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1 Introduction

The neutrino sector of the Standard Model (SM) is quite peculiar. Indeed, although the

quark and charged lepton mass spectra are quite hierarchical, the neutrino spectrum is

simple: all neutrinos are massless. Neutrino oscillations [1–3], where neutrinos seemingly

change flavor in flight, cannot be accommodated in the SM due to the masslessness of the

neutrinos. Neutrino oscillations thus imply massive neutrino eigenstates and the SM must

be extended. Moreover, neutrino oscillation experimental data suggest that the neutrino

spectrum is not hierarchical, with three massive light neutrinos and a mixing matrix, the

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, exhibiting near-maximal mixing.

The anarchy principle, introduced in [4, 5], was put forward to explain the peculiarities

of the neutrino sector by postulating a low-energy neutrino mass matrix generated by one of

the seesaw mechanisms from randomly-generated high-energy mass matrices with elements

distributed following a Gaussian ensemble. In a series of papers [6–10], several numerical

analysis of the anarchy principle were performed by randomly generating high-energy mass

matrices and computing the corresponding low-energy neutrino mass matrices.

Recently, the low-energy neutrino mass matrix probability density function (pdf) for

the anarchy principle was obtained from first principles in [11] following the extensive

literature on random matrix theory [12–14]. It was shown that the pdfs associated to type

I and type III seesaw mechanisms were given by the same complicated integral equation

while the pdfs associated to type II seesaw mechanism was simple. A partial investigation

of these seesaw ensembles was completed in [11] but an analysis of the physical case of three

light neutrinos was not undertaken. This paper closes the gap by studying the implications

of the seesaw ensembles for neutrino physics.
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The low-energy neutrino mass matrix pdf is known to factorize into a singular value

pdf and a group variable pdf for all seesaw mechanisms. The singular value pdf corresponds

to the pdf for the light neutrino masses while the group variable pdf corresponds to the

pdf for the mixing angles and phases of the PMNS matrix. The singular value pdf for

type I-III is given in [11] as a multidimensional integral while the singular value pdf for

type II is a simple Gaussian-like distribution. The group variable pdf for all types of

seesaw mechanisms is the Haar measure, which seems to prefer near-maximal mixing.

However, as stressed in [15], the mode of a pdf is not a well-defined quantity (e.g. it is not

invariant under change of variables), hence it is preferable to compare pdfs by comparing

their probabilities associated to a particular outcome. This probability test, which is hard

to perform by randomly generating low-energy neutrino mass matrices, can however be

straightforwardly implemented from the analytic pdfs.

Moreover, the factorization of the pdfs for the singular values and the group variables

implies that there is no link between the light neutrino masses and the light neutrino

mass eigenstates, forbidding an investigation of the preferred mass hierarchy (normal or

inverted). From the analytic results for the singular value pdfs, it is however possible to

determine which mass splitting, i.e. which ordering of m̂2
med − m̂2

min and m̂2
max − m̂2

med,

is favored.

This paper is organized as follows: section 2 gives the relevant pdfs for the seesaw

ensembles obtained in [11]. In section 3 the pdfs for the complex seesaw ensembles are

studied in the N = 2 and N = 3 cases. For both cases, a comparison is made between

the analytic results and the numerical results, showing perfect agreement. For the N = 3

case relevant to neutrino physics, a thorough investigation of the implications of the seesaw

ensembles is completed. For example, it is shown from the probability test that both type

I-III and type II seesaw ensembles prefer the mass splitting associated to normal hierarchy

with a neutrino energy scale of O(10−2) eV. Finally, a discussion and a conclusion are

presented in section 4.

It is important to note that throughout this paper, the term “analytic results” should

be understood as results obtained from the analytic pdfs which are numerically inte-

grated while the term “numerical results” corresponds to results obtained from randomly-

generated mass matrices.

2 The seesaw ensembles

This section states without proof the relevant quantities that appear in the seesaw ensem-

bles, which were derived from the anarchy principle applied to the SM extended with the

type I-III seesaw mechanism or with the type II seesaw mechanism. The reader interested

in the proofs is referred to [11].

2.1 Probability density functions

The pdfs for the dimensionless N × N light neutrino mass matrix M̂ν = Mν/(
√

2Λν)

where Λν is the (naturally small) light neutrino mass scale, can be expressed in terms
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of the light neutrino mass matrix singular values m̂ν,i and the light neutrino mass ma-

trix group variables Uν with the help of the decomposition M̂ν = UνDνU
T
ν where Dν =

diag(m̂ν,1, · · · , m̂ν,N ) and m̂ν,i ≥ 0 for all i. The pdfs are found to factorize into two

independent pdfs, one pdf for the singular values and one pdf for the group variables, as in

Pν(m̂ν ;Uν)dm̂νdUν = Pν(m̂ν)Pν(Uν)dm̂νdUν . (2.1)

For real (β = 1) and complex (β = 2) matrix elements, the pdfs are given respectively by

P I-III
ν (m̂ν)dm̂ν = CI-IIIβ

νN IβN (m̂ν,1, · · · , m̂ν,N )

×
∏

1≤i<j≤N
|m̂β

ν,i − m̂
β
ν,j |

∏
1≤i≤N

|m̂ν,i|−(βN+1)dm̂ν,i,

P II
ν (m̂ν)dm̂ν = CIIβ

νN

∏
1≤i<j≤N

|m̂β
ν,i − m̂

β
ν,j |

∏
1≤i≤N

|m̂ν,i|β−1e−m̂
2
ν,idm̂ν,i,

Pν(Uν)dUν =
U †νdUν

Vol(VβN )
.

(2.2)

Note that the pdf for the group variables is the normalized Haar measure for all types of

seesaw mechanisms. Here the function IβN relevant for the type I-III seesaw mechanism is

IβN (t1, · · · , tN ) =

∫
U∈VβN

∫ ∞
0

∏
1≤i<j≤N

|xi − xj |βe−2|∑1≤k≤N t−1
k UkiUkj |2xixj (2.3)

×
∏

1≤i≤N
x
β(N+2)/2−1
i e−xi(1+|∑1≤j≤N t−1

j U2
ji|2xi)dxi

(U †dU)′

Vol(VβN )/(2π)(β−1)N
,

where the integration is over the full Stiefel manifold VβN ≡ V
β
N,N if β = 1 but only parts of

the full Stiefel manifold if β = 2 (hence the prime, see [11]). The normalization constants

and the volume of the Stiefel manifold VβN are

CI-IIIβ
νN =

2N [β(N+3)−4]/4

N !

∏
1≤i≤N

Γ(β/2 + 1)

Γ(βi/2 + 1)[Γ(βi/2)]2
,

CIIβ
νN =

2N [β(N+3)−4]/4

N !

∏
1≤i≤N

1

Γ(βi/2)
,

Vol(VβN ) =

∫
U∈VβN

U †dU =
2NπβN(N+1)/4∏

1≤i≤N Γ(βi/2)
.

An important feature of the joint pdfs for the singular values (2.2) is their invariance

under permutations of the singular values. Apart from the function IβN , the pdfs are

clearly invariant under such a transformation. The function IβN is also invariant under

permutations since a permutation only reshuffles the columns and rows of the matrix U ,

which is integrated over.1 Hence, the neutrino masses can be reshuffled freely amongst

1The permutation of U can also be absorbed in an appropriate permutation of the variables xi, which

are also integrated over.
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themselves. This invariance, which leads to a complete independence between the light

neutrino mass eigenstates and the light neutrino masses, implies that the probability for a

specific spectrum of masses is at most 1/N !. This observation has far-reaching consequences

in the physical case of neutrino physics.

It is important to note that, at the level of the pdfs, the only difference between the

type I-III and the type II seesaw mechanisms lies in the singular value pdfs. Hence, when

comparing which ensemble better generates the observed neutrino parameters, only the

information on the mass splittings will differ.

2.2 A parametrization for unitary matrices

Since the goal of this paper is to compare the implications of the seesaw ensembles with

actual neutrino observations, the rest of the paper focuses on complex matrix elements, i.e.

β = 2. The analysis of the case with real matrix elements is similar.

With that in mind, it is important to find a convenient parametrization for unitary ma-

trices to proceed with the analysis. Indeed, to write the integral (2.3) more explicitly when

β = 2, it is necessary to assume a parametrization for the unitary matrix U . Moreover,

the light neutrino group variables pdf is the Haar measure for unitary matrices.

A convenient parametrization, based on [16, 17], implies that a N ×N unitary matrix

U can be written as

U =
∏

1≤j<k≤N
exp(iφjkPk) exp(iθjkΣjk)

∏
1≤j≤N

exp(iϕjPj). (2.4)

Here the matrices Pj and Σjk are given by

Pj,ik = δjiδjk, Σjk,i` = −iδjiδk` + iδj`δki, (2.5)

and the N2 mixing angles θjk and phases φjk and ϕj belong to the following intervals,

θjk ∈ [0, π/2), φjk ∈ [0, 2π), ϕj ∈ [0, 2π). (2.6)

Moreover, the Haar measure

U †dU =
∏

1≤i≤N
dϕi

∏
1≤i<j≤N

sin(θij)[cos(θij)]
2(j−i)−1dφijdθij , (2.7)

depends only on the mixing angles.

For the light neutrino masses, the parametrization (2.4), which gives

U †dU = U †d

 ∏
1≤j<k≤N

exp(iφjkPk) exp(iθjkΣjk)


×

∏
1≤j≤N

exp(iϕjPj) + diag(idϕ1, · · · , idϕN ), (2.8)

shows clearly that all dϕi are not integrated over in (2.3). Indeed, the most interesting

quantity in (2.3) is (U †dU)′ and it is given by

(U †dU)′ =
∧

1≤i<j≤N
(U †dU)ij =

∧
1≤i<j≤N

Re(U †dU)ij ∧ Im(U †dU)ij , (2.9)
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using the wedge product notation [11]. Hence the variables ϕi are not even part of the

integral, implying a N2-dimensional integral Iβ=2
N in the singular value pdf.

For the light neutrino mixing matrix, the quantity of interest is simply the Haar mea-

sure (2.7). In that case, the corresponding variables ϕi are the unphysical phases that

can be absorbed by a field redefinition. The remaining phases φij are the CP-violating

Dirac and Majorana phases. All those phases have flat distributions that are uninter-

esting. The mixing angles on the other hand, have non-trivial distributions. This fact

has important consequences for the SM neutrino physics since near-maximal mixings seem

highly probable.

3 The complex seesaw ensembles

In this section the complex seesaw ensemble pdfs (2.2) are analyzed for small values of N .

The case N = 1 was studied analytically in [11] for both real and complex matrix elements.

Here the case N = 2 with complex matrix elements is investigated and compared to nu-

merical results for 2×2 matrices. Then the physical case of N = 3 is analyzed to determine

how likely the pdfs are to generate the observed light neutrino masses and mixings.

3.1 Consequences of the complex seesaw ensembles

Before discussing specific values of N , it is enlightening to state the implications of the

complex seesaw ensemble pdfs (2.2) in general terms.

First, once a decomposition for the light neutrino mass matrix M̂ν = UνDνU
T
ν is cho-

sen, the implications of near-maximal mixings obtained from the group variable pdf (2.2),

i.e the appropriate normalized Haar measure, for some mixing angles seem inescapable.

Indeed, using the parameterization (2.4), the Haar measure, given by (2.7), dictates that

the most probable value for the mixing angles θij is arccot[
√

2(j − i)− 1] while all the

remaining (unphysical, CP-violating Dirac and Majorana) phases have flat distributions.

Thus the preferred value for all mixing angles θi,i+1 is π/4, which corresponds to maximal

mixing, while the preferred value for all mixing angles θi,i+2 is π/6. It is important however

to notice that most probable values are not invariant under change of variables, as pointed

out in [15].

Then, the consequences for the light neutrino masses, which are obtained from the

singular value pdfs (2.2), are not as sharp. Indeed, although the chosen decomposition is

here fixed, the singular value pdfs (2.2) are invariant under permutations of the singular

values. Hence, the light neutrino masses and the light neutrino mixing angles and phases

are completely independent. In other words, although each singular value m̂ν,i has a corre-

sponding singular vector (uν,i)j = Uν,ji such that M̂νu
∗
ν,i = m̂ν,iuν,i, the probability that a

particular neutrino mass spectrum occurs is at most 1/N !. For example, the dimensionless

neutrino mass spectrum (m̂ν,1, · · · , m̂ν,N ) = (µ1, · · · , µN ) is as probable as the spectrum

(m̂ν,1, · · · , m̂ν,N ) = (µ2, µ1, µ3, · · · , µN ) or any other permutations. It is thus possible to

fix an ordering for the singular values, 0 ≤ m̂min ≤ · · · ≤ m̂max, keeping in mind that the

relationship between the light neutrino masses and the light neutrino mixing matrix is com-

pletely lost. Fixing the ordering implies that the singular value pdfs (2.2) are multiplied

by N !.
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Figure 1. Probability density functions for the singular values of the complex seesaw ensembles

with N = 2. The red curve corresponds to the analytic result while the histogram corresponds to

numerical results (with 2.5 × 104 dimensionless light neutrino mass matrices generated). The left

and right columns show the pdfs for the type I-III and the type II seesaw mechanisms respectively.

The singular values are ordered such that 0 ≤ m̂1 ≤ m̂2 and an extra factor of 2! is introduced to

correct the singular value pdfs.

Therefore, by working with a fixed basis as described above, some mixing angle pre-

ferred values correspond to maximal mixing but the ordering of the light neutrino masses

for a given spectrum is completely free. It is thus clear that a spectrum exhibiting one of the

two hierarchy patterns preferred by the data (normal or inverse) is as probable as the same

spectrum but with permuted mass eigenstates. These observations are in the spirit of [15],

although with the analytic knowledge of the singular value pdfs (2.2), it is now possible to

complete an appropriate statistical test to better check the validity of the anarchy princi-

ple. As stressed in [15], the most appropriate statistical test seems to be the probability

test which computes the probability that the variables are in a given volume. By choosing

the observed values with their error bars for the volume of the light neutrino masses and

mixings, the probability that one ensemble leads to the SM is obtained. Clearly, since the

variables are continuous, the calculated probability is very small for very precisely-known

observed values. One can nevertheless discriminate ensembles, for example the type I-III

and type II seesaw ensembles, by comparing their respective probabilities, as shown below.

3.2 The case N = 2

As a warm-up exercise, the case N = 2 is studied analytically and compared to randomly-

generated light neutrino mass matrices. Using the parametrization (2.4) for both unitary

matrices [i.e. the one appearing in (2.3) and the light neutrino mixing matrix], the relevant

– 6 –
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Marginal pdfs Mean Median Mode

P̃ I-III
ν (m̂1) 0.59 0.39 0.0064

P̃ I-III
ν (m̂2) 5.39 3.41 1.85

P̃ II
ν (m̂1) 1

2

√
π
2 0.58 1

2

P̃ II
ν (m̂2)

√
π

4

(
2 +
√

2
)

1.48 1.42

Table 1. Location parameters for the marginal singular value pdfs of figure 1.

pdfs (2.2) can be written as

P I-III
ν (m̂1, m̂2) =

2|m̂2
1 − m̂2

2|
m̂5

1m̂
5
2

×
∫ ∞

0
dx1dx2

∫ π/2

0
dθ′(x1 − x2)2x3

1x
3
2 sin(2θ′)I0

[
(x1−x2)2[sin(2θ′)]2

2m̂1m̂2

]
× e
− m̂

2
1(x1[sin(θ′)]2+x2[cos(θ′)]2)2+m̂2

2(x1[cos(θ′)]2+x2[sin(θ′)]2)2

m̂2
1m̂

2
2

−x1−x2

,

P II
ν (m̂1, m̂2) = 4|m̂2

1 − m̂2
2|m̂1m̂2e

−m̂2
1−m̂2

2 ,

Pν(θ, φ, ϕ1, ϕ2) =
1

8π3
sin(2θ), (3.1)

where the subscript ν on the masses was omitted to simplify the equations. The modified

Bessel function of the first kind I0(z) is generated by the integral over the phase in (2.7).

The 4-dimensional integral is thus simplified to a 3-dimensional integral. Figures 1 and 2

show a comparison between the analytic results (3.1) and numerical results for a fixed

ordering of the singular values (chosen to be 0 ≤ m̂1 ≤ m̂2, such that m̂1 ≡ m̂min and

m̂2 ≡ m̂max). Consequently, the resulting marginal singular value pdfs are obtained by

computing the following integrals

P̃Σν (m̂1) = 2!

∫ ∞
m̂1

dm̂2P
Σ
ν (m̂1, m̂2), P̃Σν (m̂2) = 2!

∫ m̂2

0
dm̂1P

Σ
ν (m̂1, m̂2), (3.2)

for both ensembles (i.e. Σ = I-III or II).

Although the analytic behavior of the type I-III singular value pdf (3.1) is hard to see

intuitively due to the integral, it is clear that the pdfs (3.1) are correct as seen in figure 1.

The behavior of the type I-III singular value pdf at vanishing and large singular values

matches the expectations of [11]. The vanishing of P̃ I-III
ν (m̂1) at m̂1 → 0 is not apparent

in the histogram due to the bins being too large. The type II singular value pdf is much

easier to study. The pdfs for the smallest and the largest singular values can be obtained

analytically from (3.1). Again, there is a good match between the analytic results, which are

simple exponentials, and the numerical results. In order to make an appropriate comparison

between the two ensembles, it becomes essential to fully characterize the previous pdfs.

Thus, one is expected to compute their corresponding moments as well as their modes and

medians. However, as stated in [11], the only existing moment for the type I-III complex

– 7 –
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P̃
ν
(θ
)
=

si
n
(2
θ)
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0.0

0.1

φ

P̃
ν
(φ
)
=

1 2
π

0 π/2 π
0.0

0.1

0.2

0.3
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P̃
ν
(ϕ

1
)
=

1 π

0 π/2 π
0.0

0.1

0.2

0.3

ϕ2
P̃
ν
(ϕ

2
)
=

1 π

Figure 2. Probability density functions for the mixing angle and phases of the complex seesaw

ensembles with N = 2. The red curve corresponds to the analytic result while the histogram corre-

sponds to numerical results (with 2.5× 104 dimensionless light neutrino mass matrices generated).

The top and bottom rows show the pdfs for the mixing angle θ, the CP-violating phase δ, and the

unphysical phases ϕ1 and ϕ2 (note the range is halved due to the extra freedom ϕi → ϕi ± π [11]).

(β = 2) seesaw ensemble is the first moment (the average singular values). Therefore, a

meaningful characterization of the previous pdfs is limited to the first moment, the mode

and the median (their location parameters). Their respective values for each distribution

are presented in table 1.

From these results, it can be seen that the average singular values coming from the type

I-III seesaw ensemble are spread over a wider range than in the type II seesaw ensemble.

Moreover, when comparing the mean of a distribution with its respective median, one can

quantify the asymmetry of the pdfs presented in figure 1. It turns out that the means are

much closer to the medians (and thus the modes) in the type II seesaw ensemble, which

leads to more symmetrical pdfs as can already be seen from figure 1.

Moving forward, the group variable pdf (3.1) is easier to analyze. First, all phases have

flat distributions as mentioned previously. Moreover, the mixing angle has a non-trivial

distribution that prefers near-maximal mixing. From figure 2 the pdf for the mixing angle

and the phases agree well with the normalized Haar measure. Since these pdfs were studied

extensively in the literature and are easier to analyze, their statistical parameters (mean,

median and mode), which are easily obtained from (3.1), are not presented here.

Finally, to provide a global overview of the pdfs with unordered singular values, the

density plots of the singular value pdfs for the type I-III and type II seesaw ensembles are

shown in figure 3. The symmetry pattern of the pdfs under the exchange m̂1 ↔ m̂2 is

easily seen from figure 3.
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Figure 3. Density plots of the singular value pdfs for the complex seesaw ensembles with N = 2.

The left and right panels show the density plots of the type I-III [P I-III
ν (m̂1, m̂2)] and type II

[P II
ν (m̂1, m̂2)] seesaw ensembles respectively. The plots are split along the symmetry axis so that

the upper and lower triangles show the analytical and numerical results (with 105 dimensionless

light neutrino mass matrices generated) respectively. There is no ordering of the singular values.

In fact, the plots are constructed in a way that takes advantage of this symmetry

to provide a meaningful comparison between analytical and numerical results in both

cases. Indeed, by showing only half the data for the analytical (m̂1 < m̂2) and numer-

ical (m̂1 > m̂2) results in each plot, it can be seen that the agreement between the two is

once again very good. Moreover, by comparing the distances between modes in each plot,

it is possible to determine which ensemble has a stronger repulsion between the singular

values. It is found that the modes are 1.7 times farther apart in the type I-III seesaw en-

semble, meaning that a stronger repulsion is observed between the singular values for this

ensemble. Unfortunately, the origin of this interesting feature is hard to trace back without

a completely-integrated analytical expression for P I-III
ν (m̂1, m̂2). A possible explanation as

to why the singular values are closer together in the type II seesaw ensemble is suggested

in expression (3.1). Indeed, one can see that the Vandermonde-like contribution |m̂2
1− m̂2

2|
in P I-III

ν (m̂1, m̂2) (responsible for the spreading of the singular values with reference to the

symmetry axis), is strongly suppressed by a product of masses to the fifth power, which

tends to spread the singular values in a narrow band along the two axes. Eventually, in

order to get a better understanding of the type I-III seesaw ensemble, the density plot

could be used to guess an analytical form for P I-III
ν (m̂1, m̂2) by fitting some appropriate

functions of the singular values with free parameters to be determined. Such density plots

are not really conceivable for the case N = 3 as they would require heavy numerical com-

putation and would be rather hard to illustrate properly. However, the same reasoning and

conclusions apply to this case as well.

3.3 The case N = 3: SM neutrino physics

With the tools and insights developed in the previous sections, it is now possible to fully

analyze the more interesting case of a seesaw-extended SM.
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Normal Hierarchy Inverted Hierarchy

θ12(◦) 33.48+0.78
−0.75 33.48+0.78

−0.75

θ23(◦) 42.3+3.0
−1.6 49.5+1.5

−2.2

θ13(◦) 8.50+0.20
−0.21 8.51+0.20

−0.21

δ(◦) 306+39
−70 254+63

−62

∆m2
21(10−5 eV2) 7.50+0.19

−0.17 7.50+0.19
−0.17

∆m2
3`(10−3 eV2) 2.457+0.047

−0.047 −2.449+0.048
−0.047

m1(eV) < 4.5 < 4.5

Table 2. Best-fit values for the SM neutrino physics parameters for the normal and inverted

hierarchies. The intervals correspond to ±1σ. In the case of ∆m2
3`, ` = 1 for the normal hierarchy

and ` = 2 for the inverted hierarchy.

First, recent experimental values of the physical parameters in the neutrino sector

are summarized in table 2. The mixing angles, the CP-violating Dirac phase and the

squared mass differences ∆m2
ij = m2

i −m2
j are extracted from [2].2 The upper bound on

the mostly-electronic neutrino m1 is the 1σ upper bound of [18]. This upper bound on

m1 comes from the study of supernova. It is conservative and quite model-independent.

Indeed, it is the weakest bound when compared to the cosmological bound on the sum

of the neutrino masses which is somewhat model-dependent or the neutrinoless double β-

decay bound and the direct neutrino mass bound which are intertwined with some mixing

matrix parameters [19]. These values will be used in the probability test at the end of

this section.

For neutrino physics, the most convenient parametrization for the unitary group U(3)

is of course the PMNS mixing matrix [1] for the light neutrino Uν ,

Uν =

 1 0 0

0 cos(θ23) sin(θ23)

0 − sin(θ23) cos(θ23)


 cos(θ13) 0 sin(θ13)e−iδ

0 1 0

− sin(θ13)eiδ 0 cos(θ13)

 (3.3)

×

 cos(θ12) sin(θ12) 0

− sin(θ12) cos(θ12) 0

0 0 1


 1 0 0

0 eiα21/2 0

0 0 eiα31/2

 . (3.4)

The group variable pdf (2.2) is given by

Pν(θ12, θ13, θ23, δ, α21, α31) =
1

2π3
sin(2θ12) sin(θ13)[cos(θ13)]3 sin(2θ23), (3.5)

which is the same as the normalized Haar measure (2.7) obtained from the parametriza-

tion (2.4). Hence the complex seesaw ensemble prefers the mixing angles θ12 and θ23

around π/4 and the mixing angle θ13 around π/6. The pdfs for the CP-violating Dirac

2While numerically computing the results of this paper, an updated fit of the neutrino sector experimental

values was published in [3]. Since the experimental values did not change much, the analysis presented here

will not change significantly.
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Figure 4. Probability density functions for the singular values (masses) of the complex seesaw

ensembles with N = 3. The red curve corresponds to the analytic result while the histogram corre-

sponds to numerical results (with 2.5× 104 dimensionless light neutrino mass matrices generated).

The left and right columns show the pdfs for the smallest, median and largest singular values for

the type I-III and the type II seesaw mechanisms respectively. The singular values are ordered such

that 0 ≤ m̂1 ≤ m̂2 ≤ m̂3 and an extra factor of 3! is introduced to correct the singular value pdfs.

phase δ and the two CP-violating Majorana phases α21 and α32 are flat. Therefore, any

value for the CP-violating phases is equally probable in the complex seesaw ensemble. It

is important to note that the unphysical phases are not explicitly included in the PMNS

parametrization (3.4).

The full expression for the type I-III singular value pdf is quite long (the explicit

expression fills up a few pages) and not enlightening. The form (2.2) with the parametriza-

tion (2.4) and N = 3 is sufficient for both type I-III and type II. As discussed in section 3.1,

these pdfs are invariant under permutations of the singular values m̂1, m̂2 and m̂3. Con-

sequently, the hierarchy of the neutrino mass spectrum of the extended SM cannot be

predicted under the anarchy hypothesis. The only claim that can be made is that all hi-

erarchy scenarios (that is to say, every 3! permutations of the three singular values) are
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Marginal pdfs Mean Median Mode

P̃ I-III
ν (m̂1) 0.36 0.26 0.03

P̃ I-III
ν (m̂2) 1.93 1.65 1.17

P̃ I-III
ν (m̂3) 9.65 6.55 4.09

P̃ II
ν (m̂1) 1

2

√
π
3 0.48 1√

6

P̃ II
ν (m̂2) 15

16

√
π
2 1.15

√
5

2

P̃ II
ν (m̂3)

√
π

96

(
72 + 45

√
2− 16

√
3
)

1.96 1.91

Table 3. Location parameters for the marginal singular value pdfs of figure 4.

equiprobable for a given mass splitting (again, the term mass splitting is understood to be a

particular ordering of the two quantities m̂2
med−m̂2

min and m̂2
max−m̂2

med). To further study

the mass splitting and the resulting marginal pdfs, it is convenient to introduce a particular

singular value ordering. From now on, the ordering is chosen to be 0 ≤ m̂1 ≤ m̂2 ≤ m̂3

(such that m̂1 ≡ m̂min, m̂2 ≡ m̂med and m̂3 ≡ m̂max) although it must remain clear that

those are not straightforwardly related to the experimental neutrino masses (once again,

the choice is completely arbitrary). Thus, one cannot single out any of the two hierarchy

scenarios selected by experimental data. Nevertheless, by studying the marginal singular

value pdfs of the type I-III and type II seesaw ensembles, some important and interesting

results on the regime of low-energy neutrino physics can be obtained.

First, the marginal singular value pdfs can be obtained by computing the following

integrals,

P̃Σν (m̂1) = 3!

∫ ∞
m̂1

dm̂2

∫ ∞
m̂2

dm̂3P
Σ
ν (m̂1, m̂2, m̂3),

P̃Σν (m̂2) = 3!

∫ ∞
m̂2

dm̂3

∫ m̂2

0
dm̂1P

Σ
ν (m̂1, m̂2, m̂3),

P̃Σν (m̂3) = 3!

∫ m̂3

0
dm̂2

∫ m̂2

0
dm̂1P

Σ
ν (m̂1, m̂2, m̂3),

for both ensembles (i.e. Σ = I-III or II). The marginal singular value pdfs are shown in

figure 4. A first observation that comes to mind when looking at figure 4 is the diversity

of the mass spectrum obtained with the type I-III seesaw ensemble compared to the type

II seesaw ensemble. This can be traced back to the fact that the pdfs P̃ I-III
ν (m̂i) are

much more complex than the simple Gaussian-like pdfs P̃ II
ν (m̂i) that arise in the type

II seesaw ensemble. For example, there is no internal angular dependence associated to

extra variables that needs to be integrated out in the type II pdf. A second observation

worth mentioning is the remarkable agreement between analytical and numerical results.

For reasons previously mentioned, analytical results derived from the type I-III seesaw

ensemble are much more challenging to get than those of the type II seesaw ensemble.

Following heavy numerical computation based on adaptive Monte Carlo integration, the

11-dimensional integrals resulting from the marginalization procedure can be obtained for
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Figure 5. Probability density functions for the ratios of the complex seesaw ensembles with N = 3.

The red curve corresponds to the analytic result while the histogram corresponds to numerical

results (with 2.5 × 104 dimensionless light neutrino mass matrices generated). The left and right

plots show the pdfs for the ratios of the type I-III and the type II seesaw mechanisms respectively.

The singular values are ordered such that 0 ≤ m̂1 ≤ m̂2 ≤ m̂3 and an extra factor of 3! is introduced

to correct the singular value pdfs.

given values of m̂1, m̂2 or m̂3. The red curves produced in such a way are in very good

agreement with their corresponding histograms (generated from a sample of light neutrino

mass matrices), which can be viewed as a validation of the Monte Carlo integration method

(estimated to be accurate to at least three significant figures) used in this case or a numerical

check of the singular value pdfs obtained in [11].

Once the numerical integration method is carefully tested, the next step is to compute

the relevant statistical parameters. The results are presented in table 3. Following the

same approach as in the N = 2 case, it is found that the average singular values are once

again spread over a much wider range in the type I-III seesaw ensemble. Moreover, when

compared to the N = 2 case, it can be seen that this range expands significantly more in

the type I-III seesaw ensemble as N increases. Next, comparing these values with their

respective medians, one can conclude that the pdfs are much more symmetric in the type

II seesaw ensemble, as can be expected when looking at figure 4.

Even though determining the hierarchy of the mass spectrum is out of reach in the

context of the seesaw ensembles, the previous results can still be used to help identify

which of the two possible mass splittings (according to our previous ordering, the mass

splittings can be written as ∆m̂2
21 = m̂2

med − m̂2
min and ∆m̂2

32 = m̂2
max − m̂2

med so that the

two possibility are either ∆m̂2
21 < ∆m̂2

32 or ∆m̂2
21 > ∆m̂2

32) is more likely to occur under

the anarchy hypothesis.

By studying the distribution of the ratio R,

R =
∆m̂2

21

∆m̂2
32

=
m̂2

2 − m̂2
1

m̂2
3 − m̂2

2

, (3.6)

which leads to the marginal pdf P̃Σν (R) for both ensembles, it becomes clear that the pdf

resulting from type I-III seesaw ensemble is more likely to reproduce the experimental

value of Rexp ' 0.03 for the normal hierarchy (also when compared to Rexp ' 32.65

for the inverted hierarchy). Moreover, by integrating these distributions over the range
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Figure 6. Probability density functions for the mixing angles and phases of the complex seesaw

ensembles with N = 3. The red curve corresponds to the analytic result while the histogram corre-

sponds to numerical results (with 2.5× 104 dimensionless light neutrino mass matrices generated).

The left and right columns show the mixing angles and the remaining flat phases respectively. Since

these distributions depend only on the Haar measure of the corresponding Lie group [U(3) in this

case], there is no distinction between type I-III and type II seesaw mechanisms.

0 ≤ R ≤ 1 (1 ≤ R ≤ ∞), one gets the probability that the mass splitting ∆m̂2
21 < ∆m̂2

32

(∆m̂2
21 > ∆m̂2

32) is realized. For the type I-III seesaw ensemble, the probability is 95.8%

(4.2%) whereas for the type II seesaw ensemble the probability is 79.0% (21.0%). These

probabilities are supported by figure 5. One can thus conclude that the dominant trend

for both ensembles is the realization of the mass splitting ∆m̂2
21 < ∆m̂2

32 reminiscent of

the normal hierarchy. Moreover, looking at the very distinct behavior of the two pdfs

and comparing the resulting probability, it is possible to state that the type I-III seesaw

ensemble is better suited to generate this particular mass splitting. In the context of the

type I-III seesaw ensemble, this means that the mass differences are way more likely to

coincide with the ones from normal hierarchy, yet the ordering of the masses is still unknown

(once again, every 3! permutations are equally probable for this particular splitting).
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Next, considering the group variable pdf for the mixing angles and phases (3.5), similar

conclusions as with the case N = 2 can be drawn. Once again, the phases have flat

distributions and two of the three mixing angles prefer near-maximal values as shown in

figure 6. Here, the unphysical phases were not considered in the making of figure 6 as they

were deemed not interesting for the present discussion. The numerical data coming from

a sample of light neutrino mass matrices is once again consistent with the marginal pdfs

obtained from the Haar measure. The only non-symmetric pdf for the mixing angles is

the one associated to θ13. Its mode, located at π/6, is in agreement with the results of

section 3.1 obtained with the parametrization (2.4) since the Haar measure is the same for

the PMNS matrix (3.4).

To further emphasize the differences between the two ensembles, the probability test is

now used to determine how well the complex seesaw ensembles can generate the observed

values of the extended SM physical parameters in the neutrino sector. The results of the

probability test will then be compared between the type I-III and type II seesaw ensembles

to determine which ensemble is more likely to generate the observed values of physical

parameters. The experimental values are given in table 2.

With the observed values of table 2, the probabilities (where |detJ | is the Jacobian of

the appropriate hierarchy) are

PNH
m (Λν) =

∫ (7.50+0.19)×10−5 eV2

2Λ2
ν

(7.50−0.17)×10−5 eV2

2Λ2
ν

d∆m̂2
21

∫ (2.457+0.047)×10−3 eV2

2Λ2
ν

(2.457−0.047)×10−3 eV2

2Λ2
ν

d∆m̂2
31

×
∫ 4.5 eV√

2Λν

0
dm̂1|detJ |PΣν (m̂1, m̂2, m̂3),

P IH
m (Λν) =

∫ (7.50+0.19)×10−5 eV2

2Λ2
ν

(7.50−0.17)×10−5 eV2

2Λ2
ν

d∆m̂2
21

∫ (−2.449+0.048)×10−3 eV2

2Λ2
ν

(−2.449−0.047)×10−3 eV2

2Λ2
ν

d∆m̂2
32

×
∫ 4.5 eV√

2Λν

0
dm̂1|detJ |PΣν (m̂1, m̂2, m̂3),

PU =

∫
Vexp

dθ12dθ13dθ23dδdα21dα31Pν(θ12, θ13, θ23, δ, α21, α31), (3.7)

where NH stands for normal hierarchy while IH stands for inverted hierarchy. The first

test is achieved by using only the singular value pdfs for both ensembles (see figure 7). For

the type I-III seesaw ensemble, the 12-dimensional integrals over the experimental volume

defined by the 1σ range are obtained using the same Monte Carlo algorithm. At this

point, it is necessary to stress that this test does not require any ordering of the singular

values. In fact, all permutations are accounted for in these integrals and there is thus no

need for an extra factor of 3! to ensure the normalisation of the pdfs. Since the only free

parameter left in the equations is Λν , the idea is to plot the probability as a function of Λν

over a range where the curves reach a maximum. This allows for a simple comparison of

their maximum values (by taking appropriate ratios) to determine the likelihood of each

ensemble to generate the observed values. It is important to note that beside the fact

that the probabilities obtained this way are invariant under a change of basis, the explicit
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Figure 7. Probability test for the singular values of the complex seesaw ensembles with N = 3.

The left and right columns show the probability distribution as a function of Λν (in the normal

and inverted hierarchy scenarios) for the type I-III and the type II seesaw mechanisms respectively.

The singular values are in no particular order for this test.

values of the probabilities are not particularly meaningful. In fact, they are bound to

shrink further and further as the experimental values get more and more precise. However,

the ratios are considered to be relevant quantities since they are subject to only small

fluctuations during this process (the order of magnitude should remain the same). The

results of the probability test are presented in figure 7.

First, from within the same ensemble, one can compare the probabilities obtained from

the normal and inverted hierarchy scenarios. The maximum probability values resulting

from a scan over Λν reveal that the mass splitting in (3.7) are ∼ 1000 times more likely to

originate from the region defined by normal hierarchy (at 1σ) than from the one defined

by inverted hierarchy in the type I-III seesaw ensemble. In other words, this means that

the type I-III seesaw ensemble is way more likely to generate values for these physical

parameters that are contained within the region allowed by the normal hierarchy data set

(rather than the inverted hierarchy data set). For the type II seesaw ensemble, the same

tendency is observed but with a much smaller ratio between the maximum probability

values. Indeed, figure 7 shows that the mass splitting is ∼ 25 times more likely to originate

from the region defined by normal hierarchy. It is then possible to conclude that between

the two regions scanned in the probability test, both ensembles naturally lead to preferred

values for these physical parameters that lie in the region defined by normal hierarchy.

Moreover, this preference is strongly accentuated in the type I-III seesaw ensemble.

Second, one can make a comparison between the two ensembles based on the result of

figure 7. Since it was shown that one region is actively preferred over the other, it becomes

useful to compare the maximum probability values in the case of normal hierarchy for
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both ensembles. This time, the conclusions are not as striking as in the previous case

but one can state that the type I-III seesaw ensemble is roughly 2 times better than

type II for generating values of these parameters in this particular region.3 The results

obtained from this probability test are thus in agreement with what was found previously

by comparing the pdfs of the ratios R and consequently help quantify the underlying trends

in both ensembles.

A final point of interest regarding this particular test concerns the energy scale Λν .

Again from figure 7 one can see that choosing the integration region to be over the accepted

experimental values (within the 1σ confidence level) naturally fixes the energy scale of the

models. Each scan shows that the maximum probability values are attained for values of

Λν which are of the same order of magnitude, namely Λν ∼ O(10−2)eV for both ensembles.

Since Λν , which corresponds to the light neutrino mass scale, takes the general form Λν =

v2/Λnew for each type of seesaw mechanisms, with v ' 246 GeV the usual Higgs vacuum

expectation value, a quick estimate of the new energy scale Λnew associated to the particle

content introduced in the extended SM with type I, type II or type III seesaw mechanism

(right-handed neutrinos singlets, Higgs triplet and fermionic triplets respectively) can be

made. Indeed, using the previously-mentioned values, one gets Λnew ∼ O(1015) GeV for

the new energy scale of the extended SM, which is very close to the energy scale of grand

unified theory (GUT). Naturally, Λnew is directly related to the masses of these newly-

introduced particles. However, in order to assess their corresponding mass scales, one

needs to specify the order of magnitude of the coupling constants arising from each seesaw

scenario. The usual approach is to set the coupling constants to be of O (1) since there is

no fundamental principle or symmetry pattern that require particularly small couplings.

This in turn suggests that the new particles introduced in the SM are quite heavy since

Λnew becomes essentially their corresponding mass scale. In fact, this result is typical of

seesaw mechanisms and is often regarded as a prerequisite (when taking the naturalness

argument into consideration to avoid seesaw-induced fine-tuning or hierarchy problems) for

these mechanisms to give sensible predictions concerning the light neutrino masses. It is

however possible to lower the mass scales by simply postulating smaller coupling constants,

somewhat disregarding the naturalness argument. Overall, the results of the probability

test are therefore consistent with high-energy phenomenology of the seesaw-extended SM.

The second probability test, with results shown in table 4, concerns the mixing pa-

rameters of the neutrino sector, namely the mixing angles and phases of table 2. In this

case, the analysis is much simpler since there is no free parameter with which to scan a

particular region and the pdf (the Haar measure) is also a lot less complicated. Since both

ensembles have the same pdf for the mixing angles and phases, a comparison between the

two is not possible. However, it is interesting to see how well these ensembles perform when

compared to a trivial normalized flat distribution. Here, the idea is simply to test whether

there is any improvement when generating parameter values from the Haar measure ob-

tained in the seesaw ensembles as opposed to a less interesting model where there would be

3It is interesting to note that the type II seesaw ensemble is approximately 18 times more probable than

the type I-III seesaw ensemble for the inverted hierarchy.
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Normal Hierarchy Inverted Hierarchy

PU 2.435× 10−6 2.231× 10−6

Pflat 1.198× 10−6 1.105× 10−6

PU/Pflat 2.031 2.018

Table 4. Probability test for the mixing angles and phases of the complex seesaw ensembles with

N = 3 and a (trivial) normalized flat distribution. The probability PU and Pflat are obtained by

integrating the normalized Haar measure and the flat distribution over the experimental volume

Vexp defined by the data at the 1σ confidence level (see table 2).

no information or explicit dependence on the angular part in the pdf. By comparing the

probabilities that the generated values lie within Vexp in both cases and for the two types

of hierarchy, one gets the results of table 4. The first conclusion that can be drawn from

these results is that, up to the level of accuracy acknowledged for this test (remember that

this analysis remains sensible to the choice of integration volume to some extent), there

can be no distinction between normal or inverted hierarchy. Both regions are thus equally

probable. However, when comparing PU with Pflat, there is indeed improvement as the

seesaw ensembles are essentially ∼ 2 times more likely to generate parameters within the

allowed experimental region (for both hierarchy scenarios) than the flat distribution.

3.4 Large N comparison

To follow up on our previous work [11] regarding the close resemblance of the type I-III

singular value pdf at N = 1 and the level density at large N , this section further investigates

this connection by adding the comparison with the pdfs at N = 2 and N = 3 for the type

I-III seesaw ensemble. The starting point for an appropriate comparison of these quantities

is the correlation function

ρI-III
νN (x) = N

∫
P I-III
ν (x, m̂2, · · · , m̂N )

∏
2≤i≤N

dm̂i, (3.8)

for N = 2 and N = 3 respectively. Introducing a convenient rescaling of the variable

x→
√
Nm̂ν , the resulting correlation functions

ρ̂I-III
ν2 (m̂ν) =

√
2

∫ ∞
0

dm̂2P
I-III
ν (m̂ν , m̂2),

ρ̂I-III
ν3 (m̂ν) =

√
3

∫ ∞
0

dm̂2

∫ ∞
0

dm̂3P
I-III
ν (m̂ν , m̂2, m̂3), (3.9)

with ρ̂(x̂) = ρ(x)/
√
N , can be compared directly to the large N histogram (N = 60). The

resulting 11-dimensional integral for N = 3 is carried out using the previously-mentioned

Monte Carlo algorithm.

From figure 8, one can see that the agreement between analytical and numerical results

becomes surprisingly good as N reaches 3. However, there is a priori no clue as to why

the correlation functions for finite and small N are able to reproduce with great precision

the level density at large N since they are independent quantities. This represents the first
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Figure 8. Comparison between the correlation function at N = 2 and N = 3 (red curves) and

the level density at large N (histogram with N = 60) for the type I-III complex seesaw ensemble.

The red curves correspond to the analytic result for these specific values of N while the histograms

correspond to numerical results (with 103 dimensionless light neutrino mass matrices generated).

The left and right panel show the comparison with N = 2 and N = 3 respectively. There is no

ordering of the singular values.

clear indication that a proper large N analysis would indeed be a good approximation of

the physical case N = 3, as was previously suggested (without proof or evidence) in the

literature. Thus, there is no doubt that this particular behavior should be investigated

further since it motivates the search for an analytical expression (coming from a large N

analysis) to better understand the physical case at hand.

4 Discussion and conclusion

In this work the statistical implications of the seesaw ensembles, following the anarchy

principle, for the physical case of three neutrinos were obtained. It is shown that the

analytic pdfs computed in [11] are in perfect agreement with the numerical results of

randomly-generated light neutrino mass matrices for the complex seesaw ensembles with

N = 2 and N = 3. The repulsion between the singular values is stronger in the type I-III

seesaw ensemble than in the type II seesaw ensemble, and the strength of the difference

between the repulsions of type I-III and type II ensembles increases as N increases.

The loss of correlation between the light neutrino masses and the light neutrino mass

eigenstates forbids an investigation of the favored hierarchy pattern (normal or inverted).

However, an analysis of the preferred mass splitting, i.e. the preferred ordering of m̂2
med −

m̂2
min and m̂2

max − m̂2
med, is completed. The probability test implies that for both seesaw

ensembles, the preferred mass splitting is the one associated to normal hierarchy, although

any permutation of the mass eigenstates is equally likely. However, a comparison between

ensembles shows that the type I-III seesaw ensemble is only twice as likely as the type II

seesaw ensemble to generate the neutrino sector experimental data assuming the preferred

normal hierarchy.

For all seesaw mechanisms, the preferred neutrino energy scale is of O(10−2)eV, which

leads to a scale of new physics similar to the GUT scale when the associated coupling con-

stants are of order one. Smaller coupling constants can partly lower the new physics scale.
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A comparison of the group variable pdf for all seesaw ensembles (the Haar measure)

and a flat distribution shows that the seesaw ensemble is only twice as likely as the flat

distribution to lead to the neutrino sector experimental data. One thus concludes that the

type I-III seesaw ensemble is marginally favored over the other ensembles, predicting the

hierarchy of the neutrino sector to be normal.

Finally, a comparison of the complex type I-III seesaw ensemble level density for N = 3

and large N shows that the properly-normalized N = 3 level density is well approximated

by the properly-normalized large N level density. Because of the complexity of the analytic

N = 3 singular value pdf and the link between the large N level density and the physical

neutrino sector, it would be interesting to obtain an analytical level density at large N . A

step in that direction was made in [11] following the usual Coulomb gas technique, but it

was shown there that the resulting level density is wrong. The authors hope to return to

this question in the near future.
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