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1 Introduction

Supersymmetric quantum field theories have proven invaluable for probing strong cou-
pling physics due to non-renormalization theorems and supersymmetric localization tech-
niques [1-4]. They also play a pivotal role in holographic dualities and beyond the Standard
Model phenomenology. Given the enormous utility of supersymmetry, it is rather surprising
that the question of whether it is anomalous at the quantum level is still not conclusively
answered, despite the extensive literature addressing this question in various contexts. The
consensus seems to be that standard supersymmetry (often termed Q-supersymmetry) is
not anomalous. However, we demonstrate in this paper that the Wess-Zumino consis-
tency conditions [5] imply that Q-supersymmetry is necessarily anomalous in theories with
an anomalous R-symmetry. The same conclusion is reached in the companion paper [6]
by means of an one loop calculation in the free Wess-Zumino model. A related observa-
tion was made using the R-multiplet in the recent paper [7]. These results confirm the
Q-supersymmetry anomaly discovered in the context of supersymmetric theories with a
holographic dual in [8], and the related anomalies in rigid supersymmetry [8-10].

Global anomalies do not render the theory inconsistent — they are a property of
the theory and affect physical observables, such as decay channels [11, 12] and transport
coefficients (see [13] for a recent review and [14] for an observation of the mixed chiral-
gravitational anomaly in tabletop experiments). They do mean, however, that the theory
cannot be coupled consistently to dynamical gauge fields for the anomalous global sym-
metry. Specifically, a quantum anomaly in global supersymmetry implies that the theory
cannot be coupled consistently to dynamical supergravity at the quantum level. It may also
mean that certain conditions necessary to prove non-perturbative results are in fact not met.



In flat space, global — or rigid — anomalies are typically visible only in higher-point
functions as contact terms that violate the classical Ward identities. For example, the
lowest correlation functions where the Q-supersymmetry anomaly is visible in flat space are
four-point functions involving two supercurrents and either two R-currents or one R-current
and one stress tensor [6]. However, global anomalies become manifest at the level of the
quantum effective action and in one-point functions when arbitrary sources for the current
operators are turned on (i.e. when the theory is coupled to background gauge fields for the
global symmetries), or when the theory is put on a curved background admitting Killing
symmetries. In particular, global supersymmetry anomalies are related to supersymmetric
index theorems and may affect observables such as partition functions, the Casimir energy,
and Wilson loop expectation values of supersymmetric theories on curved backgrounds
admitting rigid supersymmetry.

Following the recent advances in supersymmetric localization techniques [4] (see [15] for
a comprehensive review), supersymmetric quantum field theories on curved backgrounds
have attracted considerable interest. A systematic procedure for placing a supersymmetric
theory on a curved background was proposed in [16]. The first step is coupling the theory to
a given off-shell background supergravity, which corresponds to turning on arbitrary sources
for the current multiplet operators and promoting the global symmetries — including
supersymmetry — to local ones. The Killing spinor equations obtained by setting the
supersymmetry variations of the fermionic background fields to zero determine the curved
backgrounds that admit a notion of rigid supersymmetry. Such backgrounds have been
largely classified for a number of off-shell supergravity theories and for various spacetime
dimensions [17-27] (see also [28, 29] for earlier work). However, this procedure is classical
and does not account for possible quantum anomalies.

It was in that context that the anomalies in Q-supersymmetry [8] and rigid supersym-
metry [8, 9] were discovered, providing a resolution to an apparent tension between the
field theory analysis of [30-32] and the holographic result of [33]. Based on the classical su-
persymmetry algebra on curved backgrounds that admit a certain number of supercharges,
the authors of [30-32] demonstrated that the supersymmetric partition function on such
backgrounds should be independent of specific deformations of the supersymmetric back-
ground. However, an explicit evaluation of the on-shell action of minimal N = 2 gauged
supergravity on supersymmetric asymptotically locally AdSs solutions using holographic
renormalization [34, 35] in [33] demonstrated that the holographic partition function on the
same supersymmetric backgrounds does in fact depend on the deformation parameters. The
resolution to this apparent contradiction was provided in [8], where both the bosonic and
fermionic superconformal Ward identities were derived holographically, including the corre-
sponding superconformal anomalies. It was then shown that the anomalies in the fermionic
Ward identities (the ones in the divergence and the gamma-trace of the supercurrent) lead
to a deformed superconformal algebra on backgrounds admitting Killing spinors. Repeat-
ing the argument of [30-32] using this deformed supersymmetry algebra reproduced exactly
the dependence on the deformations of the supersymmetric background seen in [33].!

! At least for theories with a = ¢ on supersymmetric backgrounds of the form S' x M3 with M3 a Seifert
manifold it is possible to remove the rigid supersymmetry anomaly at the expense of breaking certain
diffeomorphisms using the local but non-covariant counterterm found in [33]. We will elaborate on this
point in section 5.



The Ward identities and quantum anomalies of four dimensional superconformal the-
ories have been studied extensively over the years [36-47]. They are usually discussed in
superspace language and can be written compactly in the form (see e.g. appendix A of [40])

V% ua = Val, (1.1)

where the supertrace superfield J is given by

1 2
J = g (W —af), (12)
and 1
W2 = SWay W, £ =W+ (V' + B)(G” +2RR), (13)

are respectively the square of the superWeyl tensor and the chirally projected superEuler
density. The chiral superfields W3, and R and the vector superfield G4 are the three
superspace curvatures [48] and in the conventions of [40] G* = JG““Gq. The components
of the supertrace superfield J contain the trace of the stress tensor, the gamma-trace of the
supercurrent, and the divergence of the R-current. The divergence of the stress tensor and
of the supercurrent appear as components of the superspace conservation equation (1.1).

The superspace analyses of [37, 44] and [39] seem especially related to our results in
this paper. In particular, the anomalies in the divergence and in the gamma-trace of the
supercurrent we derive are likely related to the fermionic components of the superspace
cocycles found in [37, 39, 44], even though none of these earlier works concerns N' = 1
conformal supergravity and so the field content is somewhat different. Moreover, to the
best of our knowledge these fermionic components have not been written explicitly in
the literature before and so a direct comparison with our results is not straightforward.
Another result that may be related to the anomalies we find here is [47], where it was shown
that in the presence of anomalous Abelian flavor symmetries the Wess-Zumino consistency
conditions require additional — non holomorphic — terms to the supertrace anomaly.
These terms seem related to terms we find here in the case of an anomalous R-symmetry.

Finally, we should mention that there is an extensive body of literature discussing
supersymmetry anomalies in the presence of gauge anomalies in supersymmetric gauge
theories, reviewed in [49]. Such anomalies involve the dynamical fields in the Lagrangian
description of the gauge theory in flat space and are distinct from the supersymmetry
anomalies we identify in the present paper, which involve the background supergravity
fields. However, the mathematical structure underlying the descent equations that relates
the R-symmetry and supersymmetry anomalies is identical to that relating gauge anomalies
to supersymmetry anomalies [50] (see also [51, 52]).

In this paper we consider N/ = 1 off-shell conformal supergravity in four dimen-
sions [53-56], which provides a suitable background for superconformal theories via the
construction of [16]. We determine the algebra of local symmetry transformations and
derive the corresponding classical Ward identities. The main result of the paper is the so-
lution of the Wess-Zumino consistency conditions [5] associated with the ' =1 conformal
supergravity algebra from which we obtain the general form of the superconformal anoma-
lies to leading non trivial order in the gravitino for arbitrary a and ¢ anomaly coefficients.



Our analysis is carried out in components and we explicitly determine the fermionic Ward
identities corresponding to the divergence and the gamma-trace of the supercurrent, includ-
ing their anomalies. To the best of our knowledge these have not appeared in the literature
before, at least explicitly. The bosonic Ward identities and anomalies reproduce well known
results [40] (corrected in [46]). We find that the divergence of the supercurrent, which cor-
responds to the Ward identity associated with Q-supersymmetry, is anomalous whenever
R-symmetry is anomalous. Moreover, the N' = 1 supergravity algebra dictates that the
O-supersymmetry anomaly cannot be removed by a local counterterm without breaking dif-
feomorphisms and/or local Lorentz transformations. The Ward identities and the supercon-
formal anomalies we obtain by solving the Wess-Zumino conditions reproduce those found
holographically in [8] in the special case when the a and ¢ anomaly coefficients are equal.

The paper is organized as follows. In section 2 we review relevant aspects of N' =1
off-shell conformal supergravity and determine the algebra of its local symmetry transfor-
mations. These transformations are used in section 3 to derive the corresponding classical
Ward identities. The main result is presented in section 4, where we obtain the general
form of the superconformal anomalies by solving the Wess-Zumino consistency conditions
associated with the N’ = 1 conformal supergravity algebra. The actual calculation is shown
in considerable detail in appendix B. In section 5 we determine the anomalous transforma-
tion of the supercurrent under local supersymmetry and discuss the implications for the
rigid supersymmetry algebra on curved backgrounds admitting Killing spinors of confor-
mal supergravity. We conclude in section 6 and collect our conventions and several gamma
matrix identities in appendix A.

2 The local symmetry algebra of N/ = 1 conformal supergravity

In this section we review relevant aspects of N/ = 1 off-shell conformal supergravity in
four dimensions and determine its local off-shell symmetry algebra as a preparatory step
for solving the Wess-Zumino consistency conditions. N = 1 conformal supergravity can
be constructed as a gauge theory of the superconformal algebra [53-56] (see [57-60] and
chapter 16 of [61] for pedagogical reviews). Its field content consists of the vielbein e}, an
Abelian gauge field A,, and a Majorana gravitino v, which comprise 543 bosonic and 8
fermionic off-shell degrees of freedom.

The reason for focusing on N' = 1 conformal supergravity here is threefold. Firstly,
background conformal supergravity is relevant for describing the Ward identities of super-
conformal theories and their quantum anomalies. Moreover, other supergravity theories
can be obtained from conformal supergravity by coupling it to compensator multiplets
and gauge fixing via the so called tensor or multiplet calculus [59, 62, 63]. When applied
to background supergravity, this procedure may be thought of as the process of turning
on local relevant couplings at the ultraviolet superconformal fixed point. Finally, off-shell
N = 1 conformal supergravity in four dimensions is induced on the conformal boundary
of five dimensional anti de Sitter space by minimal N = 2 on-shell gauged supergravity in
the bulk [64]. This means that the Wess-Zumino consistency conditions for N' =1 confor-



mal supergravity should reproduce the superconformal anomalies obtained holographically
in [8] for the case a = ¢. We will see in the subsequent sections that this is indeed the case.

In the construction of N' = 1 conformal supergravity as a gauge theory of the super-
conformal algebra, Q- and S-supersymmetry are on the same footing before the curvature
constraints are imposed, each having its own independent gauge field, respectively 1, and
¢u- The covariant derivative acts on these gauge fields as

1 . .
D/ﬂpu = (8u + Zwuab(ey 1/))%1; + ZV5AM) Py — FZV@Z),O = (@u =+ 27514#)11[)1/7

1 ) .
Du¢u = (@L + Zwuab(e’ V) Yab — W5Au) by — Fﬁu¢p = (@u - Z’Y5Au)¢ua (2.1)

where w,%(e, 1)) denotes the torsion-full spin connection?

wuab(e, ’(/)) = wﬂab(e) + i@a%ﬂﬁb + E;ﬂ/a"bb - E;[waa) . (2'2)

Once the curvature constraints are imposed, however, the gauge field ¢, ceases to be an
independent field and it is expressed locally in terms of the physical fields as
)

1 loa 1 (o2 - g 4
2756W"’ Dpzpa) = _6(45’[5)5’j] —1—@756”1,’) )7 Dypy.  (2.3)

¢/L = g’yy <Duwu - ,D,lﬂpu
As we will see shortly, this quantity appears in the supersymmetry transformation of the
gauge field A, as well as in the fermionic superconformal anomalies.

Our spinor conventions are given in appendix A and follow those of [61]. Compared
to [60], we use Lorentzian signature instead of Euclidean and we have rescaled the gauge
field A, according to —%AET — A, in order for its coefficient in the covariant deriva-

tives (2.1) to be unity, as is standard in the field theory literature.

Local symmetry transformations. The local symmetries of A = 1 conformal super-
gravity are diffeomorphisms ¢#(z), Weyl transformations o(x), local frame rotations A% (z),
U(1) gauge transformations 0(x), as well as Q- and S-supersymmetry, parameterized re-
spectively by the local spinors £(z) and n(x). The covariant derivative acts on the spinor
parameters € and 7 as

1
D,e = <8/L + Zwuab(e, V) Yab + i’y5Au>5 = (@u + z'75Au)6,

1 . .
Dyn = <8u + zw,ﬂb(e, V) Yab — WE’AM)n = (2, — V" Au)n. (2.4)

Under these local transformations the fields of N’ =1 conformal supergravity trans-
form as

1
dej, = §>‘8,\eﬁ + €50, — )\“bez + o€, — 51#“7“5,

A A 1 ab 1 - 5
5% =¢ aAwu + %(%5 - zAabV % + 50'1/1/1 + DME — Yull — Y 91/}/1;

31— 31—
§A, = XA, + A0, + Zgzm% — qu% +9,0. (2.5)

2The purely bosonic part of the spin connection, Wy “b(e), is torsion-free. For most part of the subsequent
analysis we will work to leading non trivial order in the gravitino, in which case the torsion-free part of the
spin connection suffices. However, the full spin connection is necessary in order to determine e.g. the local
symmetry algebra.



These transformations imply that the quantity ¢, in (2.3) transforms as

1 1 1 2i 1~ v .
06 =E Dbt oA = L Aa " Op— 500+ (PW+3FW75— 3FW) 7 e+ Dyun+iv 0y,
(2.6)
where
1 1
Puv =5 (R - 6ng), (2.7)
is the Schouten tensor in four dimensions and the dual fieldstrength is defined as
=~ 1,
F;w = iqw Fpa- (28)

Notice that the transformations (2.5) coincide with those induced on the boundary
of five dimensional anti de Sitter space by minimal N = 2 gauged supergravity in the
bulk [8, 64]. In order to compare with the results of [8] one should take into account that
we have rescaled the gauge field and the local symmetry parameters according to

VBALRee /0 A, (2.9)
and
Othere /! — 0, et/ — e, ethere /g s, V'3 Binere /£ — 6, (2.10)

where “there” refers to the variables used in [8]. Moreover, we use the Majorana formulation
of N =1 conformal supergravity here instead of the Weyl formulation used in [8].

Local symmetry algebra. The local transformations (2.5) determine the algebra of
local symmetries, i.e. the commutators [dq, o], where Q and Q' denote any of the local
parameters o,&, A, 0,e,m7. Off-shell closure of the algebra requires that the parameters
transform under the local symmetries as

0 =E"O,EN—€ DN, SN =EMG AN, do=E"u0,  09=E1D,0,  (2.11)
1 1 1 1
6 = 1O+ 05— Phay e =iy, 0n=E"0un—5on = Aay " n+i07"1.

Applying the transformations (2.5) repeatedly we then find that (to leading order in the
gravitino) the only non vanishing commutators and the corresponding composite symmetry
parameters are:

[0¢, 0¢r] = 0, g =¢"9,MM —¢Vo, M, (2.12)
[0x, Ox] = b,y Ay = NN = AT\,

[0, 0p) = 05 + Ox + do, o= %En, A% = —%E’y“bn, 0= —%E’yf’n,
[0c,0cr] = ¢ + O + 04, &= %E"y’“‘a, A% = —%(E”y”a)wyab, 0= —%(?’7“5)14”.

Notice that the composite parameters resulting from the commutator of two
Q-supersymmetry transformations are field dependent, which means that the structure



constants of the gauge algebra are field dependent. Such algebras are often termed soft
algebras (see [65] for a recent discussion of soft algebras and their BRST cohomology) and
supergravity theories are typically based on soft algebras. The commutation relations (2.12)
form the basis for the Wess-Zumino consistency condition analysis to determine the super-

conformal anomalies in A/ = 1 conformal supergravity.

3 Classical Ward identities

We now turn to the derivation of the classical Ward identities of a local quantum field theory
coupled to background A/ = 1 conformal supergravity. These identities can be thought of
as Noether’s conservation laws following from the local symmetry transformations (2.5).
Since these depend only on the structure of the background supergravity, the resulting Ward
identities are independent of the specific field theory Lagrangian, provided the coupling of
the theory to background supergravity preserves the local supergravity symmetries at the
classical level.

The classical Ward identities can be expressed in the compact form
oW e, A, ] =0, (3.1)
where Q = (£,0,),0,2,n) denotes any of the local transformations (2.5) and #'[e, A, 9]

is the generating functional of connected correlation functions of local current operators
associated with the background supergravity fields, namely

oW o
P j'u' = 67177 H = @7177 y (32)
oes, 0A, oY,
where e = det(eZ). These definitions do not rely on a Lagrangian description of the quan-
tum field theory, but if such a description exists, then the generating functional # [e, A, 1]
is expressed as

W[ea A, w] = —ilog g[ev A, ¢]7 (33)

where Z[e, A, 1] is obtained from the path integral
Zle, A v = [ apjesiveds), (3.4)

over the microscopic fields ®. At the classical level, therefore, the generating function
W'le, A, 9] corresponds to the classical action S[®;e, A, 1], with the microscopic fields ®
evaluated on-shell.

Given the definition of the current operators (3.2) and the local symmetry transforma-
tions of the background supergravity fields (2.5), classical invariance of # [e, A, 1] leads to a
conservation law — or Ward identity — for each local symmetry, which we will now derive.



Diffeomorphisms. The transformation of the generating functional under diffeomor-
phisms is given by

S = / d'z e(0eel TH + e Ay T" + 6¢t),,S*)
= [ate (VDT ~ S nTE ¢ (€ B 0,18 5
G5 5,5+ (€T AT+ € By
= [ §”< OV TE — Vu(B,8") + (5, D)8 + Fpud®
— A (Vo T + i1, 77SH) 4w, (e#[cﬂ;ﬁ‘ + i@z)ﬂabé‘#) ) (3.5)

Setting this quantity to zero for arbitrary £”(x) gives the classical diffeomorphism Ward
identity
AV, T+ Vo($,8) = 6, DS’ — FuJ"
v S AD QU ab v 1— v (36)
+A, (VVJ + 1, y°S ) — Wy ey[a'ﬁ,] + 11/1,,%1,5 =0.

We will see shortly that the terms in the second line correspond to the classical Ward
identities for U(1)z gauge transformations and local frame rotations respectively.

Weyl symmetry. Under local Weyl rescalings the generating function transforms as
S W = / d*z e(5el T} + 05 ApT" + 659, S")
- / d'z e o <em + ;@z)uw) , (3.7)
and, hence, the classical trace Ward identity takes the form
e TH + %%5“ =0. (3.8)

R-symmetry. The transformation of the generating function under U(1)r gauge trans-
formations is given by

SoW = / d*z e(Spel TH + 59 AT + 8910, S")
_ / diz e(0,0T" — i09,1°S")
= /d4a: ef( -V, T - i@u’y‘:’S"). (3.9)
Hence, the classical R-symmetry Ward identity takes the form

Vu T +ith, /8" = 0. (3.10)



Local frame rotations. Under local frame rotations the generating function transforms
according to

Y = /d4a? 6(5)\627;“ + 5)\14“‘7'“ + (5)\¥,u8u)
a 1—
= —/d4:v e <eu[b72f + 4w#%aS“> . (3.11)
Hence, the corresponding classical Ward identity is
1_
eula Ty + 1VuanS" = 0. (3.12)
Q-supersymmetry. The Q-supersymmetry transformation of the generating function is
5H = / d'z (0L TH + 0. A T" + 620, S*)
1— 31— =
= /d4x e (21[)u7a67;# + Z¢u758j“ JreDNS“)
4 (1. o 3 s w 7
= [dzeE 37 P TH + il o J* —=D,S" ). (3.13)
Therefore, the classical O-supersymmetry Ward identity takes the from
1, 3 5
DMSN = 5")/ wynﬂ + Z’Y ¢Mju. (314)

S-supersymmetry. Finally, the transformation of the generating function under S-
supersymmetry is given by

W = /d4x e(énefﬁ;’“‘ + 0, A TH + &@HS“)
= [ d* I Ry Sk
= T e —Z%ﬂ UNASE T
3
= /d4$ en <—4175%Z),“7” + ’YMSH> ) (3.15)
and hence the classical Ward identity for S-supersymmetry is

a
VuS" — ZZ'P%J" =0. (3.16)

4 Superconformal anomalies from the Wess-Zumino consistency
conditions

At the quantum level the generating function % may not be invariant under all local

symmetries of background conformal supergravity, i.e.
oW #0. (4.1)

The non-invariance of the generating function of four dimensional theories can be param-
eterized as

So W = /d”‘x\/—g (0 Aw — AR —EAQ + T As), (4.2)



where Ay, Agr, Ag and Ag are possible quantum anomalies under Weyl, R-symmetry,
Q- and S-supersymmetry transformations, respectively. Recall that the gravitational and
Lorentz (frame rotation) anomalies are related by a local counterterm [66] and exist only in
4k + 2 dimensions, with £ = 0,1, .... Moreover, the mixed anomaly can be moved entirely
to the conservation of the R-current by a choice of local counterterms (that is setting o = 0
in eq. (2.43) of [67]). In this scheme diffeomorphisms remain a symmetry at the quantum
level and the transformation of the generating function under all local symmetries can be
parameterized as in (4.2).

Repeating the exercise of the previous section with the anomalous transformation (4.2)
results in the same diffeomorphism and Lorentz Ward identities as those obtained respec-
tively in (3.6) and (3.12), but the remaining Ward identities become

a 1—
eM'];,U« + §¢#Su = AWa

1 31
D“S“ - 57’1%7;“ - Z’)’B(buju = -AQ7
3i
YuSH — Z'Y%’*j k= Ag. (4.3)
The objective of this section is to determine the general form of the quantum anomalies
Aw, Ar, Ag and Ag by solving the Wess-Zumino consistency conditions [5] associated
with the N' =1 conformal supergravity algebra (2.12).
The Wess-Zumino consistency conditions amount to the requirement that the local
symmetry algebra (2.12) is realized when successive infinitesimal local symmetry variations
dq (also known as Ward operators) act on the generating functional # and read

[(59, (SQ/]W = (5[979/]W7 (44)

for any pair of local symmetries Q = (£,0,\,60,¢,7) and Q' = (¢, 0", N, 0./, 71/).

In appendix B we determine general non trivial solution of the Wess-Zumino consis-
tency conditions (4.4) for the N’ = 1 conformal supergravity algebra (2.12) in the scheme
where diffeomorphisms and local Lorentz transformations are non anomalous. There are
two non trivial solutions related respectively to the a and c coefficients of the Weyl anomaly
and they take the form

Aw=1 <W2§F2> O, (4.5)
An= S PP
Ag=- (5a9;§c>i P A+ (Cé;zc v, (AR )y, b0 — meﬁ“””(’WﬁO(w?’),
Ag = (5%;236)?#” (DM - 2;,4#75) Y+ %F‘“’ (vul768) =817 61Dyt

+ 3(16;; ) P g"'+*71D iy + (C;;; ) (R“ Y7 Yy — ;ngg“[”’yp"]> Dytbe+0O(1°),

~10 -



where W? is the square of the Weyl tensor, E is the Euler density and P is the Pontryagin
density. Their expressions in terms of the Riemann tensor are
1
W2 = Wopo W7 = Ryprpo RP7 = 2Ry R + S R,
E = Ryuypo R*?7 — AR, R" + R?,

1 ~
P = §EHWRWURWPU = R"" Rypors (4.6)

where the dual Riemann tensor is defined in analogy with the dual U(1)g fieldstrength
in (2.8) as®

~ 1
Ruvpo = §eW“RWU. (4.7)
Moreover, P, is the Schouten tensor defined in (2.7) and we have introduced the shorthand
notation

~ 1
F?=F,F", 6  FF= 3" FurFpo. (4.8)

Finally, we have used the normalization of the central charges adopted in [40], according
to which the a and ¢ anomaly coeflicients for free chiral and vector multiplets are given
respectively by

1 1
T 48 24
Several comments are in order here. Firstly, we should point out that the anoma-

a=—(Ny+9N,), c=—(Ny+3N,). (4.9)

lies (4.5), as well as the current operators defined in (3.2), are the consistent ones. The
corresponding covariant quantities can be obtained by adding the appropriate Bardeen-
Zumino terms [66]. Secondly, the bosonic Ward identities and anomalies we obtain re-
produce well known results [40] (corrected in [46]), but the fermionic Ward identities and
anomalies have not appeared — at least explicitly — in the literature before. Moreover,
the Ward identities (3.6), (3.12) and (4.3) derived above, including the anomalies (4.5), are
in complete agreement with the results of [8] for theories with a holographic dual that have
mf3

3Gs’
where G5 is the Newton constant in five dimensions and ¢ is the AdSs; radius. Of

a=Cc=

(4.10)

course, such an agreement was expected since minimal N = 2 gauged supergravity
induces off-shell N' = 1 conformal supergravity on the four dimensional boundary of
AdSs [64] and the anomalies can be computed through holographic renormalization [34]
(see also [9, 10, 46, 68]).

An interesting question is whether there exists a local counterterm %#,; that removes
the Q-supersymmetry anomaly, i.e. such that 6.(# + #.) = 0. Closure of the algebra
requires that

[0c, 0] (W + Wer) = (0 + Ox + 0g) (W + Wet), (4.11)

with the composite parameters for the bosonic transformations given in (2.12). It follows
that if such a counterterm exists, then it must also satisfy

(0¢ + 6+ 69) (W + Wey) = 0. (4.12)

3In contrast to the Riemann tensor, EWW is not symmetric under exchange of the first and second pair
of indices.

- 11 -



Hence, either #,; removes also the R-symmetry anomaly, or it breaks diffeomorphisms
and/or local frame rotations. This means that for theories with an R-symmetry anomaly,
either Q-supersymmetry or diffeomorphisms/Lorentz transformations are anomalous as
well. The identification of a possible local counterterm that moves the Q-anomaly to
diffeomorphisms/Lorentz transformations is a problem we hope to address in future work.

5 Anomalous supercurrent transformation under Q- and
S-supersymmetry

The superconformal anomalies (4.5) lead to anomalous transformations for the current
operators under the corresponding local symmetries. In particular, the fermionic anomalies
Ag and Ag contribute to the transformation of the supercurrent under respectively Q- and
S-supersymmetry [8]. When restricted to rigid symmetries of a specific background, the
anomalous terms in the transformations of the currents result in a deformed superalgebra.

The classical (non-anomalous) part of the current transformations can be deduced di-
rectly from the supergravity transformations (2.5) and the definition of the currents in (3.2).
For example, (2.5) imply that the functional derivative with respect to the gravitino trans-
forms according to

Je <5> = 17 56(1 (45“‘5” + i7", P4 )7y D, <55;51>,

o,
) 3i 0
5 7’1 1
(w )= Tnsa o1
It follows that the Q- and S-supersymmetry transformations of the supercurrent are
given by*
5.8t =e"16, 0 W+e i(5 W
50, oY,
1 A(5q— -
=357 YeTH+- (45[“5p}—|—w ) Y'v°D, [e (J”+(526; 236) F”"A,ﬁﬂ
™
07O G (4, B3 et D o, (5.2)
672 (TN g2 T ee ‘
5, St =e"14, i P *ia V4
5, oY,
_3i s " 4(5a—3c) = (5a—3c) =
- 47 ”(‘7 oz T A [ D)
N R A po v 3(2a=0) plo  uv]
6 2( p cr)fy DV(F 77)_ A2 Du(Pag Y )
(a—c) vpo 1 [ ST712
- 87‘(’2 Dy RM ’ 7pa_§Rnggp[ ’Y“ ] ni- (5'3)

4An equivalent but more formal way to determine how the currents transform under the local symme-
tries is to utilize the symplectic structure underlying the space of couplings and local operators [69]. The
Ward identities correspond to first class constraints on this space, generating the local symmetry transfor-
mations under the Poisson bracket. In appendix B.1 of [8] this approach is used to obtain the anomalous
transformation of the supercurrent under Q- and S-supersymmetry in the case a = c.
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Notice that these transformations coincide with those in eq. (5.9) of [8] in the special
case a = c.

The anomalous transformations of the supercurrent in (5.2) and (5.3) are essentially a
rewriting of the two fermionic Ward identities in (4.3) and are useful for e.g. determining the
effect of the superconformal anomalies in correlation functions [6]. They also determine
the rigid superalgebra on curved backgrounds that admit Killing spinors of conformal
supergravity. Namely, when the local spinor parameters € and 7 are restricted to solutions
(€0,Mmo) of the Killing spinor equation

(550,77077/)/»14 = Dﬂgo - 7#"70 - 07 (54)

on a fixed bosonic background specified by g,,, and A, the corresponding transformation
of the supercurrent under rigid supersymmetry is given by®

O(como)S" = {QlE0s o], S} = (02, + 0y, )S", (5:5)

where Q[e,,7,] is the conserved supercharge associated with the Killing spinor (e,,7,) and
all bosonic fields in the transformations (5.2) and (5.3) are evaluated on the specific back-
ground. In [8, 9] it was shown that even though the Weyl and R-symmetry anomalies
are numerically zero for a class of N' = 1 conformal supergravity backgrounds admitting
two real supercharges of opposite R-charge [18, 19], the anomalous terms in the trans-
formations of the supercurrent under rigid supersymmetry do not vanish, leading to a
deformed rigid superalgebra on such backgrounds. As reviewed in the Introduction, this
observation was the key to resolving the apparent tension between the field theory results
of [30-32] that used the classical superalgebra and the holographic computation of [33].
Besides the dependence of the supersymmetric partition function on the background, how-
ever, the transformation of the supercurrent determines also the spectrum of BPS states.
The anomalous transformation of the supercurrent results in a shifted spectrum [8, 9].
Although it may not be desirable — or even possible — to eliminate the Q-anomaly by
a local counterterm that breaks diffeomorphisms and/or local Lorentz transformations as
discussed in the previous section, it is plausible that the anomaly in rigid supersymmetry
may be removed by a local counterterm that breaks certain (large) diffeomorphisms, but
preserves the underlying structure of the supersymmetric background. An example of a
somewhat analogous situation was discussed in [70], where supersymmetric gauge theories
in three dimensions with both Maxwell and Chern-Simons terms coupled to background
topological gravity were considered. The partition function of such theories on Seifert
manifolds, which admit two supercharges of opposite R-charge, can be computed via su-
persymmetric localization and depends explicitly on the Seifert structure modulus b. In
principle, this dependence could be explained by the presence of a framing anomaly, which
implies that the partition function does indeed depend on the metric at the quantum level.
The puzzle, however, is that for Seifert manifolds specifically the framing anomaly is nu-
merically zero. The authors of [70] resolve the puzzle by arguing that in order to make the

®Note that (£,,7,) are c-number parameters, while (g,7) are Grassmann valued local parameters that
transform non trivially under the local symmetries according to (2.11).
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quantum theory invariant under Seifert reparameterizations and Seifert-topological (i.e.
independent of metric deformations that preserve the Seifert structure) they need to add
a local but non fully covariant counterterm. This counterterm does depend on the Seifert
structure modulus b, which resolves the paradox.

It is plausible that similarly the rigid supersymmetry anomaly in four dimensions can
be removed by a local counterterm that breaks those large diffeomorphisms that are not
compatible with the structure of the supersymmetric background. In fact, for holographic
theories (i.e. a = ¢ at large V) defined on trivial circle fibrations over Seifert manifolds such
a local counterterm was found in [33]. It would be interesting to generalize this counterterm
to non holographic theories with arbitrary e and c using the general form of the fermionic
anomalies we obtained in this paper.

6 Concluding remarks

In this paper we determined the local symmetry algebra of N/ = 1 off-shell conformal super-
gravity in four dimensions and obtained the general form of the superconformal anomalies
by solving the associated Wess-Zumino consistency conditions. To the best of our knowl-
edge, the explicit form of the fermionic Ward identities and their anomalies have not
appeared in the literature before. We find that the divergence of the supercurrent, which
is associated with Q-supersymmetry, is anomalous whenever R-symmetry is anomalous.
This anomaly cannot be removed by a local counterterm without breaking diffeomorphisms
and/or local Lorentz transformations.

Several open questions remain. Our result that Q-supersymmetry is anomalous in any
theory with an anomalous R-symmetry does not seem to depend on the specific supergravity
theory we used in this paper. Indeed, we expect this result to hold in non-superconformal
theories with an anomalous R-symmetry as well. This expectation is supported by the
recent analysis of [7]. Another interesting question is whether there exists a local coun-
terterm that eliminates the Q-supersymmetry anomaly. As we saw in section 4, such a
counterterm would necessarily break diffeomorphisms and/or local Lorentz rotations. The
related question for rigid supersymmetry on backgrounds that admit Killing spinors is rel-
evant for the validity of supersymmetric localization computations on four-manifolds. An
important example is the computation of generalized supersymmetric indices that count
the microstates of supersymmetric AdSs black holes [71-75]. We hope to return to these
questions in future work.
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A Spinor conventions and identities

Throughout this paper we follow the conventions of [61]. In particular, the tangent space
metric is 7 = diag (—1,1,1,1) and the Levi-Civita symbol €,,,, = %1 satisfies 9123 = 1.
The Levi-Civita tensor is defined as usual as €,,p0 = /=9 €uvps = € Evps. Moreover, the
chirality matrix in four dimensions is given by
7 = ivmr23, (A.1)
and we define the antisymmetrized products of gamma matrices as
yHH i = s ] (A.2)
where antisymmetrization is done with weight one.
In the conventions we use here the gravitino v, is a Majorana spinor (see section 3.3

of [61] for the definition) and we make extensive use of the spinor bilinear identity in four

dimensions
Mk bty = (1PxAH? - 29N feq. (3.53) in [61]]. (A.3)
For Majorana fermions we also have that
(XVpre N = XXy [ed. (3.82) in [61]]. (A.4)

It is convenient to collect several identities involving antisymmetrized products of
gamma matrices in d dimensions, most of which can be found in section 3 of [61]:

PP = %{W“,’y”},

vV 1 v
7= S A,

Y Ypr = A g+ 41158 gy 4 2611,8"
P = e p T
Ny, = +p,y[u1...up_15;p]’
NPV = AP g 6,7[#” [750101 + 67[“5V[T5p]a}7
VP ey = P78y 6L 1290 6067,
YPYrn = VP ora + 97[“”[7,\59101 + 18’7[“@5”759]0] + 65[H[>\5V7‘50]a]a
(d—r)!

Yvs..vn = (d r_ ) ,}/Ml---ﬂr’

Vo = (d = 2)7", + (d = 1)d7,

VWP% (d—3) “”(,+2(d 2)yl5",,

NP7 = (d = 3)37 + 2(d — 2)677,
)
)?

7“1---#1"”1---“5

’y“y/\’y,\pg (d 4 lwpg +4 d— 3) [“[0(514 ol + 2(d 2)(5[“[ (51/] o)

Vup Y Ve = (d = 4)" 70 + (d = 4)(d = 3) (Vub) — V79w
+ (d=3)(d = 2)d77 — (d = 3)7 Y,
= (=1)P(d — 2p)yH1iztr. (A.5)

H1p2.p
VoY Pry
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In particular, the following identities apply specifically to d = 4 and are used
extensively:

VEAHENT + Tt AP = 2(g"P 7 + g7 = g AM),
YAHENT — AT yHyP = 2yPRe
VAT = gty + ghoyP — Pyt + PR
NPT = yHPT L yHgPT P GHT
YT = (P,
1

5 Py oy (A.6)

olad

Finally, the following three identities in four dimensions help compare the superconformal
Ward identities (4.3) and the anomalies (4.5) with the corresponding results obtained in [8]:

(Y — 200 )7 = 48,y — A

= 45u[ﬁ7)\] -1 fuup070757
,.Yu,ywi)\ _ ,y,uw{)\ + 39/1[1/75)\]’
(29" = 39"™) Yupe = 27"V Yoo — 37 Vupe
= 49" 0 — 12(7[1/[05”}17} + 5[1/[055]/3])
= 4(’)/””/)0 + ’y[y[gén}p} — 5[1/[05n]p]). (A7)

B Solving the Wess-Zumino consistency conditions

In this appendix we provide the details of the proof that the superconformal anomalies (4.5)
satisfy the Wess-Zumino consistency conditions (4.4) associated with the local symmetry
algebra (2.12) of N/ = 1 conformal supergravity. Only a subset of the algebra relations need
be checked explicitly since all commutators between any two non-anomalous symmetries
are trivially satisfied. Moreover, the Wess-Zumino conditions for purely bosonic symmetries
are known to hold [76] and are straightforward to check. We shall therefore focus on the
commutation relations involving at least one fermionic symmetry transformation, except
for the four commutators

[0¢, 6] =0, [0¢, 64| # =0, [0x,0:]# =0, [0x, oW =0, (B.1)

which hold trivially. All computations in this appendix assume either a compact spacetime
manifold or that the fields go to zero at infinity so that total derivative terms can be
dropped. Moreover, we only keep the leading non trivial terms in the gravitino 1.
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[06,0c]%7 = 0 and [05,0,]# = 0. Let us first consider the two commutation relations
(00, 0| W/, [0c, 00| . (B.2)

Taking into account the Weyl transformation of the supersymmetry parameters in (2.11),
it is straightforward to check that both the Q- and S-supersymmetry anomalies are Weyl
invariant, i.e.

050: W =0, do0pyW = 0. (B.3)

Moreover, the O(1)?) terms in the Weyl anomaly in (4.5) ensure that the Weyl anomaly
density is invariant under both Q- and S-supersymmetry, i.e.

dc(e Aw) =0, op(e Aw) = 0. (B.4)

Combining these results we conclude that these two commutators satisfy the Wess-Zumino
consistency conditions compatible with the local symmetry algebra, namely

B0 6 =0,  [65,8,]# =0. (B.5)

[0e,00]# = 0. The only remaining commutation relations involving a bosonic symmetry
are those between local gauge transformations and either O- or S-supersymmetry trans-
formations. Staring with Q-supersymmetry, the anomalies in (4.5) determine

800 W = —06. / d*rebAp

(5(1—36) vpo (C_a) KAV o
T d'zeder Oc (Fpv Fpo )+ 4872 d'wed M6 (R gur R pur)

2(5(1—30) vpo ( ) RApY
——W/d4xeﬁe“ PO Fu 0,0 Ag+ 12 5 /d4x696 MY R AV 1019,
_Ba=39i [ e 9,000 F, 200 d'z e 9,0 VR, \V 10
_W redybe wEeY Go— 12 2 xe € KA edov,

sa—3c)t Voo RAUY ppo =
:(187r2)/d4a768 0 €7 F 2y g + (12 2)/d4xev (00 €™M RP7 3 e (511,

(B.6)

500 W = —0p / d*rezAg

9a—3c)t Voo T — vpo
:<187r2)/d4x68p06“ P Y’ o+ 12 3 /d41‘6’€“ P7V . (9p0 R MV)€7 AWo)-
(B.7)
Hence,
(62,80 = 0, (B-8)

as required by the Wess-Zumino conditions.

For the case a = ¢ the O(2?) terms in the Weyl anomaly can be found in [8]. For generic a and c the
conditions (B.4) can be used to derive the fermionic terms in the Weyl anomaly.
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0n,00]7 = 0. For S-supersymmetry we have similarly
n

SnboW = —6y / d*z e 0.AR (B.9)
= —W/fx e P70, (FuFps)
- _2(52(17;230) /d43: el e"P’F,,0,0pAs
= —(5a18_7§Cﬁ /d4az e 0p0 P iy, (B.10)

So0y W = 8g / d*z e Ag

d5a — 3c¢)t
- = 6118720)2 /d4:r e 0,0 P iy, (B.11)
and hence,
[0y, 00]# = 0. (B.12)
[0e, 0/ | W = OoW , with 0 = —%(E"y)‘s)A,\. There remain only the four commutators

among fermionic symmetries. Applying two successive Q-supersymmetry transformations
on the generating function # gives

800 HW = —0b. / d*rezAg

5a—3
= (fgﬂ_;)i/d4xee“”p"FuVAp€7555/¢a+
(a—c)
4872
(5a—3c)

| ) (1 1
= Wz/d%cee“ P B ApEY° <2Pa/\+3Fa>\’75—12€a/\mFm) e’

(c—a)
1272

[P

+

/ d4x e G'Lujpo- Fpo’ Rn/\uyg’)/ﬁéa’ ¢/\

Y P

+ (ZS_T[;) /d4$GGMVPUFPURK)‘MVE’YHD)\&J, (B13)

and hence

(6a —3c)

[0, 0/} = = 2772

/d4x e e“”pUFWApFUA?V)‘e

— (28_71'3) /d4l’ e EMVPO.ApRK)\p,VRK)\UT<g/’YT€)

(c—a)
2472

/d4:n e eP7 AR,V V0 (F'e)

—

+

Zg_wzc ) / d*z e P Fop R™ V5 (F/s6). (B.14)
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The last two terms can be rearranged as
1
GMVPUAPR”)‘WVHVU(?%E) - 56“"”"FMR“’\WVH(E'7A£)

= P AR\ [V, Vo | (E7e) + Vo (€7 AR,V o (' ne) )
=V, (GMVPUApRKA;wvﬁ (gl'}/)\g)) + €MVpUApRH>\,uVRHU)\T (5/77—5)

1
=V, (e"”""ApR“)‘WV,{(?Py)\E)) + ie“”p"ApR“)‘m,ngT(5’775), (B.15)
so that
5a — 3
[0, 8| W = _(62L77r26) / d*z e P F,, A F oy e
— (024;?) /d4x e e“”p"ApR”)‘WR,{AUT(E"yTe). (B.16)

Moreover, the fact that Fj,F, A, = 0 and RRA[“VR”AJTAP] = 0 in four dimensions leads
to the two identities

1
€0 Fuy For Ay = =777 Fyuy By A,

1
P ResRor ™ A, = —ZE“VPUR#VHAR,JU“)‘AT. (B.17)

Therefore, we finally get

[0c, 61 # = (51‘8;’20) / diz e PO, Fly(ANEy e)

PO [t 097 B R (4,27)

:—/d4xe«9AR, (B.18)

with 1
0= 75(5’7)‘5)14% (B.19)

as required by the Wess-Zumino consistency conditions.

[6n, 0yy]# = 0. Two successive S-supersymmetry transformations on the generating
function # give

Sy bW
da—3c)i _ 5a—3c . B
:—(187r2) / d49366“””"FWApnv55nfwa+(l27T2) / d* e, F*TD 6,010

ic vt o - 3(2a—c)
B I L 77(7“[ 55]_5L 55])757705n’¢0+?

62 / d*ze P“Vg“[”ﬁq/p"] Doy o

+ (6;;20) /d4a: en <R’“’pawy - ;RQWQM[V’YW]> Dpontho
- (561L8_:20>i / d'z e Fu, Ay vor — (5?2_7;2)6) /d4x€6uvaW”%DPn/
o5y [atverenu o =55 oDl =225 [ atee Prugiphy Do
— (C;;QC) /d433 en(R’wpa’Y/w ;nggu[l/,ypa]),yappn’_ (B-20)
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We will now show that each of these terms vanishes once the corresponding expression with
n and 1’ interchanged is subtracted.
The first term in the second equality in (B.20) vanishes trivially since
M Yen = 7770n. (B.21)

For the second term we have

ﬁ'Yo’Dpn/ - ﬁ/’YU,Dpn = Vﬂ(ﬁVUn/)‘ (B‘22)

Integrating by parts and using the Bianchi identity e**#?9,F),, = 0 we find that the second
term vanishes as well.
The third term can be simplified as

Funﬁ(,yy[gdﬁp] _ 5’/[0559]),}/570@,)7’/

1 VK— o.p p O o P 5 !

- _§F 77(71/ 9 — W 9k — 2gugn)’7‘77 Dpn
| p—— p p p p 0540 5 !

- _iF 77(371/9/{_'71/ H_’YVgn—F/yM_ 29%7”)7 Dpn
1 _

_ —iFWTme’YE)DpT]/‘ (B23)

Hence, subtracting the same quantity with n and 7' interchanged we obtain

1 _ 1 _
- §FVK777PVH75Dp77/ + §FVK77/'7PVH/Y5D,DT7

1 1 1
- _ §Funﬁ,.ypw€,)/5ern/ + in/nvp (ﬁlf}’pw{’)ﬁn) + §Fuﬁﬁ757f€l/ppp77/

1
=5F N o (T ury’n) (B.24)

which again vanishes up to a total derivative term due to the Bianchi identity e#**?0,F},, =0.
In order to evaluate the term proportional to the Schouten tensor P, we note that

TV Den — Ty 1A D)
= T{"™, WDt — V(T " yam)
= 27" \Dyt) = Vi (T (Y5 + 95 =77 95)n). (B.25)
Hence,

V,yn)\]

P (0" Ny Dot — 77 g4 Ny Do)

1 3 - B
= P (" TV Dt + g Ty 2Dt + ¢* TV Dt — 1 <> 1)

1 U— — v 14 — v v
= —3PwVx(g" 7 (g3 — v g5)n + a7 (V7 g5 — " g)m + g" 7 (v} g5 — 7" gx)n)

1 o o ) L
= =3P Ve (3¢" TV 0+ 7 (7" = 4"g" ) — 39" 77" )

2 V—l K K— v
= —gPWVN(g“ Y — g"n'v'n)
1 1 1 1
=~ BVaTYn) + SR VI (17 ) = 3VH [(RW - QRQW> (77”7”77)] , (B.26)
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where in the last equality we have used the Bianchi identity
1
V(R 5Rg,w) = 0. (B.27)

It follows that the term proportional to the Schouten tensor P,, in (B.20) also vanishes.

Finally, for the last term in (B.20) we have

R T Yo Dot = B*P T (Y Yo = Y0o) Dot = 2R*77, Dy, (B.28)
with
Ry, Dyn' — RM 7'y, Dyn = RN, (). (B.29)
Hence,

1
R* 1Yo Dotl| = R* P11 Y16 Dpit = 5 B (9" v 3D’ — 17 "7 yy D)

v — — 1 — v
= 2R"™V,(Tyun) + RV u(y"n) = 2V [(RW - 2RguV> (my 77’)] , (B.30)

where we have again used the Bianchi identity (B.27) in the last equality.
To summarize, all terms in (B.20) vanish upon subtracting the same quantities with n
and 7’ interchanged, leading to the commutator

[0y, O] W = 0, (B.31)
in agreement with the Wess-Zumino consistency conditions.
[0, On| W = 0o W + 6oW ', with o = %En and 0 = —%E’ysn. The final commutator

we need to consider is the one between Q- and S-supersymmetry transformations. We
start with the contribution of the Ag anomaly to the commutator, namely

S0 W =6, / d*rezAg

5a—3c)i Voo _ a—c vpo K =
= (187T2)/d4:nee“ P FHVAP575577¢U— (127T2) /d,4:L‘ee“ P VH(APR ’\”,,)57()\5,7@!10)
a—c
+ (487r2) / Az e e Floy R 57,010

_ (5@-30)7, 4 HWpT A BD (CL—C) 4 pvpo 70
=" g2z d*xee uwApeY " Don+ 1972 d ree \Y 2 U#y)sn

a—c
( )/d4:cee“”p”FpgR”>‘W8’yH>\n

48?2
da—3c)i _
- (61L87rf)z/d4:ree“"p”FuuAp5’Y5Da77_ (1(11877(2:) /d%eewpaFPfmewf%An'

(B.32)
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The last term in this expression can be simplified further using the last identity in (A.6)
and the product of two Levi-Civita tensors

_ E/J,z/pcfen>\7'¢

— g;uigu)\gprgo'd) + (g,u)\gwigpgbgm’ + gm‘gzx(bgpmga)\ + g;LgZ)guTgp)\garc) . (gp)\gl/ﬁgm'gaqb

+ + !]/1()!'/V/\f]/ﬁf]mf + g/mgm-gpkg(rd) + gy,r;guqbgm-grr)\ + g;mgl/)\gpqﬁgafr)

+ ( + guz\gur‘gpn‘gacf) + g;l(.)K]//f;'(/p?gm\ + gp)\gzxogp'rgcm +

+ g/17((]1//\'(//1(.).(]rrf.‘ + g;mguc,bgp)\gGT 4 g/l,ﬁgl/ﬂ'gptf)g(r/\) o ( 4 !///T'(/I/H'(//)(‘).(,]n/\

+ guc‘)gurgp/{go—)\ + g,u)\gmﬁgp/fgm- + g,m—gw,ﬁgp)\gan + gu)\gm—gpgbgm{)’ (B33)

where we have grouped terms according to the conjugacy classes of the symmetric group
Sy and terms of a given color give the same result when contracted with F,, R,qx )\ﬁ’}/—rqg’}/‘:’é‘.
In particular,

— elre 6KAT¢FMVRponAﬁ77¢75€

= 4FMVR,prcrﬁ'7p0755 - + ,1}*/[”’3/)[/,77 /1/11}55
+4F" Ry jjy"Py e — AFY R,y Hy e + AF,, Ry ~ ¢
= 4(F™ Ruypoe*77°e — 4F," Ryoiy"Py%e + Flu Ry ), (B.34)

and so

_ i 7
e“””onaRHAuuU’Yn)ﬁ = §€WpaER/\WF#VRPWMWT‘?V%

= —2i(F" Ry po ™7 e — AF,” Ryyin""y e + Fpu RV 7 ).

(B.35)
The contribution of the Ag anomaly to the commutator is
OO W
—5. / d*zenjAg
(5036 [ 4 o s (503 [0
:_187721/d z e P, ATy 5€¢U+127r2/d ze P Fu,nD,y0: s
+ % / dx e FPY(,l7 8,7 = 8,076,P) 7P D6+ 3(%16;56) / d'z ¢ Pug"" "1 Dydets
+ (6;;26) /d4a; 677<R“”p07uu— ;RQMVQ“[V’YPG]> Dpoectio
_ —Wi/d% €T A Ty D, e+ (5112—720) /d4$ e P F,, 7D, Dye
ﬂ;% diz e FPYi(7, 78,7 - 6,176, })’75DpDa5+3(iC7Lr§C) / d*x e Py g"'ny*7 1D, Dye
+ (C;;ZC ) / d'zen (R“”p“wu - ;Rguug“[”’yp”]> DpDoe. (B.36)
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Using the identity,
1 .
2D, Dyje = <4.Fim,pg'yp‘7 + 275FW> g, (B.37)

we now evaluate the four terms involving two covariant derivatives on the spinor parameter
€. The easiest term to evaluate is

iF“”ﬁ(’y“["dl/’] — (5“["51/’])7517,)7305
— EFW—( W08, —5,76,°)7° (%Rpm{,\’y“/\ n i”y5Fpg>£
= —fF,WF“”ﬁe + 8F Y Ruoua"7 "™ ye + éF“”R“mm“v%
- —%F PP Te + gFWRWmm“ Ve

0 0
" 8F Ry — 225 2 g gy g el g gy
_ )
= _§FWFW775 + gF“”(RWpJ + 2R, 00 — 2gupRya)n7p"75s
1 _ 1
= _§FMVFW77€ + ZF’“’(RWW — gupr)n’yp"’yE’a (B.38)
We next consider the term
e"P? B, nD,Dye
_ie;wpaF F =0 _i_},uupaF R = KA
=3 vt pa 1Y€ 86 uvdlporNY €

1
= 5" Fu oy — Z(F Y RyuwpoT"77 e = 4F," Ry e + Flu Ry A %¢),

(B.39)

where in the last line we have utilized the identity (B.35).
Next we evaluate the term

Pyugu[yﬁfyﬁ)\]pﬁp)\g
1 1 .
= s Pwl (g" 7"+ gH Ay 4 gy ) <4Rmpa’yp" +Z’Y5Fn>\> £

1 VKA v 1
= g D¢y =2¢" )<4

RmAp07p0+i75FmA> €
1 1 —_ K\ po —  KALD 1 1/,L — VA po — VA D "
:%R ZRWJW e+ eFia —gPW ZR Apa Y ety Ty e FE )
1 1
= —6 (R“y—3Rguy) X

(zF“wv”Af’eJr RF\ o (—i ”75+W o g g gho A"g”‘))6>

1
:—6<R BRguy>zF“,\n’y”)"y5£+ <RWR’““’ 3R2>n€. (B.40)
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Finally, the last term gives

1
(R;u/pa,hw - QRQ,LWQM[VV'DJ}> DPDUE

1 1 1 .
— 5 (RHVPU’YMV— ng/gu[l/,ypo]) (4Rpm€>\,yn)\ +Z’Y5Fpa) c
1
— éRquo-Rl{/\pa’ 716,“/’{)\ 5 4M+ qug,,
i UV po 5 1 . —= UV 5D 2—
+§R Fpo'ﬂw'y 5_E(21RFMV77’7 y e—R 775)

1 ) 1
~Ryype R*P7e+ %R“VPUFPU’)/“V’Y5E T (2iRF,, "~ e—R*5e),  (B.41)

__ips5
=3Py

where P = *6“'/ P Ry ARpU is the Pontryagin density.
Substituting (B.35) in (B.32), and (B.38), (B.39), (B.40) and (B.41) in (B.36) we finally
obtain

(5a — 3c)i 4 o _ 5 c
o d*x e P E,, Foony’e — 15,2

(2a —¢) , 1 _
+ W d4x e R#VRM — gRQ ne

[0, 6| W =

/d4:c e F, F'"ne

(a—c) 4 D—_ 5 vpo— Lo
~ 3902 d*z e | iPNy’e + Ryuype R Ne — §R e
= /d% e (—0Ag + cAw), (B.42)
with
3._ 5 1_
0= — &, o= 5En, (B.43)

as required by the Wess-Zumino consistency conditions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982) 661 [INSPIRE].

[2] E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353
[INSPIRE].

[3] N.A. Nekrasov, Seiberg- Witten prepotential from instanton counting, Adv. Theor. Math.
Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

[4] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,
Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824| [INSPIRE].

[5] J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. 37TB (1971)
95 [INSPIRE].

— 24 —


https://creativecommons.org/licenses/by/4.0/
https://inspirehep.net/search?p=find+J+%22J.Diff.Geom.,17,661%22
https://doi.org/10.1007/BF01223371
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,117,353%22
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://arxiv.org/abs/hep-th/0206161
https://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.2824
https://doi.org/10.1016/0370-2693(71)90582-X
https://doi.org/10.1016/0370-2693(71)90582-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B37,95%22

[6]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

G. Katsianis, I. Papadimitriou, K. Skenderis and M. Taylor, Anomalous Supersymmetry,
arXiv:1902.06715 [INSPIRE].

0.S. An, J.U. Kang, J.C. Kim and Y.H. Ko, Quantum consistency in supersymmetric
theories with R-symmetry in curved space, arXiv:1902.04525 [INSPIRE].

I. Papadimitriou, Supercurrent anomalies in 4d SCFTs, JHEP 07 (2017) 038
[arXiv:1703.04299] [INSPIRE].

0.8. An, Anomaly-corrected supersymmetry algebra and supersymmetric holographic
renormalization, JHEP 12 (2017) 107 [arXiv:1703.09607] [INSPIRE].

0.S. An, Y.H. Ko and S.-H. Won, Super-Weyl Anomaly from Holography and Rigid
Supersymmetry Algebra on Two-Sphere, arXiv:1812.10209 [INSPIRE].

S.L. Adler, Azial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426
[INSPIRE].

J.S. Bell and R. Jackiw, A PCAC puzzle: ©° — vy in the o model, Nuovo Cim. A 60 (1969)
47 [INSPIRE].

K. Landsteiner, Notes on Anomaly Induced Transport, Acta Phys. Polon. B 47 (2016) 2617
[arXiv:1610.04413] [INSPIRE].

J. Gooth et al., Experimental signatures of the mized axial-gravitational anomaly in the Weyl
semimetal NbP, Nature 547 (2017) 324 [arXiv:1703.10682] InSPIRE].

V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017)
440301 [arXiv:1608.02952] [INSPIRE].

G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace, JHEP
06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

H. Samtleben and D. Tsimpis, Rigid supersymmetric theories in 4d Riemannian space, JHEP
05 (2012) 132 [arXiv:1203.3420] [INSPIRE].

C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on Curved Spaces and Holography,
JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].

T.T. Dumitrescu, G. Festuccia and N. Seiberg, Ezploring Curved Superspace, JHEP 08
(2012) 141 [arXiv:1205.1115] [INSPIRE].

J.T. Liu, L.A. Pando Zayas and D. Reichmann, Rigid Supersymmetric Backgrounds of
Minimal Off-Shell Supergravity, JHEP 10 (2012) 034 [arXiv:1207.2785] InSPIRE].

T.T. Dumitrescu and G. Festuccia, Ezploring Curved Superspace (II), JHEP 01 (2013) 072
[arXiv:1209.5408] [INSPIRE].

A. Kehagias and J.G. Russo, Global Supersymmetry on Curved Spaces in Various
Dimensions, Nucl. Phys. B 873 (2013) 116 [arXiv:1211.1367] [INSPIRE].

C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, Supersymmetric Field
Theories on Three-Manifolds, JHEP 05 (2013) 017 [arXiv:1212.3388] [INSPIRE].

H. Samtleben, E. Sezgin and D. Tsimpis, Rigid 6D supersymmetry and localization, JHEP
03 (2013) 137 [arXiv:1212.4706] [InSPIRE].

D. Cassani, C. Klare, D. Martelli, A. Tomasiello and A. Zaffaroni, Supersymmetry in
Lorentzian Curved Spaces and Holography, Commun. Math. Phys. 327 (2014) 577
[arXiv:1207.2181] [INSPIRE].

— 95—


https://arxiv.org/abs/1902.06715
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.06715
https://arxiv.org/abs/1902.04525
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.04525
https://doi.org/10.1007/JHEP07(2017)038
https://arxiv.org/abs/1703.04299
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.04299
https://doi.org/10.1007/JHEP12(2017)107
https://arxiv.org/abs/1703.09607
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.09607
https://arxiv.org/abs/1812.10209
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.10209
https://doi.org/10.1103/PhysRev.177.2426
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,177,2426%22
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://inspirehep.net/search?p=find+J+%22NuovoCim.,A60,47%22
https://doi.org/10.5506/APhysPolB.47.2617
https://arxiv.org/abs/1610.04413
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.04413
https://doi.org/10.1038/nature23005
https://arxiv.org/abs/1703.10682
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.10682
https://doi.org/10.1088/1751-8121/aa63c1
https://doi.org/10.1088/1751-8121/aa63c1
https://arxiv.org/abs/1608.02952
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02952
https://doi.org/10.1007/JHEP06(2011)114
https://doi.org/10.1007/JHEP06(2011)114
https://arxiv.org/abs/1105.0689
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
https://doi.org/10.1007/JHEP05(2012)132
https://doi.org/10.1007/JHEP05(2012)132
https://arxiv.org/abs/1203.3420
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3420
https://doi.org/10.1007/JHEP08(2012)061
https://arxiv.org/abs/1205.1062
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1062
https://doi.org/10.1007/JHEP08(2012)141
https://doi.org/10.1007/JHEP08(2012)141
https://arxiv.org/abs/1205.1115
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1115
https://doi.org/10.1007/JHEP10(2012)034
https://arxiv.org/abs/1207.2785
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.2785
https://doi.org/10.1007/JHEP01(2013)072
https://arxiv.org/abs/1209.5408
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.5408
https://doi.org/10.1016/j.nuclphysb.2013.04.010
https://arxiv.org/abs/1211.1367
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1367
https://doi.org/10.1007/JHEP05(2013)017
https://arxiv.org/abs/1212.3388
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3388
https://doi.org/10.1007/JHEP03(2013)137
https://doi.org/10.1007/JHEP03(2013)137
https://arxiv.org/abs/1212.4706
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4706
https://doi.org/10.1007/s00220-014-1983-3
https://arxiv.org/abs/1207.2181
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.2181

[26]

[27]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

P. de Medeiros, Rigid supersymmetry, conformal coupling and twistor spinors, JHEP 09
(2014) 032 [arXiv:1209.4043] [INSPIRE].

K. Hristov, A. Tomasiello and A. Zaffaroni, Supersymmetry on Three-dimensional Lorentzian
Curved Spaces and Black Hole Holography, JHEP 05 (2013) 057 [arXiv:1302.5228]
[INSPIRE].

M. Blau, Killing spinors and SYM on curved spaces, JHEP 11 (2000) 023 [hep-th/0005098]
[INSPIRE].

S.M. Kuzenko, Symmetries of curved superspace, JHEP 03 (2013) 024 [arXiv:1212.6179]
[INSPIRE].

C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, The Geometry of
Supersymmetric Partition Functions, JHEP 01 (2014) 124 [arXiv:1309.5876] [INSPIRE].

C. Closset, T.T. Dumitrescu, G. Festuccia and Z. Komargodski, From Rigid Supersymmetry
to Twisted Holomorphic Theories, Phys. Rev. D 90 (2014) 085006 [arXiv:1407.2598|
[INSPIRE].

B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014) 123
[arXiv:1405.5144] [INSPIRE].

P. Benetti Genolini, D. Cassani, D. Martelli and J. Sparks, Holographic renormalization and
supersymmetry, JAEP 02 (2017) 132 [arXiv:1612.06761] INSPIRE].

M. Henningson and K. Skenderis, The Holographic Weyl anomaly, JHEP 07 (1998) 023
[hep-th/9806087] [iNSPIRE].

S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and
renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595
[hep-th/0002230] [INSPIRE].

LN. McArthur, Super b(4) Coefficients in Supergravity, Class. Quant. Grav. 1 (1984) 245
[INSPIRE].

L. Bonora, P. Pasti and M. Tonin, Cohomologies and Anomalies in Supersymmetric
Theories, Nucl. Phys. B 252 (1985) 458 [InSPIRE].

I.L. Buchbinder and S.M. Kuzenko, Matter Superfields in External Supergravity: Green
Functions, Effective Action and Superconformal Anomalies, Nucl. Phys. B 274 (1986) 653
[INSPIRE].

F. Brandt, Anomaly candidates and invariants of D = 4, N = 1 supergravity theories, Class.
Quant. Grav. 11 (1994) 849 [hep-th/9306054| [INSPIRE].

D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for
central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543
[hep-th/9708042] INSPIRE].

O. Piguet and S. Wolf, The Supercurrent trace identities of the N =1, D =4
superYang-Mills theory in the Wess-Zumino gauge, JHEP 04 (1998) 001 [hep-th/9802027]
[INSPIRE].

J. Erdmenger and C. Rupp, Geometrical superconformal anomalies, hep-th/9809090
[INSPIRE].

J. Erdmenger and C. Rupp, Superconformal Ward identities for Green functions with
multiple supercurrent insertions, Annals Phys. 276 (1999) 152 [hep-th/9811209] [INSPIRE].

— 96 —


https://doi.org/10.1007/JHEP09(2014)032
https://doi.org/10.1007/JHEP09(2014)032
https://arxiv.org/abs/1209.4043
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4043
https://doi.org/10.1007/JHEP05(2013)057
https://arxiv.org/abs/1302.5228
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5228
https://doi.org/10.1088/1126-6708/2000/11/023
https://arxiv.org/abs/hep-th/0005098
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005098
https://doi.org/10.1007/JHEP03(2013)024
https://arxiv.org/abs/1212.6179
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6179
https://doi.org/10.1007/JHEP01(2014)124
https://arxiv.org/abs/1309.5876
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5876
https://doi.org/10.1103/PhysRevD.90.085006
https://arxiv.org/abs/1407.2598
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2598
https://doi.org/10.1007/JHEP08(2014)123
https://arxiv.org/abs/1405.5144
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5144
https://doi.org/10.1007/JHEP02(2017)132
https://arxiv.org/abs/1612.06761
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.06761
https://doi.org/10.1088/1126-6708/1998/07/023
https://arxiv.org/abs/hep-th/9806087
https://inspirehep.net/search?p=find+EPRINT+hep-th/9806087
https://doi.org/10.1007/s002200100381
https://arxiv.org/abs/hep-th/0002230
https://inspirehep.net/search?p=find+EPRINT+hep-th/0002230
https://doi.org/10.1088/0264-9381/1/3/004
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,1,245%22
https://doi.org/10.1016/0550-3213(85)90457-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B252,458%22
https://doi.org/10.1016/0550-3213(86)90532-8
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B274,653%22
https://doi.org/10.1088/0264-9381/11/4/006
https://doi.org/10.1088/0264-9381/11/4/006
https://arxiv.org/abs/hep-th/9306054
https://inspirehep.net/search?p=find+EPRINT+hep-th/9306054
https://doi.org/10.1016/S0550-3213(98)00278-8
https://arxiv.org/abs/hep-th/9708042
https://inspirehep.net/search?p=find+EPRINT+hep-th/9708042
https://doi.org/10.1088/1126-6708/1998/04/001
https://arxiv.org/abs/hep-th/9802027
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802027
https://arxiv.org/abs/hep-th/9809090
https://inspirehep.net/search?p=find+EPRINT+hep-th/9809090
https://doi.org/10.1006/aphy.1999.5938
https://arxiv.org/abs/hep-th/9811209
https://inspirehep.net/search?p=find+EPRINT+hep-th/9811209

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[60]

[61]

[62]

[63]

[64]

L. Bonora and S. Giaccari, Weyl transformations and trace anomalies in N =1, D =4
supergravities, JHEP 08 (2013) 116 [arXiv:1305.7116] [INSPIRE].

D. Butter and S.M. Kuzenko, Nonlocal action for the super-Weyl anomalies: A new
representation, JHEP 09 (2013) 067 [arXiv:1307.1290] [INSPIRE].

D. Cassani and D. Martelli, Supersymmetry on curved spaces and superconformal anomalies,
JHEP 10 (2013) 025 [arXiv:1307.6567] [INSPIRE].

R. Auzzi and B. Keren-Zur, Superspace formulation of the local RG equation, JHEP 05
(2015) 150 [arXiv:1502.05962] [INSPIRE].

J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press,
Princeton, NJ, U.S.A. (1992).

O. Piguet and K. Sibold, Renormalized supersymmetry. The perturbation theory of N=1
supersymmetric theories in flat space-time, Prog.Math.Phys. 12 (1986) [nSPIRE].

H. Ttoyama, V.P. Nair and H.-c. Ren, Supersymmetry Anomalies and Some Aspects of
Renormalization, Nucl. Phys. B 262 (1985) 317 [INSPIRE].

E. Guadagnini and M. Mintchev, Chiral anomalies and supersymmetry, Nucl. Phys. B 269
(1986) 543 [INSPIRE].

O. Piguet and K. Sibold, The Anomaly in the Slavnov Identity for N = 1 Supersymmetric
Yang-Mills Theories, Nucl. Phys. B 247 (1984) 484 [NSPIRE].

M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Gauge Theory of the Conformal and
Superconformal Group, Phys. Lett. 69B (1977) 304 [INSPIRE].

M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Superconformal Unified Field Theory,
Phys. Rev. Lett. 39 (1977) 1109 [InSPIRE].

M. Kaku, P.K. Townsend and P. van Nieuwenhuizen, Properties of Conformal Supergravity,
Phys. Rev. D 17 (1978) 3179 [INSPIRE].

P.K. Townsend and P. van Nieuwenhuizen, Simplifications of Conformal Supergravity, Phys.
Rev. D 19 (1979) 3166 [iNSPIRE].

P. Van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189 [INSPIRE].

B. de Wit, Conformal invariance in extended supergravity, in First School on Supergravity,
Trieste, Italy, April 22-May 6, 1981, p. 0267 (1981) [INSPIRE].

B. de Wit, Multiplet calculus, in September School on Supergravity and Supersymmetry,
Trieste, Italy, September 6-18, 1982 (1983).

E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233
[INSPIRE].

D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge,
U.K. (2012) [INSPIRE].

M. Kaku and P.K. Townsend, Poincaré supergravity as broken superconformal gravity, Phys.
Lett. 76B (1978) 54 [INSPIRE].

K.S. Stelle and P.C. West, Tensor Calculus for the Vector Multiplet Coupled to Supergravity,
Phys. Lett. T7B (1978) 376 [inSPIRE].

V. Balasubramanian, E.G. Gimon, D. Minic and J. Rahmfeld, Four-dimensional conformal
supergravity from AdS space, Phys. Rev. D 63 (2001) 104009 [hep-th/0007211] [INSPIRE].

— 97 -


https://doi.org/10.1007/JHEP08(2013)116
https://arxiv.org/abs/1305.7116
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.7116
https://doi.org/10.1007/JHEP09(2013)067
https://arxiv.org/abs/1307.1290
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.1290
https://doi.org/10.1007/JHEP10(2013)025
https://arxiv.org/abs/1307.6567
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6567
https://doi.org/10.1007/JHEP05(2015)150
https://doi.org/10.1007/JHEP05(2015)150
https://arxiv.org/abs/1502.05962
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05962
https://inspirehep.net/search?p=find+IRN+1651757
https://doi.org/10.1016/0550-3213(85)90289-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B262,317%22
https://doi.org/10.1016/0550-3213(86)90510-9
https://doi.org/10.1016/0550-3213(86)90510-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B269,543%22
https://doi.org/10.1016/0550-3213(84)90560-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B247,484%22
https://doi.org/10.1016/0370-2693(77)90552-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B69,304%22
https://doi.org/10.1103/PhysRevLett.39.1109
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,39,1109%22
https://doi.org/10.1103/PhysRevD.17.3179
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D17,3179%22
https://doi.org/10.1103/PhysRevD.19.3166
https://doi.org/10.1103/PhysRevD.19.3166
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D19,3166%22
https://doi.org/10.1016/0370-1573(81)90157-5
https://inspirehep.net/search?p=find+J+%22Phys.Rept.,68,189%22
https://inspirehep.net/search?p=find+IRN+871303
https://doi.org/10.1016/0370-1573(85)90138-3
https://inspirehep.net/search?p=find+J+%22Phys.Rept.,119,233%22
https://inspirehep.net/search?p=find+IRN+9669132
https://doi.org/10.1016/0370-2693(78)90098-9
https://doi.org/10.1016/0370-2693(78)90098-9
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B76,54%22
https://doi.org/10.1016/0370-2693(78)90581-6
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B77,376%22
https://doi.org/10.1103/PhysRevD.63.104009
https://arxiv.org/abs/hep-th/0007211
https://inspirehep.net/search?p=find+EPRINT+hep-th/0007211

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

B. de Wit, S. Murthy and V. Reys, BRST quantization and equivariant cohomology:
localization with asymptotic boundaries, JHEP 09 (2018) 084 [arXiv:1806.03690] [INSPIRE].

W.A. Bardeen and B. Zumino, Consistent and Covariant Anomalies in Gauge and
Gravitational Theories, Nucl. Phys. B 244 (1984) 421 [INSPIRE].

K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and
cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].

Y. Nakayama, CP-violating CFT and trace anomaly, Nucl. Phys. B 859 (2012) 288
[arXiv:1201.3428] [INSPIRE].

I. Papadimitriou, Lectures on Holographic Renormalization, Springer Proc. Phys. 176 (2016)
131 [iINSPIRE].

C. Imbimbo and D. Rosa, Topological anomalies for Seifert 3-manifolds, JHEP 07 (2015)
068 [arXiv:1411.6635] [INSPIRE].

J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for j dimensional super
conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] INSPIRE].

A. Cabo-Bizet, D. Cassani, D. Martelli and S. Murthy, Microscopic origin of the
Bekenstein-Hawking entropy of supersymmetric AdSs black holes, arXiv:1810.11442
[INSPIRE].

S. Choi, J. Kim, S. Kim and J. Nahmgoong, Large AdS black holes from QFT,
arXiv:1810.12067 [INSPIRE].

F. Benini and P. Milan, Black holes in 4d N' = 4 Super- Yang-Mills, arXiv:1812.09613
[INSPIRE].

M. Honda, Quantum Black Hole Entropy from 4d Supersymmetric Cardy formula,
arXiv:1901.08091 [INSPIRE].

L. Bonora, P. Pasti and M. Bregola, Weyl Cocycles, Class. Quant. Grav. 3 (1986) 635
[INSPIRE].

~ 98 —


https://doi.org/10.1007/JHEP09(2018)084
https://arxiv.org/abs/1806.03690
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.03690
https://doi.org/10.1016/0550-3213(84)90322-5
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B244,421%22
https://doi.org/10.1007/JHEP02(2013)088
https://arxiv.org/abs/1207.5824
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5824
https://doi.org/10.1016/j.nuclphysb.2012.02.006
https://arxiv.org/abs/1201.3428
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3428
https://doi.org/10.1007/978-3-319-31352-8_4
https://doi.org/10.1007/978-3-319-31352-8_4
https://inspirehep.net/search?p=find+J+%22Springer%20Proc.Phys.,176,131%22
https://doi.org/10.1007/JHEP07(2015)068
https://doi.org/10.1007/JHEP07(2015)068
https://arxiv.org/abs/1411.6635
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.6635
https://doi.org/10.1007/s00220-007-0258-7
https://arxiv.org/abs/hep-th/0510251
https://inspirehep.net/search?p=find+EPRINT+hep-th/0510251
https://arxiv.org/abs/1810.11442
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.11442
https://arxiv.org/abs/1810.12067
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.12067
https://arxiv.org/abs/1812.09613
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.09613
https://arxiv.org/abs/1901.08091
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.08091
https://doi.org/10.1088/0264-9381/3/4/018
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,3,635%22

	Introduction
	The local symmetry algebra of N = 1 conformal supergravity
	Classical Ward identities
	Superconformal anomalies from the Wess-Zumino consistency conditions
	Anomalous supercurrent transformation under Q- and S-supersymmetry
	Concluding remarks
	Spinor conventions and identities
	Solving the Wess-Zumino consistency conditions

