable estimations of the fit-intervals and smaller

values of tmin for the extraction of the ground state masses. We have reanalysed the gauge

configurations of our previous investigations and improved our estimates of the ground

state masses. Furthermore, we have obtained a first estimation of the masses of excited

states, which have been out of reach in previous studies without the optimised variational

basis and smearing techniques. We have combined the results for the masses of the ground

states and first excited states from several different lattice spacings in an extrapolation to

the continuum limit. The first interesting observation is the formation of supermultiplets.

The ground state masses of the scalar, pseudoscalar, and fermion channel become approx-

imately degenerate when extrapolated to the chiral and continuum limit. This is in line

with our previous results and indicates the formation of a chiral supermultiplet of lightest

states. The average mass of the lightest supermultiplet is around w0m
(0) = 0.97(4).

Another very interesting result is the possible formation of a chiral supermultiplet of

excited states at w0m
(1) ≈ 3.1. The masses of these states in lattice units are around

0.5 a−1, i. e. around half of the cutoff scale. It is quite unexpected that states at these

high energies are not more affected by the supersymmetry breaking lattice artefacts. For

a complete analysis a more detailed investigation of the bound state spectrum is required,

including also other multiplets and a larger set of quantum numbers. We are currently

adding, for instance, an investigation of the baryonic states of the theory [26].

We have investigated the mixing between glueball and mesonic operators in the scalar

and pseudoscalar channels. In the scalar channel we have found significant mixing between
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glueball and meson contents. In the pseudoscalar channel we found no hints of a significant

mixing. The pseudoscalar ground state is clearly dominated by the mesonic contribution,

whereas the scalar ground state has an apparent predominant glueball contribution.

Our results might help for a better understanding of the low energy effective action [1–

3] and the conjectures presented in [27, 28]. In [2, 3], which refines and extends the analysis

of [27], the nature of the lowest two chiral supermultiplets has been investigated on the

basis of an effective action including mesonic and glueball-type degrees of freedom. The

lightest states were conjectured to be of the glueball type, if mixing is not too strong.

The argument is based on the perturbation of the effective theory by a small gluino mass,

which leads to a splitting of the multiplets. In the mesonic multiplet the pseudoscalar meson

becomes lighter than the scalar meson. Drawing on the proof [29] that the lightest scalar

state, which has overlap with the 0++ glueball operator, is not heavier than the lightest

pseudoscalar state, which has overlap with the 0−+ glueball operator, they conclude that

the multiplet of glueball states must be lighter than the multiplet of mesons.

On the other hand, in ref. [28] the lightest states are conjectured to be of mesonic

type with a small mixing of the glueballs. Their analysis employs an effective Lagrangian

with an arbitrary mixing angle between the glueball (R-charge 0) and meson (R-charge

2) multiplet. Generally, the effective Lagrangian allows either mesonic or glueball-type

states to be the lightest ones, depending on an unknown parameter. The argument for the

ordering of states is then based on the large-Nc equivalence of SU(Nc) SYM and QCD-like

theories. In QCD the mesonic η′ appears to be much lighter than the scalar glueball, which

leads to the conjectures about the ordering of states and only a small mixing for SYM. A

distinction between the scalar and pseudoscalar channels is, however, not being made.

Our numerical findings in the scalar channel, where the lightest state is dominantly

of glueball type, are consistent with the predictions of [2, 3, 27]. On the other hand,

it appears that the pseudoscalar ground state is dominated by the mesonic contribution

with a negligible mixing of the glueball, which would correspond to the scenario advocated

in [28]. Also, in contrast to the above arguments, we do not find the same mixing angle for

the scalar and the pseudoscalar channel. A detailed consideration of the effects of a small

gluino mass could shed more light on these questions.

Acknowledgments

The authors gratefully acknowledge the Gauss Centre for Supercomputing e. V.

(www.gauss-centre.eu) for funding this project by providing computing time on the GCS

Supercomputers JUQUEEN and JURECA at Jülich Supercomputing Centre (JSC) and
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