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1 Introduction

Although the AdS/CFT correspondence establishes that Einstein gravity can coexist with

black holes evolving unitarily into Hawking radiation, much remains mysterious about

how precisely this comes about in the language of bulk gravitational physics. See for

example [1, 2] for reviews. Some of the most obvious questions of physical relevance, such

as the experience of an observer falling through the horizon, are not easily posed, much less

answered, in terms of boundary CFT correlators. Maldacena suggested focusing on a CFT

quantity that is well defined and does address some of the puzzles involving black holes [3].

Namely, a boundary two-point correlation function at large Lorentzian time separation

decays exponentially to zero as e−at/β in the semi-classical bulk approximation, yet by

unitarity has a long time average bounded below by e−bS . Here a and b are numerical

factors, β is the inverse temperature and S is the entropy. The implication is that the

bulk semi-classical approximation must fail at late times, t ∼ βS. Essentially, a reliable

computation at this time scale needs to incorporate that the black hole has a discrete

energy spectrum rather than the continuous spectrum that arises semi-classically.

This paper is focussed on the AdS3/CFT2 correspondence, and in particular on the

CFT2 side. The bulk semi-classical limit corresponds to large central charge, c � 1, with

kinematical factors held fixed. The issue at hand is that the relevant late time correlators

have time separations t ∼ c, invalidating this approximation. Thus we need to develop

new analytical tools for understanding correlation functions in this regime. Here we report

on progress in this direction, although we will make only indirect contact with the deep

quantum gravity questions that form the underlying motivation for this work.

Universal aspects of correlation functions in 2d CFT are captured by the Virasoro

conformal blocks (e.g., [4–6]), and so interest attaches to understanding these at large

Lorentzian times. Here we are considering time to be defined on the Lorentzian cylin-

der. While a good deal is known analytically about these conformal blocks at large c, this
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does not so far extend to the regime of cross ratio space corresponding to large Lorentzian

time. For a numerical study, see [7]. Our approach is via the Wilson representation

of conformal blocks, as developed in [8–15]. Here, the conformal block corresponding

to OO → stress tensors → O′O′ is expressed as 〈h, h′|Pe
∫ z2
z1

(L1+ 6
c
T (z)L1)dz|h, h′〉, where

T (z) is the CFT stress tensor. Details of this construction are reviewed in the next

section. The conformal block is a contribution to the correlator that can be written as

〈O′(∞)O(t1)O(t2)O′(−∞)〉 on the cylinder, or as 〈O′(∞)O(z1)O(z2)O′(0)〉 on the plane.

As a function of z2, this Wilson line has a branch cut running between the locations of the

two O′ operators, and going to late Lorentzian time separation between the O operators

corresponds to taking z2 to wind many times around the branch point. In terms of making

contact with black hole physics, the relevant regime is one in which c→∞, with h, h′/c and

N/c fixed, where N denotes the number of windings. The conditions h ∼ c0 and h′ ∼ c are

desired so that the correlator represents, in bulk language, a light particle probing a heavy

state in the black hole regime. Evaluating the Wilson line in this regime is very challenging

since we need to evaluate the infinite sum of nested integrals implied by the path ordered

exponential. We therefore consider a simpler regime in which h′ is held fixed as c → ∞.

Here the late time behavior is much more tractable but still nontrivial. Our main result is

to demonstrate how the Wilson line efficiently captures this regime, essentially resumming

all terms in the t/c expansion.

The answer turns out to be very simple to describe. First note that the c → ∞
limit with everything else held fixed, including t, corresponds to the free field limit in

the bulk, and the Wilson line reduces to a product of two-point functions, 〈OO〉〈O′O′〉.
Equivalently, in terms of conformal blocks appearing in the expansion OO → Op → O′O′,
only the identity operator appears. Writing this result as a Fourier sum on the cylinder

gives an expression of the form
∑

nAne
−iEnt, where En = h + h′ + n, and the An are

essentially the OPE coefficients appearing in the block expansion OO′ → [OO′]n → OO′,
where [OO′]n are the double trace operators of dimension h + h′ + n. If we instead keep

all dependence on t/c as c→∞, we show that the only modification to this result is that

En → En + γn
2 with γn = −12

c

[
C2(h+h′+n)−C2(h)−C2(h′)

]
, where C2(h) = h(h− 1) is

the SL(2) quadratic Casimir. This result can be thought of as coming from exponentiating

the global stress tensor block in the late time regime. Since the En are no longer integers

in general, this result has a much more complicated time dependence, as we illustrate

with some representative plots. After introducing a regulator to smooth out lightcone

singularities, the result exhibits an initial decay at early time followed by an erratic late

time behavior, including recurrences. This is the sort of behavior one hopes to see to address

black hole physics, but we emphasize again that we cannot make any direct connection here,

both because we are only considering low dimension operators and because we are only

considering a Virasoro block and not a full correlator. But we hope that this does provide

a useful warmup example involving late time resummation.

To better understand the shift En → En + γn
2 appearing in the Wilson line result,

we compare to anomalous dimensions arising from tree level graviton exchange Witten

diagrams in AdS3. Expanding such a diagram in the crossed channel yields the anoma-

lous dimensions (and OPE coefficients) of the double trace operators of schematic form
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O∂n∂nO′. Extending recent advances in the analytic bootstrap [16, 17], the Lorentzian in-

version formula [18] provides a particularly efficient way to compute such quantities. In this

approach, inverting a tree-level Witten diagram boils down to inverting a conformal block.

The process of inverting a block is a starting point for using powerful inversion-formula

technology to investigate higher-loop effects [19, 20], and general results have appeared

recently in [21–23]. As the inversion formula is emerging as a remarkably useful tool for

studying AdS/CFT, we aim to provide a worked example that displays the nuts and bolts of

inverting blocks in a way accessible to those unfamiliar with analytic bootstrap machinery.

The starting point corresponds to inverting the identity exchange, which is the simplest

case. By then including also the stress tensor block, our case of interest, we find anomalous

dimensions γn,n = −12
c

[
C2(h+ h′ + min(n, n))− C2(h)− C2(h′)

]
. The similarity with the

Wilson line result is evident, though note that it is min(n, n) that appears in the anomalous

dimension (in terms of the twist and spin of the double trace operators, this says that the

anomalous dimension depends solely on the twist). While they appear as corrections to

En, the γn that govern the behavior of the Wilson line cannot immediately be identified

as bonafide anomalous dimensions because γn arise from a single conformal block rather

than a full correlator; the latter includes also exchanges of double trace operators, leading

to the appearance of γn,n as the anomalous dimensions.

However, the correspondence between γn and the proper anomalous dimensions γn,n
can be understood by considering the lightcone limit, which is z → 1 in our setup. This

limit projects out exchanges with nonzero h, leaving just the holomorphic component of

the stress tensor, which is what the Wilson line captures. Further, in the crossed channel

expansion this limit corresponds to the large h regime. Finally, on general grounds we know

that anomalous dimensions of double trace operators due to graviton exchange in AdS3

are spin independent; this follows in the CFT from analyticity in spin combined with the

known asymptotic behavior. Putting these facts together, we see that γn with n interpreted

as twist are the anomalous dimensions of the family of double-twist operators with n > n,

thus explaining the agreement between the Wilson line and the results obtained from the

full correlator.

The remainder of this paper is organized as follows. In section 2 we review the con-

struction of the Wilson line, and in section 3 we discuss how to evaluate it. To illustrate

its use we first rederive the known result for the Virasoro block in the limit c → ∞ with
h
c ,

h′

c → 0, but hh′

c and t fixed. In this limit the Virasoro block is the exponential of the

global stress tensor block [5], a result which is obtained from the Wilson line with minimal

labor. We then turn to the main case of interest involving late times, and again show

how the Wilson line deals with this efficiently. In section 4 we discuss in some pedagogical

detail the computation of anomalous dimensions using the Lorentzian inversion formula.

We conclude with some comments in section 5.

2 The Virasoro Wilson line

In this section we recall the basic construction of the Wilson line, and how it provides a

representation of Virasoro conformal blocks that admits a convenient expansion at large

central charge. See [8–15] for more background and previous results.
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Consider a primary operator O(x). We can use the OPE to expand O(x1)O(x2) in

terms of local operators at some point x3. Organizing the expansion in representations

of the Virasoro algebra corresponds to collecting terms that differ only in the number of

stress tensors that appear. Schematically,

O(x1)O(x2) = [1 + T + TT + . . .] +
∑
i

COOOi [Oi +OiT +OiTT + . . .] (2.1)

where we have suppressed numerical coefficients (which depend on the central charge c)

and the dependence on coordinates and derivatives. Except for the OPE coefficients COOOi
and the spectrum, everything is fixed by the Virasoro algebra. Since the full symmetry

algebra is two copies of Virasoro associated to T (z) and T (z), each term above is really

a product of a T piece and T piece, but we henceforth focus on the T piece alone. The

first term in the expansion (2.1) is the Virasoro vacuum OPE block. The Wilson line is

conjectured to provide a representation of the Virasoro vacuum OPE block [10],

O(x1)O(x2) = 〈h; out|Pe
∫
C a(z)|h; in〉+ [non-pure stress tensor terms] (2.2)

with

a(z) =

(
L1 +

6

c
T (z)L−1

)
dz . (2.3)

Let us explain the ingredients in this construction. P denotes path ordering along the

contour C that runs from z1 to z2, with operators at later points on the contour moved

to the left. The states |h; in〉 and |h; out〉 lie in representations of the SL(2) algebra with

generators L−1,0,1 which obey

[Lm, Ln] = (m− n)Lm+n . (2.4)

The inner product is defined such that L†n = L−n. The states obey

L−1|h; in〉 = 0 , L0|h; in〉 = −h|h; in〉 ,
L1|h; out〉 = 0 , L0|h; out〉 = h|h; out〉 . (2.5)

In (2.3) T (z) is a stress tensor operator (as opposed to a classical function); unlike in (2.1)

these stress tensors are smeared over the contour running between z1,2. The stress tensor

T (z) does not talk to the SL(2) generators; in particular, Ln do not appear in the mode

expansion of T (z).

A few more comments are in order before we justify the above relation between the

Wilson line and the Virasoro vacuum OPE block. First, the Wilson line is a divergent

object since the integral involves colliding stress tensors, whose OPE is singular. These

divergences can be renormalized by including a multiplicative renormalization factor in

front of the Wilson as well as introducing a vertex renormalization: 6
cT (z) → 6α

c T (z).

Finiteness and Ward identities uniquely fix the divergent and finite parts that appear in a

suitable dimensional regularization scheme [14, 15]. Second, the states that appear in the

definition of the Wilson line involve a quantity h. In the large c limit, h coincides with
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the scaling dimension of the operator O(x), but at finite c they differ in a known way [9].

These two renormalization issues will not be relevant here, since we work in the large c

limit, so we do not dwell on them further.

To streamline notation a bit, we henceforth write

|h; in〉 = | − h〉 , 〈h; out| = 〈h|. (2.6)

The appearance of ±h denotes the L0 eigenvalue.

To fully establish the equivalence of the Wilson line and the Virasoro vacuum block we

should prove that correlators involving any number of stress tensor insertions are correctly

reproduced,

〈0CFT|O(x1)O(x2)T (z3) . . . T (zn)|0CFT〉

= 〈0CFT|〈h|Pe
∫ z2
z1

a| − h〉 T (z3) . . . T (zn)|0CFT〉 . (2.7)

Here we are taking the CFT vacuum expectation value on both sides, in addition to com-

puting the SL(2) matrix element on the right. While there is good evidence for the claim,

as established in the references cited above, it has not been proven in full generality, and

in particular the renormalization issues remain to be fully worked out to all orders.

The logic behind the association of the Wilson line with the Virasoro vacuum block

stems from the relation between SL(2) transformations and conformal transformations.

That is, the Wilson line is built purely out of stress tensors yet enjoys the conformal

transformation properties of the bilocal object O(x1)O(x2). Proving this in general is

equivalent to establishing (2.7), which we have said requires a careful renormalization

treatment. Instead, let us consider something simpler. Let the CFT state be such that

T (z) has a classical expectation value at large c, 〈T (z)〉 ∼ c. In this regime the T (z)

operator appearing in the Wilson line can be replaced by its expectation value, which we

continue to denote by T (z).

To establish the transformation properties of the Wilson line in this classical limit,

consider the z-dependent SL(2) group element

U(z) = eλ1(z)L1eλ0(z)L0eλ−1(z)L−1 (2.8)

with

λ1 = z − f(z) , λ0(z) = − ln[f ′(z)] , λ−1(z) = − f
′′(z)

2f ′(z)
. (2.9)

Wilson lines in gauge theories transform in a well known way under gauge transformations,

which in our case amounts to

U−1(z2)Pe
∫ z2
z1

aU (z)
U(z1) = Pe

∫ z2
z1

aU (z)
(2.10)

with

aU (z) = U−1(z)a(z) U(z)− U−1(z)dU(z) . (2.11)
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If we choose a(z) = L1dz, corresponding to vanishing stress tensor, we find aU (z) =(
L1 + 6

cT (z)L−1

)
dz with

T (z) =
c

12
Sf (z) , Sf (z) =

f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

. (2.12)

Sf (z) is the Schwarzian derivative. If we now take the SL(2) matrix element using (2.5)

we find

〈h|Pe
∫ z2
z1

(L1+ 6
c
T (z)L−1)dz| − h〉 = [f ′(z2)f ′(z1)]h〈h|Pe

∫ f(z2)

f(z1)
L1dz| − h〉. (2.13)

Since 〈h|Pe
∫ z2
z1

L1dz| − h〉 = (z2 − z1)−2h (see below), we find that (2.13) reads

〈h|Pe
∫ z2
z1

(L1+ 6
c
T (z)L−1)dz| − h〉 =

[f ′(z2)f ′(z1)]h

[f(z2)− f(z1)]2h
. (2.14)

This makes perfect sense as it says that if we generate a stress tensor by performing a

conformal transformation z → f(z), the Wilson line result takes the form of a primary

two-point function transformed by f(z). Again, we stress that these statements have been

established in the classical limit.

If we take the expectation value of the Virasoro vacuum OPE block in a CFT primary

state |hCFT〉 we obtain the Virasoro vacuum block in the channel OhOh → stress tensors→
OhCFT

OhCFT
,

Vh,hCFT
(z1, z2) = 〈h;hCFT|Pe

∫ z2
z1

a(z)| − h;hCFT〉 , (2.15)

where the states are defined in the tensor product of SL(2) times Virasoro. The con-

nection is a(z) = (L1 + 6
cT (z)L−1)dz, and evaluating the right hand side of (2.15)

means to expand the exponential and then use the fact that all stress tensor correla-

tors 〈hCFT|T (z3) . . . T (zn)|hCFT〉 are fully determined by conformal symmetry. In terms

of four-point functions, the conjectured relation between the Wilson line and the Virasoro

amount block is

Vh,hCFT
(z1, z2) = 〈OhCFT

(0)
[
Oh(z1)Oh(z2)

]
vac
OhCFT

(∞)〉 , (2.16)

where
[
Oh(z1)Oh(z2)

]
vac

means that we take the OPE as in (2.1) and keep only the stress

tensor terms. We could use conformal symmetry to send z1 to a specified location and

identify z2 with the conformal cross ratio.

No usable closed form expression for the Virasoro vacuum block is known; see [24]

for a useful review. From our point of view, the technical challenge lies in evaluating the

nested integrals of stress tensor correlators that arise upon expanding the path ordered

exponential.

Now let us discuss more about the evaluation of the SL(2) matrix elements, for instance

〈h|eL1z| − h〉. One way to proceed is to first take h = −j, where 2j is a non-negative

integer. In this case, we have a finite dimensional (non-unitary) representation realized

by (2j + 1) × (2j + 1) matrices. One can then work out results for arbitrary j and then
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analytically continue h = −j to positive values; this last step of course requires some

knowledge of the analytic structure in the complex h plane. So, for example, since L1

lowers the L0 eigenvalue by one unit, it is immediately clear that 〈−j|eL1z|j〉 = z2j up to

normalization, and then analytic continuation yields z−2h, which is the desired form of the

two-point function. At least in 1/c perturbation theory, all computations can be done in

this manner, and in fact this is a very efficient way to proceed.

Alternatively, one can work directly with unitary representations, for example by re-

alizing SL(2) in terms of functions of the complex variable u defined on the unit disk. We

write

L1 = ∂u , L0 = u∂u + h , L−1 = u2∂u + 2hu . (2.17)

The inner product between functions f(u) and g(u) is defined as an integral over the

unit disk,

〈f |g〉 =

∫
D

d2u

(1− uu)2−2h
f(u)g(u) . (2.18)

This is defined to respect the relations L†n = L−n. The states appearing in the Wilson line

correspond to functions,

|h〉 → 1 , | − h〉 → u−2h . (2.19)

For generic h these two states are not in a common irreducible SL(2) representation, but

this fact poses no problem in the construction since the inner product has been defined for

all functions on the unit disk. We then have

〈h|eL1z| − h〉 =

∫
D

d2u

(1− uu)2−2h
(u+ z)−2h ∝ z−2h , (2.20)

where the z dependence is immediately fixed by rotational symmetry on the disk.

To close this section, we should also mention that the most intuitive explanation for

the form of the Wilson line comes from thinking about the AdS3/CFT2 correspondence,

and in particular from the fact that AdS3 gravity is equivalent to SL(2) × SL(2) Chern-

Simons theory; actually, these constructions originated in higher spin extensions [25–28].

Asymptotically AdS3 solutions of Einstein’s equations (which are all locally AdS3 since

there are no dynamical degrees of freedom) are recast as flat connections. The connec-

tion A(z) =
(
eρL1 + 6

cT (z)e−ρL−1

)
dz arises in this way, where T (z) is identified via the

holographic dictionary as being the boundary stress tensor. ρ is a radial coordinate, which

can be “gauged away” to obtain the reduced connection a(z) appearing in our Wilson line.

In this way, one sees that the Wilson line is simply a standard Wilson line for the bulk

Chern-Simons connection, with endpoints on the AdS3 boundary where dual CFT opera-

tors are located. In this context, the notion of taking T (z) to be an operator corresponds

to performing the Chern-Simons path integral, rather than restricting to a fixed classical

background.

– 7 –
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3 Evaluating the Wilson line

Our task is to evaluate the Wilson line

Vh,hCFT
(z1, z2) = 〈h;hCFT|Pe

∫ z2
z1

(L1+ 6
c
T (z)L−1)dz| − h;hCFT〉 . (3.1)

We now do some additional rewriting and processing to facilitate computation. First, we

henceforth write

hCFT = h′ . (3.2)

Next, since the Wilson line involves Pe
∫ z2
z1

(L1+ 6
c
T (z)L−1)dz, we can think of z as time and

L1 + 6
cT (z)L−1 as a time dependent Hamiltonian. As in many applications, it is useful to

think of L1 as a free Hamiltonian and 6
cT (z)L−1 as an interaction. Then, we can implement

the same steps one takes to pass to the interaction representation by writing the identity

Pe
∫ z2
z1

(L1+ 6
c
T (z)L−1)dz = eL1z2Pe

6
c

∫ z2
z1

HI(z)dz
e−L1z1 , (3.3)

with

HI(z) =
(
L−1 − 2zL0 + z2L1

)
T (z) . (3.4)

We then have to evaluate

Vh,h′(z1, z2) = 〈h, h′|eL1z2Pe
6
c

∫ z2
z1

HI(z)dz
e−L1z1 | − h, h′〉. (3.5)

Next, it is useful to use the identity

〈h|eL1z2 = z−2h
2 〈−h|e−

1
z2
L−1 . (3.6)

This is easily derived using the representation of the SL(2) generators given in (2.17), where

it becomes an equality of functions on the unit disk. This identity gives

Vh,h′(z1, z2) = z−2h
2 〈−h, h′|e−

1
z2
L−1Pe

6
c

∫ z2
z1

HI(z)dz
e−L1z1 | − h, h′〉. (3.7)

Finally, to exhibit the symmetry between h and h′ we redefine the SL(2) generators as

L̃−1 = −L1 , L̃0 = −L0 , L̃1 = −L−1 . (3.8)

This preserves the SL(2) algebra, [L̃m, L̃n] = (m − n)L̃m+n. We accordingly relabel the

states in terms of their L̃0 eigenvalues as | ± h〉 → | ∓ h〉 so that L̃0|h〉 = h|h〉, L̃1|h〉 =

L̃−1| − h〉 = 0. We now have

Vh,h′(z1, z2) = z−2h
2 〈h, h′|e

1
z2
L̃1Pe

6
c

∫ z2
z1

HI(z)dz
eL̃−1z1 |h, h′〉 (3.9)

with

HI(z) = −
(
L̃1 − 2zL̃0 + z2L̃−1

)
T (z) . (3.10)
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We are interested in computing Vh,h′(z1, z2) at large c. There are various limits de-

pending on how h, h′, and the Lorentzian time separation behave as we take c large. Before

turning to the main case of interest, let us show how to recover a known result obtained

in the limit h
c ,

h′

c → 0 with hh′

c and the coordinates z1,2 held fixed. In this regime T (z)

can be replaced by its expectation value in the state |h′〉, so T (z) = h′

z2 . Similarly, the L̃n
appearing in HI mutually commute amongst themselves in this limit. We then have

6

c

∫ z2

z1

HI(z)dz = −6h′

c

(
z2 − z1

z1z2
L̃1 − 2 ln

z2

z1
L̃0 + (z2 − z1)L̃−1

)
. (3.11)

Using this along with

e−L̃−1z1L̃1e
L̃−1z1 = L̃1 + 2z1L̃0 + z2

1L̃−1

e−L̃−1z1L̃0e
L̃−1z1 = L̃0 + z1L̃−1

e−L̃−1z1L̃−1e
L̃−1z1 = L̃−1 (3.12)

we obtain

Vh,h′(z) = z−2h〈h, h′|e
1
z
L̃1eL̃−1e−

6h′
c ( z−1

z
L̃1+2(1− 1

z
−ln z)L̃0+(z− 1

z
−2 ln z)L̃−1)|h, h′〉 (3.13)

where we now set z2 = z, z1 = 1. Again, we are allowed to treat L̃n in the last factor

as mutually commuting, and make the replacements L̃1 → 0, L̃0 → h, L̃−1 → − 2h
1−z , the

latter coming from observing that L̃−1 insertions are obtained differentiating the c = ∞
correlator: 〈h|Pe

∫ z2
z1

L̃−1dzL̃−1|h〉 = −∂z1〈h|Pe
∫ z2
z1

L̃−1dz|h〉 ∼ −∂z1(z1 − z2)−2h. This finally

gives the result

Vh,h′(z) = e2hh
′
c
g2(1−z)V

(c=∞)
h,h′ (z) , V

(c=∞)
h,h′ (z) = z−2h〈h|e

1
z
L̃1eL̃−1 |h〉 ∼ (1− z)−2h (3.14)

where the global stress tensor block is g2(1 − z) = (1 − z)2
2F1(2, 2, 4, 1 − z) = −12 −

6
(

1+z
1−z

)
ln z. The fact that in this limit the global stress tensor block exponentiates was

first noted in appendix B of [5].

Now we turn to the case of primary interest corresponding to large Lorentzian time

separations. We take c, t → ∞ with t
c fixed. Here t denotes the time separation between

the two Oh operators on the Lorentzian cylinder. To elucidate this, let’s consider the

analytic structure of Vh,h′(z1, z2) in the complex z2 plane, for fixed z1. There is a branch

cut emanating from z1 corresponding to the location of an operator Oh(z1), as well as

a branch cut running between 0 and ∞ corresponding to operators Oh′(0) and Oh′(∞).

We are interested in evaluating Vh,h′(z1, z2) at late time on the Lorentzian cylinder. The

continuation to Lorentzian signature is obtained by taking z = e−i(φ−t). Hence, taking the

points z1,2 to be separated by a large Lorentzian time interval corresponds to considering

a Wilson line that wraps many times around the branch point at z = 0. In particular, if

we take it to wrap N times corresponding to ∆t = 2πN then we can write

Vh,h′(z1, z2) = z−2h
2 〈h, h′|e

1
z2
L̃1 Pe

6
c

∮
C HI(z)dz . . . P e

6
c

∮
C HI(z)dz︸ ︷︷ ︸

N times

eL̃−1z1 |h, h′〉 (3.15)
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where the contour C goes once counterclockwise around the origin. For strictly real

Lorentzian time both z1 and z2 lie on the unit circle. The correlator in the c → ∞
limit is 2π periodic in t and hence has an infinite number of lightcone singularities. It

will eventually be convenient to regulate these by displacing z2 slightly off the unit circle,

corresponding to keeping a small imaginary time component.

We focus now on the light-light limit, where we keep h and h′ fixed as c → ∞. This

is the most tractable of the late time limits for the following reason. What makes (3.15)

difficult to evaluate is the path ordering, which requires us to expand the exponential and

compute nested integrals. In the light-light limit, each exponent is suppressed by 1/c. At

the same time, there are N ∼ c exponentials, so combinatoric factors compensate for the 1/c

suppression of each term. In this regime each exponential can be expanded to first order,

i.e. limN→∞
∏N
i=1 e

ai
N = limN→∞

∏N
i=1

(
1 + ai

N

)
. This implies a drastic simplification: since

at most one stress tensor appears in the expansion of each exponential, the path orderings

are not needed. We simply get N factors of a common exponential,

Vh,h′(z1, z2) = z−2h
2 〈h, h′|e

1
z2
L̃1e

6N
c

∮
C HI(z)dzeL̃−1z1 |h, h′〉. (3.16)

Next, we use the standard mode expansion of the stress tensor

T (z) =
∑
n

L′n
zn+2

⇒ L′n =
1

2πi

∮
dzzn+1T (z) , (3.17)

which gives ∮
C
HI(z)dz = 4πiL̃ · L′. (3.18)

The SL(2) dot product is

L̃ · L′ = −1

2
L̃1L

′
−1 + L̃0L

′
0 −

1

2
L̃−1L

′
1 . (3.19)

We now have

Vh,h′(z1, z2) = z−2h
2 〈h, h′|e

1
z2
L̃1z2e

24πiN
c

L̃·L′eL̃−1z1 |h, h′〉. (3.20)

Now we want to decompose the states eL̃−1z1 |h, h′〉 and 〈h, h′|e
1
z2
L̃1z2 into eigenstates

of (L̃+ L′)2 and then write L̃ · L′ in terms of quadratic Casimirs,

2L̃ · L′ = (L̃+ L′)2 − L̃2 − L′2 (3.21)

as is familiar from the treatment of spin-orbit coupling in quantum mechanics. The de-

composition of the tensor product is the same problem one encounters in the OPE of two

generalized free fields, where one writes Oh(z2)Oh′(0) =
∑∞

n,k=0 z
n+k
2 Cn,k∂

k[OhOh′ ]n. Here

∂k[OhOh′ ]n is the level k descendant of the double trace quasi-primary operator [OhOh′ ]n.

In our case we have

eL̃−1z1 |h, h′〉 =
∞∑

n,k=0

zn+k
1 Cn,k|h+ h′ + n〉k . (3.22)
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The state |h+ h′ + n〉k is the unit normalized, level k descendant state

|h+ h′ + n〉k =
(L̃−1 + L′−1)k|h+ h′ + n〉√

k!(2h+ 2h′ + 2n)k
(3.23)

where |h + h′ + n〉 denotes a primary state with respect to the “total” SL(2) generators.

The coefficients are given as

Cn,k =
(−1)n√
n!k!

(
(2h)n(2h′)n(2h+ n)2

k

(2h+ 2h′ + n− 1)n(2h+ 2h′ + 2n)k

)1/2

. (3.24)

It is now straightforward to evaluate (3.20); however, it is even simpler to use the connection

to the generalized free field problem. In particular, if we take the c → ∞ limit, then

Vh,h′(z1, z2) is given by the exchange of the identity operator OhOh → 1→ Oh′Oh′ , and our

decomposition problem is equivalent to reexpressing this in the crossed channel, OhOh′ →
[OhOh′ ]n → OhOh′ . The solution is [29]

z−2h
2 〈h, h′|e

1
z2
L̃1z2eL̃−1z1 |h, h′〉

=

∞∑
n=0

(2h)n(2h′)n
n!(2h+ 2h′ + n− 1)n

(
z1

z2

)n
2F1(2h+ n, 2h+ n, 2h+ 2h′ + 2n, z1z

−1
2 ).

(3.25)

This is the expansion of the identity operator exchange in terms of crossed channel global

conformal blocks. Given this result we can easily modify it to compute (3.20). Each state in

the decomposition is an eigenstate of L̃ ·L′ with eigenvalue given by the quadratic Casimirs

in (3.21), and we therefore have

Vh,h′(t) =

∞∑
n=0

(2h)n(2h′)n
n!(2h+ 2h′ + n− 1)n

rn2F1(2h+ n, 2h+ n, 2h+ 2h′ + 2n, r)e−i
γn
2
t

(3.26)

with

γn = −12

c

[
C2(h+ h′ + n)− C2(h)− C2(h′)

]
(3.27)

where C2(h) = h(h − 1). We have written t = 2πN , and we have also taken z1
z2

= r, with

0 < r < 1. As mentioned above, taking r < 1 corresponds to giving an imaginary part to

the final Lorentzian time, which regulates the lightcone singularity when z2 becomes null

separated from z1 on the Lorentzian cylinder. Also, note that Vh,h′(t) should be thought of

as the “stripped correlator”, which does not include the phase factor e−iht associated with

the Oh operator on the cylinder. The expression (3.26) for the late time block is the main

result of this paper.

Recall that we have only computed one chiral half of the full stress tensor contribution

to the correlator; with the chosen operator locations, including the other chiral half just

corresponds to squaring the above result. Upon doing so, γn would then be replaced by

γn + γn. In the next section we discuss the relation between this result and the anomalous

dimensions of double trace operators of schematic form O∂n∂nO′.
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Figure 1. Plot of Wilson line correlator at early time. We plot the real part of ln
(

Vhh′ (t)
Vhh′(0)

)
versus

6t
c , with the parameter choices h = 3.23, h′ = 4.91, r = 0.9.

To conclude this section, in figures 1–3 we give some representative plots of Vh,h′(t).

We set h = 3.23, h′ = 4.91, r = 0.9, and plot ln
(
Vh,h′ (t)

Vh,h′ (0)

)
over various time windows. At

early times we see a decaying behavior similar to what one observes for correlators in a

black hole background, where the decay rate is set by the temperature. Here, however,

the decay rate is non-universal, as it depends on the value of the regulator r, which is

not surprising given that we do not expect to be seeing thermalization in this regime. At

later time we see the characteristic behavior associated with adding together a large but

finite number of phase factors. In particular, we can see erratic behavior together with

signs of recurrences. Again, while this is the sort of behavior we would expect to see when

computing correlators in a thermal system with a discrete spectrum, we have no reason to

expect that the similarity is particularly meaningful given that we are far from a thermal

regime.

4 Anomalous dimensions from OPE inversion

The recently-derived Lorentzian inversion formula [18, 30] is an efficient tool for extracting

CFT data — i.e. OPE coefficients and anomalous dimensions — from correlation functions.

In this section we will review its use as applied to the problem at hand, namely stress tensor

exchange contributions to d = 2 four-point functions. This is an instructive example to

work through. We note that this is just a special case of the general analysis performed

in [23], although by focusing on this one case we are able to give results for all spins and

twists that are more explicit.

Given scalar operators O1,2 of dimension ∆1 and ∆2, we consider the four-point

function

〈O1(x1)O2(x2)O2(x3)O1(x4)〉 ≡ (x2
12x

2
34)−

∆+
12
2

(
x2

14

x2
24

x2
14

x2
13

)−∆−12
2

G(z, z̄), (4.1)
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Figure 2. Same parameters as in figure 1 but now over larger time range.

Figure 3. Same parameters as in figure 1 but now at late time.

with x2
ab = (xa − xb)2. We are using the notation

∆±12 = ∆1 ±∆2 , (4.2)

and the conformal cross ratios are

zz =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z) =
x2

23x
2
14

x2
13x

2
24

. (4.3)

We then use conformal invariance to send three points to specified locations and write

〈O1(0)O2(z, z̄)O2(1)O1(∞)〉 = (zz)−
∆+

12
2 G(z, z̄) . (4.4)

The small (z, z) expansion of G(z, z̄) contains information about the operators that appear

in the O1O2 OPE, in particular their dimensions and OPE coefficients. The dimensions
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and OPE coefficients of primary operators are read off from the conformal block expansion

of G(z, z̄), while conformal invariance fixes the data concerning descendants.

We are working in the context of a theory that is a small perturbation around so-called

generalized free fields (equivalently, Mean Field Theory), as appropriate for matching to a

weakly coupled theory of gravity in AdS3. Bulk tree level exchange diagrams contributing

to the four-point function can be labeled as s, t, or u channel diagrams in the standard

fashion. What the inversion formula allows us to do is to efficiently extract s-channel OPE

data (associated to the O1O2 OPE) from the t and u channel diagrams. More precisely,

we can extract this data for operators whose spin is larger than some critical value, where

the critical value is set by the spin of the exchanged fields in AdS3. In our case, we will

only have t-channel diagrams to the order we are working, since we assume there is no

bulk vertex directly coupling O1 and O2. A very powerful fact is that we will not need the

full t-channel exchange Witten diagram in order to extract the s-channel CFT data. The

Witten diagram corresponds to the exchange of a stress tensor block along with double

trace blocks, but the latter can be shown to give zero when plugged into the inversion

formula [18]. This is a great advantage, since the full Witten diagram is a somewhat

complicated beast, while the conformal block is readily available.

The CFT data of interest is encoded in the poles and residues of the function c(∆, J),

which is obtained from the correlator via the inversion formula

c(∆, J) =
κ

4

∫ 1

0

dz

z2

dz̄

z̄2

gJ+1,∆−1(z, z̄)(
(1− z)(1− z)

)∆−12

dDisc [G(z, z̄)] . (4.5)

The normalization factor is

κ =
Γ2
(

∆+J+∆−12
2

)
Γ2
(

∆+J−∆−12
2

)
2π2Γ(∆ + J − 1)Γ(∆ + J)

, (4.6)

and the 2d conformal blocks are

g∆,J(z, z̄) =
k∆−J(z)k∆+J(z̄) + k∆+J(z)k∆−J(z̄)

1 + δJ,0
, (4.7)

with

kβ(z) = zβ/22F1

(
β −∆−12

2
,
β −∆−12

2
, β, z

)
. (4.8)

The relevant formula for the double discontinuity, dDisc[G(z, z)], appears below. The

function c(∆, J) has poles in real ∆ at the location of primaries Op exchanged in the s

channel. Near ∆p,

c(∆, J) ∼ −
C2
O1O2Op

∆−∆p
, (4.9)

so that −Res(c(∆, J))∆=∆p is the square of the OPE coefficient.

Since we are in d=2 the conformal group factorizes, and it is useful to make this

explicit. Operators are labelled by scaling dimensions (h, h), related to the dimension and

spin by ∆ = h + h, J = |h − h|. Is it convenient to assume h ≥ h for the exchanged
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operators so that J = h − h; there is no loss of information here, since parity invariance

implies that the CFT data is invariant under h↔ h. We thus write c(h, h) = c(h, h) with

c(h, h) =
κ

2

∫ 1

0

dz

z2

dz̄

z̄2

gh(z)g1−h(z)(
(1− z)(1− z)

)2h−12

dDisc [G(z, z̄)] , (4.10)

where

gh(z) = zh2F1(h− h−12, h− h
−
12, 2h, z) (4.11)

and h±12 = h1 ± h2.

Now we consider the contribution due to a single conformal block in the t-channel with

quantum numbers (H,H),

〈O1(0)O2(z, z̄)O2(1)O1(∞)〉 =
1

[(1− z)(1− z)]2h2
fH(1− z)fH(1− z) , (4.12)

where we have suppressed the OPE coefficient, and we note that by parity there will also be

a contribution from an exchange with H ↔ H. Here fH(1−z) = (1−z)H2F1(H,H, 2H, 1−
z) is a t-channel conformal block. Comparing to (4.4) we have

G(z, z) =
(zz)h

+
12

[(1− z)(1− z)]2h2
fH(1− z)fH(1− z) . (4.13)

The inversion formula involves the double discontinuity dDisc [G(z, z̄)], which is defined in

terms of the analytic continuation of z around the branch cut emanating from z = 1

dDisc(G) = cos(2πh−12)G− 1

2

(
e2πih−12G� + e−2πih−12G	

)
, (4.14)

where G�, G	 are continuations 1 − z̄ → e−2πi(1 − z̄), e2πi(1 − z̄) respectively. For our

purposes we just need

D ≡ dDisc((1− z̄)−2h2)

(1− z̄)−2h2
= 2 sin(π(2h1)) sin(π(2h2))

= 2
π

Γ(2h1)Γ(1− 2h1)

π

Γ(2h2)Γ(1− 2h2)
.

Also, in present notation we have

κ =
Γ2(h+ h−12)Γ2(h− h−12)

2π2Γ(2h− 1)Γ(2h)
. (4.15)

It follows that the contribution to c(h, h) from the t-channel exchange of (H,H) is

c(h, h) =
Dκ
2
IH(h)IH(1− h̄), (4.16)

where

IH(h) ≡
∫ 1

0

dz

z2

zh
+
12

(1− z)2h1
gh(z)fH(1− z). (4.17)

To remind ourselves of its z origin we write IH(1− h) ≡
∫ 1

0
dz
z2

zh
+
12

(1−z)2h1
g1−h(z)fH(1− z).
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4.1 Identity exchange

At the level of free field theory in the bulk we only have a contribution from a disconnected

diagram, which corresponds to exchange of the CFT identity operator, (H,H) = (0, 0). To

evaluate this we need the integral

I0(h) =

∫ 1

0

dz

z2

zh
+
12

(1− z)2h1
gh(z)

=
Γ(1− 2h1)Γ(1− 2h2)Γ(2h)Γ(h+ h+

12 − 1)

Γ(h− h−12)Γ(h+ h−12)Γ(h− h+
12 + 1)

. (4.18)

This result may be obtained by using the Euler integral representation for the hypergeo-

metric function and then changing variables to decouple the two integrals (see [19]). We

then note that I0(1− h) has simple poles at h = h+
12 + n, (n = 0, 1, 2, . . .),1

I0(1− h) ∼ − 1

n!

(2h1)n(2h2)n

(2h+
12 + n− 1)n

1

h− h+
12 − n

as h→ h+
12 + n (4.19)

where (a)n = Γ(a+n)
Γ(a) is the Pochhammer symbol, and we used the identity Γ(x+n)

Γ(x) =

(−1)n Γ(1−x)
Γ(1−x−n) .

At the pole location we have h = h+ J = h+
12 + n+ J , which we write as h = h+

12 + n

with n = n+ J . At such a pole we then evaluate

DκI0(h) =
1

n!

(2h1)n(2h2)n

(2h+
12 + n− 1)n

, h = h+
12 + n . (4.20)

We therefore find simple poles in c(h, h) according to

c(h, h) ∼ −1

2

Cn,n

h− h+
12 − n

as h→ h+
12 + n , h = h+

12 + n , (4.21)

with

Cn,n =

[
1

n!

(2h1)n(2h2)n

(2h+
12 + n− 1)n

] [
1

n!

(2h1)n(2h2)n

(2h+
12 + n− 1)n

]
. (4.22)

The factor of 1/2 in 4.21 arises from using h, h̄ rather than ∆, J . This identifies Cn,n
as the squared OPE coefficients of primary operators appearing in the O1O2 OPE in the

generalized free field limit. One checks that these are the correct OPE coefficients by

verifying (see (4.13) the identity)

(zz)h
+
12

[(1− z)(1− z)]2h2
=

∞∑
n,n=0

Cn,ngh+
12+n(z)gh+

12+n(z) . (4.23)

That is, this gives the expansion of the vacuum exchange contribution O1O1 → I → O2O2

in terms of crossed channel exchanges, O1O2 → [O1O2]n,n → O1O2.

1There are also some other “spurious poles” which end up giving no contribution, and we ignore them

here; see [18, 30] for details.
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4.2 Anomalous dimensions from graviton exchange

We now include graviton exchange in the t-channel. At large c we can relate this to 1/c

corrections to the anomalous dimensions. If the previous poles at h = h+
12 + n are shifted

to h = h+
12 + n + γ

2 where γ ∼ O(1/c) then the pole term will appear in 1/c perturbation

theory as

c(h, h) ∼ −1

2

Cn,n

h− h+
12 − n−

γ
2

= −1

2

Cn,n

h− h+
12 − n

− 1

2

Cn,n

(h− h+
12 − n)2

γ

2
+O(1/c2) . (4.24)

There is also a 1/c contribution from corrections to Cn,n that we have suppressed. Hence

anomalous dimensions are extracted from the coefficient of the double pole.

As noted above, we really just need to explicitly compute the contributions from the

stress tensor rather than the full Witten diagram. So, adding this to the identity exchange

we have

c(h, h) =
Dκ
2

(
I0(h)I0(1− h) +

2h1h2

c
I0(h)I2(1− h) +

2h1h2

c
I2(h)I0(1− h)

)
. (4.25)

The factors of 2h1h2
c are understood as follows. The usual OPE expression is T (z)O(h) ∼

h
z2O(0) + . . ., identifying h as the OPE coefficient. However, this definition of the stress

tensor has two-point function 〈T (z)T (0)〉 = c
2z4 , so in (4.25) we need to divide by c/2 to

describe the exchange of a properly normalized operator.

Looking back at the identity exchange computation, simple poles arose from the z → 0

region of integration according to
∫ 1

0 dzz
hn−h−1 ∼ − 1

h−hn
, with hn = h+

12 +n. Double poles

arise from the presence of a logarithm,∫ 1

0
dzzhn−h−1 ln z ∼ − 1

(h− hn)2
, (4.26)

so that, as will use below, the coefficient of the double pole is the same as the coefficient

of the simple pole for the integral with no ln z insertion. Such a logarithm comes from

f2(1− z) appearing in I2(1− h),

f2(1− z) = (1− z)2
2F1(2, 2, 4, 1− z) = −12− 6

(
2

1− z
− 1

)
ln z . (4.27)

The upshot is that the anomalous dimension comes from the middle term in (4.25), and

we can further omit the −12 term in f2(1− z), in which case

I2(1− h) = −6

∫ 1

0

dz

z2

zh
+
12

(1− z)2h1
g1−h(z)

(
2

1− z
− 1

)
ln z . (4.28)

Now, as we noted above, the coefficients of the double poles in I2(1 − h) are the same as

the coefficients of the simple poles after omitting ln z from the integrand. The integral

with coefficient (−1) is simply I0(1 − h) and the corresponding simple poles are written

in (4.19). For the remaining integral we find poles∫ 1

0

dz

z2

zh
+
12

(1−z)2h1
g1−h(z)

(
2

1−z

)
∼ − 1

n!

(2h1)n(2h2)n

(2h+
12+n−1)n

[
(2h1+n)(2h2+n)−n

2h1h2

]
1

h̄−h+
12−n

.

(4.29)
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This result is obtained by expanding the integrand around z = 0, and extracting the

coefficients using some guesswork and checking. This gives the double poles

I2(1− h) ∼ 1

n!

(2h1)n(2h2)n

(2h+
12 + n− 1)n

[
6

2h1h2

(
C2(h+

12 + n)− C2(h1)− C2(h2)
)] 1

(h− h+
12 − n)2

.

(4.30)

where the SL(2) quadratic Casimir C2(h) = h(h − 1) has appeared. Using this in (4.25)

we have

c(h, h) ∼ −1

2
Cn,n

(
1

h− h+
12 − n

+
γn/2

(h− h+
12 − n)2

)
, (4.31)

with

γn = −12

c

(
C2(h+

12 + n)− C2(h1)− C2(h2)
)
. (4.32)

Recall that we assumed n ≥ n, but if we relax this condition then n in (4.32) should

be replaced by min(n, n). γmin(n,n) gives the anomalous dimension at order 1/c of the

operator of schematic form O1∂
n∂

nO2. That is, this operator has dimension ∆ = h+
12 +

n+ n+ γmin(n,n) and spin J = |n− n|. Noting that the twist in the generalized free limit

is τ = ∆ − J = h+
12 + 2 min(n, n) we have that when expressed in terms of (τ, J) the

anomalous dimension depends on the twist but not the spin.

4.3 Comparison to Wilson line

Comparing to our Wilson line computation, we see that the anomalous dimensions γn,n has

the same form as the coefficients γn obtained in the Wilson line computation, except for

the replacement of min(n, n) by n. The difference is that in this section we are expanding a

full correlator in the crossed channel, while the Wilson line just gives the Virasoro vacuum

block contribution.

To further illustrate the distinction we carry out the following exercise. Suppose we

pretend that the correlator is given by the t-channel exchange of the identity operator and

the global stress tensor block (this corresponds to expanding the Virasoro block contribu-

tion to first order in 1/c). We just focus on one chiral half of the correlator in what follows.

This gives

G(z) =
zh

+
12

(1− z)2h2

(
1 +

2h1h2

c
z2F (2, 2, 4, 1− z)

)

=
zh

+
12

(1− z)2h2

(
1 +

2h1h2

c

(
−12− 6

(
2

1− z
− 1

)
ln z

))
. (4.33)

We then try to expand this in the s-channel in terms of double trace operators with 1/c

corrected dimensions and OPE coefficients,

G(z) =

∞∑
n=0

(Cn + δCn)gh+
12+ γn

2
(z) , (4.34)
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with Cn = (2h1)n(2h2)n
n!(2h1+2h2+n−1)n

. The γn are extracted by comparing the ln z terms on two

sides after expanding to order 1/c and recalling that γn ∼ O(1/c).

zh1+h2

(1− z)2h2

2h1h2

c

(
−6

(
2

1− z
− 1

))
ln z =

1

2

∞∑
n=0

Cnγngh1+h2+n(z) ln z . (4.35)

One can check that this is obeyed for

γn = −12

c

(
C2(h+

12 + n)− C2(h1)− C2(h2)
)

(4.36)

which is the result found in the Wilson line computation. We can continue to match the

non-ln z terms to fix δCn, at which point we have succeeded in writing G(z) in the form

of a block expansion in the s-channel, (4.34). Including the z contributions would simply

yield the absolute square, and anomalous dimensions γn,n = γn + γn. However, since we

omitted double trace exchanges in the t-channel, even though these are known to be present

in a full Witten diagram, one might expect there is something sick about this result. For

example, the spectrum appearing in the s-channel includes operators with non-integer spin,

since J = |h − h| = 1
2 |γn − γn| is not an integer in general. So from this point of view,

the double trace exchanges in the t-channel are required to maintain an operator spectrum

with purely integer spins. Another way to understand γn is as anomalous dimensions at

large spin. Taking the lightcone limit z̄ → 1, the operator with minimal twist τmin = 0,

the stress tensor, dominates. A familiar result from the lightcone bootstrap is that the

leading dependence of the double-twist anomalous dimensions on spin J is 1/Jτmin , and

so the large-spin anomalous dimensions are spin-independent. As this data is analytic in

J , the anomalous dimensions must take their large-spin value for all spins. The crossed

channel expansion in the lightcone limit is dominated by states with n � n, so that n is

the twist, and n = min(n, n). This explains why γn,n̄ takes the same form as γn. Also,

this computation shows very clearly how the Wilson line in the limit we have considered

corresponds to summing up the single stress tensor exchanges into a form in which γn
appears exponentiated.

5 Comments

We conclude with a few comments. The main result of this paper is an expression for the

late time Wilson line, obtained in the limit c, t → ∞ with t/c fixed. This was achieved

in the light-light limit, where h and h′ are held fixed. The most obvious challenge for the

future is to extend this to the heavy-light limit, in which h′/c is held fixed, which would

allow one to make contact with the black hole related issues discussed in the introduction.

We might hope to gain analytical insight into the numerical results of [7], which indicate a

universal 1/t3/2 falloff at late times for these blocks. A step in this direction might be to

systematically understand 1/c corrections to the light-light limit. We focused here on the

vacuum Virasoro block, but the Wilson line construction is readily generalized to describe

non-vacuum blocks as well. The starting point is a Wilson line network with trivalent

vertices. [8, 9]. It would be interesting to employ the methods used here to understand
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the late time behavior of these blocks. We also note that a closely related approach to

Virasoro blocks in the large c limit is based on the “geometric action” for the Virasoro

group [31]. This was recently considered in [32], along with its appearance from 3D gravity

in the Chern-Simons formulation.

Applying familiar bootstrap techniques to the Virasoro-block decomposition of corre-

lators may provide further insight. In this work, we found that the anomalous dimensions

γn,n̄ due to graviton exchange differed from the corrections to the energy γn + γn̄ in the

Virasoro block computation essentially due to the tower of double-trace operators present

in Witten diagrams. At order O(1/c0), the way the double-trace operators are encoded

in the Virasoro-block decomposition is clear, as Virasoro blocks reduce to global blocks

in the large-c limit. The role of double-trace operators beyond leading order has been

studied for the global block decomposition using the Lorentzian inversion formula [19] but

is less well-understood in the Virasoro block case. One can investigate this by expanding

Virasoro blocks in terms of global blocks and working order by order in 1/c. This pro-

cedure computes contributions from multi-stress-tensor blocks in a systematic way, while

making use of global conformal symmetry alone would not allow this convenient packaging

of gravitational data.
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